
PHYSICAL REVIEW FLUIDS 5, 044201 (2020)

Dynamics of liquid nanothreads: Fluctuation-driven instability and rupture
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The instability and rupture of nanoscale liquid threads is shown to strongly depend on
thermal fluctuations. These fluctuations are naturally occurring within molecular dynamics
(MD) simulations and can be incorporated via fluctuating hydrodynamics into a stochastic
lubrication equation (SLE). A simple and robust numerical scheme is developed for the
SLE that is validated against MD for both the initial (linear) instability and the nonlinear
rupture process. Particular attention is paid to the rupture process and its statistics, where
the “double-cone” profile reported by Moseler and Landmann [Science 289, 1165 (2000)]
is observed, as well as other distinct profile forms depending on the flow conditions.
Comparison to the Eggers’ similarity solution [Phys. Rev. Lett. 89, 084502 (2002)], a
power law of the minimum thread radius against time to rupture, shows agreement only
at low surface tension; indicating that surface tension cannot generally be neglected when
considering rupture dynamics.
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I. INTRODUCTION

The interface dynamics of liquid threads is important to a range of technologies, such as inkjet
printing [1], fiber manufacture [2], and drug delivery [3]. In classical fluid-dynamics theory there
are two stages to liquid thread breakup where good analytic progress has been made [4]: (i) the
initial (linear) instability generation and (ii) the nonlinear rupture dynamics.

The linear instability of a liquid cylinder is described by the classical results of Rayleigh
and Plateau (referred to hereon as the RP theoretical framework): Plateau [5] predicted a critical
wavelength, λcrit = 2πr0, beneath which all interface disturbances decay; and Rayleigh [6] found
the fastest growing mode above this threshold, e.g., for the inviscid case, λmax = 9.01r0 (or wave
number kmax = 0.697/r0).

For the stage leading to rupture, different scaling theories [7] have been developed to predict
the dynamics in three regimes: the inertial regime [8,9], where inertial and capillary forces are
comparable (viscous forces are weak); the viscous regime [10,11], where viscous and capillary
forces are comparable (inertial forces are weak); and the viscous-inertial universal regime, where
viscous, capillary, and inertial forces are all comparable [12]. These classical theories are supported
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by numerous macroscopic experiments [4] and there is recent evidence that the transitions between
these regimes is rather complex [7,13,14].

Motivated by the emergence of micro/nanofluidic technology (e.g., lab-on-a-chip devices [15],
3D printing [16], and nanodevice fabrication [17]), the validity of these classical theories at the
microscale and nanoscale has recently been brought into question. In a pioneering article, Moseler
and Landman [18] used molecular dynamics (MD) simulations of nanoscale jets to discover a
rupture profile not described by macroscopic theory: A “double-cone profile” was observed at
rupture, a phenomenon attributed to thermal fluctuations that are negligible at usual engineering
scales. The importance of thermal fluctuations at these scales has been confirmed by physical
experiments using specially prepared low-surface-tension liquid-liquid combinations that enhance
fluctuations [19,20] and further MD simulations [21,22].

The double-cone profile was also predicted by solutions to stochastic lubrication equations
(SLE) [18]. The SLE are derived by applying a lubrication approximation to the Landau-Lifshitz
Navier-Stokes equations (LLNS), which are the Navier-Stokes equations plus stochastic terms used
to model the thermal fluctuations [23]. The SLE have two very significant advantages over MD:
(i) they are far less computationally intensive to solve numerically and (ii) they are amenable
to theoretical analysis that provide more insight into the process. In relation to the latter, in
Zhao et al. [24], a framework was developed for modeling (linear) interface instability in the
presence of thermal fluctuations (named the SLE-RP). At the nanoscale, the SLE-RP shows that
Plateau stability can be violated and kmax predicted by classical theories is significantly modified
(notably becoming time dependent). Interestingly, for rupture dynamics, Eggers [25] has derived a
“nanoscale” similarity solution that incorporates thermal fluctuations and is able to reproduce the
double-cone profile observed by Moseler and Landman [18]. However, the SLE has never been
focused on this case to study the accuracy of this solution and the validity of the assumptions made
(e.g., negligible surface tension).

Numerical solutions to the SLE offer much broader applicability than the analytic results
described above, and can be obtained at a small fraction of the computational cost of MD. A set
of closely related stochastic equations are well studied for thin-film flows [26–30] and thermally
activated vapor-bubble nucleation [31]. But, surprisingly, there are no detailed numerical SLE
studies in the literature for liquid thread rupture. In previous work (e.g., Refs. [18,22]) only
qualitative comparisons between MD and selected SLE realizations were presented. However, the
SLE are stochastic, and many independent solutions are needed to (i) understand the statistics
of the rupture process, and (ii) verify that these statistics are well described by the SLE (in
comparison to MD). Filling this gap in knowledge is the primary contribution of the work presented
here.

The article is laid out as follows. In Sec. II the SLE are introduced (Sec. II B), a simple, yet robust,
scheme for their numerical solution is proposed (Sec. II C), and its convergence characteristics
demonstrated (Sec. II D). In Sec. III, numerical SLE solutions are verified against known analytical
results and validated against MD calculations (introduced in Sec. II A); first for initial (linear)
instability growth (Sec. III A), and second for nonlinear growth of disturbances to the point of
rupture (Sec. III B). In Sec. IV we use the SLE solver to (i) provide a deeper understanding of
the impact of fluctuations on rupture dynamics and (ii) reach cases that will be computationally
intractable for MD.

II. MODELS AND NUMERICS

In this section we introduce the stochastic lubrication equations and present a numerical method
for their solution. Given the stochastic and nonlinear nature of the equations, we dedicate some time
to demonstrating the scheme’s robustness to increasing numerical resolution. First, though, we give
details of the molecular dynamics simulations presented in this paper, which are used in Sec. III for
validation of the numerical SLE solutions.
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FIG. 1. MD simulations using the different molecular models for water. Left panel: rupture dynamics of a
short thread predicted by the TIP4P/2005; right panel: perturbation instabilities of a long thread modelled by
the coarse grained mW model. The details of these models are introduced in Appendix A.

A. Molecular dynamics

The MD simulations of this work are performed in LAMMPS [32] on nanoscale threads of water.
The simulation box extends 10r0, 10r0, and L in the x, y and z directions, respectively, where r0 is
the initial thread radius and L is the thread length. The liquid thread is placed in the center of the
domain, and there are periodic boundary conditions imposed in all three directions.

The initial configuration is cut from a liquid bulk, created from an equilibrium NVT simulation
with a Nosé-Hoover thermostat set at a specific temperature. The same ensemble and thermostat is
used for the main simulations.

The Green Kubo method [33,34] is applied to calculate the dynamic viscosity by integration of
the time-autocorrelation function of the off-diagonal elements of the pressure tensor Pi j so that

μ = Vbulk

kBT

∫ ∞

0
〈Pi j (t ) · Pi j (0)〉dt (i �= j), (1)

where Vbulk is the volume of the bulk fluid, kB is the Boltzmann constant, and T is temperature. The
pressure tensor components are obtained using the definition of Ref. [35] and the angular brackets
indicate the expectation.

The surface tension is calculated from the profiles of the components of the pressure tensor in a
simple liquid-vapour system, using the mechanical definition [36]:

γ = 1

2

∫ Lz

0
[Pn(z) − Pt (z)]dz, (2)

where Lz is the length of the MD domain, and subscripts n and t denote normal and tangential
components, respectively. These methods are well known and have been validated by comparing
MD results (μ and γ ) with experimental data over a range of temperatures (see Refs. [37,38]).

In the present work, liquid water is chosen because of its wide applications and its ability to create
a large range of material properties [39] due to its stable liquid phase over a wide temperature range.
The detailed properties (e.g., temperature, surface tension, viscosity) will be listed in the relevant
sections. For the instability validation cases in Sec. III A (requiring long cylinders) a coarse-grained
water molecule model, known as mW [40], is adopted (for computational efficiency); whereas for
the breakup validation cases in Sec. III B, the TIP4P/2005 water model [41] is used (thus achieving
a more accurate result). Selected MD realizations of both models are shown in Fig. 1.
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FIG. 2. Schematic of a liquid thread with a perturbed interface.

B. Stochastic lubrication equations (SLE)

The SLE were derived by Moseler and Landman [18], who applied a lubrication approximation
to the axisymmetric LLNS (also known as the stochastic Navier-Stokes equations) allowing the
dynamics of the interface to be described by the thread radius h(z, t ) and a velocity u(z, t )
(see Fig. 2). Modified stochastic lubrication equations, where a dependence of the evaporation-
condensation flux on the presence of a surrounding gas is incorporated into the continuity equation,
have yielded results agreeing well with MD [22]. However, in this work we restrict our attention to
the orginal SLE.

To identify the governing dimensionless parameters, we use the following variables as scales of
length, time, velocity and pressure, based on (but not confined to) a balance of inertial and surface-
tension forces:

h = h̃/r0, t = t̃/
√

ρr3
0/γ , u = ũ/

√
γ /(ρr0), p = p̃/(γ /r0), (3)

where h̃, t̃ , ũ, and p̃ represent the dimensional interface height, time, velocity and pressure,
respectively (note that the dimensional material parameters are not given tildes). The dimensionless
SLE are written as follows:

∂t u = −uu′ − p′ + 3 Oh
(h2u′)′

h2
+

√
6

π
Th

√
Oh

(hN )′

h2
, (4)

∂t h = −uh′ − u′h/2, (5)

with the full Laplace pressure retained:

p = h−1(1 + (h′)2)−
1
2 − h′′(1 + (h′)2)−

3
2 , (6)

where primes denote differentiation with respect to z, and N is a standard Gaussian random
variable—a model for thermal fluctuations. The nondimensional quantity Oh = μ/

√
ργ r0 is

the Ohnesorge number, which relates the viscous forces to inertial and surface-tension forces
(where μ is the liquid dynamic viscosity, γ is surface tension, and ρ is liquid density). The
Ohnesorge number is all that is needed to characterise the dynamics of free macroscopic threads, but
here we obtain an additional dimensionless quantity: the thermal-fluctuation number, Th = lT/r0,
to express the relative intensity of interface fluctuations, where lT = √

kBT/γ is the characteristic
thermal fluctuation length and r0 is the initial thread radius. When Th = 0, the classical model (LE)
[42] is recovered.

One of the purposes of the simulations presented in Sec. IV is to explore the combined influence
of Oh and Th on different aspects of thread dynamics.
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FIG. 3. (a) The auto-correlation function (ACF) for shear stress, obtained from an MD simulation of a
periodic cube of liquid; (b) an illustration of the linear interpolation used in evaluating the temporal stochastic
term Nt .

C. Numerical scheme for the SLE

By construction, after enforcing the fluctuation-dissipation balance, the covariance of the
stochastic term in Eq. (5) is

〈N (z, t )N (z′, t ′)〉 = δ(z − z′)δ(t − t ′), (7)

where the presence of a Dirac delta function ensures infinitely small temporal/spatial correlation
functions (i.e., the noise term is temporally and spatially uncorrelated). To represent N numerically,
we introduce computer-generated random numbers, Nt

i , that are normally distributed with zero mean
and unit variance. The delta function in Eq. (7) can be approximated by a 2D rectangular (boxcar)
function (in t and z) that is nonzero over a time step (�t) and grid spacing (�z). The amplitude
of the rectangular function, 1/(�t�z), is such that the integral properties of the delta function are
preserved, i.e.,

∫ ∞
−∞

∫ ∞
−∞ δ(z, t ) dz dt = 1 [43]. The complete noise term is thus discretized by

N ≈ Nt
i

/√
�t�z. (8)

Equation (8) provides robust and accurate numerical performance when used in conjunction with
linear equations, e.g., one-dimensional LLNS [44] or for the linearised SLE. However, the full SLE
are nonlinear (including the stochastic driving force: (hN )′/h2), which creates stability issues that
exacerbate as �z and �t become smaller and the amplitude of noise becomes larger [see Eq. (8)].
Consequently, for some cases, it is impossible to achieve a spatially and temporally resolved result
(i.e., one that converges as �z → 0 and �t → 0).

As a straightforward solution to this problem, we propose a numerical method where, beneath a
certain scale, the noise becomes spatially and temporally correlated; thus remaining finite as �z → 0
and �t → 0. MD results show that this ‘correlation scale’ is much smaller than any scale of interest
to the current paper, but we cannot be sure this will always be the case.

While this solution is largely pragmatic in nature, it actually reflects the physics better than uncor-
related noise. Figure 3(a) shows the temporal autocorrelation function of shear stress fluctuations
in a bulk liquid, as calculated by MD (in a 3 nm3 periodic cube of TIP4P water at T = 340 K).
Notably, when timescales are much less than a picosecond the fluctuations become correlated; we
find a similar situation in the spatial fluctuations of stress in MD.

Motivated by these MD results, we introduce a correlation timescale, Tc, and correlation length
scale, Lc, into our SLE simulations. These correlation scales must be larger than the time step and
grid spacing, respectively. Beneath the correlation scales, a simple linear interpolation between
uncorrelated random noise at the end points of the correlation interval is applied (as illustrated
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FIG. 4. Ensemble-averaged interface profiles at two time instances (t1 = 4.66 × 10−2 and t2 = 1.69) for
(a) decreasing grid-size with fixed time step (�t = 4.66 × 10−7) and (b) decreasing time step with fixed grid
size (�z = 0.05).

in Fig. 3 b for temporal noise). The uncorrelated noise (which is interpolated between) has a mean
of zero and a variance 1/(TcLc). See Appendix B for a derivation.

Note, a spatially correlated, but temporally uncorrelated, noise model has been developed by
Grün [26] for the stochastic thin-film equation. The approach we present above has the advantage
of simplicity, compares well to the results of Grün’s model and has the capability to produce
spatiotemporally correlated noise as well.

To solve the full nonlinear SLE, we use the MacCormack method [45], a simple second-order
explicit finite difference scheme in both time and space. The solution at each time level is defined
by two arrays, {hi}n

i=1 and {ui}n
i=1. Here, n is the number of mesh points. The time-derivative terms

are approximated by (ht+1
i − ht

i )/�t and (ut+1
i − ut

i )/�t . The numerical method proceeds in two
steps: a predictor step, ⎛

⎝ut+1
i

ht+1
i

⎞
⎠ =

(
ut

i

ht
i

)
+ F

(
ut

i , ht
i

)�t, (9)

and a corrector step, (
ut+1

i

ht+1
i

)
=

(
ut

i

ht
i

)
+ �t

2

[
F

(
ut

i , ht
i

) + F
(
ut+1

i , ht+1
i

)]
, (10)

where ut+1
i and ht+1

i are “provisional” values at time level t + 1, and F represents all the partial
spatial derivative terms on the right-hand side (expressions for F are listed in Appendix C).

D. Time-step and grid-size convergence

To test the integrity of the SLE numerical approach introduced above, we consider the simulation
of a short thread (L = 10, Oh = 1.07, and Th = 0.11) with an increasingly fine time step and grid
spacing (note, for this case, a model using uncorrelated noise would not converge).

We set dimensional T̃c = 0.01 ps and L̃c = 0.5 nm for all the simulations presented in this article
(corresponding to dimensionless Tc = 4.66 × 10−5 and Lc = 0.2); chosen to be similar to that seen
in our MD data. Notably, since this is a stochastic system, it is the convergence of the ensemble-
averaged quantities that we are concerned with; here the ensemble consists of 100 independent
simulations.

The ensemble-averaged interface profiles at two-time instances are plotted in Fig. 4(a) for varying
grid size and Fig. 4(b) for varying time step. Note, in this paper we plot all interface and rupture
profiles relative to the minimum point (i.e., we plot h against z − zmin, where zmin(t ) is the location
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FIG. 5. Convergence characteristics for decreasing (a) grid size and (b) time step. Average (over z)
deviation of ensemble-averaged interface profiles to the finest resolution profile in Figs. 4(a) and 4(b),
respectively.

of the minimum in thread radius at any instant in time). To better demonstrate the convergence of
the method, we calculate the average deviation of each ensemble-averaged profile to that with the
finest resolution calculated; Fig. 5 confirms that this deviation steadily decreases (albeit slowly)
with increasing [Fig. 5(a)] spatial and [Fig. 5(b)] temporal resolution (i.e., it converges).

III. NUMERICAL VERIFICATION AND VALIDATION

Having demonstrated the convergence, the numerical solutions are verified and validated by the
analytical models and MD simulations at both the linear stage for instability (Sec. III A) and the
nonlinear stage for rupture (Sec. III B).

A. Linear instability and thermal capillary waves

In this section, the analytical SLE-RP [24] has been employed as a benchmark for the numerical
solutions of the SLE introduced above (Sec. II C). The SLE-RP can be written in a dimensionless
form as follows (see Appendix D for derivation):

|R|rms =
√

|RLE|2 + |Rfluc|2,
⎧⎨
⎩

|RLE|2 = |Ri|2e−at
[

cosh (ct/2) + a sinh (ct/2)
c

]2
,

|Rfluc|2 = 3L
π

(Th
√

Oh k2)2 (a2−c2 )−a2 cosh(ct )−ac sinh(ct )+c2eat

ac2(a2−c2 )eat ,
(11)

where

a = 3 Oh k2 and c =
√

(9Oh2 − 2)k4 + 2k2.

Here, k is the dimensionless wave number, L is the dimensionless length of the thread, and Ri is the
initial model disturbance (a complex random variable with zero mean).

We also perform MD simulations for comparison, where we adopt a coarse-grain water molecule
model, mW [40], to limit the computational resources required for such long threads; in all cases,
L = 100. The inital radius r0 and temperature T is selected to obtain specific Oh and Th (shown in
Table I): Threads 1 and 2 have the same Th; Threads 2 and 3 have the same Oh.

For each case we extract statistics from an ensemble of independent simulations (or “realiza-
tions”); 20 for MD and 50 for the SLE (true for the rest of the paper, unless otherwise stated). For
each realization, a discrete Fourier transform of the interface position (which in MD is extracted
from axially distributed annular bins based on a threshold density) is applied to get the power
spectral density (PSD). The square root of the ensemble-averaged PSD at each time is plotted in

044201-7



ZHAO, LOCKERBY, AND SPRITTLES

TABLE I. Case setups of mW.

Thread r0 (nm) T (K) γ (N m−1) ρ (kg m−3) μ (kg m−1 s−1) Oh Th Number of molecules

(1) 2.410 275.6 6.53 × 10−2 1.006 × 103 3.582 × 10−4 0.90 0.10 147,828
(2) 2.891 354.8 5.85 × 10−2 0.988 × 103 2.043 × 10−4 0.50 0.10 250,484
(3) 5.170 304.4 6.29 × 10−2 1.001 × 103 2.851 × 10−4 0.50 0.05 1,451,568

Fig. 6 and compared to the SLE-RP [Eq. (11)]. The agreement between both numerical results and
the analytical ones is very good for each case and at each time, giving us further confidence that the
SLE implementation is both numerically sound and capable of capturing nanoscale flow physics (as
demonstrated in Ref. [24], where we used a Lennard-Jones potential).

The results in Fig. 6(a) show a modal distribution (spectrum) that varies with time. For small
wave numbers (k < 1), the spectrum becomes sharper with time, while the spectrum at high wave
numbers (k >∼ 2) is static over these timescales; i.e., it quickly reaches its asymptotic limit. This
limit can be obtained from Eq. (11), for k > 1, by taking t → ∞:

|R|rms =
√

L

2π
Th

√
1

k2 − 1
. (12)

This is consistent with the theory for thermal capillary waves in thin-film flows [46,47], which
describes the time-invariant state of a liquid interface by a balance between capillary forces (surface
tension) and thermal fluctuations. The crucial difference to thin-film flows is seen at small wave-
number perturbations, which are unstable for the liquid thread because of the surface tension compo-
nent acting around the thread’s circumference—this is the Rayleigh-Plateau instability. Interestingly,
Eq. (12) indicates that the asymptotic limit for k > 1 (i.e., the part of the spectrum composed
of thermal capillary waves) only depends on Th; as confirmed in Fig. 6(b), where Threads 1

FIG. 6. The root mean square (rms) of nondimensional disturbance amplitude versus nondimensional
wave number; a comparison of ensemble-averaged MD simulations (dotted lines), ensemble-averaged SLE
simulations (dashed lines), the SLE-RP analytical result (solid lines), and thermal capillary wave (TCW) theory
(dashed-and-dotted lines). Comparisons are for (a) Thread 3 at three (nondimensional) time instances, t = 5.9,
11.8, and 17.6; (b) Threads 1 and 2 (equal Th) for t = 9.3; and (c) Threads 2 (t = 9.3) and 3 (t = 9.3, 14.7)
with the equal Oh. The inset in (a) shows selected MD and SLE realizations.
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TABLE II. Case setups of TIP4P/2005.

Thread r0 (nm) T (K) γ (N m−1) ρ (kg m−3) μ (kg m−1 s−1) Oh Th Total molecules

(4) 2.020 358.1 5.38 × 10−2 0.964 × 103 3.230 × 10−4 1.00 0.15 10,246
(5) 2.675 316.6 6.09 × 10−2 0.987 × 103 5.827 × 10−4 1.45 0.10 23,791

and 2 have the same Th and the same spectrum at high wave numbers. Figure 6(c) shows that the
spectrum with the larger Th (Thread 2) is broader (at the same nondimensional instant): stronger
thermal fluctuations lead to a wider distribution of wave numbers. Since the droplet sizes are related
to the dominant wave numbers, we can expect a broader and enhanced distribution of the probability
density function for droplet sizes with larger Th. This hypothesis is supported by results from a
fluctuating lattice Boltzmann model in Ref. [48].

B. Rupture dynamics

In this section, numerical solutions to the fully nonlinear SLE are compared to MD simulations
for rupture dynamics. For the MD in this section, the TIP4P/2005 water model [41] is adopted, with
liquid properties as listed in Table II. Here, L = 12.

Our first comparison, Fig. 7, is for the time evolution of the minimum (over z) thread radius,
hmin(t ). Since our focus here is on the dynamics near rupture, hmin is plotted against time to rupture,
tb − t , where tb is the time at rupture. The red error bars and shadows represent one standard
deviation (either side of the mean) for the MD and the SLE, respectively. In the two cases (a)
Thread 4 and (b) Thread 5, good agreement is found at all times for the mean, but also, importantly,
for the standard deviation.

Figure 7 suggests that a power law might govern the progression of the minimum thread thickness
to rupture: hmin ∝ (tb − t )α . However, despite exhibiting a power law, these results are not described
well by the similarity solution proposed by Eggers [25] for which the exponent α = 0.418. One
possible reason for the discrepancy is that Eggers neglected the influence of surface tension. To
explore this explanation, we can exploit the SLE numerical model—MD is unable to perform such
simulations due to inherent restrictions on the variation of liquid properties. We test different values
for surface tension with all other parameters (i.e., ρ,μ, and T ) fixed. The average hmin(t ) obtained
from 50 realizations is plotted on a logarithmic scale in Fig. 8. The results indicate that the numerical
solutions (solid lines) do tend towards Eggers’ similarity solution (red dashed lines) for lower values
of surface tension (note we vary a dimensional quantity here, to connect most transparently with the

FIG. 7. Minimum thread radius against time to rupture (tb − t). Comparison of MD and nonlinear SLE for
(a) Thread 4 and (b) Thread 5.
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FIG. 8. The temporal evolution of the minimum thread radius for different values of surface tension:
comparison between similarity solutions [25] and an ensemble-average of nonlinear SLE calculations. Here,
the choice of the maximum value of the surface tension (γ = 14.0 mN m−1) used in the SLE comes from liquid
argon at 84.0 K.

assumption in Eggers’ work). Notably, when surface tension is stronger, the breakup is faster than
the analytical prediction, which suggests that the destabilising effect of surface tension can also
contribute to the thread dynamics near to rupture. This limit of applicability might also explain the
deviation between Eggers’ similarity solution and MD results in previous studies [49,50].

Although the agreement for hmin with Eggers’ similarity solution is good for low γ , we were
unable to find any agreement between either MD or SLE with the associated universal profile. The
reason is currently unclear and should be the subject of future investigation.

The ensemble-averaged profiles plotted in Fig. 9 show good overall agreement between the MD
and SLE for three time instances leading to rupture. The limitation of bin sizes in the MD data
prevents a more detailed comparison of the profile shape. In particular, it is not clear whether the
finer features seen in the SLE (namely, the V-notch—or “widow’s peak”—near to the minimum)
is physical because these local features reach the molecular scale and cannot be reliably extracted
from the MD.

FIG. 9. Ensemble-averaged interface profiles at three time instances leading to rupture: a comparison of
the nonlinear SLE solver (solid lines) and MD data (dashed lines); (a) Thread 4: tb − t1 = 0.13 (black), tb −
t2 = 1.04 (red), tb − t3 = 2.73 (blue); (b) Thread 5: tb − t1 = 0.09 (black), tb − t2 = 1.44 (red), tb − t3 = 3.50
(blue).
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FIG. 10. Thread 5 rupture profiles from different models: (a) an MD simulation (b) a selected realization
from the SLE (c) a solution to the LE (conventional lubrication equations).

IV. EXPLOITING SLE: RUPTURE BEYOND MD

Having established its predictive capability, in this section we use the nonlinear SLE solver to
further explore the impact of fluctuations on rupture dynamics, over a broader range of conditions
than have been studied previously and for cases that are too computationally demanding to consider
with MD. We start, in Sec. IV A, by exploring the shape of the thread at rupture whilst in Sec. IV B,
we focus on the time evolution of the point of the thread’s minimum thickness.

A. Rupture profiles

Moseler and Landmann [18] were the first to demonstrate, using MD, that thermal fluctuations
could lead to a symmetric double-cone rupture profile, and that SLE solutions were also able to
capture this (whereas deterministic equations cannot). We reproduce this result for Thread 5 (see
Table II for parameters) in Fig. 10. Note that the nonlinear SLE solution can reproduce the MD
result, where the (deterministic) LE cannot, at a fraction of the computational cost of MD. Here,
each MD realization of Thread 5 needs about 4600 core hours, while one SLE solution (the finest
resolution) costs less than 1 core hour; i.e., the speed-up is about 103.

These computational advantages allow the SLE to be applied in a far broader range of conditions
than accessible to MD; as is illustrated in Fig. 11.

Figure 11(a) shows a rupture profile from a macroscopic experiment [51] (with very small Th),
which exhibits a satellite droplet between two main drops. This macroscale structure can be captured
by the SLE solution (blue lines), since it reverts to the classical LE solution as Th → 0. The rupture
profile in Fig. 11(b) is from an experiment at several microns, where a colloid-polymer mixture
is used to make Th larger, not to generate a nanoscale thread. While the profile here is not a
macroscopic one, it cannot be well described as a pure double-cone rupture either. However the
SLE can faithfully reproduce such shapes, which are associated with intermediate Th (moderate
fluctuations). Figure 11(d) shows that the SLE solution can also capture a pure double-cone profile
with a large Th at the nanoscale where only MD experiments are currently available for comparison.

Importantly, however, as done in Ref. [18], all the rupture profiles above are selected realizations.
In other words they have been picked, from numerous independent SLE results, based on their
qualitative similarity to the experimental or MD result being compared to. From these selections,
then, it is not possible to ascertain whether the SLE has captured the full dynamics of the rupture,
which is of course statistical in nature. To do this we must compare, at the least, the expected
and/or most-probable profile, and some measure of the statistical fluctuation. Establishing such a
framework is one of the main contributions of this paper.

Figure 12 shows a matrix of profiles for varying Th and Oh, obtained using the periodic boundary
conditions. For comparison, the left-hand column (Th = 0) contains the rupture profiles as predicted
by classical LE. Note that there are two rupture points at Oh = 0.02 and 1, due to the satellite
drop. For consistency, we select the left one and move it to the center (z = 0). For the stochastic
results (Th > 0), each realization is centered on its rupture point (i.e., the rupture is located at
z = 0). To preserve large anti-symmetrical features, that would otherwise be averaged out, each
centered profile is flipped about z = 0 so that

∫ 0
−L/2 h dz >

∫ L/2
0 h dz. In the figures, the solid blue

lines are the ensemble-averaged rupture profiles (averaged after the centering and transformation
described above). Gray shading indicates the region between the 10th and 90th percentile value of
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(a)

(b)

(c)

(d)

Experiments/MD SL SE cale

Millimetre
r0 = 4.00 mm

Micrometre
r0 = 6.00 μm

Nanometre
r0 = 5.76 nm

Nanometre
r0 = 1.44 nm

FIG. 11. Comparison of rupture profiles in experiments (a), (b) and MD (c), (d) with numerical selected
solutions to the SLE: (a) Oh = 2.60 × 10−3, Th = 1.17 × 10−7, experimental image reproduced from [51];
(b) Oh = 1.00, Th = 4.50 × 10−2, experimental image reproduced from [19]; (c) Oh = 0.71, Th = 4.96 ×
10−2, Cylinder 1 from Ref. [24]; and (d) Oh = 1.41, Th = 1.98 × 10−1, Cylinder 3 from Ref. [24].

h (determined at each z); i.e., for a given z we can be 80% confident that the profile exists within
it. Note, as h is always greater than zero, the distribution of its value is not Gaussian, hence the
mean/expected profile is not necessarily the same as the most probable. We can crudely approximate
the positive distribution of h at any point in z with a Gamma distribution, and from that a most-
probable profile (from the peak of the distribution at each z) can be estimated (the red dashed
lines). Notably, it is the most probable profile which Eggers [25] computes from the Fokker-Planck
equation for the SLE. In the cases considered here there is little difference between the mean and
the estimated most-probable profile.

The bottom right-hand corner profile in Fig. 12 qualitatively reproduces the findings of Moseler
and Landman [18] and Eggers [25]: a largely symmetric double-cone profile is observed, although it
appears this may be better described as an “hourglass.” One might naively expect that the importance
of fluctuations on thread dynamics would be solely determined by the value of Th (the ratio of the
thermal fluctuation scale to the thread radius). However, what is striking is that neither the relative
magnitude of fluctuations (the shaded regions) or the impact of noise on the mean profile is dictated
by Th alone. For example, at Th = 0.02, the influence of fluctuations on the dynamics can either
be negligible or profound, depending on Oh. Nor is it easy to identify a combination of Oh and Th
[e.g., Th

√
Oh from Eq. (4)] that might be useful in singularly describing when fluctuations become

important or not: it is, seemingly, a nontrivial interplay of effects as we would expect when inertia,
viscosity, surface tension, and fluctuations all play a role.

The next most important observation is that, for low Oh, the impact of noise results in an
asymmetric mean thread profile at rupture (see top right-hand corner image of Fig. 12). The
double-cone profile observed in Moseler and Landman [18] is not observed here. Instead, we
see a quite distinct rupture shape (a drop and funnel), on average, which looks more like typical
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FIG. 12. Rupture profiles for different combinations of Oh and Th. Solid lines represent the ensemble
average (the expected profile), dashed lines an estimate of the most-probable profile, and the region bounded
by the 10th and 90th percentile value of h(z) is shaded gray.

rupture profiles seen macroscopically when a drop breaks off from a thread. This behavior is not
surprising, as the chance of two points pinching off at precisely the same instance becomes slim
when we have fluctuations (and indeed this kind of “perfect” pinch off is difficult to reproduce
experimentally macroscopically as well). We stress that these flow conditions are not accessible by
our MD simulations at present; the SLE calculations are essential to provide this insight.

B. Evolution of minimum thread radius

In the classical picture there is the potential for multiple transitions between distinct “dynamic
regimes” (defined by Oh) leading to rupture [7,13,14]. The three main regimes, described in Sec. I,
are the viscous regime (V-regime), the inertial regime (I-regime), and the universal viscous-inertial
regime (VI-regime). These regimes are characterised by a power-law (linear for the first and third)
evolution of minimum thickness with time to rupture, at rates given by various analytical results
[7,13].

On top of this already complex situation, thermal fluctuations can introduce yet another regime
(here referred to as the F-regime), which generates nonlinear (power-law) evolution of minimum
thread radius. For moderate Th (>∼0.1) and nonnegligible Oh, fluctuations appear to dominate the
entire thread evolution [see, e.g., the nonlinear evolution in Fig. 7(a)]. However, at lower Th, we can
observe transitions from the classical behavior to one that is fluctuation dominated as the rupture
process progresses.

In Fig. 13 we compare the SLE with the classical model (LE) and various analytical results for
fixed Th = 0.02 at Oh = 0.01, 1 and 100. Experimentally, this corresponds to using fluids of a
range of different viscosities (with fixed surface tensions) for the same breakup configuration. As
was the case for the rupture profiles presented above, at low Oh [Fig. 13(a)] there is seemingly no
impact of fluctuations on the time evolution of hmin (i.e., there is no discernible difference between
the SLE and LE). For larger Oh [see Fig. 13(c)], however, a clear transition between macroscopic
and a fluctuation-dominated regime can be observed. At early times the evolution is described by
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FIG. 13. Time evolution of minimum thread radius, hmin; a comparison between the LE (dashed and dotted
lines) and SLE (solid lines) for Th = 0.02 and Oh = (a) 0.01, (b) 1, and (c) 100. Note, tb is the breakup
time predicted by the SLE. Dashed lines represent similarity solutions in different dynamic regimes. Linear
solutions in the VI-regime and V-regime come from Refs. [12] and [10], respectively. The power-law solution
in the F-regime for (c) is obtained from Ref. [25].

a linear time dependence, derived by Papageourgiou [10,11] for the V-regime; at later times (in the
F-regime) the evolution matches the power law proposed by Eggers [25] and greatly accelerates
the breakup process. Of course, of the two numerical methods presented in the figure, only the
SLE can capture both. When Oh = 1 [Fig. 13(b)], the dynamics become more complicated. The LE
predicts a transition from the V-regime to the VI-regime in the final stages, which has been proved
experimentally [13] and numerically [7] at macroscopic scales. However, this transition does not
occur in the presence of thermal fluctuations, according to the SLE. Instead there exists a similar
transition from the V-regime to a new regime as was the case for the large Oh case, but the power-law
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FIG. 14. The temporal evolution of minimum thread radius for different Oh, with Th = 0.02. The similarity
solution comes from the Ref. [11].

exponent does not match that found by Eggers (which, as explored in Sec. III, is possibly due to the
assumption in his analytic treatment that surface tension is unimportant in the final stages leading
to rupture).

Figure 14 shows more results of the transition from the V-regime to the “fluctuation” regime,
where the dashed lines are Papageorgiou’s similarity solution for different Oh and solid lines
represent the average solutions (from 50 realizations) for the SLE. These results indicate a bigger
“fluctuation” regime (larger crossover hmin) with larger Oh, highlighting the important role of Oh
on the fluctuation intensity. Furthermore, it would be interesting to explore whether there exists a
scaling law between the height at which this transition occurs and Oh (or Th). However, we would
need to get many decades of hmin to determine the precise crossover point, which is not available
from our current simulations.

V. DISCUSSION AND FUTURE DIRECTIONS

In this work, a numerical solver of the SLE has been developed with a new simple scheme
proposed for the noise term. Based on validation from MD for both instability and the rupture
of liquid nanothreads, this solver is demonstrated to be a powerful tool for studying the interface
dynamics of nanothreads; and operating over a thousand times faster than MD. Furthermore, it
allows us to operate in the regions of parameter space where analytic models are outside their limits
of applicability and MD is impractical either due to (i) exorbitant computational cost or (ii) limits
in the molecular properties available from known potentials.

While this article provides new understanding of interface dynamics, it opens up several new
avenues of enquiry, that we discuss here.

A. Correlation scales

In this article the use of a correlation scale is motivated from two angles. First, the computational
SLE scheme is seen to be unable to converge unless these are introduced, with huge spikes on the
free surface observed that seemingly prematurely rupture the thread and/or destroy the numerical
accuracy. Second, MD suggests that correlation scales exist, and as one may expect these are
typically on the molecular scale. These issues motivate a number of different questions. From a
modeling viewpoint, the incorporation of molecular correlation scales within a continuum model
should be treated with caution, and thus one may interpret a continuum limit as when the correlation
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length goes to zero. However, in some cases the correlations seem to have a profound effect on thin
film dynamics simulations and experiments [28], so that these issues are far from trivial. In terms
of numerical analysis, there are interesting questions regarding convergence, both as one considers
the mesh size/time step going to zero and as the correlation scale becomes small. For example, what
should we expect if we consider a fixed number of cells within each correlation scale and then take
the correlation scale to zero (as one may expect for the continuum limit)? Such questions are related
to the development of robust and efficient numerical schemes for SPDE problems. Here, we focus
on simplicity, both with the use of an explicit time-stepping scheme and in the linear interpolation
of noise. More complex schemes exist, where the noise is represented in terms of appropriate basis
functions [26,29], but although these are more mathematically rigorous approaches, we found them
to give the same dynamic behaviours at increased computational cost. Clearly there is scope for
more work in this direction, particularly as one considers the possibility of developing 2D schemes,
as even though the SLE is much cheaper than MD, it is still more computationally burdensome than
deterministic methods (as a minimum, due to the requirement for ensembles).

B. Similarity solutions

By considering a liquid with sufficiently small surface tension, we were able to recover the power
law predicted by Eggers’ similarity solution [25], as previously also identified in specially designed
experiments with colloid-polymer mixtures [19]. However, no agreement was obtained between the
SLE and similarity solution for the universal profiles predicted in Ref. [25], and surface tension
was seen to influence the power law even at physical values, as seen in Figs. 8 and 13. Therefore,
it remains an open problem to derive similarity solutions for the breakup that incorporate surface
tension, building on the new framework, considering the most probable breakup in a stochastic
process, as developed by Eggers for this class of flows.

C. Transition prediction

Liquid thread rupture is a multiscale phenomenon with complicated transitions between different
regimes. Numerical solutions in Figs. 13 and 14 show a transition from the V-regime to fluctuation-
dominated regimes. However, it remains unclear whether there exists a scaling law between the
crossover (transition) point and Oh. To answer this question, we need to develop more accurate and
efficient schemes (e.g., higher-order schemes and implicit time marching methods) to capture many
decades of dynamics, which could be the subject of future work.

D. Experimental analysis

In nanoscale breakup phenomena, one not only has small spatial scales but also small temporal
ones for the problems of interest. This is in contrast to thin film dynamics, where typical timescales
are macroscopic when highly viscous films are considered [52,53] and therefore experimental
analysis that temporally resolves features becomes possible. For the problems considered in this
article, it seems most likely that experimental verification would come first from the ultralow surface
tension liquids developed in Refs. [19,20] that make Th moderate even at the microscale where one
can perform imaging. There are many potential directions for experimental analysis to take, but a
starting point would be to more carefully consider the rupture profiles and scaling of hmin to see how
this compares to our predictions.
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TABLE III. Parameters of the mW model.

ε (kJ mol−1) σ (nm) A B p q χ κ a θ0 (degree)

25.87 0.2390 7.050 0.6022 4 0 1.2 23.15 1.8 109.47

APPENDIX A: MOLECULAR MODELS

In this section, we introduce the two molecular models used in this work: (i) mW [40] and (ii)
TIP4P/2005 [41].

In mW model, the hydrogen-bonded structure of water is mimicked through the introduction of
a nonbond angular dependent term that encourages tetrahedral configurations. The model contains
two terms: (i) φi j depending on the distances between pairs of atoms (represented by ri j and sik);
and (ii) φi jk depending on the angles formed by triplets of atoms (represented by θi jk). The full
expression is given by

U =
∑

i

∑
j>i

φi j (ri j ) +
∑

i

∑
j �=i

∑
k> j

φi jk (ri j, sik, θi jk ),

φi j (ri j ) = Aε

[
B

(
σ

ri j

)p

−
(

σ

ri j

)q]
exp

(
σ

ri j − aσ

)
, (A1)

φi jk (ri j, sik, θi jk ) = κε(cos θi jk − cos θ0)2 exp

(
χσ

ri j − aσ

)
exp

(
χσ

sik − aσ

)
,

where ε is the depth of the potential well, σ represents the particle diameter, A, B, p, q, χ , and κ ,
respectively, give the form and scale to the potential, and θ0 represents the tetrahedral angles. All
the parameters are presented in Table III.

The TIP4P/2005 water model [41] is constructed based on the Bernal-Fowler geometry with
four parts: an oxygen atom (O) with no charge, two hydrogen atoms (H) with a point charge, and a
massless part (M) with charge. According to experimental data, the O-H distance and H-O-H angle
are set as 0.9572 Å and 104.52◦, respectively. The intermolecular pair potential can be divided
into two different types: (i) the Lennard-Jones (LJ) potential and (ii) the Coulomb (electrostatic)
potential. So the expression for the pair potential is

U (ri j ) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6
]

+ 1

4πε0

qiq j

ri j
, (A2)

where ε0 represents the vacuum permittivity, qi and q j are the atomic charges. We list all the
parameters for different atoms in Table IV.

APPENDIX B: DERIVATION FOR THE NOISE VARIANCE

In this section, a mathematical procedure is proposed to derive the variance of our numerical
correlated noise model in the main text. To simplify the problem further, we only use temporal

TABLE IV. Parameters of the TIP4P/2005 model.

Atom ε (kJ mol−1) σ (nm) q(e)

H 0 0 0.5564
O 0.775 0.315 0
M 0 0 −1.112
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fluctuations in this example. The variance of the fluctuation is

〈N (t )N (t ′)〉 = A2
f δ(t − t ′),

where Af is the noise amplitude. The mean of the noise, N , over a period TN is

N = 1

TN

∫ TN

0
N (t ) dt,

where the variance of N can be obtained by〈∫ TN

0 N (t )dt

TN

∫ TN

0 N (t ′)dt ′

TN

〉
= 1

T 2
N

∫ TN

0

∫ TN

0

〈
N (t )N (t ′)

〉
dtdt ′,

= A2
f

T 2
N

∫ TN

0

∫ TN

0
δ(t − t ′)dtdt ′,

= A2
f /TN . (B1)

The interpolated noise proposed in the main article [illustrated in Fig. 3(b)] can be written as

N (t ) =
∞∑

i=1

[(1 − τi )Xi + τiXi+1]�(τi − 1/2), (B2)

where Xi are normal distributed random numbers with zero mean, � is the hat function, and τi is
defined as

τi = t − i · Tc

Tc
∈ [0, 1].

The term N can be calculated by

N |TN
0 = 1

TN

∫ TN

0
N (t )dt,

= 1

TN

∫ TN

0

∞∑
i=1

[(1 − τi )Xi + τiXi+1]�(τi − 1/2)dt,

= Tc

TN

∫ 1

0

⎡
⎣TN /Tc∑

j=1

(1 − τi )Xj + τiXj+1

⎤
⎦dτi,

= Tc

TN

TN /Tc∑
j=1

[(
τi − τ 2

i

2

)
Xj + τ 2

i

2
Xj+1

]∣∣∣∣
τi=1

τi=0

,

= Tc

2TN

TN /Tc∑
j=1

(Xj + Xj+1). (B3)

When TN � Tc, this is approximately

N |TN
0 = Tc

TN

TN /Tc∑
j=1

Xj, (B4)

so the variance of N is then

Var(N ) = Tc

TN
Var(Xi ). (B5)
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Because Var(N ) should equal the theoretical result in Eq. (B1), we can obtain that

Var(Xi ) = A2
f

/
Tc. (B6)

A similar procedure can be applied to the spatial noise, and can be used to explain why we use
1/(Tc Lc) to replace the 1/(�t �z) in Sec. II B.

APPENDIX C: F FOR THE MacCormack METHOD

Two differential operators, � f and �b, are introduced to represent forward and backward
difference, respectively:

� f f = ( fi+1 − fi )/(zi+1 − zi ),

�b f = ( fi − fi−1)/(zi − zi−1).
(C1)

F is discretized by the forward difference for the predictor step, written as

F
(
ut

i , ht
i

) =
⎡
⎣−ut

i� f ut
i − � f pt

i + 3 Oh

(ht
i )

2
(ht

i+1 )
2� f ut

i −(ht
i )

2�but
i

zi+1−zi
+

√
6
π

Th
√

Oh

(ht
i )

2 � f
(
ht

i N
t
i

)
−ut

i� f ht
i − ht

i� f ut
i

/
2

⎤
⎦, (C2)

while the backward method is applied for F:

F
(
ut+1

i , ht+1
i

)

=

⎡
⎢⎢⎣−ut+1

i �but+1
i − �b pt+1

i + 3 Oh(
ht+1

i

)2

(
ht+1

i

)2
� f ut+1

i −
(

ht+1
i−1

)2
�but+1

i

zi−zi−1
+

√
6
π

Th
√

Oh(
ht+1

i

)2 �b
(
ht+1

i Nt
i

)
−ut+1

i �bht+1
i − ht+1

i �but+1
i

/
2

⎤
⎥⎥⎦.

(C3)

APPENDIX D: DERIVATION OF THE DIMENSIONLESS SLE-RP

For the linear instability, we set h = 1 + r̂ with r̂ � 1 to linerize the SLE [Eqs. (4)∼(6)],

∂2r̂

∂t2
− 3 Oh

∂ r̂

∂t
+ r̂′′ + r̂′′′′

2
= −

√
3

2π
Th

√
OhN ′′. (D1)

Then a finite Fourier transform is applied to Eq. (D1) to get

d2R

dt2
+ α

dR

dt
+ βR =

√
3

2π
Th

√
Oh · k2N, (D2)

where

α = 3 Oh k2, β = (k4 − k2)/2,

and the transformed variables are defined as follows:

R(k, t ) =
∫ L

0
r̂(z, t )e−ikzdz and N (k, t ) =

∫ L

0
N (z, t )e−ikzdz.

The solution of Eq. (D2) is linearly decomposed into two parts:

R = RLE + Rfluc. (D3)

The first part is the solution to the homogenous form of Eq. (D2) (i.e., with Th = 0) with
some stationary initial disturbance (i.e., R = Ri and dR/dt = 0 at t = 0). The solution to the
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homogeneous ODE is straightforward to obtain

RLE = Rie
−at/2[cosh (ct/2) + a sinh (ct/2)/c], (D4)

where

a = 3 Oh k2, c =
√

(9 Oh2 − 2)k4 + 2k2. (D5)

Equation (D4) is a solution to the standard lubrication equations (there is no fluctuating component)
and is thus denoted RLE in Eq. (D3). The second component of the solution arises from solving
the full form of Eq. (D3) with zero initial disturbance; this part of the solution is solely due to
fluctuations, and is thus denoted Rfluc. This is obtained by determining the homogeneous equation’s
impulse response,

H (k, t ) = 2τe−at/2 sinh(ct/2)/c, (D6)

which due to the linear, time-invariant nature of the system, allows us to write

Rfluc =
√

3

2π
Th

√
Oh k2

∫ t

0
N (k, t − T )H (k, T )dT . (D7)

R is both a random and complex variable with zero mean. Note, RLE is also random as it develops
from a random initial condition, but is uncorrelated with Rfluc (both have zero mean). So the root
mean square (rms) of R is sought, which from Eq. (D3) is given by

|R|rms =
√

|RLE + Rfluc|2 =
√

|RLE|2 + |Rfluc|2, (D8)

where |RLE|2 can easily be obtained from Eq. (D4),

|RLE|2 = |Ri|2e−at [cosh (ct/2) + a sinh (ct/2)/c]2. (D9)

Moreover, because N is uncorrelated Gaussian white noise, and the variance of the norm of the
white noise |N |2 = L, Eqs. (D6) and (D7) combine to give

|Rfluc|2 =
(√

3

2π
Th

√
Oh k2

)2∣∣∣∣
∫ t

0
N (k, t − T )H (k, T )dT

∣∣∣∣
2

,

=
(√

3

2π
Th

√
Oh k2

)2(∫ t

0
|N (k, t − T )|2H (k, T )2dT

)
,

=
(√

3

2π
Th

√
Oh k2

)2

L
∫ t

0
H2dT ,

= 3L

π

(
Th

√
Oh k2

)2 (a2 − c2) − a2 cosh(ct ) − ac sinh(ct ) + c2eat

ac2(a2 − c2)eat
. (D10)

Equations (D8)∼(D10) construct the SLE-RP model used in Sec. III A.

[1] O. A. Basaran, H. Gao, and P. P. Bhat, Nonstandard inkjets, Annu. Rev. Fluid Mech. 45, 85 (2013).
[2] S. Shabahang, J. Kaufman, D. Deng, and A. Abouraddy, Observation of the Plateau-Rayleigh capillary

instability in multi-material optical fibers, Appl. Phys. Lett. 99, 161909 (2011).
[3] S. Mitragotri, Current status and future prospects of needle-free liquid jet injectors, Nat. Rev. Drug

Discovery 5, 543 (2006).
[4] J. Eggers and E. Villermaux, Physics of liquid jets, Rep. Prog. Phys. 71, 036601 (2008).

044201-20

https://doi.org/10.1146/annurev-fluid-120710-101148
https://doi.org/10.1146/annurev-fluid-120710-101148
https://doi.org/10.1146/annurev-fluid-120710-101148
https://doi.org/10.1146/annurev-fluid-120710-101148
https://doi.org/10.1063/1.3653247
https://doi.org/10.1063/1.3653247
https://doi.org/10.1063/1.3653247
https://doi.org/10.1063/1.3653247
https://doi.org/10.1038/nrd2076
https://doi.org/10.1038/nrd2076
https://doi.org/10.1038/nrd2076
https://doi.org/10.1038/nrd2076
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1088/0034-4885/71/3/036601


DYNAMICS OF LIQUID NANOTHREADS: FLUCTUATION …

[5] J. A. F. Plateau, Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires
(Gauthier-Villars, Paris, 1873), Vol. 2.

[6] L. Rayleigh, On the instability of jets, Proc. London Math. Soc. 1, 4 (1878).
[7] Y. Li and J. E. Sprittles, Capillary breakup of a liquid bridge: Identifying regimes and transitions, J. Fluid

Mech. 797, 29 (2016).
[8] J. B. Keller and M. J. Miksis, Surface tension-driven flows, SIAM J. Appl. Math. 43, 268 (1983).
[9] M. P. Brenner, J. Eggers, K. Joseph, S. R. Nagel, and X. Shi, Breakdown of scaling in droplet fission at

high Reynolds number, Phys. Fluids 9, 1573 (1997).
[10] D. T. Papageorgiou, Analytical description of the breakup of liquid jets, J. Fluid Mech. 301, 109 (1995).
[11] D. T. Papageorgiou, On the breakup of viscous liquid threads, Phys. fluids 7, 1529 (1995).
[12] J. Eggers, Universal Pinching of 3D Axisymmetric Free-Surface Flow, Phys. Rev. Lett. 71, 3458 (1993).
[13] J. R. Castrejón-Pita, A. A. Castrejón-Pita, S. S. Thete, K. Sambath, I. M. Hutchings, J. Hinch, J. R. Lister,

and O. A. Basaran, Plethora of transitions during breakup of liquid filaments, Proc. Natl. Acad. Sci. USA
112, 4582 (2015).

[14] A. Lagarde, C. Josserand, and S. Protière, Oscillating path between self-similarities in liquid pinch-off,
Proc. Natl. Acad. Sci. USA 115, 12371 (2018).

[15] H. A. Stone, A. D. Stroock, and A. Ajdari, Engineering flows in small devices: Microfluidics toward a
laboratory-on-a-chip, Annu. Rev. Fluid Mech. 36, 381 (2004).

[16] B. Derby, Inkjet printing of functional and structural materials: Fluid property requirements, feature
stability, and resolution, Annu. Rev. Mater. Res. 40, 395 (2010).

[17] T. Gu and J. Hu, Chalcogenide glass metasurfaces from fluid instabilities, Nat. Nanotechnol. 14, 309
(2019).

[18] M. Moseler and U. Landman, Formation, stability, and breakup of nanojets, Science 289, 1165 (2000).
[19] Y. Hennequin, D. G. A. L. Aarts, J. H. van der Wiel, G. Wegdam, J. Eggers, H. N. W. Lekkerkerker, and

D. Bonn, Drop Formation by Thermal Fluctuations at an Ultralow Surface Tension, Phys. Rev. Lett. 97,
244502 (2006).

[20] J. Petit, D. Rivière, H. Kellay, and J.-P. Delville, Break-up dynamics of fluctuating liquid threads,
Proc. Natl. Acad. Sci. USA 109, 18327 (2012).

[21] Y. S. Choi, S. J. Kim, and M. U. Kim, Molecular dynamics of unstable motions and capillary instability
in liquid nanojets, Phys. Rev. E 73, 016309 (2006).

[22] W. Kang and U. Landman, Universality Crossover of the Pinch-Off Shape Profiles of Collapsing Liquid
Nanobridges in Vacuum and Gaseous Environments, Phys. Rev. Lett. 98, 064504 (2007).

[23] L. D. Landau, E. M. Lifshits, and L. P. Pitaevskii, in Statistical Physics, Part 2: Theory of The Condensed
State, Course of Theoretical Physics, 2nd ed., Vol. 9 (Pergamon Press, Oxford, 1980), Chap. 9, pp. 86–91.

[24] C. Zhao, J. E. Sprittles, and D. A. Lockerby, Revisiting the Rayleigh–Plateau instability for the nanoscale,
J. Fluid Mech. 861, R3 (2019).

[25] J. Eggers, Dynamics of Liquid Nanojets, Phys. Rev. Lett. 89, 084502 (2002).
[26] G. Grün, K. Mecke, and M. Rauscher, Thin-film flow influenced by thermal noise, J. Stat. Phys. 122, 1261

(2006).
[27] S. Nesic, R. Cuerno, E. Moro, and L. Kondic, Fully nonlinear dynamics of stochastic thin-film dewetting,

Phys. Rev. E 92, 061002(R) (2015).
[28] J. A. Diez, A. G. González, and R. Fernández, Metallic-thin-film instability with spatially correlated

thermal noise, Phys. Rev. E 93, 013120 (2016).
[29] M. A. Durán-Olivencia, R. S. Gvalani, S. Kalliadasis, and G. A. Pavliotis, Instability, rupture, and

fluctuations in thin liquid films: Theory and computations, J. Stat. Phys. 174, 579 (2019).
[30] Y. Zhang, J. E. Sprittles, and D. A. Lockerby, Molecular simulation of thin liquid films: Thermal

fluctuations and instability, Phys. Rev. E 100, 023108 (2019).
[31] M. Gallo, F. Magaletti, and C. M. Casciola, Thermally activated vapor bubble nucleation: The Landau-

Lifshitz–Van der Waals approach, Phys. Rev. Fluids 3, 053604 (2018).
[32] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117, 1 (1995).
[33] M. S. Green, Markoff random processes and the statistical mechanics of time-dependent phenomena. II.

Irreversible processes in fluids, J. Chem. Phys. 22, 398 (1954).

044201-21

https://doi.org/10.1112/plms/s1-10.1.4
https://doi.org/10.1112/plms/s1-10.1.4
https://doi.org/10.1112/plms/s1-10.1.4
https://doi.org/10.1112/plms/s1-10.1.4
https://doi.org/10.1017/jfm.2016.276
https://doi.org/10.1017/jfm.2016.276
https://doi.org/10.1017/jfm.2016.276
https://doi.org/10.1017/jfm.2016.276
https://doi.org/10.1137/0143018
https://doi.org/10.1137/0143018
https://doi.org/10.1137/0143018
https://doi.org/10.1137/0143018
https://doi.org/10.1063/1.869279
https://doi.org/10.1063/1.869279
https://doi.org/10.1063/1.869279
https://doi.org/10.1063/1.869279
https://doi.org/10.1017/S002211209500382X
https://doi.org/10.1017/S002211209500382X
https://doi.org/10.1017/S002211209500382X
https://doi.org/10.1017/S002211209500382X
https://doi.org/10.1063/1.868540
https://doi.org/10.1063/1.868540
https://doi.org/10.1063/1.868540
https://doi.org/10.1063/1.868540
https://doi.org/10.1103/PhysRevLett.71.3458
https://doi.org/10.1103/PhysRevLett.71.3458
https://doi.org/10.1103/PhysRevLett.71.3458
https://doi.org/10.1103/PhysRevLett.71.3458
https://doi.org/10.1073/pnas.1418541112
https://doi.org/10.1073/pnas.1418541112
https://doi.org/10.1073/pnas.1418541112
https://doi.org/10.1073/pnas.1418541112
https://doi.org/10.1073/pnas.1814242115
https://doi.org/10.1073/pnas.1814242115
https://doi.org/10.1073/pnas.1814242115
https://doi.org/10.1073/pnas.1814242115
https://doi.org/10.1146/annurev.fluid.36.050802.122124
https://doi.org/10.1146/annurev.fluid.36.050802.122124
https://doi.org/10.1146/annurev.fluid.36.050802.122124
https://doi.org/10.1146/annurev.fluid.36.050802.122124
https://doi.org/10.1146/annurev-matsci-070909-104502
https://doi.org/10.1146/annurev-matsci-070909-104502
https://doi.org/10.1146/annurev-matsci-070909-104502
https://doi.org/10.1146/annurev-matsci-070909-104502
https://doi.org/10.1038/s41565-019-0374-5
https://doi.org/10.1038/s41565-019-0374-5
https://doi.org/10.1038/s41565-019-0374-5
https://doi.org/10.1038/s41565-019-0374-5
https://doi.org/10.1126/science.289.5482.1165
https://doi.org/10.1126/science.289.5482.1165
https://doi.org/10.1126/science.289.5482.1165
https://doi.org/10.1126/science.289.5482.1165
https://doi.org/10.1103/PhysRevLett.97.244502
https://doi.org/10.1103/PhysRevLett.97.244502
https://doi.org/10.1103/PhysRevLett.97.244502
https://doi.org/10.1103/PhysRevLett.97.244502
https://doi.org/10.1073/pnas.1207634109
https://doi.org/10.1073/pnas.1207634109
https://doi.org/10.1073/pnas.1207634109
https://doi.org/10.1073/pnas.1207634109
https://doi.org/10.1103/PhysRevE.73.016309
https://doi.org/10.1103/PhysRevE.73.016309
https://doi.org/10.1103/PhysRevE.73.016309
https://doi.org/10.1103/PhysRevE.73.016309
https://doi.org/10.1103/PhysRevLett.98.064504
https://doi.org/10.1103/PhysRevLett.98.064504
https://doi.org/10.1103/PhysRevLett.98.064504
https://doi.org/10.1103/PhysRevLett.98.064504
https://doi.org/10.1017/jfm.2018.950
https://doi.org/10.1017/jfm.2018.950
https://doi.org/10.1017/jfm.2018.950
https://doi.org/10.1017/jfm.2018.950
https://doi.org/10.1103/PhysRevLett.89.084502
https://doi.org/10.1103/PhysRevLett.89.084502
https://doi.org/10.1103/PhysRevLett.89.084502
https://doi.org/10.1103/PhysRevLett.89.084502
https://doi.org/10.1007/s10955-006-9028-8
https://doi.org/10.1007/s10955-006-9028-8
https://doi.org/10.1007/s10955-006-9028-8
https://doi.org/10.1007/s10955-006-9028-8
https://doi.org/10.1103/PhysRevE.92.061002
https://doi.org/10.1103/PhysRevE.92.061002
https://doi.org/10.1103/PhysRevE.92.061002
https://doi.org/10.1103/PhysRevE.92.061002
https://doi.org/10.1103/PhysRevE.93.013120
https://doi.org/10.1103/PhysRevE.93.013120
https://doi.org/10.1103/PhysRevE.93.013120
https://doi.org/10.1103/PhysRevE.93.013120
https://doi.org/10.1007/s10955-018-2200-0
https://doi.org/10.1007/s10955-018-2200-0
https://doi.org/10.1007/s10955-018-2200-0
https://doi.org/10.1007/s10955-018-2200-0
https://doi.org/10.1103/PhysRevE.100.023108
https://doi.org/10.1103/PhysRevE.100.023108
https://doi.org/10.1103/PhysRevE.100.023108
https://doi.org/10.1103/PhysRevE.100.023108
https://doi.org/10.1103/PhysRevFluids.3.053604
https://doi.org/10.1103/PhysRevFluids.3.053604
https://doi.org/10.1103/PhysRevFluids.3.053604
https://doi.org/10.1103/PhysRevFluids.3.053604
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1063/1.1740082
https://doi.org/10.1063/1.1740082
https://doi.org/10.1063/1.1740082
https://doi.org/10.1063/1.1740082


ZHAO, LOCKERBY, AND SPRITTLES

[34] R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications
to magnetic and conduction problems, J. Phys. Soc. Japan 12, 570 (1957).

[35] J. G. Kirkwood and F. P. Buff, The statistical mechanical theory of surface tension, J. Chem. Phys. 17,
338 (1949).

[36] A. Trokhymchuk and J. Alejandre, Computer simulations of liquid/vapor interface in lennard-jones fluids:
Some questions and answers, J. Chem. Phys. 111, 8510 (1999).

[37] A. Ghoufi, P. Malfreyt, and D. J. Tildesley, Computer modeling of the surface tension of the gas–liquid
and liquid–liquid interface, Chem. Soc. Rev. 45, 1387 (2016).

[38] L. Korson, W. Drost-Hansen, and F. J. Millero, Viscosity of water at various temperatures, J. Chem. Phys.
73, 34 (1969).

[39] R. T. Cygan and J. D. Kubicki, Molecular Modeling Theory: Applications in the Geosciences (Walter de
Gruyter, Berlin, 2018), Vol. 42.

[40] V. Molinero and E. B. Moore, Water modeled as an intermediate element between carbon and silicon,
J. Chem. Phys. 113, 4008 (2008).

[41] J. L. Abascal and C. Vega, A general purpose model for the condensed phases of water: Tip4p/2005,
J. Chem. Phys. 123, 234505 (2005).

[42] J. Eggers and T. F. Dupont, Drop formation in a one-dimensional approximation of the Navier–Stokes
equation, J. Fluid Mech. 262, 205 (1994).

[43] A. Donev, E. Vanden-Eijnden, A. Garcia, and J. Bell, On the accuracy of finite-volume schemes for
fluctuating hydrodynamics, Commun. Appl. Math. Comput. Sci. 5, 149 (2010).

[44] J. B. Bell, A. L. Garcia, and S. A. Williams, Numerical methods for the stochastic Landau-Lifshitz Navier-
Stokes equations, Phys. Rev. E 76, 016708 (2007).

[45] R. MacCormack, The effect of viscosity in hypervelocity impact cratering, J. Spacecraft Rockets 40, 757
(2003).

[46] D. G. Aarts, M. Schmidt, and H. N. Lekkerkerker, Direct visual observation of thermal capillary waves,
Science 304, 847 (2004).

[47] A. Willis and J. Freund, Thermal capillary waves relaxing on atomically thin liquid films, Phys. Fluids
22, 022002 (2010).

[48] X. Xue, M. Sbragaglia, L. Biferale, and F. Toschi, Effects of thermal fluctuations in the fragmentation of
a nanoligament, Phys. Rev. E 98, 012802 (2018).

[49] N. Gopan and S. P. Sathian, Rayleigh instability at small length scales, Phys. Rev. E 90, 033001 (2014).
[50] D. K. Bhuptani and S. P. Sathian, Effect of axial electric field on the Rayleigh instability at small length

scales, Phys. Rev. E 95, 053115 (2017).
[51] D. Rutland and G. Jameson, A nonlinear effect in the capillary instability of liquid jets, J. Fluid Mech. 46,

267 (1971).
[52] J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K. R. Mecke, and R. Blossey, Complex dewetting

scenarios captured by thin-film models, Nat. Mater. 2, 59 (2003).
[53] R. Fetzer, M. Rauscher, R. Seemann, K. Jacobs, and K. Mecke, Thermal Noise Influences Fluid Flow in

Thin Films During Spinodal Dewetting, Phys. Rev. Lett. 99, 114503 (2007).

044201-22

https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1063/1.1747248
https://doi.org/10.1063/1.1747248
https://doi.org/10.1063/1.1747248
https://doi.org/10.1063/1.1747248
https://doi.org/10.1063/1.480192
https://doi.org/10.1063/1.480192
https://doi.org/10.1063/1.480192
https://doi.org/10.1063/1.480192
https://doi.org/10.1039/C5CS00736D
https://doi.org/10.1039/C5CS00736D
https://doi.org/10.1039/C5CS00736D
https://doi.org/10.1039/C5CS00736D
https://doi.org/10.1021/j100721a006
https://doi.org/10.1021/j100721a006
https://doi.org/10.1021/j100721a006
https://doi.org/10.1021/j100721a006
https://doi.org/10.1021/jp805227c
https://doi.org/10.1021/jp805227c
https://doi.org/10.1021/jp805227c
https://doi.org/10.1021/jp805227c
https://doi.org/10.1063/1.2121687
https://doi.org/10.1063/1.2121687
https://doi.org/10.1063/1.2121687
https://doi.org/10.1063/1.2121687
https://doi.org/10.1017/S0022112094000480
https://doi.org/10.1017/S0022112094000480
https://doi.org/10.1017/S0022112094000480
https://doi.org/10.1017/S0022112094000480
https://doi.org/10.2140/camcos.2010.5.149
https://doi.org/10.2140/camcos.2010.5.149
https://doi.org/10.2140/camcos.2010.5.149
https://doi.org/10.2140/camcos.2010.5.149
https://doi.org/10.1103/PhysRevE.76.016708
https://doi.org/10.1103/PhysRevE.76.016708
https://doi.org/10.1103/PhysRevE.76.016708
https://doi.org/10.1103/PhysRevE.76.016708
https://doi.org/10.2514/2.6901
https://doi.org/10.2514/2.6901
https://doi.org/10.2514/2.6901
https://doi.org/10.2514/2.6901
https://doi.org/10.1126/science.1097116
https://doi.org/10.1126/science.1097116
https://doi.org/10.1126/science.1097116
https://doi.org/10.1126/science.1097116
https://doi.org/10.1063/1.3326077
https://doi.org/10.1063/1.3326077
https://doi.org/10.1063/1.3326077
https://doi.org/10.1063/1.3326077
https://doi.org/10.1103/PhysRevE.98.012802
https://doi.org/10.1103/PhysRevE.98.012802
https://doi.org/10.1103/PhysRevE.98.012802
https://doi.org/10.1103/PhysRevE.98.012802
https://doi.org/10.1103/PhysRevE.90.033001
https://doi.org/10.1103/PhysRevE.90.033001
https://doi.org/10.1103/PhysRevE.90.033001
https://doi.org/10.1103/PhysRevE.90.033001
https://doi.org/10.1103/PhysRevE.95.053115
https://doi.org/10.1103/PhysRevE.95.053115
https://doi.org/10.1103/PhysRevE.95.053115
https://doi.org/10.1103/PhysRevE.95.053115
https://doi.org/10.1017/S0022112071000521
https://doi.org/10.1017/S0022112071000521
https://doi.org/10.1017/S0022112071000521
https://doi.org/10.1017/S0022112071000521
https://doi.org/10.1038/nmat788
https://doi.org/10.1038/nmat788
https://doi.org/10.1038/nmat788
https://doi.org/10.1038/nmat788
https://doi.org/10.1103/PhysRevLett.99.114503
https://doi.org/10.1103/PhysRevLett.99.114503
https://doi.org/10.1103/PhysRevLett.99.114503
https://doi.org/10.1103/PhysRevLett.99.114503

