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A generalized network extraction workflow is developed for parameterizing three-dimensional (3D) images
of porous media. The aim of this workflow is to reduce the uncertainties in conventional network modeling
predictions introduced due to the oversimplification of complex pore geometries encountered in natural porous
media. The generalized network serves as a coarse discretization of the surface generated from a medial-axis
transformation of the 3D image. This discretization divides the void space into individual pores and then
subdivides each pore into sub-elements called half-throat connections. Each half-throat connection is further
segmented into corners by analyzing the medial axis curves of its axial plane. The parameters approximating each
corner—corner angle, volume, and conductivity—are extracted at different discretization levels, corresponding to
different wetting layer thickness and local capillary pressures during multiphase flow simulations. Conductivities
are calculated using direct single-phase flow simulation so that the network can reproduce the single-phase flow
permeability of the underlying image exactly. We first validate the algorithm by using it to discretize synthetic
angular pore geometries and show that the network model reproduces the corner angles accurately. We then
extract network models from micro-CT images of porous rocks and show that the network extraction preserves
macroscopic properties, the permeability and formation factor, and the statistics of the micro-CT images.
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I. INTRODUCTION

Pore-scale modeling has wide applications in petroleum
engineering, hydrology, and environmental engineering
[1,2]. With advances in micro-CT imaging and the resultant
availability of high-resolution representations of porous
media [3], pore-scale models are now widely used as a tool to
obtain macroscopic parameters, such as relative permeability
and capillary pressure curves, and dispersion and reaction rate
coefficients. These macroscopic parameters, in turn, are used
as input to larger-scale models for predicting the field-scale
behavior [4].

To capture the complex geometry of real materials more
accurately, a variety of direct methods have been used to study
single and multiphase flow through porous media at various
scales [5]. These include molecular simulations studying fluid-
rock interactions over nanometers and mesoscale simulation
methods, such as lattice Boltzmann and the finite volume
method, that can be used to solve single- and two-phase flow
equations directly on three-dimensional (3D) images of porous
rocks. Direct single-phase simulations can be performed in a
practical computational time to obtain absolute permeability
and electrical properties over a representative elementary
volume in homogeneous samples [6,7]. Direct two-phase flow
simulations, however, are computationally more expensive and
limited to small image sizes and high capillary numbers, typ-
ically for capillary numbers higher than 10−6 and image sizes
around 4003; these simulations require high-performance com-
puting and may take many days of computational time [8–10].

Reservoir rocks typically contain pore sizes that span
four orders of magnitude, from submicron microporosity to
millimeter-sized vugs in carbonates, for instance. A repre-
sentative elementary volume, from which robust macroscopic
properties may be computed, such as absolute and relative
permeability, may need to be some tens of the largest pores
across. Then, at the smallest scales, to capture features such

as wetting layers and the complex displacement dynamics,
every pore needs to be discretized—in a direct simulation—by
at least an order of 10 grid blocks or particles. In many
systems, six orders of magnitude, or more, may therefore be
required from the size of the cells within the smallest pores
to the overall size of the system, or 1018 blocks in total in
three dimensions, to capture multiphase flow over a sufficient
number of pores to compute averaged properties adequately
[1]. This is an impossible task, even with high-performance
parallel computing, and is akin to the related problem in
field-scale simulation where it is not possible to resolve the
heterogeneity down to the centimeter-scale of direct laboratory
measurement. Indeed, the current fixation with using direct
simulation to compute averaged properties is unhelpful and
unlikely to be generally successful. What is required is a
hierarchy of approaches combined with upscaling. This is
well accepted in the transition from molecular dynamics
to averaged equations—Navier-Stokes and Young-Laplace—
within the pore space: the same concept needs to be applied
to average flow and displacement within a pore to find, for
instance, conductance and capillary entry pressure, that are
then input into larger-scale simulations capable of computing
displacement over many thousands, or millions, of pores.

In this respect a network model is simply a coarse
representation of the flow domain (3D image). The network
elements follow the pore-space geometry, in the same way that
a large-scale geological model has grid blocks that capture the
main stratigraphic surfaces [11], and have properties assigned
to them—conductance, volume, and capillary pressure—that
allow larger-scale computations to be made.

This paper demonstrates how to embrace this philosophy,
applied to pore-space images of rock samples, using direct
simulation as the first step in a pore-to-core upscaling proce-
dure. Rather than the current absurd view of direct simulation
and network modeling as being rival methods, they instead
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complement each other, allowing an accurate representation
of multiphase flow over many orders of magnitude in length
scale.

Pore-network modeling divides the void space of the rock
into pores representing wider regions that are connected
through narrower restrictions called throats. This representa-
tion is then used to model flow by computing and tracking
the pore-scale configuration of fluid phases for different
displacement sequences using empirical equations derived
normally from semianalytical expressions for pores of a simple
geometry. This approach has proved successful for the study
of various phenomena, such as interfacial area and capillary
pressure [12–14], reaction [15,16], drying [17], evaporation
[18], dissolution [19,20], electrical properties [21–24], non-
Newtonian flow [25,26], foam flow [27], solution gas drives
[28,29], gas condensate systems [30–32], water vapor transport
[33], dispersion [34–36], and two- and three-phase flow [37–
42]. However, for pore-network models to have any predictive
power for studying flow through the full range of samples
encountered in geological settings, an accurate parametrization
of the void space is needed.

Conventional pore network models

The first network models based on an explicit repre-
sentation of a porous medium were presented by Bryant
and colleagues [43–45]. They extracted networks from a
random close packing of equally sized spheres [46]. They
were able to reproduce the absolute and relative permeability,
capillary pressure, and electrical and elastic properties of
water-wet sand packs, sphere packs, and a cemented quartz
sandstone, and to match the trend of permeability with
porosity. Øren, Bakke, and coworkers at Statoil extended
this work and developed a reconstruction method, where the
packing of grains of different size was simulated followed by
geological processes such as sedimentation, compaction, and
diagenesis [47,48]. They used the geological reconstructions
to extract topologically equivalent networks through which
multiphase flow was simulated. Another approach is the
use of statistical models to generate synthetic 3D structures
that capture the properties of two-dimensional (2D) thin
sections [49–55].

The advent of 3D imaging, usually using x-ray microto-
mography with resolutions of around 1 μm, has enormously
increased the availability of pore-space images of rocks of
interest [3,56]. In such images, grain identification may be
challenging, particularly for carbonates and heavily cemented
samples, and so a more topological approach is required to
extract an equivalent network. These methods are based on
finding pores in regions that can accommodate the largest
spheres, called maximal balls [57–61], with throats at restric-
tions, that can be identified from the medial axis skeleton
of the pore space [62,63]. The topology of the pore network
using these methods is related to the watershed segmentation
of the distance map [1,64]—the distance to the nearest solid
surface. Filtering is needed to avoid the sensitivity of the
algorithm to surface roughness [47,54,65–68]. The watershed
approach divides the void space into pore regions where the
distance map increases to a pore center: throats are surfaces
of minimal distance separating two pore regions. These

methods of network extraction have produced reasonable
representations of the pore space and have been used to
successfully reproduce multiphase flow properties for a variety
of rock types [59,62,69–71].

In general, however, the focus of these studies has been
on an explicit topological construction of a network, where
the properties to be assigned to network elements—pores
or throats—are based on specific geometrical assumptions
on the shape of the elements. Conventionally, intermediate
parameters such as radius (R), shape-factor (G, ratio of area
to perimeter squared), volume (V ), area (A), and length (L)
are used to describe individual network elements. These
parameters are used during flow simulation to compute fluid
volumes, conductivities, and fluid-fluid interfacial curvatures.
Then the flow properties are averaged (upscaled) to compute
the fluid saturations, effective permeabilities, and capillary
pressures of the whole network. However, the assignment of
a boundary between pores and throats—hence the definitions
of pore and throat lengths and volumes [72]—is arbitrary.
Moreover, a shape factor does not uniquely define a geometry,
even for simple shapes. Therefore, the values assigned to the
flow properties, deduced from the intermediate parameters
(G, R, V, A, L), may not provide a good representation of
flow through the original pore space image and may produce
significantly different results depending on the algorithms
used to calculate them [73].

II. NETWORK EXTRACTION AS A DISCRETIZATION OF
THE PORE-SPACE

The generalized network model serves as a coarse dis-
cretization of the void-space image into pore-sized elements
and their parametrization. In this paper, we discretize the
void-space into pores and further into half-throat corners as
illustrated in Figs. 1(a) and 1(b). During this transformation,
each voxel of the void-space is assigned to a unique pore,
a unique half-throat, and a unique corner. The parameters
describing each corner are extracted directly from the original
image, using a medial-axis transformation of the void space
and direct single-phase flow simulations at different discretiza-
tion levels [see Figs. 1(c) and 1(d)].

The medial axis transform is defined as the set of points
equidistant from two or more points on the solid boundary.
The distance to the nearest solid boundary is also recorded.
The medial axis transformation can be applied to 3D images
to produce a set of isolated points (for the case of isolated
spherical pores), curves (for the case of throats with circular
cross-section), and surfaces [63,74,75]. Medial axis transfor-
mation can be applied to cross-sections of the half-throats in
their axial plane (see Fig. 1), which leads to medial axis curves
and can be used to identify throat corners directly from the
image. In this paper, we refer to the medial axis transform of the
3D pore space simply as its medial surface to avoid ambiguity
with the curves obtained from medial-axis transformation
of throats’ cross-sectional areas. The medial axis transform
preserves the topology of any n-dimensional geometry [76].
Therefore, by preserving the topology of the medial surface
during network extraction, we retain the topology of the
underlying image. In practice, however, we need to filter the
surface roughness while capturing the main features of the void
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FIG. 1. An illustration of the network extraction workflow: (a)
segmentation of void space into pores (separated by thick solid black
lines) and subsequently into half-throats (separated by solid blue
lines) and (b) into half-throat corners where the network parameters
are extracted. (c, d) Illustrations of different levels (separated by
dotted black lines) used to discretize the corners (separated by dashed
blue lines), in the corners’ axial and sagittal planes, respectively. Note
that the size of inscribed spheres shown in (d) decreases from the pore
center toward the throat center and further toward the corner crevices.

space. The effect of surface roughness can be added during
flow simulation—for instance, by considering contact-angle
hysteresis during contact line motion in two-phase flow.

The division of the void space into pores and throats, which
define the connectivity of the network in this work, is, in
principle, similar to that of other authors—most importantly,
those methods that are now used to provide commercial digital
rock analysis services [47,59,77]. Similar to these conventional
network extraction methods, we use the distance map—
which is the same as maximal-sphere radius—and medial
axis transformation to partition the void space into pores
and identify pore-to-pore connections (throats). However, as
opposed to conventional network models with largely arbitrary
parameters, the boundary between pores and throats and
shape-factor, for instance, to describe individual elements, we
use a flexible parametrization using half-throat corners, which
preserves the subpore scale properties of the void space. While
this—at first sight—may appear to be simply a more elaborate
geometrical representation of elements, it is needed for a
robust characterization of the relationship between volume,
capillary pressure, and conductance for any contact angle and
displacement sequence. More importantly, the approximation
errors associated with the network extraction and flow mod-
eling are minimized by computing the flow conductivities
assigned to corner elements using direct simulation of flow
on the underlying image.

Once the method has been described, it will be tested
on a suite of benchmark images of quarry samples. We
take advantage of the one-to-one correspondence between the
corner elements in our model and the underlying image to
validate the discretization of the pore space in the generalized
network model. In a companion paper, these networks will
be used to compute multiphase flow properties and the
results compared to direct two-phase flow simulations and
experimental measurements [78].

III. NETWORK EXTRACTION WORKFLOW

The following presents an overview of different stages of
the network extraction algorithm.

(1) Calculate the distance map—the distance of each voxel
from the nearest solid wall.

(2) Identify pores and throats.
(2.1) Extract medial surface of the void space:

(i) Select an initial set of voxels, one in each 23 block
of voxels;

(ii) Sort the initial set in order of the distance map;
(iii) Remove voxels with spheres—at the voxel

centers with the same radius as their distance map—fully
overlapped by bigger spheres;

(iv) Remove voxels which are close to bigger spheres
in the set;

(v) The remaining voxels are centered on the medial
surface, assign each of them a maximal sphere;

(vi) Refine the location of maximal-sphere centers
(medial-surface points) within each voxel.
(2.2) Segment the medial surface:

(i) Generate a maximal-sphere hierarchy: bigger
spheres are marked as the parent of nearby partially
overlapped smaller spheres;
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FIG. 2. Distance map computed for each pore voxel for (a) a
star-shaped geometry and (b) a small piece of an image of Bentheimer
sandstone of size 1003 voxels, 0.33 mm3, used for illustration of the
network extraction algorithm.

(ii) Assign a unique pore labels to maximal spheres
with no parent—no bigger nearby sphere.
(2.3) Map pore labels to the underlying 3D image—

segment the image into pore bodies.
(2.4) Collect voxel faces shared by voxels of different

pores to generate throat surfaces—bounding surfaces be-
tween neighboring pores.
(3) Segment pores into half-throat corners:

(3.1) Generate medial axes of the throat surfaces;
(3.2) Assign a corner label to each branch of the medial

axes;
(3.3) Generate a 3D image of corners: map the corner

labels from the throat medial axes branches to the underly-
ing image and grow them toward pore centers.
(4) Parametrize half-throat corners at 3 levels, i, associated

with inscribed radii Ri = Rp,Rt ,0.7Rt :
(4.1) Remove voxels in the center of the void space,

which are inside spheres with radius greater than Ri , from
the corner image;

(4.2) Run single-phase flow simulation (DNS) on the
remaining voxels for computing corner conductivities;

(4.3) Compute corner conductivities, volume, and cross
sectional areas, for each level.
(5) Export corner parameters and network connectivity

information as input to network flow simulator.
Each of these stages are described in more detail in the

following sections.

Stage 1. Calculation of the distance map

The distance map (rv) is computed at the center of each
void voxel (see Fig. 2). It is approximated as the distance of
the voxel’s center to the center of the nearest solid voxel minus
half the voxel length. A direct, but efficient, search algorithm is
developed to find the nearest solid voxel. In this algorithm we
record the location of the nearest solid voxel obtained for each
void voxel and narrow the search region for its neighboring
void voxels, to a spherical shell with a width of only one voxel
rather than a full sphere.

Stage 2. Medial-surface extraction and watershed segmentation
of the distance map to generate pores and throats

An unstructured 2D medial-surface mesh—a discretized
set of points and their connectivity (the list of neighboring
points of each point)—can represent the void space accurately
with far fewer points than the number of voxels in the original
segmented 3D image. Therefore, it improves the efficiency
of the network extraction significantly while at the same
time allowing a richer analysis of the pore structure than
conventional network models.

To extract the medial surface, we first search for and select a
set of voxels on the medial-surface. The selected set of voxels
are used to define the medial surface points, which are initially
set to be the same as the voxel centers but then refined for
subvoxel accuracy. A radius, which is initially the same as
the distance map of the voxel, is associated to each of the
points. We refer to each point and its associated radius as a
maximal sphere, since they fully describe a sphere analytically.
We then represent the connectivity of the medial surface using
a maximal-sphere hierarchy [59,61]. A maximal ball as used
in Dong and Blunt [59] is the largest sphere centered on a
voxel that can fit inside the pore space; hence, it has the same
radius as the distance map. However, here we only consider
maximal balls centered on the medial surface—that touch the
solid at two or more points—and refer to these as maximal
spheres. The maximal-sphere centers define the medial surface
points and their hierarchy defines the connectivity of the medial
surface mesh.

The location of the points on the medial surface are refined
by moving them from the voxel center by up to 0.5 voxel
lengths in the direction of smaller values of the gradient of the
distance map, computed using the finite-difference method at
voxel faces. This refinement does not relocate the points to a
new voxel but it helps to reduce artifacts introduced due to the
voxelized (stair-case) representation of the original image and
consequently helps in the identification of corner elements in
the subsequent steps. The radius of the maximal sphere (rms)
is assumed to be the same as the voxel distance-map plus the
distance it moved during this refinement.

The maximal spheres on the medial surface cannot be fully
overlapped by a bigger maximal sphere; we use this criterion
to select the set of voxels to which the maximal spheres
are assigned. This is done using an elimination algorithm
as follows. First, to save computational time, only one voxel
for each eight neighboring voxels, the voxel with the largest
distance map, is selected. Furthermore, voxels with a distance
map, rv , less than a threshold radius are excluded to filter
high-frequency roughness on the solid walls. In this paper,
this threshold is set to 1.75 voxel lengths. Second, all the
selected voxels are sorted to prevent generating spheres that
are fully overlapped by bigger maximal spheres and hence
not on the medial surface. We then take the voxel with the
largest distance map and assign a new maximal sphere (ms)
to it. All nearby voxels whose maximal spheres will be fully
overlapped by ms are deselected. Mathematically this means
that rv + dv−ms < rms, where dv−ms is the distance between the
centers of the nearby voxel and ms. We also exclude voxels
close to the center of the new maximal sphere, ms, for which
dv−ms < dthreshold,r (rv + rms)/2, to avoid unnecessary details
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FIG. 3. Medial surface branches (colored lines), generated from
connecting centers of the parent-child maximal-sphere hierarchy,
for (a) the artificial star-shaped pore space and (b) a section of
a Bentheimer sandstone image. The hierarchy generation leads to
groups of maximal spheres, which are used to segment (label) the
void space into pore bodies (transparent background colors). Different
colors show different pore labels.

in the medial-surface discretization. In this paper, we choose
dthreshold,r = 0.3, which was found to lead to an acceptable
resolution for the distance between the medial surface points,
as shown in Fig. 3. We then repeat this process by taking the
next selected voxel with the largest distance map, and so on.
In this way, we deselect voxels in the image: we are left with
a series of voxels on the medial surface and their associated
maximal spheres that provide an approximate representation
of the topology of the pore space.

The resulting maximal spheres are grouped using a parent-
child hierarchy similar to the maximal-ball algorithm [59]:
for each pair of partially overlapping maximal spheres, the
bigger sphere is considered as the parent of the smaller sphere.
Any maximal sphere that has no neighboring sphere larger
than itself (hence, located at the local maxima of the distance
map) is assigned as the top level and defines a pore: its center
defines the center of the pore and its radius defines the pore
radius (Rp). The maximal sphere is given a pore label and this
label is also assigned to all children of the maximal sphere.
Overall, this leads to a segmentation of the medial surface, as
shown in Fig. 3.

We now return to consider all the voxels in the image, to
assign every voxel uniquely to a pore (see Fig. 3) and to identify
throats. We first map the pore labels of the medial surface
points to the original image voxels containing the point. Then
we use a region-growing algorithm to extend it to the whole
pore space. The region-growing algorithm recursively assigns
the pore label of each voxel to its neighboring unassigned void
voxels. However, we initially consider neighboring voxels with
a smaller distance map. This constraint ensures that the faces
where voxels with different pore labels meet have the smallest
distance map, hence, consistent with a watershed segmentation
of the distance map. We find all the sets of voxel faces where,
on either side, the two voxels are assigned to different pores.
Each set that separates two adjacent pores defines a throat
surface. The voxels on either side of the throat surface are
collected and sorted in the order of their distance map, and two
maximal spheres are assigned to the voxels with the largest
distance map, one for each side. These two maximal spheres
are recorded as throat maximal spheres. The throat radius, Rt ,

is defined as the average of the radius of these two maximal
spheres. A parent-child hierarchy is generated for each of the
spheres and the rest of the maximal spheres assigned to the
voxels of neighboring pores. The line that connects the center
of the throat maximal spheres to the center of its parents, up
to the center of the neighboring pore’s maximal spheres at the
highest level of the hierarchy, is called the throat line.

Stage 3. Segmenting pores into half-throat corners

To identify the throat corners, a medial axis transformation
is applied to the throat surface—a 2D geometry in 3D space—
to generate its medial axis curves—a 1D geometry in 3D space.
We use a medial axis transformation algorithm similar to the
medial surface extraction from the 3D image described at Stage
2. The medial-axis transformation should ideally be applied to
the throat surface. However, for the sake of simplicity, we have
applied it to the voxels on the side of the throat surface, the side
with the larger pore label. First these throat voxels are sorted
in descending order of the distance map. Then we assign a
maximal sphere to the voxel with the largest distance map.
We then exclude all the nearby voxels whose centers are less
than 0.3 times the maximal-sphere radius away. As we did for
the whole image, we apply this process recursively, assigning
maximal spheres to the next voxel with the largest distance
map, if the sphere is not fully overlapped by any previously
assigned maximal sphere, and so on.

The new maximal spheres assigned to the throat voxels are
grouped by generating their parent-child hierarchy: a maximal
sphere that partially overlaps a smaller sphere is assigned as the
parent of the smaller sphere. The lines connecting the centers
of these maximal spheres form medial axis curves that also
follow the medial surface branches generated at Stage 2 and
extend from the throat center toward the throat corners (Fig. 4),
in the throat’s axial plane [see Fig. 1(b)].

We assign a corner label to each branch of the throat medial
axis curves. The corner labels are mapped back to the original
3D image and are used to segment the whole void space image
into half-throat corners using a region-growing algorithm.
Initially, the voxels inside the spheres centered on the throat
line are excluded from the region-growing algorithm. Starting
from the throat surface, the corner labels are successively
assigned in all directions into neighboring unallocated void
voxels that are not inside the maximal spheres centered on
the throat line. The corner label given to a voxel is that of its
nearest neighbor. Corner labels are subsequently grown toward
throat lines using the same recursive approach and then toward
pore centers so that each voxel of the void space is assigned
uniquely to a corner, leading a segmentation of the whole void
space into half-throat corners that we call, from now on, for
simplicity, just corners (see Fig. 4).

Stage 4. Parametrizing half-throat corners

The network model is considered as a tool for upscaling
direct simulations run on the 3D micro-CT image. The corner
parameters are extracted at three discretization levels, i = 1–3,
which are obtained by excluding voxels inside all maximal
spheres with radius r > Ri , where R1 = Rp (no voxels are
excluded), R2 = Rt , and R3 = 0.7Rt . The coefficient 0.7 is
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FIG. 4. Medial-axis curves (dark colored lines) of throat surfaces,
which are colored by the local corner index, for (a) the star-shaped
geometry and (b) two pores of the Bentheimer image. The corner
indices are mapped into the underlying 3D image (transparent
background colors) using a region growing algorithm as explained in
the text. The solid black lines represent the throat lines, connecting
throat centers to the pore centers through the maximal-sphere
hierarchy.

arbitrary and is chosen so that there will be sufficient voxels
remaining in the corner for an accurate evaluation of corner
conductivity.

Figure 5 shows visualizations of the corner voxels for the
three discretization levels and the computed pressure fields
from the solution of the Navier-Stokes equations at a low
Reynolds number on the images obtained for each level. The
simulations are run on the entire underlying image: we do
not compute the flow field of each corner separately. The
simulations are performed using the OpenFOAM [79] finite
volume library; see Bijeljic et al. [80] and Raeini et al. [81] for
details. We have imposed a pressure drop of 1 Pa between the
inlet and the outlet boundaries. No-slip boundary conditions
are applied on all other sides of the image, on solid-walls and
on the boundary between the voxels considered at a particular
discretization level and the excluded voxels. For multiphase
flow, this corresponds to a no-flow boundary at fluid-fluid
interfaces: the effect of flow velocity and fluid-fluid drag force
can be added during network flow simulations [82–84]. These
simulations are upscaled to obtain the contribution of each
corner to flow conductivity:

gq = μQ/�P, (1)

where �P = Pp − Pt is the viscous pressure drop along the
half-throat, where Pt is the average pressure of the faces of the

FIG. 5. Pressure fields for images generated by combining voxels
of all corners of the generalized network into a single image, at
different discretization levels. (a) Level 1, where the single-phase
flow conductivities are computed. (b, c) Levels 2 and 3 that are
obtained by excluding all the voxels inside maximal spheres with
radius r � Rt and r � 0.7Rt , respectively. The excluded voxels are
shown in light gray. The black lines highlight the boundaries between
different corners in the images. In purple are shown the disconnected
voxels from the inlet (left side) during single-phase flow simulations.
The star-shaped geometry is shown on the left and a portion of the
Bentheimer image on the right.

whole throat surface. Pp is an average pressure at the adjacent
pore center, computed by averaging the pressure of faces
shared between voxels of different half-throats comprising the
pore. This averaging is compatible with the formulation used
in the network flow simulator, which computes the pressures at
the pore centers. Q is the volumetric flow rate passing through
the corner at the throat surface and μ is the fluid viscosity used
in the direct simulations.

A high resolution image is required for an accurate
parametrization of corners, especially at discretization level
3 where the corner thickness is small. When a throat,
or more specifically a corner, is not resolved for a given
image resolution (voxel size), the corner voxels can become
disconnected for one or more of the corner levels 2 and 3, and
the computed conductivity for that corner level will be zero
(see Fig. 5). In reality, however, the corner might be connected
through subresolution crevices. The uncertainty related to the
subresolution features of the 3D image could be added during
flow simulation and is a subject for future work.
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An alternative approach for computing corner conductivi-
ties is to derive correlations from direct simulations on syn-
thetic or real geometries. This approach can be considered as a
faster method for estimating single- and two-phase properties
of the void-space image without performing direct single-
phase flow simulation, which requires high-performance com-
puting: for instance each of our single-phase flow simulations
on 10003 voxel images, run in parallel on 32 processors at a
clock speed of 2 GHz, took approximately 10 h of computa-
tional time, and required 250 GB of memory. In Appendix D,
we have presented a set of simple correlations, which can be
used as an alternative to direct simulations. In the following
sections, we use this approach to evaluate the improvements
achieved by the use of direct simulations for the computation
of the corner conductivities. This algorithm, using correlations
to compute corner conductivities, is called GNMCrl in this
paper.

The parameters required for flow simulation are exported
as tabulated data for each discretization level of the corners
composing the generalized network model (GNM). These
parameters include: (a) radius of the discretization level used
in excluding the voxels in the pore and throat centers (Ri,i =
1–3); (b) unit vectors in the direction of the corner medial axis
curves; (c) areas of the intersection of throat surfaces with the
corner voxels at each level (Ai); (d) volume of voxels at each
level (Vi); and (e) their flow conductivity (gq

i ) obtained using
direct single-phase flow simulation, Eq. (1).

We also considered electrical properties. In this paper,
however, we use the correlations presented in Appendix D
to compute the electrical properties and use direct simulation
of formation factor (see Appendix C) to validate them.

Overall, the algorithm described above leads to a segmen-
tation of the 3D image into half-throat corners as the main
building blocks of the generalized network model. Each corner
is described using the tabulated data extracted from the 3D
images at the three discretization levels, as illustrated in Fig. 1.
The parameters used to describe each level are cumulative: for
instance, each level volume includes the volume of the voxels
of the subsequent discretization levels. This implies that the
volume of voxels in the discretization level 1 is the same as the
corner total volume. Every corner, and hence every voxel, is
assigned to both a pore and a throat. Here we define the pore
volume as the volume of all the voxels associated with a pore.
We also define a throat volume, which is the volume of all
the voxels comprising the corners associated with the throat.
Furthermore, each throat cross-sectional area is the sum of the
cross-sectional area of the corners at level 1. The total pore
volume is the volume of all the pores; this is the same as the
volume of all the throats and the same as the volume of all the
corners.

The corners on opposite sides of a throat surface can
be grouped to form a full corner. All the corners of the
same throat can be further grouped to construct the whole
throat. This grouping is used to compute a volume and a
conductivity for each throat and to compute the pore and
throat entry pressures during two-phase flow simulations,
for instance. Each corner is also uniquely associated with
a pore and is assumed to be connected (provide a path for
layer flow) to its adjacent corners belonging to the same pore
[78].

R
2 
=

 R
t

R3
γ2

H3 H4

γ3

γ2

γ2

Throat  
centre

δA3

δA2

FIG. 6. An illustration of the parameters used to describe the
shape of corners in the throat axial plane, including the radius of
corner levels (Ri) for levels i = 2–3, their cross-sectional areas
(δAi = Ai − Ai+1), corner half angles (γi) and the corner depths
measured along their perimeter (Hi).

IV. SHAPES OF NETWORK NETWORK ELEMENTS

In the following, we describe the explicit shape of the
corners used to describe the pore space in the generalized
network model.

A cross-section of a throat at the throat surface is shown
in Fig. 6, comprising—in this case—three corners. The shape
of this cross-section can be reconstructed from the extracted
corner cross-sectional area and inscribed radius at levels 2 and
3, for each of the corners. In this paper, we assume that the
inscribed radius changes linearly between these two discretiza-
tion levels. The inscribed radius and the cross-sectional area of
each level can be used to compute two additional geometrical
parameters for each level, namely corner half-angle (γi) and
corner depth measured along its edge (Hi):

γi = sin−1

(
cos γi + γi sin γi

δAi/δR
2
i + π/2

)
i = 1 − 3, (2)

Hi+1 = Hi + (Ri − Ri+1)/tan γi, i = 1 − 3, (3)

where, as before, i labels the discretization level.
δAi = Ai − Ai+1 and δR2

i = R2
i − R2

i+1. Note that these are
implicit equations that have to be solved iteratively. These
parameters can be used to track the interfaces of wetting
layers residing in the crevices of the void space. They are
also used to evaluate the accuracy of the network extraction
workflow in the following sections.

We also need to define an explicit geometry away from
the throat surface. In the axial cross-section, extra areas
are added in the center to accommodate the change in the
inscribed radius between the throat surface and the pore
center. Figure 7 shows the cross-section of a corner at the
pore center. The corner half angle (γ1) and depth (H1)
for the added area are obtained using Eqs. (2) and (3) but
from the corner cross-sectional areas computed at the pore
center. Note that we assume the shape of the segments in the
discretization levels 2 and 3 do not change as we move away
from the throat surface. Furthermore, we assume that the
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δA3
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δA1

FIG. 7. An illustration of the a parameters used to describe the
shape of corners at the pore center. Compared to the corner cross-
section in Fig. 6, extra areas are added in the center to account for
the expansion of the cross-section from the throat surface to the
pore center. The corner half angle γ1 and depth H1 are introduced to
account for this expansion.

distance of these levels from the throat line increases linearly,
as illustrated in Fig. 1(d) in the corner sagittal plane.

The corner half-angles and depths used to reconstruct the
shape of network elements are needed for multiphase flow
simulation for tracking the location of fluid interfaces and,
later in this paper, to construct a distance map distribution.

V. VALIDATION

The aim of this section is to show that the generalized
network description of the void space obtained from our
network extraction algorithm retains the geometry and prop-
erties of individual elements that are important for accurate
multiphase flow simulations, such as effective corner angles
and conductivities.

We first use synthetic geometries with predefined corner
angles to evaluate the performance of the network extraction
algorithm. Then we compute the statistics of the generated
networks from micro-CT images of a set of porous rocks.
The statistics presented include the pore and throat size
distributions, corner angle distributions, average pore and
throat sizes and average coordination number, as well as
single-phase flow permeability and formation factors. Finally,
to evaluate the accuracy of the network extraction algorithm
on the micro-CT images, we compute the distribution of the
distance-map from the extracted GNM and compare it with the
distance map distribution obtained from the original 3D image.
We also compare our results with conventional network models
(CNM) generated using the maximal-ball algorithm [59].

A. Synthetic geometries

A set of four synthetic geometries are used to validate the
network extraction workflow: two star-shaped geometries and
two with triangular cross-sections. Each geometry is composed
of two pores and three throats that connect the pores to each
other and to the inlet and outlet boundaries; see Fig. 8. The
shape of the pore and throat cross-sections (in their axial plan)

FIG. 8. Synthetic geometries used for the validation of the
network extraction workflow: star-shaped geometries with corner-
angles, 2γ , of (a) 60 and (b) 45 degrees and triangular geometries
with corner angles of (c) 60-60-60 and (d) 40-60-80 degrees. (e) A
plot of of their inscribed radius (Ri) along the length of the void-space
(x), for all of the geometries.

remains constant, while their inscribed radius varies linearly
between the pores and throats, as presented graphically in
Fig. 8(e).

The OpenSCAD [85] software is used to create 3D surfaces
representing the solid-walls of the synthetic geometries.
These surfaces are then used to generate voxelized 3D
volume images, similar to micro-CT images at a resolution of
Rp/δx = 48, where δx is the voxel size. The contraction ratio
for the middle throat is 2.5, this leads to Rt/δx = 19.2 at the
throat. The images are then coarsened by factors of 2, 4, 8, and
16 to study the convergence behavior of the network extraction
workflow and compare it with direct numerical simulation
(DNS) results. Note that the voxel values assigned to the
coarse image voxels are the median of the values of its smaller
composing voxels, which implies that the flow domain is not
exactly the same between the images. Therefore, the results
of this study can be considered as a characterization of both
the errors associated with the voxelized representation of the
geometries as well as the numerical errors introduced because
of the approximations made during the modeling workflow.

Figures 9, 10, and 11 show the effect of image resolution on
the accuracy of the predicted corner angles of the middle throat
and the single-phase flow electrical resistance and permeability
of the whole flow domain.

These results show that the generalized network extraction
workflow predicts the single-phase permeability and formation
factor accurately when the throat is resolved (with more than
4 voxels along its radius). This is not a surprise though: the
GNM conductivities are computed using direct simulations.
Moreover, these results confirm that the correlations used in
GNMCrl produce acceptable results too.

The conventional network model representation does not
accurately reproduce the conductivities and the corner angles
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FIG. 9. Convergence tests for the computed corner angles using
the generalized network model (GNM) at the two discretization levels,
2 and 3, and using the conventional network model (CNM).

of the original geometry, even for the case of triangular pores,
which are compatible with the shape of the pores chosen
in the network model. The reason for this is that a shape
factor cannot be used to define the three corner half angles
(γc,c = 1–3) uniquely. See Appendix A for a discussion of the
free parameters in the conventional network models, which
then lead to uncertainties and errors in predicted properties
[73]. The angles are assigned at random and hence will not
necessarily represent the underlying geometry. Furthermore,
the calculation of the shape uses the surface area between void
and solid: with a voxelized stair-step discretization of the pore
space, this leads to errors even for an infinitively refined image.
This then means that the absolute permeability can be poorly
estimated and does not converge to the correct value on grid
refinement as shown in Fig. 11.

Overall, these results show that throats should be imaged
at a resolution of at least Rt/δx > 5 for the computed corner
angles and absolute permeabilities to be predicted accurately
using the generalized network model. The formation factors
are, however, predicted accurately even for Rt/δx > 3, which
is expected since the value is less sensitive to the estimated
throat radius. Further refinement in the generalized network
model is needed to assign the corner angles more consistently
when the throat is under resolved.
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FIG. 10. Convergence tests for formation factors computed using
the DNS, GNMCrl, and CNM formulations.

B. Micro-CT images

In this section, we present a comparison of the statistics of
the network model that are relevant to flow simulations: coor-
dination number, contraction ratio, and single-phase electrical
resistivity and permeability. Figure 12 shows visualizations
of extracted networks from four rock images: a Bentheimer
sandstone image, provided by iRock Technologies [86], a
Doddington sandstone, and Estaillades and Ketton carbonates
that were obtained using the micro-CT scanning facilities at
Imperial College London [87]. The images are segmented
using a watershed segmentation algorithm using Avizo image
processing software; see Ref. [88] for the technical details. The
Bentheimer, Doddington, and Estaillades images have been
previously analysed by Bijeljic et al. [80,89] and Alhashmi
et al. [90]. A summary of the image properties are presented
in Table I.

The probability density (PDF) of any network element
parameter, ϕ(=Rp,Rt ,γ,...), and its average value, ϕ, are
obtained arithmetically as well as using a weighted algorithm:

PDFw(ϕ) =
∑ϕ+δϕ/2

ϕ−δϕ/2 wϕ

δϕ
∑∞

ϕ=−∞ wϕ

, (4)

ϕ =
∞∑

−∞
ϕPDFw(ϕ). (5)

Choosing a weight of w = 1 leads to the arithmetic average
and the probability density function. It can be viewed as a
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FIG. 11. Convergence of computed absolute permeability by
increasing image resolution. Four methods are used direct numerical
simulation (DNS) using the finite volume method, generalized
network model (GNM), the generalized network model with con-
ductivities computed using correlations (GNMCrl) presented in
Appendix D, and a conventional network model (CNM).

measure of the frequency of elements with ϕ as the parameter.
The computed statistics using this approach can be sensitive
to the filtering applied as a result of network extraction, since
removing small unresolved elements from the network can
have a big effect on the statistics. Choosing the weight, w,
as the volume of the elements will produce a measure of the
frequency of points or voxels that belong to network elements
with ϕ as their parameter. This choice of weighting will
emphasize the bigger pores and throats—that can have more
contribution to fluid volume and possibly flow conductivity—
and hence the distribution and the average values shift toward
the parameters of the elements with larger volumes.

Figures 13 presents the distribution of pore and throat radii,
using the volume-weighted approach (w = Vp, and w = Vt ,
respectively, where Vp is the pore volume, the volume of all the
voxels associated with a pore, and Vt is the volume of the voxels

FIG. 12. Micro-CT images (left column) and a ball and stick
visualization of the extracted networks (right column)—where
throats are rendered as a cylinders and pores as spheres with radii
proportional to their inscribed radii—for Bentheimer sandstone (1st
row), Doddington sandstone (2nd row), and Estaillades (3rd row) and
Ketton (4th row) carbonates.

belonging to the throat t). Figure 14 shows the distribution of
the corner half-angles (γ ) at the corner discretization levels 2
and 3.

Table I presents a summary of the average properties of the
extracted networks, including averages of pore and throat radii,
corner angles, contraction ratios, and coordination numbers,
along with the computed absolute permeability and formation
factor of the networks. We have compared our results with
direct numerical simulation (DNS) and conventional network
models (CNM) extracted using the maximal-ball algorithm
[59].
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FIG. 13. Pore radius (Rp) and throat radius (Rt ) distributions
computed for the four micro-CT images, obtained using Eq. (4) with
w = Vp and w = Vt as the weights, respectively.

0.2 0.4 0.6 0.8 1.0
Level 2 corner half angle (Radians)

0.0

0.5

1.0

1.5

2.0

2.5

PD
F v
w

(1
/R

ad
ia

ns
)

Bentheimer
Doddington
Estaillades
Ketton

0.2 0.4 0.6 0.8 1.0
Level 3 corner half angle (Radians)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

PD
F v
w

(1
/R

ad
ia

ns
)

Bentheimer
Doddington
Estaillades
Ketton

FIG. 14. Corner angle distributions for the four rock images,
computed for levels 2 and 3, corresponding to voxels outside maximal
spheres with radius r > Rt and r > 0.7Rt , using Eq. (4) with
w = V2 − V3 and w = V3 as the weights, where V2 and V3 are the
corner volumes at levels 2 and 3, respectively.

TABLE I. Prediction of single-phase properties using the gener-
alized network model (GNM) that matches the direct numerical sim-
ulation (DNS) results. The results are compared with a conventional
network model (CNM) and the generalized network model with cor-
relations (GNMCrl). Different measures of average properties of the
networks are also presented. w represents the weight used in Eqs. (4)
and (5) to compute the average properties. Vp , Vt , V2, and V3 are the
volume of pores, throats, corners at levels 2 and level 3, respectively.

Image Bent. Dodd. Esta. Kett.

size (voxels) 10003 10003 10003 10003

voxel size (μm) 3.003 2.693 3.311 3.000
Porosity 0.216 0.194 0.109 0.132
Absolute DNS: 3.55 3.76 0.218 5.91
permeability GNM: 3.35 3.63 0.21 5.75
(×10−12m2) GNMCrl: 3.12 3.12 0.167 5.31

CNM: 2.46 3.19 0.114 4.94
Formation DNS: 15.5 20.0 166 24.2
factor GNMCrl: 14.6 21.3 172 24.5

CNM: 9.94 12.4 130 15.6
Average number of corners

w = 1, GNM: 1.70 1.73 1.42 1.6
CNM: 3.002 3.005 3.004 3.003

w = Vt , GNM: 2.32 2.39 2.23 2.46
CNM: 3.001 3.000 3.001 3.001

Average corner angle at level 2, 2γ2 (degrees)

w = 1, GNM: 72 76 82 76
CNM: 30.0 30.1 30.1 30.0

w = V2 − V3, GNM: 54 56 56 59
CNM: 11.7 12.6 12.3 12.2

Average corner angle at level 3, 2γ3 (degrees)

w = 1, GNM: 82 90 105 85
w = V3, GNM: 53 57 61 51
Average pore radius (μm)

w = 1, GNM: 19.7 22.4 16.1 20.0
CNM: 21.5 23.6 16.9 23.5

w = Vp , GNM: 35.5 41.4 33.0 55.2
CNM: 40.4 46.7 36.7 61.6

Average throat radius (μm)

w = 1, GNM: 11.7 15.3 11.6 13.7
CNM: 8.67 11.1 8.02 11.1

w = Vt , GNM: 19.2 24.1 19.2 33.3
CNM: 14.5 19.4 14.4 26.7

Average expansion ratio, Rp/Rt

w = 1, GNM: 1.66 1.52 1.89 1.74
CNM: 2.37 2.22 2.48 2.35

w = Vt , GNM: 2.19 2.03 2.01 2.21
CNM: 3.44 3.15 3.20 3.12

Average coordination number

w = 1, GNM: 4.11 3.32 2.62 3.15
CNM: 3.78 3.05 4.85 3.66

w = Vp , GNM: 8.18 7.277 7.37 7.29
CNM: 8.33 7.91 10.04 7.48

There are several conclusions that can be made from these
results about the accuracy of the network extraction methods:
first, the generalized network model can reproduce direct
single-phase flow simulation results when the conductivities
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are obtained from the analysis of direct simulations, although
there is a slight mismatch, which can be attributed to the
pressure and velocity averaging used to upscale the direct
simulations, discussed in Sec. III, Stage 4. When not using
direct simulations, the correlations used in the generalized
network model (presented in Appendix D) can reproduce the
single-phase results accurately, within 12% error for the results
presented in Table I. The generalized network model extracts
the number of corners from the image, which are usually fewer
than that of the number of corners in the conventional network
model, 3 on average.

The conventional network model produces results to within
a factor of 2 for both permeability and formation factor
compared to direct simulation. This is clearly worse than
the generalized approach but better than seen for the simple
geometries studied in the previous section. This apparent
improvement in performance is because the boundary between
pores and throats is adjusted to match the permeability
obtained using direct simulation [59]. See Appendix A for
further details. The problem here is that this is simply an
adjustable tune of the model and provides no guarantee of
the correct prediction of multiphase flow properties, or even
reasonable predictions for other rock types.

The results presented in this section cannot be used
as a proof that the extracted networks provide a good
parametrization of other element properties which are relevant
to multiphase flow through porous media (e.g., distribution
of volumes between pores and throats and along the corner
depths). To deal with this problem, in the next section, we use
the distance-map distributions of the image and the extracted
networks, as a measure of the distribution of the volume of the
void space between pores and throats and along the crevices
of the void space, to evaluate the accuracy of the network
extraction workflows.

C. Distance map distribution

To estimate the accuracy of the coarse generalized network
description of the micro-CT images presented above, we have
computed the distance-map distribution of the network, by
discretizing each corner into smaller conceptual thin elements
around contour surfaces with a thickness of δr and a distance of
r from the corner solid walls (hence parallel to the solid-walls
of the corner; see Fig. 15). In essence, we now use the explicit
representation of the network model in terms of equivalent
corners to determine a distance map and compare this with the
original image.

The distance distribution is obtained using Eq. (4), with the
volume of the thin elements as the weight:

w = A(r)δr, (6)

where A(r), for the case of the generalized network model, is
obtained from the tabulated corner depths (Hi , Eq. (3)) and
corner half angles (γi , Eq. (2)):

A(r) =

⎧⎪⎪⎨
⎪⎪⎩

Rt+Rp

2Rt

(
δH2L2 + δH3L3

R3−r

R3

)
r < R3,

Rt+Rp

2Rt
δH2L2

R2−r
R2

R3<r<R2,

Rp−Rt

tan(γ1)

(Rp−r

Rp

)2
Lht R2<r<R1,
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FIG. 15. An illustration of the network parameters used to obtain
the distance map distribution for the (a) generalized and (b) the
conventional network models. The thin elements highlighted in red
have a uniform distance (r) from the solid walls.

where δHi = Hi+1 − Hi . This equation is obtained assuming
that the inscribed radius increases linearly between the pore
center and the throat center (from R1 = Rp to R2 = Rt ).

A(r) for corners of the conventional network model
elements is computed as follows:

A(r) = L
R − r

tan(γ )
, (8)

where L is the pore or throat length, R is their inscribed radius
and γ is the corner half angle.

Equation (4) is also used to obtain the distance map
distribution from the 3D image, by using individual voxels
as the elements over which the summations are performed.
The results are presented in Fig. 16.

The distance map distributions show a good agreement
between those obtained from the generalized network model
and from the 3D image, while there is a clear mismatch with
the distance map distribution obtained from the conventional
network model. Distance map distributions are linked with
the local geometry of the pores and throats—through Eq. (8)
for the case of the conventional network model and through
Eqs. (2), (3), and (7) for the case of the generalized network
model. These results and the validation results presented for
the case of synthetic geometries show that the generalized
network model preserves the local geometry of the complex
3D images with a good accuracy.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a network extraction workflow which
discretizes the pore space by subdividing it into pores bounded
by throat surfaces, and further into half-throat corners. The
network extraction algorithm is based on a medial-axis
transformation—presented in terms of the hierarchy of max-
imal spheres located on the resulting medial surface. Hence,
it preserves the local geometry of the void space down to the
subpore scale, while filtering out surface-wall roughness. This
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FIG. 16. Normalised distance map (r/Rmax, where Rmax is the
radius of the biggest pore in the network) distributions for the
four micro-CT images; the generalized network model results are
compared with the conventional network model and the original
image distance map distributions.

network description of the void space reduces the uncertainties
associated with the oversimplification of the network elements
and avoids the use of free parameters in conventional network
models. Moreover, using direct simulations to quantify corner
conductivities at different corner depths allows us to further
minimize the errors associated with the relatively coarse
discretization of the void space.

The quality of the extracted networks can be further
improved by adjusting the parameters used during medial
surface extraction for coarsening the medial surface and
filtering surface roughness. Moreover, the description of
the network elements can be further generalized to allow

fracturelike elements making it possible to model multiphase
flow through different classes of porous media.

The generalized description of the pore space can be used to
predict their macroscopic properties, such as relative perme-
ability and capillary pressure curves more accurately while
retaining the computational efficiency of the conventional
network models [78].

However, further work is needed to quantify the effect of
different uncertainties in the modeling workflow. Examples of
such uncertainties are image segmentation errors and the effect
of features that are not resolved using micro-CT imaging,
such as nanoscale pores and grain wall roughness and corner
connectivity at scales below the image resolution. The coarse
description of the void space allows efficient simulations, such
as quasistatic capillary dominated two-phase flow simulations,
to be performed quickly and hence can be used as a platform for
quantification of the effect of these uncertainties in a practical
simulation time.
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APPENDIX A: FREE PARAMETERS IN THE
CONVENTIONAL NETWORK MODELS

As stated before, most of the conventional network element
parameters, except inscribed radius (R), are free parameters:
they cannot be unambiguously determined from the analysis
of a 3D image. The first free parameter is the boundary
used to separate pores and throats. The assignment of the
boundary can be chosen so that the network model predictions
match some alternative data, for example, in single-phase flow
simulations of absolute permeability on the same image [59].
The assignment of this boundary, in addition to affecting the
computed pore and throat lengths (which is important for
computation of single-phase flow properties), has an impact on
the volume distribution between pores and throats [72] and the
computed shape factor [39] (which is important for accurate
prediction of fluid volumes and wetting layer conductivities in
two-phase flow):

G = A/P 2, (A1)

where A is the pore or throat cross-sectional area computed
by dividing the pore or throat volumes to their lengths. P is
their perimeter, which can be computed by dividing the pore
and throat surface areas by their lengths [59].

The computed shape factors are then used to assign the
shape of pores and throats during flow simulations: in the
conventional network flow simulator used in this paper [42], if
G > 0.079, the shape is assumed to be a circular; otherwise,
if G >

√
3/36, a square is considered; and if G �

√
3/36,

it is assumed that the shape is triangular. One of the corner
angles in triangular elements is randomly assigned, within its
allowed range, while the two others are assigned to satisfy the
geometrical constraint that the sum of the corner angles should
be 180◦ and the shape factor equation [42,60].

Another major problem is the definition of shape factor
given in Eq. (A1): it is sensitive to the level of surface wall
roughness captured in the image, as illustrated in Fig. 17.
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(a) (b)

FIG. 17. An illustration of the fact that Eq. (A1) is sensitive to
solid-wall roughness. The computed shape factor for a throat with a
smooth triangular cross-section (a), G = 0.0429, is very different
from the shape factor for the same shape but with a stair-case
roughness on two of its edges (b), G = 0.0278.

APPENDIX B: CALCULATION OF SINGLE-PHASE
PERMEABILITY AND FORMATION FACTOR OF THE

NETWORK MODEL

To compute the absolute permeabilities, pressures are
obtained at the pore centers and flow rates at the throats. They
are obtained by solving the system of linear equations obtained
by writing mass-balance equation for the pores:∑

t

Qt = 0, (B1)

where Qt is the volumetric flow rate entering the pore from
throat t , obtained using the Poiseuille equation for each throat:

Qt = gt (Pj − Pp), (B2)

where Pp is the pore pressure and Pj is the neighboring pore
pressure, on the opposite side of the throat t .

gt is the throat transmissivity, which for the case of the
conventional network model is computed using the same
correlations as those presented in Valvatne and Blunt [42].

For the case of generalized network model with corner con-
ductivities obtained from direct simulations, gt is computed as
follows:

1/gt = 1/ght=1 + 1/ght=2, (B3)

where ght=1 and ght=2 are the two half-throat transmissivities
obtained by summing the half-throat corner conductivities at
discretization level 1, gc

1:

ght =
∑

c

gc
1. (B4)

The two above equations assume that the conductivities are
computed based on a single value for pressure at each pore
or throat center. To be consistent with this assumption of the
network flow simulator, we first compute an average value for
pressure of pores and throats and use them to assign the same
pressure drop for all the corners of the same half-throat. The
average throat pressure is computed by averaging the pressure
of all the throat faces as described in the main text. The average
pore pressure is computed by averaging the pressures of voxel
faces separating the half-throats of the pore.

Alternatively, the generalized network elements can be ob-
tained using correlations, similar to the conventional network
models but using corner parameters that are directly extracted
from the 3D image. Appendix D presents the correlations that
we have used to estimate the conductivity of corners at different
discretization levels.

APPENDIX C: DIRECT SIMULATION OF
FORMATION FACTOR

The direct numerical simulation results (DNS) for forma-
tion factors of the 3D images are obtained by solving the
Laplace equation on a mesh with the image voxels as its
grid-cells, using OpenFOAM [79] finite volume library, to
compute the electric potential, φe:

∇2φe = 0, (C1)

subject to fixed-value boundary conditions of 1 and 0 at the
inlet and outlets (left and right sides of the image), respectively,
and zero-gradient boundary condition on the solid boundaries.

The electrical resistivity of the whole image can be
calculated using the Ohm’s law:

��e = R I, (C2)

where ��e(= 1) is the voltage across the flow domain, I =∑
f ∇φeAf /ρe

w is the total electrical flux entering the flow
domain, f counts over all the inlet voxel faces, Af is the voxel
face area, ∇φe stands for the electric field (gradient of electric
potential) normal to the face, and ρe

w is the fluid electrical
resistivity. Finally, the formation factor (F ) is computed as
follows:

F = AD��e/L∑
f ∇φeAf

, (C3)

where L is the length of the image and AD is the image cross-
sectional area.

APPENDIX D: CORRELATIONS FOR COMPUTING
CORNER CONDUCTIVITIES

In this section, we present a set of correlations that can
be used to estimate the conductivity of the corner elements
at different discretization levels. These correlations are used
as a fast but approximate alternative to direct single-phase
flow simulations. The conductivity of corner levels are first
estimated assuming a uniform cross-sectional area, which are
then corrected to accommodate the effect of expansion of the
half-throat from its center to the neighboring pore center.

The corner electrical and flow conductivities (ge
i and g

q

i ,
respectively), at discretization levels i = 2 and 3, are obtained
using the following equations, which are approximations to
the correlations used by Valvatne and Blunt [42] for corners
of throats with equilateral triangle and square cross-sections:

ge
i = Ai/Li, i = 2,3, (D1)

g
q

i = (0.168 − 0.036γi)R
2
i g

e
i , i = 2,3. (D2)

Then the conductivity of throat centers are estimated as
follows:

g∗e
1 = A1 − A2

L1
, (D3)

g
∗q

1 = R2
2g

∗e
1

8 − 4A2/A1
. (D4)

Finally, they are corrected for the effect of the expansion of the
half-throat cross-sectional area between the throat center and
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the pores centers, assuming that the inscribed radius changes
linearly:

g∗∗e
1 = g∗e

1 Rp/t , (D5)

g
∗∗q

1 = g
∗q

1 R3
p/t

/(
1 + δRp/t + δR2

p/t

/
3
)
, (D6)

where Rp/t = Rp

Rt
and δRp/t = Rp−Rt

Rt
are the expansion ratio

and the relative expansion of the inscribed radius from
the throat center to the pore center. Finally, the corner
conductivities at level i = 2 are added to these conductivities
to obtain the level 1 (single-phase flow) conductivities:

ge
1 = g∗∗e

1 + ge
2, (D7)

g
q

1 = g
∗∗q

1 + g
q

2 . (D8)

To obtain the corner conductivities at discretization levels i =
2 and 3, an estimation of the corner length at these levels are
needed. They are estimated as follows:

Li =
√

L2
1 +

(
Rp − Rt

sin γ2

)2

, i = 2,3. (D9)

The correlations presented above are obtained from a limited
amount of simulations and available correlations in the litera-
ture. Further work is needed to better adjust their coefficients
or to find more accurate alternatives.
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