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Effective distances for epidemics spreading on complex networks
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We show that the recently introduced logarithmic metrics used to predict disease arrival times on complex
networks are approximations of more general network-based measures derived from random walks theory. Using
the daily air-traffic transportation data we perform numerical experiments to compare the infection arrival time
with this alternative metric that is obtained by accounting for multiple walks instead of only the most probable
path. The comparison with direct simulations reveals a higher correlation compared to the shortest-path approach
used previously. In addition our method allows to connect fundamental observables in epidemic spreading with
the cumulant-generating function of the hitting time for a Markov chain. Our results provides a general and
computationally efficient approach using only algebraic methods.
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I. INTRODUCTION

Networks have received growing attention in the past
decade particularly due to their applicability in describing
a wide range of phenomena. Prominent examples are the
mapping of the World Wide Web and structure of the Internet,
social and financial networks, epidemiology, and language
dynamics [1–4]. In the context of epidemic spreading the
prediction of outbreaks has become particularly important
for public health issues. The rapid growth in the velocity
of transportation means and frequency of movements has
further increased the risk that global emergent diseases such
as H1N1 [5], SARS [6], or EBOV [7], and more recently
ZIKV [8], will spread worldwide. The underlying mobility
networks are usually scale-free [9]. This implies the absence
of an epidemic threshold [10] that allows any transmittable
disease to spread through the global population.

The large amount of traffic data both at the local and global
scale, which became available in recent years, provides a
new opportunity to understand such processes. On the one
hand numerical simulations of infection spreading offer a
practical tool for estimating the infection arrival time [11].
In this regard metapopulation models [12–14] provide a
reasonable tool for maintaining a high level of complexity
in the simulation of pandemics [11]. At the global scale the
different subpopulations, defined by the nodes of the network,
are cities that can be connected by directed or undirected
fluxes of individuals, provided by the worldwide transportation
network data. On the other hand algebraic methods give a solid
foundation for drawing general conclusions and in many cases
provide numerical instruments superior to direct simulations.

In this work we introduce a network-based measure
that generalizes the concept of distance and that provides
fundamental insights into the dynamics of disease transmission
as well as an efficient numerical estimation of the infection
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arrival time. We compare this effective distance [16] with
the numerical estimate of the transmission times using a
metapopulation model to validate the method. A series of
papers have already been devoted to this problem [17–21].
Most of them rely on the concept of most probable path,
the shortest-path effective distance DSP

ij for each source i

and target j in the network. The latter can be defined, for
both directed and undirected networks, as the geodesic graph
distance with edge weights given by the first moment of
a Gumbel distributed variable which depends only on the
network topology and the infection rate. This shortest-path
approach, however, significantly overestimates the infection
arrival times [18,22]. A more realistic scenario takes into
account all possible paths [19] yielding the multiple-path
distance DMP

ij , which is better suited to estimate the arrival
times of the infection. This method allows, at least in principle,
to take into account all possible directed transmission paths,
although the computation becomes infeasible as their number
grows exponentially with the the number of vertices in the
network. The lack of a practical computational approach leads
back to considering only the shortest path. A logarithmic ad
hoc edge weight transformation was introduced in Ref. [20]
by simply requiring that adding edges should translate to
multiplying the associated probabilities. This follows the
intuitive argument that a higher number of passengers reduces
the separation distance between neighboring nodes. This
logarithmic transformation can be viewed as a log-space
reduction [23] and, as we will show later, it can be derived
as a special case of the shortest-path effective distance defined
previously in Ref. [18]. The estimated arrival time T AR

ij from
node i to node j , obtained from numerical simulations,
correlates highly with the shortest-path effective distance.
Using this metrics the complexity of disease transmission
can be understood in terms of circular waves propagating at
constant velocity from the infected node at time zero to all
other nodes in the network [20]. The measure we introduce
here aims to generalize previous definitions by including all
walks that connect source and target.
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II. EPIDEMIOLOGICAL MODEL

Let us consider a metapopulation susceptible-infected-

removed dynamics S
βSI−−→ I

μI−→ R, where β and μ are
the infection and recovery rate, respectively. The nodes of
the metapopulation network consists of subpopulations of
constant size Nj , which divides into susceptible (Sj ), infected
(Ij ), and removed (Rj ) individuals

Nj = S
(t)
j + I

(t)
j + R

(t)
j . (1)

In the metapopulation in addition to the local SIR reaction
dynamics, the movement of a host between populations i and
j is governed by the master equation

∂tX
(t)
j =

∑
i �=j

(
X

(t)
i Qij − X

(t)
j Qji

)
. (2)

Here we introduced X
(t)
j = {S(t)

j ,I
(t)
j ,R

(t)
j } as a placeholder

variable, and the transition rates Qij are defined as the
conditional probability of a randomly chosen individual to
jump from location i to location j within one time step

P
(
X

(t+�t)
j

∣∣X(t)
i

) ≈ Qij�t, i �= j. (3)

The transition rates Qij can equivalently be defined in terms of
the weighted adjacency matrix AW

ij as Qij = AW
ij /Ni ∈ [0,1].

The latter is obtained from the actual passenger fluxes between
any two airports in the global mobility network used in the
simulations [15]. This network consists of V = 3865 vertices
(airports) and E = 51 440 directed edges (fluxes), with very
broad degree and weight distributions (see Figs. 1 and 2),
where the high heterogeneity in the network connectivity is
graphically reproduced. For the network diameter we found
D = 16 (connecting Stuart Island to Narsaq Kujalleq Heliport)
and the global clustering coefficient is c = 0.26 ± 0.01. A
peculiar feature of this network is that the antisymmetric part
of the fluxes χ = AW

ij − AW
ji is vanishing to a high degree of

accuracy so that it can be considered as undirected [24]. The
weighted adjacency matrix of the undirected air traffic network
is then defined by AW

ij = AijWij , where Aij is the adjacency
matrix element and Wij � 0 the corresponding weight. The
symmetry in the adjacency matrix implies that for adjacent

populations

AW
ij = QijNi = QjiNj = AW

ji . (4)

The Markov transition matrix associated to the network can be
written in terms of both the fluxes AW

ij and the local transition
rates Qij :

Pij = AW
ij∑

j AW
ij

= Qij∑
j Qij

, (5)

and it is row stochastic by construction. From (4) we also have
the detailed balance

Pij k
W
i = Pjik

W
j , (6)

where we have introduced the weighted degree kW
i = ∑

j AW
ij ,

sometimes denoted as strength [25], as the asymptotic proba-
bility distribution for the corresponding Markov chain. Thus
using (6) we can rewrite (2), in terms of the compartment
densities x

(t)
j = X

(t)
j /Nj to obtain

∂tx
(t)
j = 1

Nj

∑
i �=j

(
x

(t)
i AW

ij − x
(t)
j AW

ji

)
= kW

j

Nj

∑
i �=j

Pji

(
x

(t)
i − x

(t)
j

)
. (7)

Furthermore, we can remove the dependence on the population
size Nj by introducing a constant global mobility rate α. This
parameter is defined as the ratio α = �/N , between the total
daily passenger flux � = ∑

ij AW
ij and the total population

N = ∑
i Ni , i.e., the rate to leave a node for a randomly chosen

individual. A local node dependent mobility rate can also be
defined as

αi =
∑

j AW
ij

Ni

=
∑

j

Qij . (8)

In the global mobility network data the total traffic of each
node, i.e., its weighted degree kW

j , is with a good accuracy
proportional to its population Ni via the global mobility rate

FIG. 1. The global mobility network used in the simulations consisting of V = 3865 airports and E = 51 440 flights [15].
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FIG. 2. (a) Circular representation of the global mobility network
with vertex colors and size corresponding to its strength kW

i . (b) Nor-
malized weight distribution P(W ) ∼ W−γw with scaling exponent
γw = 3.60 ± 0.14. Inset: Unweighted degree distribution P(k) ∼
k−γk with scaling exponent γk = 1.79 ± 0.10. Scaling exponents are
obtained using the method presented in Ref. [27].

α, thus in our case αi = α ∀i. The complete SIR dynamics of
the Rvachev-Longini model [20,26] becomes

∂t s
(t)
j = 	

({
s

(t)
j

}) − βs
(t)
j i

(t)
j

∂t i
(t)
j = 	

({
i

(t)
j

}) + βs
(t)
j i

(t)
j − μi

(t)
j

∂t r
(t)
j = 	

({
r

(t)
j

}) + μi
(t)
j

, (9)

where the mobility function for each compartment density
xj = Xj/Nj ,

	({xj }) = α
∑
i �=j

Pji

(
x

(t)
i − x

(t)
j

)
, (10)

accounts for diffusion along the nodes.
Integrating system (9) we obtain the contagion dynamics on

the transportation network AW
ij with the global mobility rate α

and the infection parameters β and μ. Finally, the arrival time

T AR
ij for each source-target pair in the global mobility network

is computed by considering a node j infected as soon as one
infected individual is present. After introducing the effective
distance we use T AR

ij to compare the goodness of the different
measures.

III. EFFECTIVE NETWORK-BASED MEASURES

The fundamental metric on a network is given by the
(geodesic) shortest-path length over all paths 
ij connecting
node i to node j . In a weighted network for each edge
(k,l) ∈ 
ij no node is visited more than once and contributes
to the total length with its corresponding weight [1]

Dij = min
{
ij }

∑
(k,l) ∈ 
ij

1

AW
kl

, (11)

where the inverse is used because in our case a higher flux of
passengers reduces the distance between two nodes. Starting
from this definition it is possible to extend the notion of
distance by replacing the adjacency matrix weight with an
effective quantity that captures the essence of the problem of
predicting when the disease will arrive at a certain place. In
Ref. [18] the authors defined the shortest-path distance DSP

ij

by first considering the susceptible-infected model with only
two cities, by then generalizing to arbitrary topologies. We
first show how their analytical approach leads to an equivalent
definition of effective distance used in Ref. [20], and then we
generalize it to more realistic propagation scenarios where all
paths are taken into account.

Let us consider two susceptible populations i and j and
place an infected individual in i at time ti = 0. Assuming
Qij�t � 1 we can derive a probability density function for
the infection hitting time hj to city j of the Gumbel type [18].
The first moment of this distribution is given by

〈hj 〉i = 1

β

(
ln

β

Qij

− γe

)
, (12)

where γe ≈ 0.5772 is the Euler-Mascheroni constant, and the
average 〈. . .〉i is taken over times starting at ti = 0. Using (5)
we find

β 〈hj 〉i = ln
β∑
j Qij

− γe − ln
Qij∑
j Qij

= δ − ln Pij ,

(13)

where we assume the mobility rate (8) to be node independent,
i.e., αi = α ∀i and δ = ln(β/α) − γe is a dimensionless
parameter. This result can easily be generalized to the SIR
model and a network with an arbitrary number of nodes simply
by minimizing the quantity 〈hl〉k for each consecutive link (k,l)
that belongs to the path 
ij connecting source i to target j . For
the arbitrary heterogenous population and network topology
with an arbitrary number of nodes by taking the minimum over
all paths yields the shortest-path effective distance

DSP
ij (δ) ≡ min

{
ij }

∑
(k,l) ∈ 
ij

(δ − ln Pkl) ≈ (β − μ) 〈hj 〉i , (14)
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where for the SIR metapopulation dynamics we have

δ = ln

(
β − μ

α

)
− γe. (15)

Since each term in the sum is strictly positive, one can obtain
the complete shortest-path distance matrix for each source
and target pair using the Dijkstra algorithm [28] in a time
O(V E + V 2 log V ), where E and V are the graph size and
order, respectively. The effective distance defined in Ref. [20]
can then be recovered as a special case of (14) simply by setting
the scale parameter δ to unity. This fact allows for a deeper
and more complete understanding of this effective distance
and offers a more solid explanation to the extremely high
correlation with the infection arrival time found in Ref. [20].
The most important limitation of (14) is that only one path is
considered, namely, the path that in addition to minimizing the
topological length also maximizes the probability associated
to that. Thus in this scenario the contribution to the disease
spread comes only from a single route. The effective infection
arrival time DSP

ij (δ)/VEF, where VEF ≈ β − μ is the linearized
effective speed of the infection [18,20], is in fact overestimated
with respect to the simulations result T AR

ij [22].
To take into account the most realistic disease spread

scenario one has to consider instead the multiplicity of trans-
mission routes. For two distinct paths 
ij and 
′

ij connecting i

with j , the authors in Ref. [19] found that a two-path distance
D2P

ij satisfies the equation

e−D2P
ij = e−D


ij + e−D

′
ij

, (16)

where

D
ij (δ) = ln

⎛⎝ ∏
(k,l)∈
ij

eδ

Pkl

⎞⎠ (17)

is the effective distance associated to the path 
ij of arbitrary
length, which corresponds to a Gumbel distributed hitting time.
Relation (16) can then be easily generalized to an arbitrary
number of multiple paths as

exp
(−DMP

ij (δ)
) =

∑
{
ij }

exp[−D
ij (δ)], (18)

so that we obtain

DMP
ij (δ) = − ln

⎡⎣∑
{
ij }

e−nij δFij (
ij )

⎤⎦. (19)

Here we have defined the total probability associated to the
path 
ij as

Fij (
ij ) =
∏

(k,l)∈
ij

Pkl . (20)

By grouping all probabilities associated to paths of the same
length in the quantity Fij (n) = ∑

|
ij |=n Fij (
ij ), we can
replace in (19) the sum over all paths connecting i to j with a
sum over integer path lengths to get

DMP
ij (δ) = − ln

[
nmax∑
n=1

e−nδFij (n)

]
, (21)

where nmax is the maximum path length in the network.
If we select the path 
̃ij of length ñ that is associated to
the dominant contribution, i.e., the path that maximize its
associated probability and minimizes the topological path
length, one recovers the shortest-path effective distance of (14)

D̃MP
ij (δ) = ñδ − ln Fij (̃n) = DSP

ij (δ). (22)

Therefore the multiple-path distance gives a more accurate
estimate of the infection arrival time, as it allows to take
into account the most probable route as well as all possible
alternative transmission routes. However, since the total
number of paths between i and j can scale as O(V !), the
measure DMP

ij becomes computationally infeasible for large
graphs.

Both measures DSP
ij and DMP

ij rely on the fact that the
epidemic will spread along simple paths, i.e., routes that
do not cross themselves. Here we follow instead a different
approach and introduce a distance that includes all possible
random walks from source to target. Relaxing the assumption
of directed spread is equivalent to effectively erasing the
memory from the system at each time step. This is achieved by
including in (19) all walks �ij , which contrary to the paths 
ij ,
allow also already visited nodes. We define the random-walk
effective distance by generalizing (19) as

DRW
ij (δ) = − ln

⎡⎣∑
{�ij }

e−nij δHij (�ij )

⎤⎦, (23)

where Hij (�ij ) is the probability associated to a walk that starts
in i and arrives to j . As for the probabilities Fij we can group
the probabilities associated to walks of the same length into
Hij (n) = ∑

|�ij |=n Hij (�ij ). The latter is precisely the hitting
time probability for a Markov chain defined recursively as [29]

Hij (n) =
∑
k �=j

PikHkj (n). (24)

Thus Hij (n) is simply the nth power of the subtransition
probability matrix obtained by removing the j th row and
column. Contrary to the multiple-path scenario now the walks
are unbounded and so becomes nmax. Furthermore since each
term in the sum (23) is positive, assuming the convergence of
the sum, we can rearrange it as

DRW
ij (δ) = − ln

[ ∞∑
n=1

e−nδHij (n)

]
. (25)

In Fig. 3 we use the Pearson correlation coefficient R2

for quantifying the accuracy of the different measures using
São Paulo airport as the source of the infection. Each dot in
the scatter plot corresponds to an airport, which is labeled
infected in the simulations when the the infection density is
greater than zero. The high correlation with the infection arrival
time found in Ref. [20] using a shortest-path approach (light
blue) is improved when considering the random-walk effective
distance (violet). The points on the dashed diagonal indicate
a perfect agreement between the simulation and the effective
distance. The correlation distribution considering all nodes
in the network as initial infected seed shows that not only the
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FIG. 3. Correlation of the infection arrival times in days obtained from simulation of (9) with the shortest-path (light blue circles) and
the random-walk effective distance (violet squares). The source infected node i is São Paulo Guarulhos International Airport, and each point
in the scatter plot corresponds to an airport j in the global mobility network, with size proportional to its strength kW

j . The mobility and
epidemiological parameters are respectively α = 0.028 d−1, β = 0.407 d−1, and μ = 0.271 d−1 resulting in δ = 1. The Pearson correlation
coefficients are R2

SP = 0.96 and R2
RW = 0.99.

measure proposed here possesses a higher averaged correlation
but it is also more peaked around it (see Fig. 4).

A remarkable interpretation of the random-walk effective
distance can be found by noticing that by definition DRW

ij (δ) =
− ln 〈e−δhj 〉i , where hj is the hitting time to node j [30]. Thus,
since Hij (0) = 0 for i �= j , we have the correspondence

DRW
ij (δ) = −Cij (−δ), (26)

0.90 0.95 1.00

R2

0

300

600

900

P
(R

2 )

DSP

DRW

FIG. 4. Distribution of the Pearson coefficient R2 considering all
possible infection sources in the global mobility network for same
parameters as in Fig. 3.

with the logarithm of the moment-generating function, i.e., the
cumulant-generating function of the hitting time in a Markov
chain

Cij (s) = ln

[ ∞∑
n=0

ens Hij (n)

]
= ln 〈eshj 〉i . (27)

Hence one obtains the cumulants of the hitting time by
differentiating the random-walk effective distance with respect
to δ at δ = 0. This interesting correspondence allows one to
rigorously relate epidemiological quantities such as the arrival
time and the speed of infection in a reaction-diffusion model
to the fluctuations of the hitting time. Then one can interpret
DRW

ij (δ) as a generalized free energy in a statistical physics
perspective [31] and providing a more profound theoretical
framework than the ad hoc measure proposed in Ref. [20].

From the computational side, in order to evaluate the infinite
sum in (25), we can restrict ourselves to the first nonvanishing
contributions, which dominate due to the decreasing expo-
nential in the walk length n. However, we can also solve the
complete expression by rewriting (25) into a geometric series.
This requires to vectorize DRW

ij with respect to the arrival node
j to obtain

dRW
i(j ) (δ) = − ln{[eδI(j |j ) − P(j |j )]−1p(j )}i , (28)

where P(j |j ) and I(j |j ) are the transition and identity
submatrices obtained by deleting row and column j [32],
while p(j ) is the j th column of P with element j removed. To
obtain the previous expression we have used that for δ > 0, all
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FIG. 5. Correlation of the shortest-path (light blue) and random-walk (violet) approach with the simulations arrival time for the the U.S.
airport network used in Ref. [13] (a) and its randomized (Erdős-Rényi) version (c). In (b) and (d) the corresponding networks visualization
consisting of V = 500 nodes and E = 5960 edges. Parameters as in Fig. 3.

eigenvalues of the matrix e−δP(j |j ) are strictly smaller than
unity. For each arrival node the random-walk effective distance
can then be obtained in polynomial time O(V 3.4) using,
for instance, the Coppersmith-Winograd algorithm for matrix
inversion [33], making the problem of parallel transmission
routes feasible even for large networks as the one used in our
simulations.

For highly heterogeneous topologies, such as the air-traffic
network [24], only a small number of paths contributes to DMP

ij .
Taking the limit of the dominant contribution in (23), which
corresponds to selecting the dominant path in (19), allows one
to neglect the sum over the walks (paths), and it yields as
for (22)

D̃RW
ij (δ) = − ln[e−ñδHij (̃n)] = DSP

ij (δ). (29)

In Fig. 5 the comparison between the shortest-path and
random-walk approach for the U.S. air-traffic network [13]
shows that the results presented here are robust also for Erdős-
Rényi networks. The correlation coefficients are respectively
R2

SP = 0.99 and R2
RW = 1.00 for the U.S. air-traffic network

and R2
SP = 0.94 and R2

RW = 1.00 for the randomized Erdős-
Rényi network. An higher correlation and stability of the
random-walk approach is also observed in the case of artificial
networks, as for unweighted Barabási-Albert [9] and lattice

models (see Fig. 6). The correlation coefficients for the
latter are R2

SP = 1.00 and R2
RW = 1.00 for the Barabási-Albert

network and R2
SP = 0.99 and R2

RW = 1.00 for the lattice.

IV. CONCLUSIONS

In summary we have presented a generalization of the
concept of effective distance by overcoming the restriction
of simple path propagation of a disease. The proposed
random-walk effective distance includes the previously de-
fined shortest-path measure as a particular case. The remark-
able correlation found with the infection arrival time can be
explained as follows. The contribution of looped trajectories in
the propagation of physical information is neglected because of
the decreasing exponential in the walk length. The latter serves
as damping such contributions for long walks, and in particular
allows us to neglect infinite loop contributions. In scenarios
where multiple parallel paths are important, for instance, in
Erdős-Rényi graphs or regular lattices, the assumption of a
single dominant path breaks down, and the measure proposed
here can be used as an efficient alternative. The predictive
power of the random-walk effective distance can be used
for containment strategies and estimation of arrival times for
real global pandemics from the underlying networks topology.
The random-walk metric can in fact be generally applied to
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FIG. 6. Correlation of the shortest-path (light blue) and random-walk (violet) approach with the simulations arrival time for an unweighted
Barabási-Albert network (a) and a two-dimensional lattice embedding (c) both consisting of V = 500 nodes. In (b) and (d) the corresponding
networks visualization. The number of edges is, respectively, E = 998 and E = 1000. Parameters as in Fig 3.
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any weighted and directed network besides the transportation
ones, for instance, in the context of social interactions and
rumor spreading. For unweighted locally treelike networks
both the shortest-path and random-walk effective distances
yield maximum correlation with the simulated arrival time, as
the shortest path tends to dominate.

From a theoretical point of view our results show that
the average infection arrival time in a metapopulation model
can be approximated by the cumulant-generating function of
the hitting time for a Markov chain. In fact, the generating
function approach can also be used to formally derive the
latter from the first moments of the Gumbel distribution [18].
The connection with the cumulant-generating function allows
for an interpretation within statistical physics. In particular this
would explain how the different approaches are connected in
terms of the entropy associated to paths of fixed length [31,34].

This observation links disease spreading on complex networks
with a generic diffusion process. Further developments and
extensions of our results include the generalization to temporal
networks by considering a set of transition matrices, one for
each time step [35,36].
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ONE 11, 1 (2016).

012313-7

https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/RevModPhys.81.591
https://doi.org/10.1103/RevModPhys.81.591
https://doi.org/10.1103/RevModPhys.81.591
https://doi.org/10.1103/RevModPhys.81.591
https://doi.org/10.1126/science.1177373
https://doi.org/10.1126/science.1177373
https://doi.org/10.1126/science.1177373
https://doi.org/10.1126/science.1177373
https://doi.org/10.1186/1741-7015-5-34
https://doi.org/10.1186/1741-7015-5-34
https://doi.org/10.1186/1741-7015-5-34
https://doi.org/10.1186/1741-7015-5-34
https://doi.org/10.2807/1560-7917.ES2014.19.42.20936
https://doi.org/10.2807/1560-7917.ES2014.19.42.20936
https://doi.org/10.2807/1560-7917.ES2014.19.42.20936
https://doi.org/10.2807/1560-7917.ES2014.19.42.20936
https://doi.org/10.1016/j.medmal.2014.04.008
https://doi.org/10.1016/j.medmal.2014.04.008
https://doi.org/10.1016/j.medmal.2014.04.008
https://doi.org/10.1016/j.medmal.2014.04.008
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1186/1471-2334-11-37
https://doi.org/10.1186/1471-2334-11-37
https://doi.org/10.1186/1471-2334-11-37
https://doi.org/10.1186/1471-2334-11-37
https://doi.org/10.1103/PhysRevE.85.066111
https://doi.org/10.1103/PhysRevE.85.066111
https://doi.org/10.1103/PhysRevE.85.066111
https://doi.org/10.1103/PhysRevE.85.066111
https://doi.org/10.1038/nphys560
https://doi.org/10.1038/nphys560
https://doi.org/10.1038/nphys560
https://doi.org/10.1038/nphys560
https://doi.org/10.1016/j.jtbi.2007.11.028
https://doi.org/10.1016/j.jtbi.2007.11.028
https://doi.org/10.1016/j.jtbi.2007.11.028
https://doi.org/10.1016/j.jtbi.2007.11.028
http://www.oag.com
http://barabasi.com/networksciencebook/
https://doi.org/10.1103/PhysRevLett.91.168701
https://doi.org/10.1103/PhysRevLett.91.168701
https://doi.org/10.1103/PhysRevLett.91.168701
https://doi.org/10.1103/PhysRevLett.91.168701
https://doi.org/10.1088/1742-5468/2007/09/L09001
https://doi.org/10.1088/1742-5468/2007/09/L09001
https://doi.org/10.1088/1742-5468/2007/09/L09001
https://doi.org/10.1016/j.jtbi.2007.12.001
https://doi.org/10.1016/j.jtbi.2007.12.001
https://doi.org/10.1016/j.jtbi.2007.12.001
https://doi.org/10.1016/j.jtbi.2007.12.001
https://doi.org/10.1126/science.1245200
https://doi.org/10.1126/science.1245200
https://doi.org/10.1126/science.1245200
https://doi.org/10.1126/science.1245200
https://doi.org/10.1103/PhysRevE.73.046131
https://doi.org/10.1103/PhysRevE.73.046131
https://doi.org/10.1103/PhysRevE.73.046131
https://doi.org/10.1103/PhysRevE.73.046131
https://doi.org/10.1016/0022-247X(82)90197-4
https://doi.org/10.1016/0022-247X(82)90197-4
https://doi.org/10.1016/0022-247X(82)90197-4
https://doi.org/10.1016/0022-247X(82)90197-4
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1016/0025-5564(85)90064-1
https://doi.org/10.1016/0025-5564(85)90064-1
https://doi.org/10.1016/0025-5564(85)90064-1
https://doi.org/10.1016/0025-5564(85)90064-1
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1016/j.physa.2013.09.016
https://doi.org/10.1016/j.physa.2013.09.016
https://doi.org/10.1016/j.physa.2013.09.016
https://doi.org/10.1016/j.physa.2013.09.016
https://doi.org/10.1103/PhysRevLett.110.118701
https://doi.org/10.1103/PhysRevLett.110.118701
https://doi.org/10.1103/PhysRevLett.110.118701
https://doi.org/10.1103/PhysRevLett.110.118701
https://doi.org/10.1371/journal.pone.0151209
https://doi.org/10.1371/journal.pone.0151209
https://doi.org/10.1371/journal.pone.0151209
https://doi.org/10.1371/journal.pone.0151209



