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This paper addresses the void fraction of polydisperse particles with a Weibull (or Rosin-Rammler) size
distribution. It is demonstrated that the governing parameters of this distribution can be uniquely related to
those of the lognormal distribution. Hence, an existing closed-form expression that predicts the void fraction
of particles with a lognormal size distribution can be transformed into an expression for Weibull distributions.
Both expressions contain the contraction coefficient β. Likewise the monosized void fraction ϕ1, it is a physical
parameter which depends on the particles’ shape and their state of compaction only. Based on a consideration of
the scaled binary void contraction, a linear relation for (1−ϕ1)β as function of ϕ1 is proposed, with proportionality
constant B, depending on the state of compaction only. This is validated using computational and experimental
packing data concerning random close and random loose packing arrangements. Finally, using this β, the
closed-form analytical expression governing the void fraction of Weibull distributions is thoroughly compared
with empirical data reported in the literature, and good agreement is found. Furthermore, the present analysis
yields an algebraic equation relating the void fraction of monosized particles at different compaction states. This
expression appears to be in good agreement with a broad collection of random close and random loose packing
data.
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I. INTRODUCTION

Weibull (or Rosin-Rammler) distributions [1–3] are use-
ful for representing particle size distributions generated by
fragmentation processes in powder technology, cementitious
materials, coal, soil physics, nuclear physics, food, astro-
physics, genetics, sprays, fuel combustion, brittle fracture, and
geology [3–6]. The random (or disordered) packing of solid
particle assemblies is, among others, relevant to physicists,
biologists, and engineers, and is a long-standing problem in
mathematics. There is practical as well as fundamental interest
in understanding the relationship between the particle shape
and particle size distribution on the one hand, and packing
fraction on the other.

The void fraction ϕ1 (i.e., unity minus packing fraction
f1) of monosized, that is, identical, particles depends on
their shape and method of packing: ordered (crystalline) or
disordered (amorphous), where the latter furthermore depends
on the densification: the density of the final assembly lies
between the so-called “random loose packing limit” (RLP)
and “random close packing limit” (RCP). For a number of
particle shapes, both RLP and RCP measured void (or packing)
fraction values have been reported [7,8]. These two limits
have been extensively studied, but establishing their exact
definitions has been a difficult challenge [9]. Mathematically,
the RCP state is difficult to define because by introducing
order, higher packing fractions can be obtained. A more recent
concept that has been suggested to replace RCP is that of the
maximally random jammed (MRJ) state. According to some
well-defined order metrics, this state corresponds to the most
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disordered among all jammed (mechanically stable) packings,
and has first been studied for spherical, and subsequently for
nonspherical, particles [9–13]. The concept of the random
close packing limit has been synonymous with the idea of
a densest random packing and is found to lie at around 0.64
for spheres. Random loose packing (RLP) is considered as the
loosest way particles can pack, and it is recognized that friction
and cohesion play a key role. For cohesionless particles with
friction, a reproducible packing fraction is found [7,8,14–18],
with 0.54 as a generally accepted value for the lower limit
of random monosized sphere packings. These reproducible
values indicate that RLP and RCP correspond to well-defined
“geometrical structures,” yielding the perception that random
particle packings should have a common structure.

Another complication arises when ordered or disordered
arrangements contain similar (isomorphous) particles of dif-
ferent sizes that are randomly placed. For mixes of discretely
sized particles and continuous power-law and lognormal
distributions, analytical expressions for the void fraction have
been derived [19–23]. In Sec. II, the parameters governing the
Weibull and the lognormal (or log-normal) distributions are
related to each other. Then, based on the available void fraction
of the lognormal distribution [23], a closed-form expression is
derived for the void fraction of the Weibull distribution.

Besides depending on the monosized void fraction ϕ1 of the
considered particle shape and the distribution characteristics,
these lognormal and Weibull packing fraction expressions also
contain a contraction coefficient β. This is a physically defined
parameter, likewise the monosized void fraction value, and it
only depends on the particle shape and the mode of compaction
(between RLP and RCP) only. To bring this physical parameter
into a consistent pattern, in Sec. III, the magnitude and nature
of this contraction coefficient are analyzed in more detail,
and an algebraic expression relating it to the monosized void
fraction is established. In Sec. IV, this analysis of β enables
an extensive validation of the derived Weibull void fraction
expression using a broad collection of available empirical
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data, yielding good agreement. Finally, the Appendix presents
an analysis that yields a general relation between the void
fractions at different packing states of monosized particles.
This expression is validated for the random loose and close
void fractions using computational and empirical data of a
broad collection of particle types.

II. RELATING WEIBULL AND LOGNORMAL
SIZE DITRIBUTIONS

In this section the parameters governing the Weibull and
lognormal distributions are uniquely related to each other.
Subsequently, the closed-form expression for the void fraction
of lognormal size distributions [23] is transformed into an
expression for Weibull distributions.

The cumulative distribution function (cumulative finer
fraction) of the Weibull or Rosin-Rammler distribution [1–4]
reads

F (d) = 1 − exp

(
−

[
d

δ

]m)
. (1)

Note that for m = 1 it corresponds to the exponential
distribution. The cumulative distribution function of the
lognormal distribution reads [3,23]

F (d) = 1√
2π lnσg

∫ d

−∞
exp

[
− (ln d − ln dg)2

2ln2σg

]
d(ln d),

(2)
with dg (or d0.5 as geometric mean size of the distribution, σg

as the geometric standard deviation, and lnσg as the standard
deviation.

The spread of the Weibull distribution is governed by
the shape parameter m, which has a similar role as the
standard deviation lnσg in the lognormal distribution, as both
m and lnσg define the spread of both distributions. The
parameter δ, likewise dg , is a scaling parameter, which does
not affect the packing fraction. Their variation merely implies
a multiplication of the size of all particles with the same factor.

In order to characterize and match the spread of both
distributions, which govern their packing fraction, the size
ratio dx/d1−x of each distribution is equated, whereby

dx = F−1(x), (3)

with F−1 as the inverse cumulative distribution function or
quantile function. The quantile function of Eq. (1) reads

F−1(x) = δ[− ln(1 − x)]1/m. (4)

For the spread of the Weibull distribution it therefore holds
that

dx

d1−x

=
[

ln(x)

ln(1 − x)

]1/m

. (5)

The quantile function of Eq. (2) reads

F−1(x) = dgexp[
√

2lnσgerf−1(2x − 1)]; (6)

see Eq. (3), with erf−1 as inverse error function. As
erf−1(−x) = −erf−1(x) it follows that for the lognormal
distribution it holds that

dx

d1−x

= e−2erf−1(2x−1)
√

2lnσg . (7)

TABLE I. Proportionality coefficient, α, computed for various
spreads of the lognormal and Weibull distributions.

x 2x-1 erf−1(2x−1) α [Eq. (8)]

0.9 0.8 0.906 1.702
0.95 0.9 1.163 1.748
0.99 0.98 1.645 1.862
0.999 0.998 2.186 2.022

Equating Eqs. (5) and (7) yields

ln σg =
ln

[
ln(x)

ln(1−x)

]

−2m
√

2erf−1(2x − 1)
= α

m
√

2
. (8)

So m and lnσg are inversely proportional. For x =
0.9,0.95,0.99, and 0.999, in Table I the computed propor-
tionality constant α are given, which lie in a relatively narrow
range. So, for these computed α, given an m of the Weibull
distribution, the corresponding lnσg of the matching lognormal
distribution can be computed.

In order to match both distributions, the d0.5[F−1(0.5)] of
both distributions are also equated using Eqs. (4) and (6),
invoking erf−1(0) = 0 in the latter, yielding

dg = δ(ln2)1/m, (9)

or

lndg = lnδ+ ln(ln2)

m
. (10)

One can see that relating the spreads of the distributions
leads to a relation between the shape parameter m and lnσg ,
and that relating the scale parameters yields a relation between
δ and dg , which are linearly proportional.

Using Eqs. (8) and (10), the relative difference of Weibull
and lognormal distributions are evaluated for the α range listed
in Table I, yielding α ≈ 2 as a coefficient that matches both
distributions best (highest R2) over a wide range of m and
lnσg , and which is used henceforth.

In Fig. 1 two lognormal and Weibull distributions are
presented, whereby their parameters are coupled, based on the
equations above. One can see that for the largest m [m = 4

√
2,

corresponding to lnσg = 0.25; see Eq. (8)], indicated by (b),
both distributions are very similar.

Now that both distributions are uniquely related, also the
void fraction of particles with a Weibull distribution can be
assessed using the closed-form expression of the lognormal
distribution [23]:

ϕLN = ϕ1e
−√

2π(1−ϕ1)β ln σg = ϕ1σ
−√

2π (1−ϕ1)β
g . (11)

This equation features that the void fraction becomes the
monosized void fraction ϕ1 for lnσg = 0. The void fraction
of the Weibull distribution follows by combining Eqs. (8) and
(11) and using α = 2, producing

ϕWB = ϕ1e
−2

√
π(1−ϕ1)β/m. (12)

Equation (12) provides the void fraction of a continuous
Weibull distribution, which depends on the void fraction of
the single-sized particles (ϕ1), the distribution shape parameter

012905-2



PACKING FRACTION OF PARTICLES WITH A WEIBULL . . . PHYSICAL REVIEW E 94, 012905 (2016)

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1 10 100

a) Lognormal
a) Weibull
b) Lognormal
b) Weibull

d

F

(a) (b)

FIG. 1. The cumulative finer distribution F of two lognormal
and Weibull distributions as a function of the particle size d: (a)
m = √

2,lnσg = 1,δ = 0.1,lndg = −2.56, and (b) m = 4
√

2,lnσg =
0.25,δ = 10,lndg = 2.24, whereby m and lnσg on the one hand, and
lnδ and lndg on the other, are coupled by Eqs. (8) and (10), respectively
(with α = 2).

m, and the contraction coefficient (β), which are all specified
properties.

The scaling parameter δ does not feature in Eq. (12),
indeed, because its variation only implies that all particles’
sizes are multiplied with the same factor. As void fractions
are determined by relative particle sizes, this does not affect
the void fraction. Equation (12) furthermore indicates that
the void fraction of the system tends to the monosized void
fraction when the shape parameter m tends to infinity, i.e., the
distribution tending to a monosized distribution, as would be
expected (see also Fig. 1).

The void fraction expressions (11) and (12) contain a con-
traction coefficient β. So, besides depending on the monosized
void fraction ϕ1 of the considered particle shape and the
distribution characteristics (lnσg and m), these expressions
also contain this contraction coefficient. This is a physically
defined parameter, likewise the monosized void fraction value
ϕ1. And like the monosized void fraction, β only depends on
the particle shape and the mode of compaction (between loose
and close) only. For spheres, from RLP to RCP, its magnitude
is known [21]. For other particle types, however, information
is scarce. In the next section the magnitude and nature of the
contraction coefficient are therefore analyzed in more detail.

III. CONTRACTION COEFFCIENT

Compared to an arrangement of randomly packed identical
(monosized) particles, a polydisperse disordered packing
features a lower void fraction. For the understanding of the
associated void contraction coefficient β, a consideration of a
binary packing, i.e., consisting of two discretely sized isomor-
phous particle classes, provides fundamental information.

A. Void fraction of binary particle distributions

Binary mixes of similarly shaped particles attain a higher
packing fraction, or lower void fraction, than the monosized
value of large or small constituents individually. For the study
of void change in the case of polydispersity, the binary void

Lc

1h /

1

1
1(1 )

u
u

u 1

u 2

b)(a)(a) (b)

FIG. 2. Void fraction reduction quotient (h/ϕ1) of random close
packing (RCP) of binary spheres (shaded area) as a function of the
large sphere volume fraction cL(0 � cL � 1) and sphere size ratio
u (1 � u < ∞). The boundaries for u → ∞ follow from Eqs. (13)
and (14) with ϕ1 = 0.36 [indicated by (a) and (b), respectively].
The approximation [Eq. (15) with β = 0.20,ϕ1 = 0.36] and the
simulation results of [29] for u = 2 are included as well. For u → ∞
the composition [cL = (1 + ϕ1)−1] and the scaled void fraction
(h/ϕ1 = ϕ1) pertaining to maximum void reduction are indicated.

fraction graph, as first constructed by Furnas [24,25], and
reconstructed in [20], is instrumental. In Fig. 2, as an example,
the void fraction graph of a random close packing (RCP) of
binary spheres is presented as a function of the large sphere
volume fraction cL and size ratio u (ratio of the large and small
sphere diameters).

The figure actually features the binary void fraction h(cL,u),
divided (scaled) by the monosized void fraction ϕ1. This
scaled binary void fraction, h/ϕ1, governs the void fraction
reduction and was instrumental in deriving the void fraction
of discretely distributed particle packings [19,20,23] and
continuous particle size distributions [19,23], and β appears
in closed-form expressions for them. For the shown particular
RCP of spheres it holds that ϕ1 ≈ 0.36 [7,21]. One can see in
Fig. 2 that for size ratio u = 1, the scaled void fraction, h/ϕ1,
is unity in the entire compositional range; i.e., the binary void
fraction corresponds to a monosized void fraction. Also for an
arrangement of small (cL = 0) or large (cL = 1) spheres only,
obviously h/ϕ1 is unity. For 0 < cL < 1 and u > 1, the void
fraction is reduced (packing fraction increased) by combining
the two discretely sized particles, reflected in h/ϕ1 < 1. This
concept and the same binary graphs can also be constructed
for combinations of similar nonspherical particles; u is then
the ratio of a characteristic size of the two similar particles.

In this graph two more situations are included, namely, a
size ratio close to unity and an infinitely large size ratio. Furnas
[24,25] introduced the concept of noninteracting particle
classes, i.e., particle groups where the particles of the larger
size class are much larger than that of the small size class
particles. Hence, by combining two noninteracting size groups,
i.e., for u → ∞, one obtains as resulting void fractions
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[23,26–28],

h(cL,u → ∞) = (1 − cL)ϕ1

1 − cLϕ1
[0 � cL � (1 + ϕ1)−1], (13)

h(cL,u → ∞) = cL − 1+ϕ1

cL

[(1 + ϕ1)−1 � cL � 1]. (14)

Both equations are shown in Fig. 2, using ϕ1 = 0.36;
for convenience Eqs. (13) and (14) are termed (a) and (b),
respectively. The maximum scaled void reduction occurs at
their intersection, composition cL = (1 + ϕ1)−1 ≈ 0.26, and
the maximum scaled reduction then amounts to ϕ1. So,
whereas a monosized packing, composed of small (cL = 0)
or large (cL = 1) particles only, possesses void fraction ϕ1,
this minimum binary void fraction h takes a value of ϕ2

1 .
This particular packing was referred to by Furnas [24,25]
as “saturated.” For all cL and u, the scaled void fraction
is enclosed by Eqs. (13) and (14), and the line h/ϕ1 = 1
(pertaining to u = 1), indicated in Fig. 2 by the shaded
area.

For small u − 1, the binary void fraction can be expressed
as [19,21]

h(cL,u)

= ϕ1[cL(1 − u3) + u3]

cL(1 − u3) + u3 + 4
3β(1 − ϕ1)(1 − cL)cL(u3 − 1)

,

(15)

which for u ↓ 1 further reduces to

h(cL,u ↓ 1) = ϕ1 − 4β(1 − ϕ1)ϕ1(1 − cL)cL(u − 1). (16)

Equation (16) is the first order Taylor expansion of the
packing fraction near u = 1. So β is a scaled proportionality
contraction coefficient, governing the gradient of the binary
void fraction h at a size ratio u of unity (when the packing
is monosized, with void fraction ϕ1) versus the size ratio u.
Positive values of β imply that the void fraction decreases

(packing fraction increases) when some of the particles are
larger (or smaller) relative to the others, so resulting in
a void contraction. For these disordered packings it holds
that, when particles of different sizes are combined, the void
fraction is reduced (positive contraction) [19–23]. For ordered
(crystalline) packings β is negative, featuring a void fraction
increase (packing fraction reduction) when polydispersity is
introduced in these packing types. Also here β is a function of
ϕ1: β = − 3

4ϕ−1
1 [21].

In Fig. 2 the scaled binary void fraction, based on Eq. (15),
for the random close packing of spheres is set out versus the
volume fraction of the large constituent cL for u = 2. For
this particle shape and densification it holds that ϕ1 = 0.36,

β = 0.20 [7,19,21,23]. In [21] this expression was extensively
validated using experimental values, as well as results from
computer generated sphere packings, taken from the literature.
In Fig. 2 more recent simulation results concerning binary RCP
of spheres are included [29]. Again good agreement between
analytical Eq. (15) and the computer generated values can be
observed. Note that the binary void fraction for small u − 1 is
fully characterized by ϕ1 and β, which are only particle shape
and compaction state dependent.

B. Analysis of the contraction coefficient

For the scaled random binary packing, e.g., as depicted
in Fig. 2, by definition the void fraction is located within
the shaded area enclosed by Eqs. (13) and (14) (pertaining to
u → ∞), and the line h/ϕ1 = 1 (pertaining to monosized case,
u = 1), and depends on the composition cL and the size ratio u.
Equations (13) and (14) reveal that maximum void reduction
takes place for u → ∞, at a composition cL = (1 + ϕ1)−1,
which is indicated in the graph, and the scaled void reduction
h/ϕ1 then takes the minimum value ϕ1.

Now, one would tentatively expect that in the entire area
enclosed by Eqs. (13) and (14), and the line h/ϕ1 = 1, hence

TABLE II. (a) Simulated and experimental values for monosized void (packing) fractions ϕ1(f1), and the contraction coefficient β, for
various particle shapes and their mode of packing [19,23]; � is the Wadell sphericity [Eq. (19)]. (b) Simulated values for monosized void
(packing) fractions ϕ1 (f1) and β, for random close packing (RCP) of spherocylinders with different aspect ratios L/d [29]; � is the Wadell
sphericity [Eq. (20)].

Material Packing Shape f1 ϕ1 β f1β/ϕ1

(a) Steel or simulation RCP Spherical 0.638 0.362 0.20 0.352
Sand (OS) RCP � = 0.86 0.624 0.376 0.25 0.415
Sand (MR) RCP � = 0.81 0.574 0.426 0.26 0.350
Quartz RCP Fairly angular 0.503 0.497 0.373 0.378
Feldspar RCP Plate-shaped 0.497 0.503 0.374 0.370
Dolomite RCP Fairly rounded 0.495 0.505 0.347 0.340
Sillimanite RCP Distinctly angular 0.469 0.531 0.395 0.349
Simulation RLP Spherical 0.55 0.45 0.16 0.196
Plastic RLP Cubical 0.567 0.433 0.13 0.175

(b) Simulation RCP L/d = 0,� = 1 0.645 0.355 0.206 0.374
Simulation RCP L/d = 0.1,� = 0.998 0.672 0.328 0.149 0.305
Simulation RCP L/d = 0.35,� = 0.981 0.686 0.314 0.146 0.319
Simulation RCP L/d = 1� = 0.921 0.659 0.341 0.207 0.400
Simulation RCP L/d = 1.5,� = 0.878 0.645 0.355 0.199 0.362
Simulation RCP L/d = 2,� = 0.840 0.630 0.370 0.190 0.324
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also in the vicinity of u = 1, the void reduction scales with ϕ1:

h

ϕ1
= 1 − 4Bϕ1(1 − cL)cL(u − 1), (17)

with B as proportionality constant, which is a more general
contraction coefficient, depending on the state of compaction
only. This ansatz implies that β(1−ϕ1) is linearly dependent
on ϕ1; see Eq. (16):

β(1 − ϕ1) = Bϕ1. (18)

This conjectured relation, following from the foregoing
reasoning, is verified by considering known values of β for a
number of particle shapes and compaction states, in particular
RCP and RLP, of which information on void reduction is
available. From simulations and experiments, for a number of
particle shapes and packing types (random close packing and
random loose packing) values of β can namely be extracted,
summarized in Table II(a).

In Table II(a), β(1−ϕ1) is divided by ϕ1, and for the
randomly close packed particles a relatively constant value
of about 0.36 is obtained, confirming Eq. (18). In order to
obtain β values for more particle types, the binary packing
results of spherocylinders with various L/d ratios (0, 0.1,
0.35, 1, 1.5, and 2) of [29] are analyzed. Their computed
values for L/d = 0 (spheres) were already depicted in Fig. 2.
The resulting (1−ϕ1) and β are included in Table II(b). The
computed monosized packing fractions of the spherocylinders
by [29] are compatible with those reported in [30–33].

For the particles listed in Table I, also the Wadell sphericity
[34] is computed, defined as

� = π1/3(6VP )2/3

AP

. (19)

The sphericity � of a particle is the ratio of the surface area
of a sphere (with the same volume as the given particle) to the
surface area of the particle. For the mentioned spherocylinders
the sphericity follows as

� =
(
1 + 3L

2d

)2/3

(
1 + L

d

) . (20)

The sphericity is highest for L/d = 0 (spheres), for which
� is unity, and it decreases monotonically with increasing
L/d.

In Fig. 3 all values of βRCP(1−ϕRCP
1 ) of Table II, concerning

RCP, are set out versus ϕRCP
1 , including Eq. (18), the best linear

fit yielding BRCP = 0.358 with an R2 of more than 0.99. This
fit not only confirms the conjecture, Eq. (18), this expression
enables the prediction of βRCP when the RCP monosized void
fraction ϕ1 of a particle shape is known. Note that both ϕ1

and β are physically defined properties, properties that depend
on the particle shape and densification only, and which are
uniquely related by Eq. (18). So, likewise the situation for an
infinitely large size ratio, also for small u − 1 it appears that
the scaled void reduction apparently scales with ϕ1 (Fig. 2).
Actually one might expect that for all u and cL the scaled
binary void fraction, that are all captured in the previously
discussed enclosed area in Fig. 2, the void fraction scales
with ϕ1.
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Eq. (18)

Table IIa

Table IIb

RCP
1

RCP RCP
1(1 )

FIG. 3. Values of (1 − ϕRCP
1 )βRCP versus ϕRCP

1 for a number of
particle shapes (Table II), and Eq. (18) with BRCP = 0.358.

The scaled binary void fraction graph of RCP, presented in
Fig. 2, can also be constructed for RLP, and all intermediate
states of compaction (with other values for ϕ1, obviously). The
only requirement is that the binary packing undergoes the same
compaction as the monosized small and large components,
which then each also possess the same ϕ1 (as the particles
are similar). This consideration implies that Eqs. (17) and
(18) should also hold for RLP. For packings other than RCP,
however, fewer packing data, from which the contraction
coefficient can be extracted, are available. Only the binary
RLP of cubes and spheres are known to the author and are
listed in Table II(a). Again it follows that βRLP(1−ϕRLP

1 )/ϕRLP
1

is almost constant; hence these data support the conjecture
that Eq. (18) holds for RLP as well, with an average BRLP =
0.185 [Table II(a)]. Equation (18) with this BRLP enables the
estimation of βRLP when the RLP monosized void (or the
packing fraction) ϕRLP

1 of a given particle shape is known.
The main conclusion of this section is that, by invoking

Eq. (18), the void fractions of the lognormal and Weibull
particle size distributions, viz. Eqs. (11) and (12), can be written
as

ϕLN = ϕ1e
−√

2πϕ1Blnσg = ϕ1σ
−√

2πϕ1B
g , (21)

and

ϕWB = ϕ1e−2
√

πϕ1B/m, (22)

respectively. Whereas contraction coefficient β in Eqs. (11)
and (12), likewise ϕ1, depends on both particle shape (type)
and the compaction state, general contraction coefficient B
depends on the latter only. Its value ranges from 0.185 (RLP)
to 0.358 (RCP). In Eqs. (21) and (22), the effect of particle
shape and densification on void fraction is accounted for by the
monosized void fraction ϕ1. In both equations the monosized
void fraction is found in both coefficients appearing on the
right-hand sides. One can see that for particles with a larger
monosized void fraction, its void reduction by polydispersity
is more pronounced as the second coefficient, the exponential
function, of expressions (21) and (22), will then deviate more
from unity. Applying less compaction to obtain a looser
packing and achieve a larger monosized void fraction is,
however, counterproductive, as then also a smaller B applies.
This effect dominates the product ϕ1B; in the Appendix it is
derived that B is linearly proportional to (1 − ϕ1)/ϕ2

1 .
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FIG. 4. (a) Experimentally measured [35] void fraction of glass
beads and crushed glass particles with various lognormal size dis-
tributions, using tapping and prodding, versus the standard deviation
lnσg . (a) Equation (11) with ϕ1 = 0.395 and β = 0.182 (glass beads),
and (b) Eq. (21) with ϕ1 = 0.505 and B = 0.279 (crushed glass).
(b) Experimentally measured [35] void fraction of glass beads and
crushed glass particles with various Weibull size distributions, using
tapping and prodding, versus the distribution shape parameter m. (a)
Equation (12) with ϕ1 = 0.395 and β = 0.182 (glass beads), and (b)
Eq. (22) with ϕ1 = 0.505 and B = 0.279 (crushed glass).

IV. COMPARISON WITH REPORTED DATA

A thorough verification of Eqs. (11), (12), (21), and
(22), using the empirical data of Suzuki et al. [35], is
presented here. To this end, the β derived in the previous
section is employed. Suzuki et al. [35] presented experimental
measurements of multicomponent randomly packed beds with
a number of distributions, among which are the lognormal
and Weibull distributions. Glass beads (spherical particles)
and crushed glass (irregularly shaped particles) were used for
these experiments.

The measured void fractions of their packings follow-
ing lognormal and Weibull size distributions are shown in
Figs. 4(a) and 4(b), respectively. Their packings were com-
pacted using tapping or prodding, which are indicated in Fig. 4.
For all generated packings, either with glass beads or crushed
glass, and for all lognormal and Weibull distributions, tapping
always leads to a lower void fraction (better compaction)
then for prodding. Figure 4 shows that for the beads the void
fractions obtained with both compaction methods are closest,

so one can conclude that an almost comparable compaction
state was obtained using either method. For the crushed glass,
on the other hand, one can see the difference in void fraction
is more pronounced when tapping or prodding was employed.

From the void fraction values for small lnσg [Fig. 4(a)]
and large m [Fig. 4(b)], one can conclude that the monosized
packing fraction (ϕ1) of the glass beads is 0.395 and for the
crushed glass it amounts to about 0.505. The void fraction
0.395 of the glass beads implies a state of packing between
RLP (ϕRLP

1 ≈ 0.46) and RCP (ϕRCP
1 ≈ 0.36). Particles can be

packed between the loosest and closest states of densification,
which does not only affect the monosized packing fraction,
but also β. In [21] it was derived that for random packing the
following relation between monosized void fraction ϕ1 and
contraction coefficient β holds:

ϕ1β = ϕRLP
1 βRLP = ϕRCP

1 βRCP. (23)

Equation (23) is a unique relationship between the contrac-
tion coefficient pertaining to a particle shape, and the state
of compaction of such particle, where ϕ1 ranges from ϕRCP

1
to ϕRLP

1 when the state of packing ranges from RCP to RLP
[21,23]. Using ϕRCP

1 = 0.36 and βRCP = 0.20 of the spheres,
and ϕ1 = 0.395 for the glass bead packing of [35], Eq. (23)
yields that the pertaining β of the beads packing generated by
[35] takes a value of 0.182.

In Figs. 4(a) and 4(b), Eqs. (11) and (12) are drawn,
respectively, using ϕ1 = 0.395 and β = 0.182, for lnσg � 0
and m � 1, respectively. One can see that for all standard
deviations lnσg and distribution shape parameters m, Eqs. (11)
and (12) are able to well predict the packing density in
the entire lnσg and m ranges considered. To apply these
closed-form expressions, no fitting parameters were needed.
Furthermore, using the analysis of the previous section, the B
pertaining to the state of densification obtained by [35] for the
tapped and prodded beads can be assessed. From Eq. (8), where
β = 0.182 and ϕ1 = 0.395 for their glass bead assemblies, it
follows that B = 0.279, which is a value between BRLP (0.185)
and BRCP (0.358) indeed.

For the crushed glass the measured data can be compared
using Eqs. (21) and (22). We can assert that the state of
packing is similar to that of the beads; both particle types
were compacted in the same way, so that B = 0.279 holds for
beads and crushed glass alike. With this B, and ϕ1 = 0.505
of the crushed glass, in Figs. 4(a) and 4(b), Eqs. (21) and
(22) are drawn, respectively. For the entire range of standard
deviations lnσg and shape parameters m, a fair agreement
between Eqs. (21) and (22) and the empirical data can be
observed.

In the Appendix it is shown that the monosized void
fractions at different states of compaction are mathematically
related by B, which is compaction dependent only. For the
RLP and RCP void fractions of a number of particle types, the
expression is compared with available data using the known
values of BRCP and BRLP, as derived in this paper.

V. CONCLUSIONS

In the present paper the void fraction of equally shaped
polydisperse particles, with monosized void fraction ϕ1 and
having a Weibull (or Rosin-Rammler) size distribution, is
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addressed. As this distribution can be very similar to particles
with a lognormal size distribution, for which a closed-form
expression of the void fraction is known, first the parame-
ters governing both distributions are mathematically related
[Eqs. (8) and (10)]. Whereas the void fraction of the lognormal
(or log-normal) distribution is governed by the standard
deviation lnσg , for the Weibull distribution it is determined
by its distribution shape parameter m. To find a relation
between both distributions, the ratios of the sizes at the 100x-
th percentile and the 100(1−x)-th percentile are matched,
yielding a linear relation [Eq. (8)]. The subsequent coupling
of lnσg and m enables the application of the lognormal void
fraction to Weibull size distributions [37].

The primary factors controlling the Weibull void fraction
are the monosized void fraction ϕ1, the shape parameter m

of the distribution, and the contraction parameter β. This
latter property governs the contraction of disordered packings
when the polydispersity increases. Likewise the unimodal void
fraction, ϕ1, β is a nonadjustable property that is governed by
particle shape and state of compaction only. For a number
of particle shapes and RCP and RLP compaction states, its
value is extracted from computer simulations and experiments
and their values are summarized in Table II. The positive
magnitude of β is a measure for the packing fraction increase
(or void fraction decrease) as the arrangement becomes more
polydisperse, as is the case with the continuous Weibull size
distributions with smaller m, and which was also seen with
lognormal size distributions with increasing lnσg [23].

Subsequently, the β of different particle shapes are an-
alyzed. A consideration of the scaled binary void fraction
(Fig. 2), reflecting the effect of combining binary particles on
void reduction, yields the conjecture that β(1−ϕ1) is linearly
proportional with ϕ1 (Fig. 3). Available data on random close
packing (RCP) of a wide range of particle shapes confirm this
linear relation, and a proportionality constant BRCP = 0.358
is extracted. Also the limited data available from random
loose packings (RLP) confirm the linear relation, for which
it holds that BRLP = 0.185. In other words, a unique algebraic
expression relating β to the monosized void fraction ϕ1 is
established. The analysis yields alternative expressions (17),
(21), and (22), containing the general contraction coefficient B,
which depends on the compaction state only (so not on particle
shape). Its value ranges from approximately 0.185 (RLP) to
0.358 (RCP).

Using the established values of ϕ1 and β for spheres
[19–23], the obtained closed-form expressions for the void
fraction of lognormal and Weibull size distributions are found
to be in good quantitative agreement with experimentally
generated packing data. This comparison concerns a wide
range of standard deviations lnσg and shape parameters m

(Fig. 4). This agreement is achieved by using foreknown
values of ϕ1 and β, without the need of any adjustment.
Also, for irregularly shaped particles, crushed glass, satisfying
agreement is obtained in the entire standard deviation lnσg

and distribution shape parameter m ranges (Fig. 4). For these
particles β was not known a priori. Here, the analysis of Sec. III
is used, yielding B, and subsequently Eqs. (21) and (22) are
applied.

Finally, in the Appendix a unique closed-form relation of
a particle’s monosized void fraction at different compaction

FIG. 5. Void fraction range of monosized particles as a function
of ϕRCP

1 (shaded area). The curve pertaining to the maximum void
fraction, ϕRLP

1 , and the line pertaining to the minimum void fraction,
ϕRCP

1 , are shown using Eq. (A2) with λ = 2 and λ = 1, respectively,
as well as known combinations of ϕRLP

1 and ϕRCP
1 values for a number

of particle shapes.

states [Eq. (A2)] is derived, with B as sole parameter. This
expression is applied to monosized loose and close packing
data of many different particle types, using BRLP = 0.185 and
BRCP = 0.358 [yielding λ ≈ 2, Eq. (A3)], and good agreement
is obtained (Fig. 5).

APPENDIX

Equation (18), which holds for all states of densification
(from RLP to RCP), and Eq. (23) can be combined, yielding
a closed-form relation between ϕ1,ϕ

RCP
1 , or ϕRLP

1 and their
pertaining value of B:

B
(ϕ1)2

(1 − ϕ1)
= BRCP

(
ϕRCP

1

)2

(
1 − ϕRCP

1

) = BRLP

(
ϕRLP

1

)2

(
1 − ϕRLP

1

) . (A1)

So, when the B pertaining to a certain state of compaction
is known, with BRCP = 0.358 (or BRLP = 0.185) and a given
ϕRCP

1 (or ϕRLP
1 ), the ϕ1 pertaining to that compaction state can

be computed. Or alternatively, as was the case in Sec. IV,
with known ϕ1,B

RCP, and ϕRCP
1 of spheres, B pertaining to the

compaction state of this measured ϕ1 was assessed, and this B
was then used for the void fraction computation of the crushed
glass.

Rewriting Eq. (A1) and solving the resulting quadratic
expression yields ϕ1 as a function of ϕRCP

1 :

ϕ1

(
ϕRCP

1 ,λ
)

= ϕRCP
1

⎧⎪⎨
⎪⎩

−λϕRCP
1 +

[(
λϕRCP

1

)2 + 4λ
(
1 − ϕRCP

1

)]1/2

2
(
1 − ϕRCP

1

)
⎫⎪⎬
⎪⎭,

(A2)
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TABLE III. Random close and loose void fractions of five
platonic solids as measured by [36].

Shape ϕRCP
1 ϕRLP

1

Tetrahedron 0.36 0.49
Cube 0.33 0.46
Octahedron 0.36 0.48
Dodecahedron 0.37 0.49
Icosahedron 0.41 0.50

with

λ = BRCP

B
. (A3)

Alternatively, ϕ1 can also be expressed as a function of ϕRLP
1 ,

yielding Eqs. (A2) and (A3) with ϕRCP
1 and BRCP replaced by

ϕRLP
1 and BRLP, respectively.

Values of BRCP and BRLP were derived in the foregoing, so
for RLP and RCP this equation can be validated for particles
with known void fractions at these two packing states. In Fig. 5,
ϕRLP

1 is set out versus ϕRCP
1 , based on Eq. (A2) and using

λ = 2, as BRCP/BRLP ≈ 2 (Sec. III); see Eq. (A3). It is required
that ϕRLP

1 and ϕRCP
1 coincide when ϕRLP

1 and ϕRCP
1 approach

zero and unity, respectively, since 0 � ϕRCP
1 � ϕRLP

1 � 1. This
condition is fulfilled by Eq. (A2) indeed. Furthermore, the
maximum absolute difference between ϕRLP

1 and ϕRCP
1 takes

place at ϕRCP
1 = 0.525 and ϕRLP

1 = 0.643.
In this figure also the known ϕRCP

1 and ϕRLP
1 of spheres

is included [Table II(a)]. In Table III the RLP and RCP void
fractions of the five platonic solids, taken from [36], are listed,
and included in Fig. 5 as well. These authors experimentally
determined the RLP and RCP packing fractions of the
monosized five platonic solids: tetrahedron, cube, octahedron,
dodecahedron, and icosahedron, all having slightly rounded
edges. Table III reveals that the RLP fraction of their rounded
cubes amounts to 0.54, which is compatible with the cubes
packing fraction of 0.567, listed in Table II(a).

Furthermore, for a number of disks, cylinders, and other-
shaped particles, the RLP and RCP void fractions were
measured by [8], depicted in their Figs. 2(a) and 2(b),
respectively, versus the Wadell sphericity. Hence, for each
particle, ϕRLP

1 and ϕRCP
1 can be taken from their Figs. 2(a) and

2(b) [8], respectively, which are summarized in Table IV, and
they are included in Fig. 5 as well.

Comparing Eq. (A2), invoking λ = 2, with the empirical
data which are plotted in Fig. 5 yields that there is reasonable
to good agreement. Furthermore, notwithstanding that the void
fraction of different particle types with identical � may differ

TABLE IV. Measured RCP and RLP void fraction values for
different particle types and their Wadell sphericity values, taken from
Fig. 2 of [8].

Cylinders Disks Other-shaped particles

� ϕRCP
1 ϕRLP

1 � ϕRCP
1 ϕRLP

1 � ϕRCP
1 ϕRLP

1

1 0.356 0.397 0.608 0.329 0.437 0.862 0.336 0.387
0.872 0.298 0.410 0.532 0.365 0.447 0.821 0.329 0.402
0.740 0.364 0.466 0.356 0.442 0.582 0.801 0.342 0.396
0.678 0.390 0.519 0.203 0.531 0.639 0.793 0.329 0.412
0.622 0.418 0.537 0.173 0.567 0.693 0.769 0.376 0.430
0.562 0.485 0.572 0.138 0.597 0.715 0.737 0.355 0.434
0.510 0.564 0.690 0.092 0.616 0.730 0.723 0.355 0.436
0.478 0.655 0.731 0.684 0.345 0.433
0.409 0.766 0.829 0.568 0.404 0.496
0.370 0.858 0.899 0.554 0.349 0.426
0.329 0.903 0.937 0.450 0.597 0.693

0.423 0.477 0.570
0.413 0.697 0.788
0.285 0.575 0.678

(see Fig. 2 in [8] and Table IV), ϕRCP
1 and ϕRLP

1 seem to
obey Eq. (A2). This agreement, in turn, indirectly supports
the validity of underlying Eqs. (18) and (23), and the proposed
values of BRCP and BRLP in Sec. III (leading to their ratio of
approximately 2).

In this Appendix, Eqs. (18) and (23) have been combined
to relate monosized random void fractions to the monosized
void fraction of RCP, resulting in Eq. (A2). This equation
has been drawn for RLP, so λ = 2. For intermediate states of
compaction, for which 1 � λ � 2 as BRLP � B � BRCP [see
Eq. (A3)], Eq. (A2) is located in the shaded area of Fig. 5. The
upper bound is the curve pertaining to the RLP void fraction,
which is the curve drawn using Eq. (A2) with λ = 2. The lower
void fraction bound is the RCP void fraction, which follows
from Eq. (A2) with λ = 1 [so when B equals BRCP, Eq. (A3)],
Eq. (A2) then yields the straight line ϕ1 = ϕRCP

1 .
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