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We model the cooling of open optical and optomechanical resonators via optical feedback in the linear

quadratic Gaussian setting of stochastic control theory. We show that coherent feedback control schemes,

in which the resonator is embedded in an interferometer to achieve all-optical feedback, can outperform

the best possible linear quadratic Gaussian measurement-based schemes in the quantum regime of low

steady-state excitation number. Such performance gains are attributed to the coherent controller’s ability

to process noncommuting output field quadratures simultaneously without loss of fidelity, and may

provide important clues for the design of coherent feedback schemes for more general problems of

nonlinear and robust control.
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Feedback control of classical dynamical systems plays a
central role in modern engineering [1] but its quantum
analogue, the notion of controlling a quantum system via
feedback with a quantum or classical controller, is much
less developed. Recent progress in modeling [2–5] and
realizing [6–15] quantum feedback underscores the need
for systematic approaches to control design, as do the wide
range of potential applications in quantum science and
technology.

While some of the most interesting problems in quantum
feedback control are nonlinear [16–21], linear open quan-
tum systems provide a logical first step towards more
general problems. Working with linear systems, James,
Nurdin, and Petersen [22,23] have utilized interconnection
models [24–26] based on quantum stochastic differential
equations [27–29] to develop generalizations of the tradi-
tional H1 and linear quadratic Gaussian (LQG) control
paradigms that allow for the possibility of coherent optical
feedback with linear quantum controllers. Here we work
within the quantum LQG framework of Ref. [23] to study
steady-state cooling of open quantum oscillators such as
optical and optomechanical resonators subject to stationary
heating and damping, with optical probing and feedback.
We utilize numerical optimization together with fundamen-
tal analytic results [1,30] to describe stationary, autonomous
coherent feedback control schemes [31] that outperform the
best possible LQG measurement-based schemes. We find
more systematic and quantitatively significant advantages of
coherent feedback over measurement-based feedback than
in linear control scenarios considered previously [12,23],
and interpret these performance gains in terms of the way

that noncommuting field quadratures propagate through the
feedback loop.
We model quantum harmonic oscillators as cascadable

open quantum systems using the SLH framework [32,33]
and associated quantum stochastic differential equations.
In the SLH framework, an open Markovian quantum sys-
temmay be described as a tripleG ¼ ðS; L;HÞwhere S is a
scattering matrix, L is a coupling vector and H is the
system Hamiltonian. The SLH framework is a very general
and powerful tool because it allows individual elements to
be straightforwardly and systematically interconnected in a
quantum circuit algebra [33]. For a linear system with a
vector of internal state variables x, the quantum stochastic
differential equations (analogues to the Heisenberg equa-
tions for open quantum systems [27,34]) take the following
form [22,23]:

dxðtÞ ¼ ½AxðtÞ þ a�dtþ BdaðtÞ
d~aðtÞ ¼ ½CxðtÞ þ c�dtþDdaðtÞ: (1)

Here A, B, C,D, a, and c are real and related to (S, L,H) in
the Supplemental Material [35]; see also Refs. [22,36].
The processes daðtÞ and d~aðtÞ are Hermitian quantum

stochastic processes for the inputs and outputs, respectively,

defined by dai ¼ ðdAi þ dAy
i ; ðdAi � dAy

i Þ=iÞ, where
dAiðtÞ ¼

R
tþdt
t aiðt0Þdt0 is the quantum Wiener process

[37,38] following the Itô rule dAidA
y
j ¼ �ijdt for vacuum

inputs.
As a first example of a quantum control system, take a

noisy optical cavity, Fig. 1. This has the SLH model

S ¼ I; L ¼ ½ ffiffiffiffiffi
k1

p
a;

ffiffiffiffiffi
k2

p
a;

ffiffiffiffiffi
k3

p
a�; H ¼ �aya;

(2)

where � is the detuning of the cavity resonance frequency
from that of a rotating frame. The cavity is driven by two
vacuum inputs (mirrors k1 and k2) and one thermal input
(mirror k3) and without feedback relaxes to a thermal state
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with the mean photon number hayai proportional to the
noise power kn [37]. The objective in this control problem
is to minimize the effect of the noise on the cavity’s
internal state—in other words, to minimize the photon
number hayai of the cavity. We accomplish this by sending
output 1 through a control circuit and feeding the result
back into input 2. This is an LQG feedback control prob-
lem, assuming negligible control cost.

Once the full system is set up, with its associated A, B,
C, and D matrices, the covariance matrix �ij ¼ 1

2 hxixj þ
xjxii can be computed with the Lyapunov equation, A�þ
�AT þ BFBT ¼ 0, where F is the input noise covariance;
the mean photon number can then be computed from �.
Without a controller, we find:

hayainc ¼ k3
k1 þ k2 þ k3

kn: (3)

Five possible controllers are sketched in Fig. 1. The
classical controllers (Homodyne and Heterodyne) work by
measuring a quadrature from the cavity’s output, or split-
ting the beam and measuring two different quadratures,
and applying a feedback signal based on this measurement
and the controller’s internal state. The trivial controller
works by feeding the output directly back into mirror 2 of
the plant, perhaps with a phase shift. The remaining two
coherent controllers have memory—the feedback signal
depends not only on the probe field, but also on its history.
The optical parametric oscillator (OPO) with squeezed
input and output is the most general system realizable for
two inputs and one internal degree of freedom [39].

The classical LQG optimization problem is convex, and
the optimal controller is an analytic function of the plant
parameters and the cost function [30]. The optimal homo-
dyne and heterodyne controllers act as classical amplifiers.
In the heterodyne case, the output d~a is related to the input
da and vacuum noises dak1, dak2 by:

d~ax ¼ Gðdax þ dak1;xÞ þ dak2;x

d~ap ¼ Gðdap � dak1;pÞ þ dak2;p;
(4)

where G is the controller gain. The controller measures the
probe, amplifies it, and then adds the signal to a vacuum
channel. The plant mean photon number becomes

hayaicl ¼ k2sinh
2Gþ k3kn

k1 þ k2 þ k3 þ 2
ffiffiffiffiffiffiffiffiffi
k1k2

p
sinhG

; (5)

which is plotted in dotted black in Fig. 2. Note that, while
the controller does a good job in the classical regime, when
hayai is high, it is ineffective in the quantum regime when
the photon number is & 1.
Contrast this with the trivial controller, which feeds the

output from mirror 1 directly into mirror 2. Rather than
leaking photons separately, the two outputs then interfere
constructively [18]. This leads to an enhancement in the
dissipation, beating the best classical controller by a con-
stant factor for small kn.

hayaitr ¼ k3
k1 þ k2 þ k3 þ 2

ffiffiffiffiffiffiffiffiffi
k1k2

p kn: (6)

Numerical optimization of the most sophisticated con-
troller we consider, the OPO with squeezed input and out-
put, yields a locally optimal solution that can be shown to be
equivalent [36] to a two-mode squeezer with squeezing �:

d~a1 ¼ coshð�Þda1 þ sinhð�Þda2
d~a2 ¼ sinhð�Þda2 þ coshð�Þda2:

(7)

This gives a mean photon number of:

hayai2-sq ¼ k2sinh
2�þ k3kn

k1 þ k2 þ k3 þ 2
ffiffiffiffiffiffiffiffiffi
k1k2

p
cosh�

; (8)

FIG. 1 (color). Possible classical and coherent cavity control-
lers for an optical cavity plant system.

FIG. 2 (color). Bottom: Cavity photon number as a function of
noise strength kn, for various control schemes. Top: Photon
number relative to the no-control case. Smaller is better.
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which is also plotted in Fig. 2. A single-OPOdesign can also
be optimized, with results as shown in Fig. 2.

Notice just how similar Eqs. (5) and (8) are. Both the
heterodyne controller and the linear amplifier reduce the
cavity’s photon number by amplifying the feedback signal,
but also add noise to the system. For equivalent levels of
amplification, the classical controller adds extra noise into
the system from the measurement process. When kn and �
are large, this extra noise is negligible, but in the quantum
regime where kn and � are& 1, this noise can play a major
role in making the linear amplifier outperform the hetero-
dyne controller.

Of course, this need not be the global optimum. It is
possible that other solutions, not found in our parameter
search, lead to better LQG performance than the two-mode
squeezer. But it is significant that we have found a quantum
controller which does better than the optimal classical
controller for all values of kn, particularly in the quantum
regime where the excitation number is low.

Our approach can also be applied to optomechanical
oscillators (mechanical springs that couple to an optical
field via a cavity), which have been a topic of tremendous
recent interest in the physics community [40,41]. A central
goal has been to find ways to exploit optomechanical
coupling to cool the mechanical oscillator from ambient
temperature to its ground state.

Consider a single cavity coupled to a mirror on a spring.
If we shine a laser into the input port and adiabatically
eliminate the internal mode, we obtain

S ¼ 12�2; L ¼ ½Kxm;
ffiffiffiffiffiffiffiffiffiffiffi
�=Q

p
b�; H ¼ �byb;

(9)

whereK is a constant depending on the cavity and the drive
field. It is not hard to show that this gives the following
input-output relations [36]:

dxm ¼ �pm ��=2Qxm

dpm ¼ ��xm ��=2Qpm � 2Kdap

d~ax ¼ dax þ 2Kxmdt d~ap ¼ dap:

(10)

The state variable xm is imprinted on the output d~ax,
permitting the controller to be used as a measurement
device via the x quadrature. Conversely, the p-quadrature
input dap alters the state of the mirror, allowing the system

to function as a feedback device.
Coupling two such cavities together as in Fig. 3, we obtain

our model plant system. The cooling objective is to mini-
mize the phonon number hbybi, where b ¼ ðxm þ ipmÞ=2
is the spring’s annihilation operator. As in the optical cavity
case, this is an LQG control problem.

Consider the first classical controller, the black line
(labelled ‘‘classical’’) in the plot of Fig. 3. This controller
only measures the dax quadrature, since no information is
contained in dap, and applies a feedback based on this

input (such strategies outperform heterodyne-based classi-
cal control). When optimizing, we vary both the controller
parameters and the couplings K1, K2 to the cavities in (9),
since these depend on input laser powers rather than on
properties of the plant. Here we will assume K1 ¼ �K2 �
K, however, as this type of design could be implemented
practically using two modes of a single optical cavity with
comparable power circulating in each. This symmetry in
the control model also facilitates straightforward interpre-
tation of the advantage of coherent feedback.
As before, the classical controller does a good job

cooling the oscillator in the classical limit hNi � 1, but
does a very poor job in the quantum limit; below a thresh-
old value, it has no effect at all. The classical controller
adds two sources of noise to the plant. First, the probe field
adds measurement noise to the spring through the first
cavity. Second, the feedback field adds a feedback noise
of equal magnitude via the second cavity. These noises add
up incoherently. In the low-kn limit, they dominate the
dynamics of the control system and the classical controller
becomes ineffective.
We also optimized two types of coherent controller—an

optical cavity and an OPO. They both behave qualitatively
in a similar way, but the optical cavity is easier to under-
stand. With the optical cavity controller, the feedback field
is related to both the probe field and the cavity state, which
changes with time:

da ¼ ð�i�� �=2Þadtþ ffiffiffiffi
�

p
d ~A1

dA2 ¼ d ~A1 þ
ffiffiffiffi
�

p
adt:

(11)

FIG. 3 (color). Control-system setup for the mechanical
oscillator cooling problem with � ¼ 100, Q ¼ 10000. Three
potential controller designs and their relative performance.
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Optimization shows that � ¼ �, so both the cavity and
mirror resonate at the same frequency. Although not
interpreted in terms of feedback control theory, it is
straightforward to show that cavity-optomechanical cool-
ing experiments such as Refs. [9–11] have implemented an
equivalent strategy in which the three optical cavities of
Fig. 3 are collapsed into one. The LQG-optimal classical
controller relies on a Kalman filter to estimate the plant
state from the measured signal [1]. The coherent cavity
controller can also be thought of as a Kalman filter, but

one that preserves the coherence of the input signal d ~A1.
Classically the p-quadrature dap is essentially discarded

after the measurement, while in the cavity controller the
field remains coherent and dap coming out is the same as

dap going in. This correlates the noises in the measurement

and feedback cavities such that the associated forces on the
mechanical oscillator cancel, as shown in Fig. 4, giving
the coherent cavity controller superior performance in the
low phonon number regime. Previous studies had shown
that optomechanical precision measurement schemes [42],
particularly in the context of LIGO [43], may benefit from
similar cancelations.

The OPO controller is more general than the cavity
controller and its performance is slightly better over the
whole noise range. As with the optical cavity case, it is
significant that we have found realistic coherent control
schemes that perform significantly better than provably
optimal measurement-based schemes.

We have studied coherent control of linear quantum
systems from an LQG perspective. In the systems studied,
we have shown that there is always a quantum controller
that does at least as well as the optimal classical controller.
In the quantum regime, when the excitation number in the
plant is of order unity, we have shown that the best quan-
tum controller can do better—in some cases, significantly
so. These results could be extended to nonquadratic cost
functions in linear control systems. Indeed, some work
has already been done on this matter, focusing on using
coherent feedback to maximize the squeezing in a cavity
mode [15]. Viewing an optomechanical device as a control
system may also provide insight into minimizing the noise
in optomechanical sensors. Finally, the fact that coherent
controllers perform better because they utilize both quad-
ratures of the input field may help guide the design of
quantum controllers for nonlinear systems such as optical
switches or memories.
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