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Sampling networks by nodal attributes
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In a social network individuals or nodes connect to other nodes by choosing one of the channels of
communication at a time to re-establish the existing social links. Since available data sets are usually restricted
to a limited number of channels or layers, these autonomous decision making processes by the nodes constitute
the sampling of a multiplex network leading to just one (though very important) example of sampling bias
caused by the behavior of the nodes. We develop a general setting to get insight and understand the class of
network sampling models, where the probability of sampling a link in the original network depends on the
attributes h of its adjacent nodes. Assuming that the nodal attributes are independently drawn from an arbitrary
distribution ρ(h) and that the sampling probability r(hi, hj ) for a link i j of nodal attributes hi and hj is also
arbitrary, we derive exact analytic expressions of the sampled network for such network characteristics as the
degree distribution, degree correlation, and clustering spectrum. The properties of the sampled network turn out
to be sums of quantities for the original network topology weighted by the factors stemming from the sampling.
Based on our analysis, we find that the sampled network may have sampling-induced network properties that
are absent in the original network, which implies the potential risk of a naive generalization of the results of
the sample to the entire original network. We also consider the case, when neighboring nodes have correlated
attributes to show how to generalize our formalism for such sampling bias and we get good agreement between
the analytic results and the numerical simulations.

DOI: 10.1103/PhysRevE.99.052304

I. INTRODUCTION

Mapping out the underlying network is an essential part
of studying complex systems. Accordingly, many different
networks have been constructed from empirical data sets, but
this procedure is subject to noise and various biases thus
being of limited applicability. This is especially the case when
the network is huge like the internet, world wide web, or
human society, where unavoidably only a sample of the whole
network can be analyzed that is inherently likely to cause
some biases. Also the identification of links in a network could
be the cause of bias unless all the links are equally measur-
able. For example, in communication-based social networks
difficulties may arise when one wants to detect social links
between people using different means of communication. The
consequences of these kinds of sampling could hinder the
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generalization of the properties observed in the sample to
the case of the entire system. For instance, the sampling
bias may make the degree distribution look like a power law
even when the original degree is Poissonian [1,2]. Further-
more, the peaked degree distribution of social interactions is
transformed to a monotonic one if only one communication
channel is sampled [3]. Also, other network quantities such
as degree correlations, centrality measures, and clustering
properties, could undergo nontrivial bias effects depending on
how networks are sampled [4–17]. Thus, understanding the
effect of sampling biases is crucial in interpreting empirical
data better and in studying the original systems.

There have been a number of theoretical and numerical
studies on network sampling since its significance was recog-
nized. The sampling methods studied so far are classified as
random node sampling [4–9], random link sampling [8,9,17],
and path-based sampling [1,2,8–15]. The path-based sampling
is a class of methods that sample nodes and links while
traversing the network from certain nodes, which includes
breadth first search, depth first search, snowball sampling,
random walk sampling, and trace-route sampling. For these
sampling methods, the effects of the sampling biases are un-
derstood well and algorithms to improve inference of the orig-
inal network properties have also been suggested [9,14–17].
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In this paper, we study another class of network sampling,
where links are sampled with a probability depending on the
attributes of the nodes. We assume that node i has an attribute
hi and that the links between nodes i and j are sampled
according to the probability depending on hi and h j . This is
the case when a multiplex is sampled by a limited number of
layers. Usually it depends on the node attributes in which layer
a link can be found. For example, in the network of social
relationships a family tie between two individuals or nodes
is there if both have the attribute of belonging to the same
family. This class includes the model of Ref. [3], which was
proposed to explain the commonly observed monotonic de-
gree distribution in the data sets of social networks sampled by
single communication channel. While people communicate
using various communication channels, online and offline,
the sources of the data sets are often limited to a single
communication channel due to technical and privacy reasons.
Thus, extracting a single communication channel is regarded
as a sampling process, through which nontrivial biases are
inevitably induced. Because each person has a different ten-
dency to select the communication channel [18] and this is
adjusted to the preferences of the communication partner,
the sampling process is plausibly modeled by introducing the
attributes for each person rather than by random or path-based
sampling methods, such that the sampling probability depends
on the two communicating persons’ attributes.

From a mathematical point of view, the sampling model
we are going to study here is a generalization of a class of the
network generation models with hidden variables [19,20]. In
this class of models, starting from an empty network, hidden
variables are assigned to the nodes, and links are generated
according to a function of the hidden variables hi and h j .
However, in this paper, the network is obtained by sampling
from an original network having certain properties. Hence,
the sampling model studied here is equivalent to the model
studied in [19,20] when the original network is a complete
graph.

This paper is organized as follows: In Sec. II, we present
rigorous analytic forms of the degree distribution P(k), degree
correlation knn(k), and clustering spectrum c(k) for the sam-
pled network in the case where h is independently drawn from
a certain distribution ρ(h). In Sec. III, we apply the results to
some concrete examples. Especially, we will investigate the
model proposed in Ref. [3] and see how the original network
affects the sampled network. Then, in Sec. IV, we numerically
study the case where the hidden variables of neighboring
nodes in the original network are correlated with each other.
Section V is devoted to summary and discussion.

II. MODEL AND ANALYSIS

We define the model of sampling as follows (see Fig. 1).
First, a hidden variable h is assigned to each node in the orig-
inal network, where each of the hidden variables is randomly
and independently drawn from the distribution ρ(h). Then, a
link between nodes i and j is sampled with the probability
r(hi, h j ), where we assume that it is a symmetric function
with respect to hi and h j . Although, in this paper, we mainly
consider h as a scalar variable, it is straightforward to extend
the model such that a node has a vector attribute (a set of
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FIG. 1. A schematic diagram showing the sampling method stud-
ied in this paper. For each node i, a hidden variable hi is drawn
randomly from ρ(h). A link i j in the original network is sampled
with a probability r(hi, hj ), where hi and hj are the hidden variables
of the nodes i and j.

attributes) h, similarly to the Axelrod’s model [21] or the
model in Ref. [22], which we will discuss in Sec. II D.

Hereafter, we denote the degree in the original network by
κ , the degree distribution of the original network by Po(κ ),
the conditional probability that a neighbor of degree-κ node
has degree κ ′ by po(κ ′|κ ), and the average local clustering
coefficient of degree-κ nodes by co(κ ).

A. Degree distribution

Let us consider links around a node which has hidden
variable h. Since the hidden variables of the neighbors are
independently given, the probability that a link around the
node with h is sampled is

r̄(h) =
∫

dh′ρ(h′)r(h, h′). (1)

Since h is independently given to each node, the probability
distribution of the degree sampled around a node is a binomial
distribution given as a function of the hidden variable h and
the original degree κ of the focal node:

g(k|h, κ ) =
(

κ

k

)
r̄(h)k[1 − r̄(h)]κ−k . (2)

This formula is not only valid for the case of independent
hidden variables but also for a class of dependent variables
with appropriately calculated r̄(h), which will be discussed in
Sec. IV.

The degree distribution of the sampled network P(k) is
therefore written as

P(k) =
∑

κ

∫
dhg(k|h, κ )ρ(h)Po(κ )

= 〈1〉h,κ , (3)

where we defined the weighted sum over h and κ as

〈X 〉h,κ ≡
∑

κ

∫
dhg(k|h, κ )ρ(h)Po(κ )X. (4)

Thus, the degree distribution of the sampled network depends
only on ρ(h), r(h, h′), and Po(κ ). It is independent of higher
order correlations in the original network such as the degree
correlation or clustering coefficient.
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Since g(k|h, κ ) is of binomial form, the average degree in
the sampled network is simply written as

〈k〉 =
∑

k

kP(k)

=
∑

κ

∫
dh

[∑
k

kg(k|h, κ )

]
Po(κ )ρ(h)

= 〈κ〉r̄, (5)

where 〈κ〉 = ∑
κ κPo(κ ) is the average degree in the original

network, and

r̄ ≡
∫∫

dhdh′r(h, h′)ρ(h)ρ(h′) (6)

is the average sampling probability.
Similarly, one can calculate 〈k2〉 as

〈k2〉 =
∑

k

k2P(k)

=
∑

κ

∫
dh

[∑
k

k2g(k|h, κ )

]
Po(κ )ρ(h)

= 〈κ〉r̄ + 〈κ (κ − 1)〉
∫

dhr̄(h)2ρ(h). (7)

Thus, the second moment of the sampled degree distribution
is written as a function of the first and the second moments of
Po(κ ) and the weighted average of r̄(h)2. In general, the nth
moment of P(k) can be obtained as the nth derivatives of the
characteristic function. The characteristic function is

φ(t ) =
∑

k

eikt P(k)

=
∫

dh
∑

κ

[1 − r̄(h) + r̄(h)eit ]κρ(h)Po(κ ). (8)

Thus, the nth moment of the sampled degree depends on up to
the nth moments of Po(κ ) and the weighted average of r̄(h)n.

B. Degree correlation

The degree correlation between neighboring nodes in the
sampled network can be characterized by the conditional
distribution as

P(k′|k) =
∫∫

dhdh′ ∑
κ,κ ′

g(k′ − 1|h′, κ ′ − 1)

× p(h′, κ ′|h, κ )g∗(h, κ|k), (9)

where g∗(h, κ|k) is the joint conditional probability of h and
κ given k. Since one connection has already been used up
for the conditional edge with h, g(k′ − 1|h′, κ ′ − 1) gives the
probability that a node with (h′, κ ′) ends up with degree k′.
Using the Bayes’ formula, we obtain

g∗(h, κ|k) = 1

P(k)
ρ(h)Po(κ )g(k|h, κ ). (10)

The conditional probability p(h′, κ ′|h, κ ) is the probability
that a neighbor of a node with (h, κ ) in the sampled network
has the hidden variable h′ and the original degree κ ′. Since h
is assigned independently to nodes, it is written as the product
of two factors:

p(h′, κ ′|h, κ ) = p(h′|h)po(κ ′|κ ), (11)

where the conditional probability p(h′|h) is written as

p(h′|h) = r(h′, h)ρ(h′)
r̄(h)

. (12)

Note that there is a correlation of h between neighboring
nodes after the sampling even though there is no correlation
in the original network. Sampling induces correlations of
neighboring h values.

The degree correlation is then given by

P(k′|k) = 1

P(k)

∫∫
dhdh′ ∑

κ,κ ′
g(k′ − 1|h′, κ ′ − 1)p(h′|h)po(κ ′|κ )g(k|h, κ )ρ(h)Po(κ ). (13)

Using this, the average degree of neighbors of a degree-k node is

knn(k) =
∑

k′
k′P(k′|k)

=
∑

k′

∫∫
dhdh′ ∑

κ,κ ′
k′g(k′ − 1|h′, κ ′ − 1)p(h′|h)po(κ ′|κ )

g(k|h, κ )ρ(h)Po(κ )

P(k)

= 1 +
∫

dh
∑

κ

g(k|h, κ )

P(k)
ρ(h)Po(κ )

[∫
dh′r̄(h′)p(h′|h)

][∑
κ ′

(κ ′ − 1)po(κ ′|κ )

]

= 1 + 〈r̄nn(h)(κnn(κ ) − 1)〉h,κ

P(k)
, (14)

where r̄nn(h) is the average sampling probability of the links
around a neighbor of a node having h and κnn(κ ) is the average
neighbor degree of a degree-κ node in the original network.

Each of these is defined as

r̄nn(h) =
∫

dh′r̄(h′)p(h′|h) (15)
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and

κnn(κ ) =
∑
κ ′

κ ′ po(κ ′|κ ). (16)

Thus, knn(k) is written as a weighted sum of
r̄nn(h)(κnn(κ ) − 1), which is the product of the correlations
of hidden variables and the original degrees. It depends on
Po(κ ) and κnn(κ ) but is independent of other higher order
correlations.

In general, the hidden variables of neighboring nodes in
the sampled network show a correlation even if h is originally
independent of the neighbors. This implies that the correlation
between hs in the sampled network is induced by the sam-
pling. Here, we note that the correlation of hidden variables
in the sampled network p(h′|h) is totally independent of the
original network because it depends only on the functional
forms of ρ(h) and r(h, h′). The hidden variable averaged over
neighbors of a node having h is written as

hnn(h) =
∫

dh′h′ p(h′|h) (17)

using Eq. (12).
The sampling induced correlations in h disappear when

r(hi, h j ) is factorized such that r(hi, h j ) = r′(hi )r′(h j ) irre-
spective of the functional form of ρ(h). This is because the
conditional probability p(h′|h) is independent of h as follows:

p(h′|h) = r(h, h′)ρ(h′)∫
dh′′r(h, h′′)ρ(h′′)

= r′(h′)ρ(h′)∫
dh′′r′(h′′)ρ(h′′)

. (18)

C. Clustering coefficient

Consider a node with hidden variable h and original degree
κ . In the original network, the local clustering coefficient, de-
noted by co(κ ), denotes the fraction of the pairs of neighbors
having links between them. Therefore, the local clustering
coefficient of this node in the sampled network ch,κ is

ch,κ =
∫∫

dh′dh′′co(κ )r(h′, h′′)p(h′|h)p(h′′|h)

= co(κ )ch(h), (19)

where

ch(h) ≡
∫

dh′dh′′r(h′, h′′)p(h′|h)p(h′′|h). (20)

The average local clustering coefficient of a node with sam-
pled degree k, denoted by c(k), is given by the average of
ch,κ weighed by the probability that the node has the hidden
variable h and the original degree κ:

c(k) =
∫

dh
∑

κ

g∗(h, κ|k)ch,κ

= 1

P(k)

∫
dh

∑
κ

g(k|h, κ )ρ(h)Po(κ )co(κ )ch(h)

= 〈co(κ )ch(h)〉h,κ

P(k)
. (21)

Therefore, c(k) is given by the weighted sum of the product
of co(κ ) and ch(h). It is notable that it does not depend on the
degree correlation between neighbors in the original network.
It depends only on Po(κ ) and co(κ ). The average clustering
coefficient in the sampled network is then given as

〈c〉 =
∞∑

k=2

c(k)P(k). (22)

The equations for the sampled network properties are
summarized in Table I.

D. Vector attribute

Although we have assumed that a hidden variable h for a
node is a scalar, it is straightforward to extend our analysis
for general attributes. In general, a node may have a vector
attribute h of dimension d whose elements may be continuous
or have discrete numbers, Rd . The probability density func-
tion ρ(h) : Rd �→ R+ and the sampling probability r(h, h′) :
Rd × Rd �→ R+ are defined in the extended spaces.

The analytic equations shown in the previous subsections
are valid by replacing integrals over a scalar h by the integrals
over the vector h. For instance, Eq. (1) is

r̄(h) ≡
∫

dh′ρ(h′)r(h, h′). (23)

Similarly, Eq. (4) is redefined as

〈X 〉h,κ ≡
∑

κ

∫
dhg(k|h, κ )ρ(h)Po(κ )X. (24)

In the case when an element of h is a discrete value, the cor-
responding integral is replaced by a summation. After these
modification, the other equations in the previous subsections
are still valid.

III. EXAMPLES

A. Sampling with a generalized mean of hidden variables

In this section, we study some concrete examples of ρ(h)
and r(hi, h j ). The first model we are going to study is the
sampling method proposed in Ref. [3], which was introduced
to explain monotonically decreasing degree distributions, as
they are commonly observed in various data sets of social
networks. Such monotonically decreasing degree distribution,
indicating that the most frequent degree is one, is considered
to be an outcome of the bias of sampling a single commu-
nication channel. With reference to our everyday experience
we can consider it very unlikely to find a randomly selected
person who has only one friend or social tie, indicating that
the original social network should have a degree distribution
with a peak at a degree larger than one. Canonical sampling
methods, such as random node or link sampling or snowball
sampling, are not suitable for explaining this discrepancy
since they may result in the sampled degree distribution
that is not monotonically decreasing. In contrast, the model
presented in Ref. [3] can be considered simple and plausible in
explaining the monotonically decreasing degree distribution
in the sample network. It assumes that the monotonically
decreasing degree distribution is attributed to the mixture of
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TABLE I. Summary of the analytic equations for the sampled network properties. On the right column, the dependency on the original
network properties is shown. For instance, the sampled degree distribution depends only on the original degree distribution Po(κ ). The weighted
sum 〈X 〉h,κ is defined by Eq. (4). When neighboring hs are correlated, one can refer to Eq. (32) and Eq. (33) instead of Eq. (1) and Eq. (12),
respectively.

Network property Analytic form Equation Dependency on the original network

〈k〉 〈κ〉r̄ (5) 〈κ〉
P(k) 〈1〉h,κ (3) Po(κ )

knn(k) 1 + 〈r̄nn (h)(κnn (κ )−1)〉h,κ

P(k) (14) Po(κ ), κnn(κ )

c(k)
〈co(κ )ch (h)〉h,κ

P(k) (21) Po(κ ), co(κ )
hnn(h)

∫
dh′h′ p(h′|h) (17) None

the rare and frequent users of the communication service. In
the model, the tendency for a person to use the communication
channel is represented by a nodal attribute h and the link
sampling probability is related to the channel selection.

The model is defined such that each node has a scalar value
h, which is independently drawn from the distribution ρ(h).
The value of h denotes how much one person favors an online
service or a communication channel. The distribution of the
hidden variables ρ(h) is a Weibull distribution truncated at
h = 1:

ρ(h) =
{

c α
h0

(
h
h0

)α−1
exp

[
−

(
h
h0

)α]
when 0 � h � 1

0 otherwise,
(25)

where c = [1 − e−(1/h0 )α ]
−1

is a normalization constant.
As for the sampling probability we consider the general-

ized mean of the two hidden variables:

r(h, h′) =
{(

hβ+h′β
2

)1/β
when β 
= 0√

hh′ when β = 0,
(26)

where β is an exponent characterizing the generalized mean
which takes the form of arithmetic, geometric, or harmonic
mean for β = 1, 0, or −1, respectively. In the limits of β →
∞ and β → −∞, the sampling probabilities are equivalent to
max{h, h′} and min{h, h′}, respectively.

As a demonstration, we compare our analytic expressions
in Section II with the Monte Carlo simulations. As an orig-
inal network, we use an Erdös-Rényi random graph of size
N = 5000 and link density p = 0.03. The parameters for
the sampling are h0 = 0.3, α = 0.8, and β = −∞. Figure 2
shows that our analytic results are in excellent agreement with
the results from Monte Carlo simulations, demonstrating the
validity of our analysis in the previous section.

As shown numerically in Sec. V of Ref. [3], the sign
of β is crucial to obtain a monotonically decreasing degree
distribution from an original network having a mode at higher
than one. For all the results showing monotonically decreasing
degree distributions, β � 0 is satisfied. This is reasonable
because the sampling probability around a node with h, r̄(h),
does not go to 0 for a positive β even when h → 0. In other
words, even with an infinitesimal h, a node has a positive finite
sampling probability of links, which makes the low-degree
nodes rare and yields the peaked degree distribution.

Although a negative β reproduces a monotonically de-
creasing degree distribution, it also causes side-effects in other
network statistics. The degree correlation knn(k) shows an
increasing behavior while the original network does not have
any degree correlation between neighbors, strongly implying
that degree assortativity is induced by the sampling. The sign
of β plays a pivotal role for the sampling-induced assortativ-
ity. In Ref. [3], it was shown that the neighboring h in the
sampled network is positively (or negatively) correlated for
a negative (or positive) β regardless of the original network
topology or the functional form of ρ(h). The correlation of
h induced by the sampling also causes the correlation of k
in the sampled network. As a matter of fact, an increasing
knn(k) is commonly observed in various empirical data sets
of social networks. A plausible explanation for degree as-
sortativity could be the homophily mechanism, however, the
model implies that it may be an outcome of the bias caused by
sampling a single communication channel. We cannot naively
conclude that the original network shows a positive correla-
tion even if the data set shows a positive degree correlation
between neighbors. The fact that high degree nodes are likely

FIG. 2. (a) Degree distribution P(k), (b) degree correlation
knn(k), (c) clustering coefficient c(k), (d) average neighbor hidden
variable hnn(h) of the sampled networks. Simulation results are
compared with theoretical equations in Table I. The network is
sampled from the Erdös-Rényi random graph of size N = 5000 and
the link density p = 0.03. The parameter values for sampling are α =
0.8, h0 = 0.3, and β = −∞. Under this setting, 12% of the links are
sampled. Simulation results are averaged over 200 independent runs.
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to be connected due to homophily is not enough for degree
assortativity as it is easy to construct disassortative networks,
with interconnected hubs [23].

The local clustering coefficient as a function of the de-
gree c(k) is also biased. As seen in Fig. 2(c), it shows an
increasing behavior while it originally had a flat profile. This
increasing behavior is also explained by the sampling induced
assortativity. The low k nodes mostly consist of nodes having
low h. Because of the positive correlation in h, the neigh-
boring nodes around a low-degree node also tends to have a
low h. Therefore, the probability of making a link between
neighbors is low. However, for a high-degree node, the hidden
variables of its neighbors tend to be high as well, yielding a
higher local clustering coefficient. As a result, c(k) shows an
increasing trend. In empirical networks, however, decreasing
c(k) is commonly found in many data sets [24–27]. This
is an unrealistic aspect of the model, which might originate
from oversimplification of the sampling process or due to
mechanisms other than sampling.

If we increase or decrease the number of sampled links
by changing h0 and/or α, then the property of the sampled
network changes. For instance, the shape of P(k) becomes
more similar to the original one if the fraction of sampled links
gets closer to one. However, the increasing behavior of knn(k)
and c(k) are more robust: They remain qualitatively same
as long as the sign of β is negative. Conversely, decreasing
behaviors are found when β is positive, indicating that the
sign of β is a crucial factor for how the sampling causes bias
on knn(k) and c(k).

So far, we have used an Erdös-Rényi random graph for
the original network. One can ask how would the properties
of the original network affect these results? As we have
shown in the previous section, the degree correlation in the
sampled network knn(k) consists of the contributions both
from the original degree correlation κnn(κ ) and the corre-
lation of h, r̄nn(h). To see how it depends on κnn(κ ), we
conducted a thought experiment by manually assigning an
increasing or a decreasing function to κnn(κ ). For simplicity,
we adopt linearly increasing or decreasing functions, κnn(κ ) =
±0.2(κ − 〈κ〉) + 〈κnn〉, where 〈κ〉 = ∑

κ κPo(κ ) and 〈κnn〉 =∑
κ κnn(κ )Po(κ ). We can calculate how knn(k) would look like

if such assortative and disassortative networks existed using
the equations in Table I.

The result of the thought experiment is shown in Fig. 3(a).
The distribution ρ(h) and the sampling probability r(h, h′)
are kept same as the previous one. The figure shows that
the curves almost collapse into a single curve when k < k∗,
and a significant difference appears after k exceeds k∗, where
k∗ ≈ 30. It indicates that knn(k) for k < k∗ mostly reflects
the property of the sampling rather than the original network
property. Because the majority of the nodes in the sampled
network have a degree smaller than k∗ [see Fig. 2(a)], it is
practically difficult to obtain the information of the original
network from the sampled network.

A similar experiment is conducted for c(k). We calculate
c(k) by assuming three possible cases: co(κ ) ∝ κ0, κ−1, and
κ−2. For a fair comparison, we keep the average clustering
coefficient in the original network 〈co〉 = ∑

κ Po(κ )co(κ ) con-
stant. The results are shown in Fig. 3(b). Similar to knn(k),
the clustering spectrum c(k) shows the dependency on the

FIG. 3. (a) The degree correlation knn(k) when the original
network is nonassortative, assortative, and disassortative. (b) The
clustering spectrum c(k) of the sampled network when the original
clustering spectrum is co(κ ) ∝ κ0(const), κ−1, and κ−2. (c) The
average original degree given the sampled degree, κ̄ (k). The inferred
original degree κ̄ (k) is just slightly below the original average degree
〈κ〉, depicted as a horizontal dashed line, for k < k∗. (d) The average
hidden variable given sampled degree h̄(k). The horizontal dashed
line depicts 〈h〉 = ∫

dhhρ(h). The other settings are the same as
described in the caption of Fig. 2.

original network only for k > k∗. The low-degree behavior is
determined by the dependency on h hence it does not contain
much information about the original network property.

These results of the thought experiment are explained
by calculating the conditional probability distribution of the
original degree κ given a sampled degree k:

P∗(κ|k) =
∫

dhg∗(h, κ|k) = Po(κ )
∫

dhρ(h)g(k|h, κ )∑
κ Po(κ )

∫
dhρ(h)g(k|h, κ )

.

(27)

If P∗(κ|k) is identical to Po(κ ), then the network property
around a degree-k node is determined only by h dependency
irrespective of κ . In other words, the difference between
P∗(κ|k) and Po(κ ) serves as an indicator of the relevance of
the original network properties. We calculated the expected
original degree conditioned on a sampled degree, which is
defined as κ̄ (k) = ∑

κ κP∗(κ|k). As shown in Fig. 3(c), κ̄ (k)
remains constant at 〈κ〉 for k < k∗ while it shows deviations
only when k > k∗, supporting the observations so far. We
also calculated the Kullback-Leibler (KL) divergence between
these two distributions for a given k, which is defined by

D(k) =
∑

κ

P∗(κ|k) ln

[
P∗(κ|k)

Po(κ )

]
. (28)

The result (not shown) remains near zero for k < k∗, which is
again consistent with the behaviors in Figs. 3(a) and 3(b).

Since the dependence on κ is not significant, the sampled
network topology can mostly be attributed to the dependence
on h. The conditional probability distribution of h given the
sampled degree k which is a counterpart of Eq. (27), is
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written as

P∗(h|k) =
∑

κ

g∗(h, κ|k). (29)

The expected value h̄(k) = ∫
dhhP∗(h|k) is shown in

Fig. 3(d). In contrast to Fig. 3(c), h̄(k) is significantly different
from the original average 〈h〉 for all range of k. Thus, the sam-
pled network reflects h of each node while the contribution of
the original network topology is marginal.

The transition point k∗ is estimated by the expected k for a
node having the maximum value of h. When h is maximum
(h = 1 in this case), the expected degree after sampling is
〈k〉h=1 = 〈κ〉r̄(1) ≈ 37, which agrees well with the numerical
value of k∗. While k is determined both by κ and h in general,
it is mostly determined by h for the nodes k < 〈k〉h=1 as we
have seen in Figs. 3(c) and 3(d). However, for k > 〈k〉h=1, the
dependence on h is limited since these nodes are expected to
have similar values h ∼ 1, which makes the dependence on κ

more apparent in k. Thus, we find a similarity in k-dependence
and κ-dependence on the network properties for k > 〈k〉h=1.
Similar argument should apply also to the lower bound: When
k < 〈k〉h=0, the original network property appears more in the
sampled network although it is not visible because 〈k〉h=0 = 0
when β � 0.

In general, the property of the original network is not
reflected for all k but for a limited range of k as this example
illustrates. It can be hard to obtain the information about the
original network since the hidden variables can be a definitive
factor for the sampled network topology. The conditional
probability distributions P∗(κ|k) or the KL divergence D(k)
serves as an indicator of the dependency on the original
network. It is noteworthy that P∗(κ|k) and D(k) are dependent
only on ρ(h), r(h, h′) and Po(κ ), hence it is independent of
any higher-order correlation in the original network.

The dependency of knn(k) and c(k) on the original network
may change when the original degree distribution changes. As
a trivial example, let us consider the case where Po(κ ) is a
delta function as in the case of a regular random network.
The k-dependency of knn(k) and c(k) are fully attributed to
the sampling hence it does not contain any information about
the original network properties. However, when the variance
of Po(κ ) is large, more information of the original network
properties are likely to be reflected to the sampled networks.

We conducted the same analysis for a case where the
original degree distribution is a log-normal distribution:

Po(κ ) = 1√
2πσκ

exp

[
− (ln κ − ln μ)2

2σ 2

]
. (30)

The original degree distributes more widely than the case
for the Erdős-Rényi random graph as shown in Fig. 4(a).
When Po(κ ) distributes more widely, more properties of the
original network are found in the sampled networks. Compare
Figs. 4(c) and 4(d) with Figs. 3(a) and 3(b), respectively.
Although the overall profile is similar, the dependency on
the original network property appears more strongly for this
case. Furthermore, the sampled degree distribution P(k) for
the log-normal case have a heavier tail. The original network
property is more visible in the sampled network as more data
points appear in k > k∗.

FIG. 4. (a) The original degree distribution Po(κ ) for the case
of Binomial distribution (ER random graph) and the log-normal
distribution. For the log-normal distribution, μ = 150 and σ = 0.5
are used. (b) The sampled degree distributions P(k) when Po(κ ) are
the log-normal and the binomial distributions. The parameters for
the sampling are the same as described in the caption of Fig. (2).
(c) The average neighbor degree knn(k) for the log-normal Po(κ ).
The same setting is used as in Fig. 3(a), except for Po(κ ). (c) The
clustering spectrum c(k) for the log-normal Po(κ ). The same setting
is used as in Fig. 3(b), except for Po(κ ).

Although the results shown above are for an extreme case
β = −∞, qualitatively similar results are found for β < 0.
When β is negative, increasing behavior is found in knn(k)
and c(k) even when the original network shows a flat profile.
Conversely, decreasing behavior is found for positive β. Some
of the examples for other values of β are shown in Ref. [3].

B. Sampling by a vector of hidden variables

We demonstrate another example where the hidden vari-
able of a node is not a continuous scalar value but a vector
hi. Inspired by the Axelrod’s model for the dissemination
of culture [21], hi is assumed to be a F -dimensional vector
whose components take one of q discrete values [0, q − 1].
Although this is nothing but a toy model, it is introduced to
show the validity of the theory.

In the following, F = 2 and q = 4 are used, and its first
and second components are denoted as σ and τ , that is, hi =
(σi, τi ). The probability mass function ρ(h) is the uniform
distribution: ρ(h) = 1/q2 for any σ and τ . For the sampling
probability function r(hi, h j ), the following function is used:

r(hi, h j ) = max{σi, σ j} + c min{τi, τ j}
(c + 1)(q − 1)

, (31)

where c > 0 is a parameter controlling the relative weight
between the first and second terms. In this example, we use
c = 2. As an original network, we use an Erdös-Rényi random
graph with N = 50 000 and p = 0.003.

Figure 5 shows the simulation results as well as theoretical
prediction. The degree distribution P(k), average neighbor
degree knn(k), and clustering spectrum c(k) are shown in
Figs. 5(a)–5(c), respectively. Although the profiles of these
curves are not as simple as those in the previous Subsection,
the theoretical curves perfectly coincide with the simulation
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FIG. 5. (a) Degree distribution P(k), (b) average neighbor de-
grees knn(k), (c) clustering spectrum c(k) of the sampled network
for the model having vector nodal attributes h. Simulation results
are compared with the theoretically predicted lines. The network is
sampled with probability given by Eq. (31) with F = 2, q = 4 and
c = 2 from an original network of Erdös-Rényi random graph with
N = 50 000 and p = 0.003. Under this setting, approximately 43%
of the links are sampled. The simulations results are averaged over
1000 independent runs. (d) Correlation of the hidden variables be-
tween neighbors in the sampled networks. Symbols denote the simu-
lation results while dashed curves are theoretically predicted results.

results, proving the validity of our analytic approach. We
also studied the correlation between neighboring σ and τ

by measuring the curves for σ̄nn(σ ) and τ̄nn(τ ), which are
defined as the average of neighbors’ hidden variables around
a node having σ and τ , respectively. As shown in Fig. 5(d),
σ shows a negative correlation while τ shows the oppo-
site dependency. This competing correlation is why we see
nonmonotonic profiles in knn(k) and c(k). For some range of
k, the negative correlation of σ plays a major role while the
positive correlation in τ becomes more evident in other region
of k. Figure 5(d) also shows the theoretical values, which
completely agrees with the simulation results.

IV. CORRELATED HIDDEN VARIABLES

So far we have derived the analytic forms for various net-
work properties under the assumption that hs are independent
of each other in the original network. Here, we consider a
more realistic case where the neighboring hs are correlated.
One of the typical examples of the correlated attributes is the
homophily mechanism in social networks, meaning that peo-
ple tend to form ties between those similar to themselves [28].

When hs are correlated, one can conduct a rigorous cal-
culation under a limited condition that h is Markovian, i.e.,
the probability distribution of h is conditional only on their
neighbors’ hidden variables. We also assume that h is indepen-
dent of the local network topology, such that the degree, the
average neighbor degree, and the local clustering coefficient
are independent of h of the node. Under this assumption,
it is straightforward to formally write down the equations
for P(k), knn(k), and c(k) as shown shortly. Although these
assumptions limit the applicability of the theory as the hidden
variables are usually not Markovian, it serves as a good

approximation for various practical cases and gives an idea
about how the correlation in h would affect the topology of
the sampled networks.

When h is correlated, the sampling probability around the
node r̄(h) is written as

r̄(h) =
∫

dh′ po(h′|h)r(h, h′). (32)

Using Eq. (32) instead of Eq. (1), the other equations in
Sec. II A are still valid. The degree distribution is calculated
using Eq. (3).

To calculate knn(k), we have to replace Eq. (12) by the
following formula:

p(h′|h) = r(h′, h)po(h′|h)

r̄(h)
, (33)

with the same r̄(h) as in Eq. (32). The remaining calculations
in Secs. II B and II C are the same. Therefore, the degree
correlation in a sampled network is written as the joint effect
of the original degree correlation po(κ ′|κ ), the correlation of
h in the original network po(h′|h), and the sampling-induced
assortativity.

To demonstrate how the correlation in h works, we study
the following model as a case study. The original network is
constructed using the stochastic block model (SBM) where
N nodes are equally partitioned into C communities of size
NC = N/C. The probability of making intracommunity and
intercommunity links are given by pin and pout, respectively,
which are independent of the community. The hidden variable
h of a node in community I , where I is the index of the
community ranging from 1 to C, is drawn from ρI (h). Thus,
the distribution of h for all the nodes is ρ(h) = ∑

I ρI (h)/C.
For ρI (h), the same functional form as Eq. (25) with α = 1 is
adopted, but with h0 dependent on the community as h0(I ) =
0.01I . With this community dependent h0, the nodes in the
same community have similar h compared to the nodes in
other communities, yielding a positive correlation between
neighboring hs. For the sampling probability, Eq. (26) with
β = −∞, i.e., r(hi, h j ) = min{hi, h j}, is used.

For this model, the conditional probability po(h′|h) is
given as

po(h′|h) = po(h′, h)

ρ(h)
, (34)

where po(h′, h) denotes the probability that a link in the origi-
nal network connects nodes of h and h′. This joint probability
is given by

po(h′, h) =
∑

I

ρI (h)

C

⎡
⎣qinρI (h′) + qout

C − 1

∑
I ′ 
=I

ρI ′ (h′)

⎤
⎦,

(35)

where qin and qout are the fractions of the intra- and intercom-
munity links, respectively. These are given by

qin = pin(NC − 1)

pin(NC − 1) + pout (N − NC )
, (36)

qout = pout (N − NC )

pin(NC − 1) + pout (N − NC )
. (37)
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FIG. 6. (a) Degree distribution P(k), (b) average neighbor de-
grees knn(k), (c) clustering spectrum c(k), (d) correlations of neigh-
boring hidden variables in the sampled network for the model
with correlated h. Simulation results, depicted by symbols, are
compared with the theoretically predictions, depicted as dashed
curves. The original network is constructed using the stochastic block
model where N = 10 000, C = 100, pin = 0.5 and pout = 50/9900.
For each community, h is drawn randomly from a distribution
whose mean is dependent on the index of the community to intro-
duce the correlation. The results are compared with a null model
where the correlation is removed by shuffling h. The correlated case
and the uncorrelated cases are denoted as CO and UC in the legend,
and drawn in blue and orange, respectively. The fraction of the
sampled links are 16% and 15% for the correlated and uncorrelated
cases, respectively. The simulations results are averaged over 200
independent runs.

Figure 6 shows the simulation results as well as the
theoretical predictions for this model. The parameter values
of N = 10 000, C = 100, NC = 100, pin = 0.5, and pout =
50/9900 are used. With this setting, half of the links are
intra-community links while the other half of the links are
made between different communities. To investigate the effect
of the correlations, the uncorrelated version of the model was
also studied. For the uncorrelated model, h of the nodes are
randomly shuffled while the other settings kept the same.

Figure 6(a) shows the degree distribution for both corre-
lated and uncorrelated cases. When the correlation is intro-
duced, the degree distribution has a heavier tail than that for
the uncorrelated case. This is because a node with a high
h tends to be surrounded by nodes with higher h. High-
degree nodes have even higher degrees when h is correlated.
Figure 6(d) shows the correlation of h in the sampled networks
for the correlated and uncorrelated cases. The correlation in
the original network enhances the positive correlation in the
sampled network. The effects of the correlations are also ob-
served in knn(k) and c(k) for both correlated and uncorrelated
cases. The degree assortativity and the increasing behavior of
c(k) get stronger for the correlated case as shown in Figs. 6(b)
and 6(c).

The theoretical predictions using Eqs. (32) and (33) are
also shown in Fig. 6. The theoretical curves for P(k) and
hnn(h), shown in Figs. 6(a) and 6(d), agree very well with
the simulation results. To calculate the sampled degree around
a node, hs of the focal node and its surrounding nodes

are necessary. Because longer correlations are not necessary,
these equations, that take the neighboring correlations into
account, are rigorous. However, the theoretical curves for
knn(k) and c(k) show deviations from the simulation results as
depicted in Figs. 6(b) and 6(c). This is because knn(k) and c(k)
depend on longer correlations. The average neighbor degree
depends on hs of the neighbor node and its neighbors, i.e., the
correlations between the focal node and its next nearest neigh-
bors affect knn(k). The clustering coefficient also depends
on the correlations between the next nearest neighbors. A
theory which takes into account the correlations of h between
next nearest neighbors would improve the accuracy. Even
though these equations are not rigorous ones, they give good
approximations practically and tell how the correlations affect
the sampling.

V. SUMMARY AND DISCUSSION

In this paper, we have studied a class of sampling on
networks, where a sampling probability of a link depends on
the attributes of the connected nodes. This is typically the
case when a multiplex is sampled by some layers only. The
rigorous results for P(k), knn(k), and c(k) for the sampled
network are shown for general functional forms of ρ(h) and
r(hi, h j ) when the attributes of the nodes are independent.
The analytic calculations are found to be in good agreement
with the Monte Carlo simulations. As shown in Table I,
the properties of the sampled networks are written as the
aggregate of the contributions from the original network and
the hidden variables. The theory also presents how quantities
in the sampled network depend on the original network. For
instance, it is shown that the sampled degree distribution P(k)
depends on the original degree distribution Po(κ ) but not on
the higher order correlations.

As a concrete example, we have studied the model where
r(hi, h j ) is given as the generalized mean of hi and h j , which
was proposed to model sampling a communication channel
of the social network [3]. Using the equations in Table I, we
compare the sampled networks and the original networks in
various aspects. For this model, the original network property
is manifested only for the limited range of k, indicating that
recovering the original network from the sampled network
is unfeasible. One of the lessons learned from this example
is that the network we observe does not necessary reflect
the original network properties. Instead, it may reflect the
attributes of nodes.

We also present a theory for the case where the neighboring
hs are correlated as in reality the attributes are not indepen-
dent. Although the theory is not rigorous for general cases,
it gives a good approximation in practical cases and tells
how the correlation in h alters the properties of the sampled
networks.

So far, we have limited ourselves to the case where the
original network properties and the hidden variable are uncor-
related, by assuming that h and the network quantities (κ, κnn,
and co) are uncorrelated. Although we leave the study for
the correlated case for future researches, its impact could be
highly significant.

Another future research issue would be the method devel-
opment to infer the original network and/or h from empirical
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data sets. As in Refs. [29,30], the usage of metadata, working
as a proxy of h, would be of great help because the correlation
of h in the sampled network is independent of the topology of
the original network. It will be helpful to infer the functional
form of ρ(h) and r(hi, h j ) as well. We believe our results serve
as the basis for these future researches.
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