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Operational Tomography: Fitting of Data Patterns
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We build an operational scheme for the quantum state reconstruction based on the fitting of data
patterns. Each data pattern corresponds to the response of the measurement setup to a predefined reference
state. The set of data patterns can be measured experimentally in the calibration stage preceding to the
reconstruction. The quorum of reference states plays the role of a positive operator valued measure in
terms of which the reconstruction is done. As the main advantage, the procedure is free of notorious
problems with projections into non-normalizable quadrature eigenstates, infinite dimensionality, ill-posed

inversion, or imperfect detection.
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According to the pragmatic interpretation, the quantum
theory is, first of all, the theory of measurement. All
predictions must be phrased in terms of measurable quan-
tities regardless of how abstract the structures used to
describe the quantum features are. This is also the case
for a quantum state reconstruction. Though its purpose is to
identify the quantum state of the measured system, it may
also be seen as the relationship between past and future
observations of the same system. A quantum state is only
an oxymoron for information about any possible future
measurement encoded comprehensively into a convenient
theoretical structure. Accepting this interpretation, any
reconstruction procedure consists of classical data process-
ing followed by quantum interpretation, which guarantees
that any future prediction based on the original measure-
ment must obey quantum rules, such as various uncertainty
relations.

In this Letter we will elaborate on this pragmatic inter-
pretation exploring the common roots of quantum to-
mography and classical data processing. Quantum inter-
pretation will be postponed up to the very last moment
where one wants to apply the inferred information to future
quantum predictions. In this way we shall guide ourselves
by analogies with classical optics, for example, by the
analysis of a blurred image registered by a CCD camera,
provided the optical response function is known. This
approach offers significant advantages for a practical im-
plementation of the reconstruction procedure. Indeed, the
existing reconstruction methods are critically sensitive to
such parameters as the detection efficiency, dimensionality
of the problem, or the accuracy of the measurement [1].
The proposed procedure is free of these problems since
those parameters are automatically accounted for in the
data patterns in analogy with the optical response function.

Let us first detail the scheme of the classical image
processing [2]. Though there are many options for mathe-
matical implementation of the deconvolution procedure,
all of them share some common features. The blurred
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image is decomposed into the superposition of elementary
sources, the response function of which is supposed to be
known. In classical optics, this formulation is usually done
in the context of the coherent or incoherent image process-
ing. Here, due to the analogies with quantum mechanics,
we should go beyond this traditional approach and consider
partially coherent signals as well. Let us denote U(x;) and
U(x,) the amplitudes of an object and the corresponding
image by a linear optical system. Only one dimension is
considered here, for simplicity. Because of linearity, the
transformation between the object and image planes can be
expressed in the form of a superposition integral U(x,) =
J U(x))h(x,, x,)dx;, where h is the amplitude response
function of the system. Considering the standard quadratic
behavior of detectors in the optical domain and possibly
stochastic character of optical fields, we get for the de-
tected signal

1(xy) = f (Ux)U (Yhxp, x1)h* (0, x))dxydxy, (1)

where we denote (...) averaging over those stochastic
variables. Notice that the detected intensity is linear with
respect to the mutual coherence matrix G(xy, x}) =
(U(x;)U*(x})). Now we are ready to continue with the
deconvolution step.

The purpose of the deconvolution, or reconstruction, is
to analyze intensity /(x,) corresponding to an unknown
object coherence matrix G(x;, x{). The reconstruction G
will be given in terms of reference objects G, for which
the intensity patterns /; are available:

¢

Since the detected intensities Eq. (1) are linear in G, the
coefficients a¢ can be obtained by fitting intensity patterns
1. That is, we search for a linear combination of intensity
patterns
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i = Zaflf,
3

which is as close as possible to the actually detected
intensity /. The same set of fitting coefficients then pro-
vides the reconstruction of the object intensity via Eq. (2).
More rigorously, the reconstruction procedure can be for-
mulated as a multidimensional minimization of a distance
between the linear combination of data patterns and target
data. The simple and robust least-squares fit [3] minimiz-
ing the functional

E(fag) = Y[10x) = I(x)P (3)

can be adopted for this purpose. Summation is done over
points in the image plane. Denoting J, = ;1 Se(xl-)IA (x;) and
M, ¢ = 3.1,(x;)I¢(x;), the least-squares fit can be cast in
the matrix form a = M~1]J.

Notice that this approach is strictly operational in the
sense that the result is determined by the measured data
without any need to know the actual amplitude response
function of the optical system. The only assumption we
make is that the measurement is consistent, i.e., does not
change in the course of the experiment. Considering the
optical system as a part of detection, we may say that
faithful reconstruction by data pattern fitting is possible
without ever knowing what physical quantities have ac-
tually been measured—only the outcomes of these mea-
surements matter. This feature brings about many practical
advantages. For example, the result of reconstruction is not
sensitive to the presence of systematic measurement errors.

Before closing the motivating example of image pro-
cessing, let us discuss the issue of positivity of the recon-
structed coefficients a,. Provided all reconstructed
coefficients are non-negative, the solution G is a sum of
weighted reference coherence matrices G. This guaran-
tees that the reconstructed coherence matrix is positive
semidefinite in correspondence with the fact that the di-
agonal elements (for x; = x}) and so the eigenvalues of G
are intensities and hence must be non-negative. The second
possibility is that some reconstructed coefficients are nega-
tive. In this case, the positive semidefiniteness of the
reconstructed coherence matrix must be verified, and pro-
vided this test fails, negative spectral components of G
must be filtered out in order to ensure that all future
predictions based on the reconstruction are consistent.

The theory of image processing based on the data pat-
terns given above can be directly translated into the lan-
guage of quantum theory. Indeed, the coherence matrix is
nothing other than a position representation of the density
matrix, G(x, x') = {x|p|x’). Generalization is straightfor-
ward. Let us denote G = {j |p|k) a particular representa-
tion of a density matrix describing the measured quantum
system and replace the detection of the optical signal by a
set of projective measurements |y;), k; = {jly;) performed
on the quantum system. Then quantum predictions given

by the projection postulate p; = {y;|ply,), or, more gener-
ally, by p; = Tr(pll;), where II; are the elements of a
positive operator valued measure (POVM), can
be seen as a discrete version of the optical processing
formula (1).

The proposed quantum reconstruction protocol follows
closely the deconvolution procedure of the classical image
processing. First, a set of reference states p, is measured
and data patterns ff sampling probabilities pf are regis-
tered. The same set of measurements is applied to the
unknown signal state p with the result f;. After that the
reconstruction is obtained as the linear combination of the
reference states

ﬁ = Za§p§ (4)
3

minimizing the distance between the signal data and
weighted patterns

E({ag}) = ;(fi - zg:agff)z- (5)

Finally, reconstruction errors may be estimated, see, e.g.,
[4], and used for discriminating relevant details from pos-
sible artefacts due to a limited number of reference states
or statistical noise.

The proposed procedure based on fitting data patterns
keeps all the good features of a conceptually similar image
processing discussed above. In particular, the input quan-
tum state can be reconstructed without having any knowl-
edge about the measurement apparatus. The issue of
positivity of the reconstructed coefficients discussed above
also appears in the quantum formulation. Simple ad hoc
regularization can be done by projecting the reconstructed
p into a subspace, where it is semidefinite positive, e.g., by
setting the negative eigenvalues of p to zero and renorm-
alizing. This subspace would define the effective field of
view of the tomography measurement. Such treatment is
however rather arbitrary and not optimal. More rigorously,
the operational tomography can be formulated as a semi-
definite convex program [5],

minimize E({a;}) s.t.Za§ =1, Za§p§ =0, (6)
3 ¢

which can be solved by standard tools of convex optimi-
zation. It is worth mentioning that the positivity constraint
imposed by quantum theory is, in fact, the very quantum
part of the whole reconstruction procedure. Indeed, the
fitting (5) deals with purely classical objects f; and ff.
In this sense, quantum interpretation of the measured
object is relegated to the very last moment—the moment,
when it is required that the predictions about future mea-
surements based on the outcomes of past measurements be
consistent with the postulates of quantum theory.

There are two issues which influence heavily the per-
formance of the reconstruction, namely, the quorum of
reference states and the measurement device producing
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the corresponding data patterns. The tomography setup
should provide sufficiently rich data structure making
faithful fitting of unknown input states possible. In general,
larger sets of reference states are expected to yield better
results as long as their data patterns can still be discrimi-
nated in the experiment. We also note that any particular
choice of reference states is a commitment for an experi-
menter that such states can be generated on demand and
their corresponding data patterns can be detected.

Let us turn to specific examples and discuss all stages
outlined above in detail, considering optical homodyne
tomography based on the measurement of rotated quad-
rature operators [6—8]. First we will clarify the choice of
reference states. Quadrature eigenstates are not a good
option here for they cannot be generated (even approxi-
mately) with the present technology. The most simple and
feasible quorum of reference states in quantum optics
seems to be a discrete set of coherent states pg = |a §> X
(ag| generated by a laser, whose complex amplitudes a
can be manipulated by controlling two parameters—inten-
sity and phase. This can be done by attenuating and phase
shifting the laser beam. Such precise reference states have
already been used for experimental tomography of quan-
tum detectors [9].

When the result of reconstruction (4) is decomposed into
coherent states, the coefficients a; appearing in this de-
composition play a role analogous to the Glauber-
Sudarshan representation already adopted for the complete
characterization of quantum optical processes [10].
However, there are important differences here. The set of
coherent states is overcomplete and not all of them are
needed for representing the given state [11], or a given
operator provided that projection into coherent states is
used as an operator basis. Consequently, even a coherent
state can be represented as a superposition with negative
coefficients for a discrete quorum of other coherent states.

This is illustrated in Fig. 1, where three states of inter-
est—a coherent state, a single-photon state, and a super-
position of two coherent states—are represented by a
quorum of 361 coherent states evenly distributed in the
phase space. For each signal state, the coefficients a; are
shown in panels (b)—(d). It turns out that in all three cases
the fidelities of coherent-state representations [Eq. (4)]
exceed 0.99999. Although the optimization of the set of
reference states with respect to particular tomography
setup may be a difficult task, a simple ‘“‘rule of thumb”
can be formulated that can be used to check whether the
chosen set of coherent states provides a reasonably accu-
rate description of permissible signal states: (i) the signal
state should be localized within the region of phase space
spanned by reference states, and (ii) the set of reference
states should be dense enough ““‘to feel”” the fine features of
the signal state. In practice, suitability of a given set of
reference states should always be confirmed by evaluating
estimation errors [4]. Quite interestingly, as the simulations
show, introducing more classical noisy states in the set of

FIG. 1. A quorum of reference coherent states p, with regu-
larly spaced amplitudes (a) and their coefficients a; appearing in
the decomposition Eq. (4) of the coherent state with the ampli-
tude a = 0.763 (b), the single-photon Fock state (c), and the
Schrodinger-kitten state |a = 0.763) + |a = —0.763) (d).

reference coherent states can improve fitting of highly
nonclassical states. For example, adding just one thermal
state with 5 photons on average has a similar effect as
doubling the number of coherent reference states. The
optimal choice of the quorum of reference states is far
from trivial and this question deserves further research.
For the purpose of numerical simulations, the inefficient
homodyne detection can be described by a set of POVM
elements I1,, ¢ = Xexp(if) [1]. Simulated data patterns
obtained by sampling the detection probabilities p(X, ) =
Tr pI1,] are shown in Fig. 2 for three particular reference

0.2

o

Probability
o

FIG. 2 (color online). Examples of data patterns generated by
homodyne measurement for the vacuum reference state (green
dash-dotted line), and two coherent reference states of ampli-
tudes o = —3 — 3i (black solid line) and o = —3 — 2.8421i
(red dotted line). In the figure, x and € denote the measured
quadrature value and the phase of the local oscillator, respec-
tively. In total, 120000 measurements were simulated for each
quadrature and the outcomes were grouped in j = 1, ..., 64 bins
spanning the interval of X; € [—10, 10]. Quantum efficiency
v = 0.8 of the homodyne detection was used in the simulation.
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(a) (b)

FIG. 3. Reconstruction of the coherent state of amplitude
Qe = 0.763 from simulated homodyne measurements by fit-
ting data patterns with the least-squares method (5). Parameters
of the homodyne setup are the same as those in Fig. 2. Panels (a)
and (b) show the true and reconstructed coefficients a;. The set
of reference states is the same as in Fig. 1(a). Panels (c) and (d)
show the corresponding reconstructed density matrix elements
Ppmn 1N the Fock basis and their respective errors.

states: the vacuum state and two coherent states taken as
the pair of neighbors in the bottom right corner of the
reference grid in Fig. 1(a). Notice that data patterns of
the two coherent states are barely distinguishable, suggest-
ing that the reference grid in Fig. 1(a) provides sufficient
resolution in the phase space.

An example of a reconstruction of a coherent state by
data patterns fitting is shown in Fig. 3. The same set of
reference states as in Fig. 1(a) was used. For each reference
state a data pattern was generated by simulating homodyne
detection for six different phases of local oscillator as in
Fig. 2. As seen, the estimated coefficients x jare close to the
exact ones. For the chosen set of parameters the fidelity of
the reconstructed state exceeds 0.95.

Operational tomography presented in this Letter repre-
sents a full fledged alternative to standard tomography
schemes. As the main advantage, the operational approach
to tomography does not hinge upon having precise knowl-
edge about the measurement performed on the physical
system we want to characterize. As we have shown, this
problem can be avoided by characterizing the measure-
ment apparatus by patterns detected for a set of referenced
states and matching the signal to those patterns by a least-
squares fitting, where the constraints of quantum mechan-
ics on the reconstructed state are accommodated by either a
projection into a proper subspace or incorporated directly
into the fitting procedure.

Loosely speaking, while the standard tomography at-
tempts to solve the problem in the fixed operator basis of
known POVM elements [12—14], the proposed operational

tomography is doing the same in the frame specified by
detected data patterns. Since operational tomography does
not require knowledge of the measurement apparatus and
all information used for the reconstruction can always be
cast in the form of measured data patterns, it is free of any
assumption that cannot be verified experimentally and
hence should be less prone to systematic errors than stan-
dard methods should. Remarkably, the procedure does not
split into separate calibration and estimation stages, but
handles all the data in equal manner—data patterns corre-
sponding to an unknown state are fitted to respective
patterns of reference quantum states. Operational quan-
tum tomography is therefore fully analogous to image
processing techniques. We hope that the proposed concept
will be found interesting and inspiring for diagnostics of
nonclassical effects.
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