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Mutually unbiased bases (MUBs) play a key role in many protocols in quantum science, such as

quantum key distribution. However, defining MUBs for arbitrary high-dimensional systems is theoreti-

cally difficult, and measurements in such bases can be hard to implement. We show experimentally that

efficient quantum state reconstruction of a high-dimensional multipartite quantum system can be

performed by considering only the MUBs of the individual parts. The state spaces of the individual

subsystems are always smaller than the state space of the composite system. Thus, the benefit of this

method is that MUBs need to be defined for the small Hilbert spaces of the subsystems rather than for the

large space of the overall system. This becomes especially relevant where the definition or measurement

of MUBs for the overall system is challenging. We illustrate this approach by implementing measure-

ments for a high-dimensional system consisting of two photons entangled in the orbital angular

momentum degree of freedom, and we reconstruct the state of this system for dimensions of the individual

photons from d ¼ 2 to 5.
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Mutually unbiased bases (MUBs) [1,2] are a key concept
in quantum science, as they are intimately related to the
nature of quantum information [3–5]. Measurements made
in one of a set of MUBs provide no information about the
state if this was prepared in another basis from the same
set. In quantum mechanics, the amount of information that
can be extracted from a physical system is fundamentally
limited by the uncertainty relations [3,4]. In this context,
MUBs acquire a fundamental relevance because they serve
as a test bed with which one can explore general uncer-
tainty relations and, ultimately, complementarity [5]. Some
important questions related to MUBs remain open [3,5]:
what is the number of MUBs for an arbitrary dimension d,
and why is mutual unbiasedness not enough to guarantee
a strong uncertainty relation? While we do not seek to
answer these questions, we provide an accessible experi-
mental platform for exploring these problems by demon-
strating measurements in complete sets of MUBs.

Many quantum information protocols depend upon the
use of MUBs. For example, quantum key distribution
(QKD) relies on the fact that measurements in one basis
preclude knowledge of the state in any of the others [6–8].
In addition, MUBs play an important role in the recon-
struction of quantum states [1,9,10], where they have been

successfully used to enable the optimal reconstruction of
entangled states of polarization [11] and single-photon
linear momentum states [12].
It is known that a Hilbert space of dimensionDwill have

at most Dþ 1 MUBs [1,2,13]. In 1989, Wootters showed
that if one can find Dþ 1 mutually unbiased bases in
dimension D, these bases provide a set of measurements
that can be used to optimally determine the density matrix
of a D-dimensional system [1]. However, this approach
rapidly breaks down for large D for two reasons: first,
defining MUBs in high dimensions becomes increasingly
difficult [5,14], and second, performing the measurements
in a complete high-dimensional set of MUBs becomes
experimentally challenging [11,15]. This is especially rele-
vant for multilevel multiparticle systems, where the dimen-
sion of the overall system scales as D ¼ dN , with d the
dimension of the Hilbert spaces of the N individual
particles.
We show experimentally that the alternative approach of

performing local measurements in the MUBs of the single
particles of a multiparticle system still allows a complete
reconstruction of the overall density matrix with a mini-
mum number of measurements [16]. The significant benefit
of our procedure is that it only requires the definition

of MUBs in a Hilbert space of size d ¼ D1=N; see Fig. 1.
We illustrate this approach in the case of a photonic
implementation of a bipartite multilevel entangled system

(d ¼ ffiffiffiffi
D

p
) using the orbital angular momentum of light.

In addition to the spin angular momentum, associated
with polarization, light can also carry orbital angular
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momentum (OAM) [17]. The OAM of light is associated
with phase structures of the form ei‘�, where ‘@ is the
OAM carried by each photon and � the azimuthal angle
[18]. The unbounded Hilbert space of OAM is one example
of a scalable high-dimensional resource that can be used
for quantum information science [19–22]. For example, the
entanglement of high-dimensional states provides imple-
mentations of QKD that are more tolerant to eavesdropping
and can improve the bit rate in other quantum communi-
cation protocols [23–28].

One of the advantages of OAM is the ability to access
d-dimensional subspaces [29], for each of which we can
define all existing MUBs [30]. In this work, we implement
measurements in high-dimensional MUBs within the
OAM degree of freedom, and we show that the MUBs
corresponding to d-dimensional subspaces are readily ac-
cessible with simple laboratory procedures. Furthermore,
we show that measurements in MUBs of these subspaces
can be used for the complete tomographic reconstruction
of multipartite entangled systems with the minimum num-
ber of measurements. We produce entangled photon pairs
by means of spontaneous parametric down-conversion that
we then measure in full sets of dþ 1 MUBs for OAM, for
dimensions ranging from d ¼ 2 to 5. The states belonging
to the MUBs are defined as superpositions of Laguerre-
Gaussian modes.

Theory.—Consider two operators in a d-dimensional
Hilbert space with orthonormal spectral decompositions.
These operators, and their basis states, are said to be
mutually unbiased [1,2] if

jhc m;ijc n;jij2 ¼
�
1=d for m � n
�ij m ¼ n;

(1)

for all i and j. The indices i and j correspond to the basis
states, and m and n indicate any two bases. Operators that
are quantum-mechanical observables are sometimes called
mutually complementary, or maximally noncommutative
[31]. This is because, given any eigenstate of one, the
eigenvalue resulting from a measurement of the other is
completely undetermined. In other words, the state of a
system described in one MUB provides no information
about the state in another. It is known that the number of

MUBs in dimension d cannot exceed dþ 1 [1,5], and it is
exactly dþ 1 if d is prime or a prime power [1,32].
The simplest set of mutually unbiased observables can

be found in dimension d ¼ 2. For example, in the two-
dimensional Hilbert space of polarization, the bases of
horizontal (vertical), diagonal (antidiagonal), and left
(right) circular polarizations provide a set of three MUBs.
Two states belonging to the same basis are orthonormal,
while the square of the inner product of any two states
belonging to different bases is always 1=2. Equivalent
mutually unbiased states can be implemented using other
two-dimensional state spaces, e.g., a subspace of OAM.
In our work, we choose to investigate the OAM degree

of freedom of single photons. A general single-photon state
in a d-dimensional subspace can be described by an ortho-
normal basis set of OAM modes j‘i as jc i ¼ P

f‘gc‘j‘i.
The complex coefficients c‘ are subject to the normaliza-
tion condition

P
c2‘ ¼ 1. Defining MUBs in a general

d-dimensional space is a difficult problem [14]; however,
for a number of low-dimensional cases, it is possible to find
complete sets of MUBs using simple procedures [33]. For
these cases, which include the dimensions 2–5, the states
fj‘ig can be chosen to be one of the MUBs. The states
belonging to the remaining dMUBs are found to be super-
positions of the basis states with coefficients of equal

magnitude jc‘j ¼ 1=
ffiffiffi
d

p
but differing phases.

In general, it is possible for a system to includemore than
one particle. If one considers a d-dimensional state space
for each particle, the dimensionD of a system ofN particles
will be D ¼ dN . Such a system will be unambiguously
specified by its density matrix �, a positive-semidefinite
unit-trace Hermitian operator that includes d2N � 1 inde-
pendent real parameters (d4 � 1 for a bipartite system).
MUBs play an important role in quantum state tomog-

raphy [1,34], the process of determining the density matrix
of an unknown quantum system [35–37]. One approach
to tomography is to perform measurements in the MUBs
of the D-dimensional state space of the composite system
[1]. However, such measurements are very challenging
as they require the definition of MUBs for Hilbert spaces
of very high dimension and can require the implementation
of entangled observables [11]. Our approach is simpler as
we use the MUBs of the state spaces of the single particles.
Let us consider for simplicity a bipartite system. An

overcomplete set of measurements for the reconstruction
of the D-dimensional system is provided by the pairwise
combinations of all single-particle MUB states. The total
number of independent measurements for this approach is
equal to ½dðdþ 1Þ�2, which is always greater than d4 � 1.
We propose another suitable set of measurements, given by
pairwise combinations of states from an appropriate subset
of the overcomplete set. This subset contains all states in
one MUB and all but one state in each of the remaining d
MUBs. It can be shown that the conditions for the com-
pleteness of a set of tomographic measurements [37] are
satisfied by this reconstruction strategy [38].

FIG. 1. Illustration of the state spaces of a bipartite system,
where the system has dimension D and each subsystem d.
Adamson and Steinberg [11] performed measurements in the
Hilbert space HD of the composite system, while we perform
joint local measurements in the spaces Hd of the individual
subsystems (for d ¼ 2–5).
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This approach gives exactly the d4 independent mea-
surements that can then be used for a tomographically
complete reconstruction of the D-dimensional system.
The number of measurements in our method scales favor-
ably with the dimension of the system if compared with
other methods [38].

Experimental methods.—A 3 mm-thick�-barium borate
(BBO) nonlinear crystal cut for type-I collinear spontane-
ous parametric down-conversion is pumped by a colli-
mated 1 W UV laser to produce frequency-degenerate
entangled photon pairs at 710 nm. The copropagating
signal and idler photons are separated by a nonpolarizing
beam splitter and redirected to spatial light modulators
(SLMs), onto which the output face of the crystal is imaged
by a 2� telescope. In order for the crystal to produce two-
photon states entangled over a wider range of OAMmodes,
we tune the phase-matching conditions of the BBO crystal
to increase the OAM spectrum of the down-converted state
[39]. The SLMs act as reconfigurable computer-generated
holograms that allow us to measure any arbitrary superpo-
sition of OAM modes. The SLMs are used to modulate the
phase and introduce a spatially dependent attenuation to
discard light into the zero diffraction order, allowing the
manipulation of the complex amplitude of the incoming
light [30,40,41].

We pump the crystal with a plane phase front. In order to
observe correlations in all bases (instead of anticorrela-
tions), the hologram displayed in one of the two detection
arms is phase conjugate with respect to the other [19]. The
projected Gaussian mode is then imaged onto a single-
mode fiber that is coupled to a single-photon photodiode
detector. The detectors’ outputs are routed to coincidence-
counting electronics with a timing window of 10 ns.
Narrow band, 10 nm interference filters are placed in front
of the detectors to ensure that the frequency spread of the
detected down-converted fields is small compared to the
central frequencies.

The combination of the two SLMs, single-mode fibers,
and coincidence-counting electronics allows us to perform
projective measurements on the entangled state of photons
A and B described by the operators

�m;i;n;j ¼ jc m;iiAjc n;ji�Bhc m;ijAhc n;jj�B: (2)

Here, the single-photon states jc iA and jc iB belong to
MUBs in d dimensions and are given by

jc m;ii ¼
X
f‘g
cm;i;‘j‘i; (3)

where cm;i;‘ is a complex coefficient. The indices m and

n, which correspond to the basis indices, range from 1 to
dþ 1; the indices i and j, which represent a state within a
basis, range from 1 to d. For each dimension d, we choose
one set of OAM states fj‘ig. The OAM values used are
f‘g ¼ f�2;þ2g for d ¼ 2, f�2;�1;þ1;þ2g for d ¼ 4,
and f�bd=2c; . . . ;þbd=2cg for d ¼ 3 and 5. For each d,
we take the basis corresponding to m ¼ 1 to be the

orthonormal basis given above; the remaining bases are
composed of superpositions of the m ¼ 1 states with
appropriate complex coefficients; see Fig. 2. For the
dimensions considered, the magnitude of these complex

coefficients is 1=
ffiffiffi
d

p
for all i and ‘.

To determine the phase terms cm;i;‘ that define the

MUBs (for m ¼ 2 to dþ 1), we use the methods outlined
by Refs. [33,42]. The coefficients are given by the
mutually unbiased vectors derived from d� d dephased
Hadamard matrices. These matrices are unique for
d ¼ 2, 3, 4, and 5. For d ¼ 2, the MUBs obtained are the
familiar set of bases that one usually associates with polar-
ization states. Consequently, the two-dimensional MUBs
for OAM [43] are the analogue of those for polarization
[44]. All the modes used for d ¼ 3 are shown in Fig. 2.
An overcomplete set of measurements is obtained by

scanning through all possible values of m and i, for photon
A, n, and j, for photon B. For every combination ofm, n, i,
and j, we record the coincidence counts and both the
single-channel counts resulting from the projective mea-
surement. From this set of data we extract the tomograph-
ically complete set of measurements previously described.
These count rates are converted to detection probabilities
through the following relationship:

pk ¼ d2P
Ck

Ck �Uk

Uk

; (4)

where the index k corresponds to a unique choice of
measurement settings m, n, i, and j, Ck is the coincidence
count rate and Uk is the anticipated uncorrelated coinci-
dence rate, which is estimated by taking the product of the
single-channel count rates and the gate time (Fig. 3). The
normalization approach that we take accounts for different
hologram efficiencies for different modes [38].
The task of the fitting procedure is to find the optimal

density matrix � of the D-dimensional system that best
reproduces the experimental results. The parameters of the
density matrix are established through numerical minimi-
zation of Pearson’s cumulative test statistic [45,46]

�2 ¼ Xd4
k¼1

ðpk � p0
kÞ2

p0
k

; (5)

FIG. 2 (color online). Mutually unbiased modes i for each of
the 4 bases m in d ¼ 3. The gray scale images represent the
intensity, the color images represent the phase. The first basis,
m ¼ 1, corresponds to Laguerre-Gaussian modes with OAM
ranging from ‘ ¼ �1 to þ1.
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where pk are the probabilities from the experiment, and
p0
k ¼ Tr½��k� are those predicted from the reconstructed

density matrix.
The reconstructed density matrices for dimensions 2,3,4,

and 5 are shown in Fig. 4. For each reconstructed density
matrix �, we calculate the linear entropy S ¼ 1� Trð�2Þ
and the fidelity F ¼ Tr½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
p

�
ffiffiffiffi
�

pp �2, where � is the
D-dimensional maximally entangled density matrix asso-
ciated with arbitrarily large spiral bandwidth [39] and
perfect detection. The uncertainties were calculated by
repeating the reconstruction process for statistically
equivalent copies of the original experimental data sets,
each obtained by adding Poissonian fluctuations to the
measured counts.

The reconstructed density matrices have low entropies,
indicating pure states, and very high fidelities with respect
to the maximally entangled state. Because of the finite
spiral bandwidth of our generated state [39,47] and limi-
tations in our measurement system, one would anticipate
the fidelities to decrease and the entropies to increase as the
dimension increases. Indeed, we observe this characteristic
in our results.

For comparison, we also implemented the approach
described in Ref. [48]. We find comparable entropies and
fidelities whichever approach is used [38]. However, our
method requires significantly fewer measurements. For

example, for d ¼ 5, the number of measurements required
is d4 ¼ 625 compared to 2025 for the procedure outlined
in Ref. [48]. Both methods rely on projective measure-
ments in appropriate superpositions of the basis states in
the dimension of choice. Neither is more experimentally
demanding, as they can both be performed using the same
setup and only differ in the choice of projection states.
The MUBs reconstruction method is applied here to

almost maximally entangled states. The density matrices
of maximally entangled states have low rank, r < D, and
could thus be efficiently reconstructed through compressed
sensing [49,50]. In the general case, however, a complete
quantum state reconstruction by means of appropriately
selected projection operators may be more appropriate and
produce results with higher fidelity.
Conclusions.—In this work, we have demonstrated

single-photon measurements for MUBs in the OAM degree
of freedom and shown how these measurements can be
used for efficient quantum state reconstruction. The pro-
cedure of measuring combinations of all single-photon
states in one basis and all but one state in the remaining
bases gives a minimal complete set of tomographic mea-
surements. This experimental method can be readily
applied to multilevel multipartite systems.
The OAM degree of freedom is becoming an important

resource for quantum information science. Therefore, the
ability to measure states in MUBs is an important step for
quantum protocols implemented in this degree of freedom.

FIG. 3. Joint probabilities of detecting photon A in state
jc m;iiA and photon B in state jc n;jiB. The results are normalized

such that the sum of the joint detection probabilities for mea-
surements in any two bases m and n are unity. Therefore, the
probabilities represented by the leading diagonal are expected to
be 1=d, and all probabilities for m � n are expected to be 1=d2.
We also display the quantum contrast (QC), which is given by
the ratio of the measured coincidence rate to that of the expected
accidental coincidences. The arrows indicate the rows and col-
umns of measurements not required for the complete tomo-
graphic reconstruction of the density matrix.

FIG. 4. Results of tomographic reconstructions using a com-
plete set of single-photon mutually unbiased bases measure-
ments. The real parts of the reconstructed density matrices �
are shown. Imaginary parts are less than 0.076 for d ¼ 2, 0.059
for d ¼ 3, and 0.050 for d ¼ 5, 6. Also shown are the linear
entropy S and fidelity F for the reconstructed density matrices.
Insets: Real parts of the theoretical density matrices for the
maximally entangled states.
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Measuring MUBs in high-dimensional spaces is not just of
practical importance for QKD protocols, but it can also
provide important insight into the nature of information in
physical systems.
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