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Persistent homology analysis of craze formation
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We apply a persistent homology analysis to investigate the behavior of nanovoids during the crazing process
of glassy polymers. We carry out a coarse-grained molecular dynamics simulation of the uniaxial deformation
of an amorphous polymer and analyze the results with persistent homology. Persistent homology reveals the
void coalescence during craze formation, and the results suggest that the yielding process is regarded as the
percolation of nanovoids created by deformation.
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I. INTRODUCTION

Understanding the microscopic process of yielding is a
fundamental problem in material science. The yielding of a
glassy polymer occurs either through shear deformation or
through crazing [1]. Crazing is a unique phenomenon observed
in glassy polymers, and the process of craze formation has been
intensively investigated by electron microscopy [2], optical
microscopy [3], atomic force microscopy [4], and many other
methods. On the basis of these observations, several kinetic
models of craze formation have been proposed [5–7].

Recent advances in molecular dynamics (MD) simulations
have provided new methods for studying the atomic-scale
process of craze formation. Although a full-atomic MD
simulation is currently impossible due to the large simulation
size required to reproduce craze formation, coarse-grained
MD (CG-MD) simulations have successfully reproduced craze
formation processes [8–11]. CG-MD simulations enable the
investigation of the atomic-scale dynamics of craze formation,
which is difficult to detect by experiments.

Although CG-MD simulations have made important con-
tributions to the understanding of craze formation, the relation
between the kinetic models and the CG-MD simulations still
remains unclear. This is partially due to the lack of the
definition of voids in the CG-MD simulations. In kinetic
models of craze initiation, the material is often assumed to
be a continuum, and the voids play an essential role. On the
other hand, CG-MD simulations represent materials as a set of
beads. From this viewpoint, the material is not a continuum,
and it is difficult to define the voids. To gain information
about the voids from an MD simulation, several ideas have
been proposed such as the nonaffine displacement or Voronoi
volume [12,13]. However, variables are assigned to each bead
in these methods, and they do not provide direct information
about the voids, such as the positions, sizes, or shapes.
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To overcome this difficulty, we employ a persistent homol-
ogy (PH) analysis in this study. PH is an emerging method for
investigating the hidden structure from complex data [14,15].
This method shows good performance even when the system
has no clear structure and has provided successful results for
the analysis of glass or proteins [16–18]. A PH analysis has
several desirable properties for investigating the behavior of
voids. First, the variables obtained from the PH analysis are
strongly related to the size of the voids. In particular, the
variable called “deaths” can be regarded as the size of the
voids. Second, these variables are defined for the set of beads.
This implies that, when we choose a void, we can obtain the
beads that form the void. Therefore the sizes, positions, and
shapes of the voids are obtainable by PH.

In this study, we carry out a CG-MD simulation of the
uniaxial deformation of a glassy polymer and investigate
the sizes, shapes, and number of nanovoids using PH. The
results show that the number of nanovoids increases as the
strain increases and rapidly decreases after yielding. An
investigation of the large voids emerging after yielding reveals
that these nanovoids have a complex structure and are created
by the coalescence of smaller voids. These results suggest that
yielding is regarded as the “percolation of nanovoids”.

This paper is organized as follows. In Sec. II, we describe
the simulation model and PH analysis. The results are
presented in Sec. III. Finally, in Sec. IV, we summarize our
results, discuss the problems to be solved, and present the
possible applications of PH.

II. METHOD

In this section, we describe the details of the CG-MD
simulations and PH analysis.

A. Simulation of craze formation

On the basis of the previous work by Rottler and Robbins
[9], we employed the Kremer-Grest model as the coarse-
grained model of glassy polymers. In our model, the system
consists of 512 polymer chains, and each chain contains 512
beads of mass m. The bonding and bond-bending potentials
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FIG. 1. Schematic representation of persistent homology. (a) When the radius of each bead r satisfies r2 < b1, all beads are disconnected.
At r2 = b1 shown in (b), a loop emerges. In (c), another loop emerges at r2 = b2. The latter loop disappears at r2 = b2 in (d) by meeting
balls at the “death position” denoted by the cross mark. In a similar way, the former disappears at r2 = d1 in (e). This persistent homology is
represented by the persistent diagram shown in (f).

Vbond and Vbend are given by

Vbond = ub(r − R1)3(r − R0) (1)

and

Vbend = −ua

2
(cos θ − 1)2, (2)

where ub, R1, R0, and ua are parameters that define the poten-
tial functions, and r and θ represent the distance between beads
and the angle between two connected bonds, respectively. The
potential between an unbonded pair of atoms is given by the
Lennard-Jones potential,

VLJ = 4uL

[(
a

r

)12

−
(

a

r

)6]
. (3)

In the simulation, we normalize the parameters as
m = 1.0, uL = 1.0, and a = 1.0. We set R0 = 1.5, R1 =
0.7575, ua = 1.0, and ub = 2351. In this model, Vbond takes a
minimum at r = 0.96. We note that in real materials, such as
polystyrene or polymethylmethacrylate, a ∼ 0.8–1.5 nm.

Using these potentials, we carried out a simulation of
uniaxial deformation. First, we set the pressure P = 1.0 and
the temperature T = 1.0 and carried out a simulation under a
constant pressure and temperature to create melted polymers.
After relaxing the system to the equilibrium state, we gradually
cooled the system from T = 1.0 to T = 0.3 to obtain the
glassy polymer. We plot the relation between T and the
volume to assert that the system is not liquid but glassy. After
cooling, we carried out uniaxial deformation at a constant rate
dLz/dt = 0.1a with the Poisson ratio R = 0.

In the simulations of deformation, we employed periodic
boundary conditions. The simulations are carried out by
COGNAC 8.3 in the Open Computational Tool for Advanced
Material Technology (OCTA) [19].

B. Persistent homology analysis of the set of beads

In this subsection, we describe the PH analysis employed
in this study. The general mathematical definition of PH has
been presented in a textbook [15], and we only describe the
PH of the α complex that we employ for the analysis of the
CG-MD results.

Suppose that there are k beads at x1,x2, . . . ,xk , as shown
in Fig. 1(a). In the PH analysis, we represent each bead by
a ball with a radius r . If r is small, then all spheres are
disconnected, as shown in Fig. 1(a). As r increases, the spheres
coalesce to create a “chain”, and a loop—a chain of the beads
that surround empty space—emerges at r2 = b1 [Fig. 1(b)].
A further increase in r2 creates one more loop [Fig. 1(c)].
However, the empty spaces surrounded by these loops are
covered by spheres if r2 is sufficiently large. At r2 = d2, the
balls meet at the “death position” denoted by the cross mark in
Fig. 1(d), and the second loop disappears. The first loop also
disappears at r2 = d1, as shown in Fig. 1(e). This example
shows that every loop i has a “birth” and “death”, bi and di ,
and the loop exists only when bi < r2 < di . We also note that
the death position is uniquely defined for each loop.

FIG. 2. Stress-strain curve obtained by CG-MD simulation.
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FIG. 3. Snapshot of the MD simulation (a) before and (b) after
yielding. (a) ε = 0.007 and (b) ε = 0.20).

PH is the map from {x1,x2, . . . ,xk} to
{(b1,d1),(b2,d2), . . . ,(bl,dl))}, where l, bj , and dj are
the number of loops and the “birth” and “death” of the j th
loop, respectively. In this example, we represent the PH of the
holes, whose boundaries are given by one-dimensional chains.
Therefore, we call it the D = 1 PH where D represents the
dimension of the boundaries. In the following analysis, we
employ the D = 2 PH that concerns the set of beads that
surround voids, which can be defined in the same manner.
To represent the results of the PH analysis, we employ the
scatter plot of (bi,di) shown in Fig. 1(f). This plot is called a
“persistent diagram”.

From the definition, it is clear that the D = 2 PH analysis
gives information about the voids. If there is a large spherical
void with a radius R, then it implies that there is a point in
the persistent diagram whose death is about R2. Moreover, we
can inspect the form of the voids using the PH analysis. In the
PH, “births” and “deaths” are defined for “hole boundaries”,
which are constructed from the set of beads. Although the
beads comprising a boundary cannot be uniquely determined,
a recently developed numerical method allows the “optimal
cycle”, the minimum set of beads for constructing each
boundary, to be obtained [20]. Hence, PH is suitable for
quantitative and qualitative analyses of the voids in glassy
polymers.

Before concluding this section, we note several limitations
of the PH analysis. First, the size of the voids estimated by
PH is semiquantitative. Voids are three-dimensional structures

FIG. 5. Plot of the number of voids versus the strain. The dashed
line represents the stress-strain curve.

and may have a strong anisotropy. In this case, the definition
of the “size” of a void has a large ambiguity. Therefore, death
should not be regarded as a flawless quantitative measure of the
size of a void. Second, there are many points in the persistent
diagram that have no relation with physical voids. The points
near the diagonal line, bi−di , are supposed to have no physical
meanings because these points disappear due to small thermal
fluctuations. Other points that have no relation with the voids
are those with a large birth bi . In the case of a glassy polymer, it
is natural to assume that voids are surrounded by beads, whose
distance is on the order of the bonding length. Therefore, the
points with a large bi will not correspond to physical voids,
even if they have some physical meaning.

III. RESULTS

A. Simulation of craze formation

Before presenting the results of the PH analysis, we inves-
tigate the results of a CG-MD simulation to confirm that our
model reproduces the yielding and crazing processes. Figure 2
shows the stress-strain curve obtained by our simulation. The
stress σ increases as the strain ε increases for a small ε

and has a sharp peak at ε ∼ 0.05. This figure suggests that
yielding occurs at ε ∼ 0.05. To confirm that crazing emerges
after yielding, we show the configuration of the beads before

FIG. 4. D = 2 persistent diagram obtained from simulation: (a) and (b) before and (c) after yielding. Dashed lines represent diagonal lines.
(a) ε = 0.007, (b) ε = 0.049, and (c) ε = 0.062
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FIG. 6. Distribution of the voids along the z axis at ε =
0.0485, 0.062, and 0.076.

and after yielding in Fig. 3. In the case of ε = 0.007 before
yielding, we observe no clear structure, whereas in the case
of ε = 0.20 after yielding, we observe a large empty space
and fibrils that connect both sides of the empty space. These
results are similar to the structure of the crazes observed in
various experiments. Therefore, we conclude that our model
reproduces the formation of a craze successfully.

B. Persistent homology analysis

In Fig. 4, we present density plots of the D = 2 persistent
diagrams at ε = 0.007, 0.049, and 0.062. As noted in Sec. II,
the points close to the diagonal line and those with large births
cannot be interpreted as voids. Because we set the natural bond
length as 0.96, it would be natural to assume that the births of
voids are O(1). In the following, we carried out an analysis
assuming that the births of voids are less than 0.8. We have
confirmed that the results do not change qualitatively if the
cutoff of births is 1.0 or 0.6.

When ε is less than yielding point, we find that the points
with a large death gradually increase as ε increases. However,
after yielding, the points with a large death quickly increase.
For example, at ε = 0.049, i.e., before yielding, we find no
point that satisfies both b < 0.8 and d > 2.0, whereas at ε =
0.0623, there are six points that satisfy these conditions after
yielding.

The changes in the persistent diagram before and after
yielding are more clear when we count the number of voids.
In Fig. 5 we plot the number of points that satisfy b < 0.8 < d

along with the stress-strain curve. Clearly, the number of voids
shows a peak at ε = 0.062, which is close to the yielding

point ε ∼ 0.05. This figure suggests that a clear change in the
microstructure occurs at the yielding point.

To understand the reason for the emergence of the peak at
yielding, we investigate the “position” of voids before and after
yielding. Because voids have a complex structure in general,
there exists ambiguity in the definition of the “position” of
the voids. In this analysis, we use the “death position” as the
position of the voids. The death position is defined as the
position at which the balls meet when a void dies, denoted by
the cross in Fig. 1. There are several advantages to the use
of this position as the position of the voids. First, the “death
position” is always inside of the voids. Therefore, if the voids
are small, it is natural to use this point as the position of
the voids. Second, the computational cost for calculating the
death position is much smaller than that of the optimal cycle
calculation. When we calculate the time of death of a void,
we always identify four balls that met at the time of death.
Therefore, the death position is easily calculated because it is
the centroid of these four beads.

In Fig. 6, we show the distribution of the voids along the z

axis at ε = 0.0485, 0.062, and 0.076. This figure shows that
the change in the number of voids is localized at z = 25−30.
At ε = 0.0485 before yielding, the number of voids has a dull
peak at z = 25−30. As ε increases, this peak becomes sharp
and suddenly decreases at ε = 0.076. This figure shows that a
structural change occurs in this region.

The structural change at z = 25−30 becomes more clear
by an optimal cycle calculation to obtain the form of the voids.
Because the optimal cycle calculation has a high computational
cost, we only investigate the large voids that satisfy b < 0.8
and d > 2.0 at ε = 0.062. The births and deaths are listed in
Table I.

The location of the beads that construct these optimal cycles
are plotted in the xz plane in Fig. 7. All beads are placed around
z = 25−30, i.e., the region where the number of voids changes
by yielding. Therefore, the structural change observed in the
number of voids is the emergence of large voids.

The shapes of these voids are colored in light gray in Fig. 8.
The number of beads needed for the creation of each optimal
cycle is listed in Table I. The shapes of these voids are complex
and highly anisotropic. These complex forms of the voids
imply that it is difficult to estimate the “size” of the voids. For
example, the sixth cluster, which is composed of 3034 beads,
has a smaller death than the third cluster, which is composed of
192 beads. This implies that the deaths should not be regarded
as a flawless measure of the size of the voids.

To investigate how these large voids emerge, we carry out a
PH analysis of the beads engaged in each void before yielding.

TABLE I. Characteristics of voids that satisfy both b < 0.8 and d > 2.0 at ε = 0.062: births, deaths, the number of surrounding beads, the
number of voids before yielding given by the beads engaged in each void, and the average Voronoi volume.

ID Birth Death Number of beads that surround voids Number of voids before yielding Average Voronoi volume of beads

1 0.712 2.04 143 11 1.068
2 0.502 2.12 307 5 0.788
3 0.734 2.59 192 5 1.059
4 0.789 2.07 87 4 1.070
5 0.509 2.22 2246 63 0.746
6 0.517 2.16 3034 97 0.748
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FIG. 7. Plot of the positions that construct large voids listed in
Table I in the xz plane.

First, we identify the beads inside or on the surface of each
void. Then, we obtain the positions of these beads at ε = 0.049
before yielding and carry out a PH analysis of these beads to
obtain a list of voids. The result is indicated in dark gray in
Fig. 8. This figure shows that these beads construct several
voids before yielding. The number of voids before yielding is
listed in Table I. The results suggest that large voids emerge
through the coalescence of many smaller voids.

The results in Fig. 5 and 8 suggest that the decrease in the
number of voids after yielding is caused by the coalescence
of small voids. When the amount of deformation is small, the
number of small voids increases as the strain increases. For this
small amount of deformation, void coalescence may occur, but
it will not be very frequent, such that the total number of voids
increases. However, these small voids coalesce at yielding
to create large voids, which cause a sharp decrease in the
number of small voids. This yielding scenario reminds us of
a percolation transition. Our results suggest that yielding and
craze formation can be regarded as the emergence of a large
void by the percolation of small voids.

Finally, we compare our result with a conventional Voronoi
tessellation analysis. Because a plastic polymer glass is a

FIG. 8. The forms of large voids listed in Table I before and after
yielding. Light-gray transparent polygons represent large voids after
yielding, and opaque dark-gray polygons (color online) represent
voids before yielding. The different colors indicate different voids.
(a) Cluster 1, (b) cluster 2, (c) cluster 3, (d) cluster 4, (e) cluster 5,
and (f) cluster 6.
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FIG. 9. Plot of positions of beads that have a Voronoi volume
larger than 1.0 in the xz plane.

strongly disordered material, it is difficult to classify the shapes
of the Voronoi polyhedrons. In previous studies of crazing,
the Voronoi volume has been used for the investigation of
crazing [12,13]. We calculate the Voronoi volumes of all
beads at ε = 0.062 after yielding. In this case, the average
Voronoi volume is 0.649. In Table I, we show the average
Voronoi volume of the beads that are engaged in each void.
The average volume is between 0.748 and 1.070, which is
higher than the average Voronoi volume. However, we also
note that a large Voronoi volume does not always imply craze
formation. For example, we plot the position of beads that have
Voronoi volumes larger than 1.0 in the xz plane in Fig. 9. The
beads with large Voronoi volume are widely spread, and it is
difficult to identify the crazes in this plot. This figure implies
that we need a more complicated method to recognize craze
formation using a Voronoi tessellation. On the other hand,
Fig. 7 clearly indicates the location of a craze. Therefore, PH
gives a simple and straightforward method to investigate craze
formation.

IV. DISCUSSION AND CONCLUSION

In this study, we applied a PH analysis to the CG-MD
simulation of craze formation. We revealed that the number of
voids shows a clear peak at the yielding point. An investigation
of large-void formation implies that a decrease in the number
of voids is caused by the coalescence of small voids.

Void coalescence is widely accepted as essential to craze
formation in polymer glasses [21,22]. However, this process
has not been reproduced by MD simulations. To the best of
the authors’ knowledge, our work is the first MD simulation
that confirms void coalescence. Moreover, our results suggest
the similarity between yielding and percolation, which has not
been reported until now.

Our result implies that the coalescence process of nanovoids
should be included in the kinetic theory of craze formation.
In the most successful kinetic theory by Argon and Hannoosh
[5], the growth of a craze is driven by the meniscus instability.
In this scenario, the growth of voids is not caused by
coalescence but by the strong stress at the edges of the voids.
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Although this scenario successfully explains the structure
of crazes at a scale of O(10 nm), our result indicates that
the scenario should be modified at a smaller scale. The
coalescence of nanovoids has been theoretically studied by
several researchers [23,24], but most of these works assert
that the nanovoids are periodically placed. To construct a
more realistic model of craze formation, the theory of the
coalescence of randomly distributed nanovoids will be needed.

To confirm the yielding scenario proposed in this paper,
an experiment with real material is indispensable. Our results
suggest that there is a change in the free-volume distribution at
yielding. Positron annihilation lifetime spectroscopy (PALS)
is a powerful method for obtaining information related to
the free volume [25]. Although it is difficult to obtain the
size of strongly anisotropic cavities, as shown in Fig. 8(f), a
PALS study of craze formation will be useful to validate our
suggestions.

Further study with PH will provide more valuable insights
into the yielding process. For example, a better definition of
the size of the voids would be obtained. As we have shown,
PH has some flaws when defining the size of the voids using
deaths. The results in Table I suggest that the number of beads
in the optimal cycle may be a better measure of the size of
voids. Another interesting question is related to the spatial
distribution of the voids. In this paper, we showed that the
number of voids has a dull peak at the position where crazing
occurs before yielding. A more detailed study of the spatial
distribution of the nanovoids will make significant contribution

toward estimating the strength of materials. Unfortunately, it is
difficult to carry out this analysis because a large computational
power is necessary to calculate the optimal cycles. We will
need further development of PH algorithms.

The PH analysis would be useful for the analysis of other
materials and phenomena. Void coalescence has been regarded
as essential for the ductile fracture of metals [26]. PH will give
essential insights into this process. With regard to polymer
science, there will be at least two applications. First, the
fracture process of thermosetting polymers will be interesting.
The tensile behaviors of thermosetting polymers have been
investigated by CG-MD simulation [27]. A PH analysis will
give insights into the yielding process of these materials.
Another important target of the PH analysis is shear yielding.
In shear yielding, the volume of the system is conserved, in
contrast to crazing. A trial for capturing the structural changes
in shear yielding by PH is a challenging problem.
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