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Theoretical analysis of discreteness-induced transition in autocatalytic reaction dynamics
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Transitions in the qualitative behavior of chemical reaction dynamics with a decrease in molecule number have
attracted much attention. Here, a method based on a Markov process with a tridiagonal transition matrix is applied
to the analysis of this transition in reaction dynamics. The transition to bistability due to the small-number effect
and the mean switching time between the bistable states are analytically calculated in agreement with numerical
simulations. In addition, a novel transition involving the reversal of the chemical reaction flow is found in the
model under an external flow, and also in a three-component model. The generality of this transition and its
correspondence to biological phenomena are also discussed.
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I. INTRODUCTION

Temporal changes in chemical concentrations are often
analyzed by using the rate equation of the reaction kinetics
in which a set of deterministic ordinary differential equations
is adopted. Fluctuation around the average change in the
concentration is neglected by assuming that the total number
of molecules is sufficiently large; however, stochasticity in the
reaction due to fluctuation in the number of reactants does
exist, and it is non-negligible, especially when the number
of molecules is small. Such stochasticity can introduce a
qualitative change in the behavior of the reaction dynamics.
The fluctuation around the average behavior is typically
analyzed using the linear noise approximation (LNA) [1],
which is represented by the Langevin equation with additive
noise or the corresponding Fokker-Planck equation derived
from van Kampen’s system-size expansion [1,2]. Recently,
several theoretical studies have reported “small-number ef-
fects” or “discreteness-induced transitions” that lead to a
qualitative deviation from the behavior expected by the LNA,
due to the small number of components; these effects have
been reported in catalytic reaction dynamics [3–11], reaction-
diffusion systems [12–14], gene regulatory circuits [15], and
ecology [16,17].

One remarkable example of a discreteness-induced transi-
tion, the emergence of multi-stability, was reported by Togashi
and Kaneko [3]. In their investigation of a catalytic chemical
reaction system composed of four chemical species, it was
revealed that when the total number of molecules is small,
the system exhibits temporal switching between quasi-steady
states in which only two chemical species are abundant and
the others are extinct. The model was then simplified into
two components and has been analyzed [4,5,17], but the
small-number regime requires further mathematical analysis.
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In this paper, we apply a method based on a Markov
process with a tridiagonal transition matrix in order to analyze
the small-number effect in chemical reactions, as well as
investigate a novel type of discreteness-induced transition in
chemical current.

The organization of this paper is as follows. In Sec. II,
we demonstrate the validity of the method in an analysis of
the two-component Togashi-Kaneko (2TK) model, and then,
in Sec. III, introduce a three-component model that exhibits
a novel discreteness-induced transition: the current of the
chemical reaction reverses when the total number of molecules
becomes small. By applying both the method proposed here
and the Fokker-Planck equation, the transition caused by
a decrease in the number of molecules is explained with
quantitative agreement with numerical simulations. In Sec. IV,
we show that the two-component Togashi-Kaneko model
under external flow also exhibits the reversal of chemical
current. In Sec. V, we give concluding remarks.

II. ANALYSIS OF TWO-COMPONENT
TOGASHI-KANEKO (2TK) MODEL

The 2TK model [4,17] consists of the following four
chemical reactions involving the two chemicals A and B:

A + B −→
k

2A , A + B −→
k

2B, A
v

�
u

B, (1)

where k, u, and v are the rate constants of the reactions.
Note that the total number of molecules, denoted by N ,
is conserved in this model. Without loss of generality, we
can set k = 1 by rescaling the time scale and set u/k → u

and v/k → v. By denoting the number of molecules of A
and B as i and N − i, respectively, the model can then be
defined in the state space i = 0,1, . . . ,N . The transition rates
from state i to i + 1 and from i to i − 1 are given by λi =
i(N − i)/N + v(N − i) and μi = i(N − i)/N + ui, where
the volume of the system is set to be N . Examples of the time
series of i/N for u = v = 0.01, obtained numerically using
the Gillespie algorithm [18], are shown in Fig. 1(a). Although
the result for large N (N = 2000), shown by the black line,
converges to the fixed-point concentration i/N = v/(u + v)
predicted by the rate equation, switching behavior between
i/N = 0 and i/N = 1 emerges for small N (N = 50), as
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FIG. 1. (Color online) Behavior of the 2TK model. (a) Time
series of the concentration of A molecules for N = 50 (blue line) and
N = 2000 (black line). u is set as u = 0.01. The fixed point predicted
by the rate equation is i/N = 0.5. (b) Steady state distributions
of i/N . The unimodal distribution, the uniform distribution, and
the bimodal distribution indicate the steady state distribution for
N = 2000, 100, and 50, respectively. Dots represent simulation
results and lines indicate analytical results obtained from the previous
studies [4,17]. (c) Dependence of the switching time T0 on N and
(d) that of the scaled switching time uT0 on N . Top to bottom:
u = 0.1, 0.01, and 0.001. The symbols represent simulated results; the
filled symbols denote those for N � 1/u, where switching behavior
appears. For the region with N > 1/u, T0 increases drastically as N

increases, because i/N stays at around 0.5 for the majority of the
time [as shown in (a)] and, accordingly, a significantly longer time
period is required for i/N = 0 or 1 to be realized.

shown by the blue line. Correspondingly, the steady state
distribution of i/N shows a transition from a unimodal
distribution (N = 2000) to a bimodal distribution (N = 50), as
shown in Fig. 1(b). The emergence of this switching behavior
is an example of a discreteness-induced transition [3] or
noise-induced bistability [17]. Previous studies [5,17] give an
analytical calculation of the steady state distribution and the
critical value of N for the appearance of switching behavior
to be Nc � 1/u for the case v = u. It is especially noteworthy
that this model is similar to the two-allele Moran model with
mutation in population genetics; The Moran process describes
the neutral evolution of a population under a fixed population
size; an individual agent is randomly replaced by another
in each generation. The 2TK model is almost equivalent to
the two-allele Moran model with bidirectional mutation. The
difference lies in the use of continuous and discrete time.
Indeed, with a decrease in N , the Moran model is known
to show a transition from a state with two coexisting alleles
to a state with alternate fixation of only one of the two
alleles [19,20]. This corresponds to the switching behavior
of the 2TK model. In addition, both the critical value of N and
the steady-state distribution calculated using the Moran model
coincide with those of the 2TK model [4,17].

Although an analysis based on the Fokker-Planck equation
is often adopted for chemical reaction systems, in general,
it is not applicable when N is small, the case in which we

are interested. When the system in question is described by
a single-variable Markov process with a tridiagonal transition
matrix, one can analytically obtain basic characteristic quan-
tities. To illustrate this point, we estimate the mean switching
time from state i = 0 to state i = N . Similar treatments
have been adopted in population genetics [19], as well as
in physics [1]. Setting i = 0 as the initial condition and
i = N as the final absorbing state, the chemical reaction
system in Eq. (1) is described by the master equation:
Ṗi = λi−1Pi−1 + μi+1Pi+1 − (λi + μi)Pi with the boundary
conditions μ0 = μN = 0 and λN = 0, where Pi represents the
probability of the state i at time t . We consider the occupancy
time tij , that is, the mean time spent in state j starting from
state i before absorption, which is defined by tij ≡ ∫ ∞

0 dtPi .
By integrating the master equation with respect to time t from
t = 0 to ∞, we obtain

tij = μiti−1,j + (1 − μi − λi)ti,j + λiti+1,j + δij , (2)

where δij is the Kronecker delta. Noting that the boundary
conditions are μN = 0 and tN,j = 0 for j = 0, . . . N , the time
t0,j is expressed as

t0,j = 1

λj

N−1∑
l=j

l∏
k=j+1

μk

λk

, (3)

where
∏j

k=j+1(μk/λk) = 1.

The switching time is thus given by T0 = ∑N−1
i=0 t0,i .

Figures 1(c) and 1(d) shows the estimated T0 and those scaled
by u, respectively. Both agree well with the results obtained
from numerical simulations. Note that Biancalani et al. [17]
calculated the mean switching time using the Fokker-Planck
equation for large N and estimated the corresponding value for
small N in a heuristic manner. Our treatment, in contrast, gives
a single expression, Eq. (3), that shows remarkable agreement
for all N . It should be emphasized here that the expressions in
Eqs. (2) and (3) are not limited to this specific model but are
generally applicable to any λi and μi .

III. THREE-COMPONENT MODEL AND REVERSAL
OF CHEMICAL CURRENT

Provided a given chemical reaction system is described
by a single-variable Markov process with a tridiagonal tran-
sition matrix, we can rigorously apply the present analytical
formulation. The present formulation is also applicable to a
multi-variable Markov process as an approximation, if one can
properly project the multi-variable case onto a single variable
Markov process. Now, we demonstrate that this approximation
is indeed valid when the number of molecules is small
and discreteness-induced transition occurs. As examples, we
introduce here a three-component model with autocatalytic
reaction motifs in this section and also a 2TK model under
external flow (i.e., without conservation of N ) in the next
section. In both cases, the chemical current exists due to
breaking of the detailed balance and its reversal occurs as
a novel discreteness-induced transition. On one hand, these
two examples demonstrate the general validity of our method
while, on the other hand, they exhibit novel transitions by the
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FIG. 2. (Color online) Behavior of the three-component model.
(a) Schematic representation of the model. Gray double-headed
arrows represent the autocatalytic reactions, while the black arrows
represent the catalytic reactions (e.g., A + C → B + C). Dashed
arrows indicate the one-body reactions. The net reaction current J

flows clockwise for large N (right) and counterclockwise for small N
(left). (b)–(d) Dependence of J on N for (u,kc) = (0.1,1),(0.01,0.1),
and (0.001,0.01). Simulated results are shown by the black circles;
theoretical estimates of J from Eqs. (11) and (13) are shown by
the thick red and blue lines, respectively; and dashed lines indicate
regions in which the conditions for the theoretical estimates are
invalid. The J values of the fixed-point solutions of the rate equation
are indicated by the arrows. (e) Time series of the total current that
flows clockwise in the three-component model for N = 1,000, 100,
and 10 (from top to bottom), with parameters u = 0.01 and kc = 0.1.
The net current J is given by the slope of this time series. Larger
fluctuation in the slope is observed for smaller N , which indicates
that the net current is reversed in a stochastic manner.

small-number effect, beyond the emergence of the bistability
discussed thus far.

The three-component model, illustrated in Fig. 2(a), in-
volves the following reactions of the three chemical species
A, B, and C in a container with a volume N :

A + B −→
1

2A/2B, B + C −→
1

2B/2C,

A + C −→
1

2A/2C, A −→
u

C, C −→
u

B, B −→
u

A,

A + C −→
kc

B + C, B + A −→
kc

C + A, C + B −→
kc

A + B.

(4)

Let a, b, and c be the number of molecules of A, B, and
C, respectively. The transition rates T(a′,b′,c′ |a,b,c) from state

(a,b,c) to state (a′,b′,c′) are then given as

T(a+1,b−1,c|a,b,c) = ub + ab

N
, T(a−1,b+1,c|a,b,c) = kc

ac

N
+ ab

N
,

T(a+1,b,c−1|a,b,c) = kc

bc

N
+ ac

N
, T(a−1,b,c+1|a,b,c) = ua + ac

N
,

T(a,b+1,c−1|a,b,c) = uc + bc

N
, T(a,b−1,c+1|a,b,c) = kc

ab

N
+ bc

N
.

(5)

Note that N is conserved. The rate equation of this model is
given by

ẋ = u(y − x) + kc(yz − xz),

ẏ = u(z − y) + kc(xz − xy), (6)

ż = u(x − z) + kc(xy − yz),

where x, y, and z are the concentrations of A, B, and
C, respectively. Since the detailed balance condition is not
satisfied, a cyclic molecular current can exist, and we define
the net reaction current J as J = Ja→b + Jb→c + Jc→a . Here,
Ja→b is given by

Ja→b =
∑
a,b

Pst (a,b,c)[T(a−1,b+1,c|a,b,c) − T(a+1,b−1,c|a,b,c)],

(7)

where c = N − a − b, and Pst (a,b,c) is the probability of state
(a,b,c) in the steady state; Jb→c and Jc→a are given in a similar
fashion. The net current J for the rate equation in Eq. (6) is
calculated as J = kc/3 − u, where Pst (a,b,c) is given by the
δ function at the fixed-point solution x = y = z = 1/3.

Although the rate equation (6) predicts a stationary clock-
wise current J > 0 for kc > 3u, the numerical simulation gives
a counterclockwise current J < 0 when the total number of
molecules N is small. As shown in Figs. 2(b)–2(e), the net
current J decreases with decreasing N and becomes negative.
Hence, the small-number effect leads to a reversal of the
net current of the chemical reaction. Fluctuation in the total
current, shown in Fig. 2(e), indicates that the net current
becomes negative in a stochastic manner, which is analogous
to the fact that bimodal steady state distribution induced by
the small-number effect in 2TK model appears in a stochastic
manner. Note that, although J = 0 is satisfied if the detailed
balance condition is satisfied, the opposite is not true; the
detailed balance is not necessarily satisfied at the point J = 0,
because J is defined by the average value for all (a,b,c).
We analyze this transition by using both the Fokker-Planck
equation derived from the master equation for large N and
the proposed method for small N . The master equation of this
model is expressed as

Ṗ (x,y,t) =
∑
x ′,y ′

[T(xy|x ′y ′)P (x ′,y ′,t) − T(x ′y ′ |xy)P (x,y,t)], (8)

where T(xy|x ′y ′) is obtained from Eq. (5) by letting x =
a/N , y = b/N , and z = c/N = 1 − x − y. Using a Kramers-
Moyal expansion to second order, the Fokker-Planck equation
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can be obtained from the master equation as

Ṗ (x,y,t) =
[
− ∂

∂x
Mx − ∂

∂y
My + 1

2

∂2

∂x2
Mxx

+ 1

2

∂2

∂y2
Myy + ∂2

∂x∂y
Mxy

]
P (x,y,t), (9)

where

Mx = (y − x){kc(1 − x − y) + u},
My = (1 − x − 2y){kcx + u},

Mxx = N−1 [(kc(1 − x − y) + u)(x + y) + 2x(1 − x)] ,

Myy = N−1 [(kcx + u)(1 − x) + 2y(1 − y)] ,

Mxy = N−1 [−uy − kcx(1 − x − y) − 2xy] . (10)

Here, the stationary solution of Eq. (9) cannot be obtained
analytically, since the transition rates do not satisfy the
detailed balance condition. As an analytical estimate, we
approximate the stationary solution of Eq. (9) by a Gaussian
distribution of mean (mx,my) and variance-covariance
matrix �, as P0(x,y) ∝ exp[−v�−1v/2], where
v = (x − mx,y − my). Under this approximation, mx , my ,
the variances Vx and Vy , and the covariance Vxy are obtained
as mx = my = 1/3,Vx = Vy = −2Vxy = 2(2 + kc + 3u)/
9(2 + kc + kcN + 3uN ). Note that this Gaussian
approximation is invalid when Vx or Vy are large because
the estimated probability distribution Pst (x,y) then extends
beyond the domain �(x,y|0 � x + y � 1, x � 0,y � 0).
Thus, Vx � m2

x is a necessary condition for the validity of the
Gaussian approximation.

The net current estimated from the Gaussian approximation
is expressed as

J =
∫

�

dxdy [kc{x(1 − x) + y(1 − y) − xy} − u] P0(x,y)

−u

(
1 −

∫
�

dxdyP0(x,y)

)
. (11)

The second term in this equation is a result of replacing the
probability mass of P0(x,y) outside of � with a probability
of states with (x,y) = (1,0), (0,1), or (0,0). Hence a negative
current is predicted, especially when a large amount probabil-
ity mass is outside of the � domain due to a large Vx and Vy .
As shown in Figs. 2(b)–2(d), the current J calculated using
Eq. (11) agrees rather well with the numerical results, as long
as Vx � m2

x holds. As is seen in Figs. 2(b)–2(d), the invalid
region of Eq. (11) also predicts a negative current. This is
attributed to the second term of Eq. (11); the probability mass
of P0(x,y) outside � is regarded as the state (x,y) = (1,0),
(0,1), or (0,0), and thus the current can be negative.

For small N , the variance is much larger, and so the
Fokker-Planck equation is no longer valid. The proposed
method, however, is applicable. In contrast to the case with
the 2TK model, the three-component model has two degrees
of freedom, and thus the relationship in Eq. (2) cannot be
applied straightforwardly. Nevertheless, we can apply Eq. (2)
by focusing only on a relatively short time scale within which
the process can be approximated as a single-variable Markov
process. In the present model, autocatalytic reactions (e.g.,

A + C → 2A/2C) tend to push the system into a state in
which only a single type of molecule dominates, while the
other reactions promote the coexistence of the three molecular
species. Therefore, the model can be regarded as a molecule
(e.g., A or C) extinction process if the autocatalytic reactions
dominate.

Let us assume that only A molecules exist in the initial
condition and that the system transits from (a,b,c) = (N,0,0)
to (a,b,c) = (N − 1,0,1) by the reaction A → C at t = 0. If u

is sufficiently small, one can assume that one-body reactions
(e.g., A → C) do not occur within the time interval 1/Nu but
that a molecule of A or C becomes extinct within the interval.
These assumptions allow us to approximate the behavior of the
model by a single-variable Markov process with the transition
probabilities λi = i(N − i)/N and μi = (1 + kc)i(N − i)/N ,
where i now represents the number of A molecules. In these
equations, both i = 0 and i = N are absorbing states. During
this transition process, any B molecules that are generated
are counted as C molecules. The time tN−1,j spent in state j

before the absorption starting from the initial state i = N − 1
is calculated using Eq. (2) with the boundary condition t0,j =
tN,j = 0;

tN−1,j =
( ∏N−1

k=j+1
μk

λk

)
λj

∑j

l=1

(∏l−1
k=1

μk

λk

)
∑N

l=1

(∏l−1
k=1

μk

λk

) = 1

αλj

1 − α−j

1 − α−N
,

(12)

for kc �= 0, where α = 1 + kc and tN−1,j = (N − j )−1 for
kc = 0. The total numbers of molecules that flow clockwise
and counterclockwise within the interval 1/Nu are then cal-
culated as I+ = ∑N−1

j=1 (1 + kc)j (N − j )tN−1,j /N and I− =
1 + ∑N−1

j=1 j (N − j )tN−1,j /N , respectively. The net current J

is evaluated from u(I+ − I−) as

J = −u +
N−1∑
j=1

ukc

j (N − j )

N
tN−1,j . (13)

This estimate is valid only when the time until absorption,
TN−1 = ∑N−1

j=1 tN−1,j , is smaller than 1/Nu. The current J ,
shown by the blue lines in Figs. 2(b)–2(d), agrees rather well
with the numerical results when TN−1 < 1/Nu holds.

Figure 3 shows phase diagrams of the regime for clockwise
or counterclockwise currents. The phase boundary is calcu-
lated based on J = 0. For small N , it is estimated from the
solution of the equation: 2α1−N + kcN − 2α = 0 [21], while
for large N , the boundary is estimated from Eq. (11) with
J = 0. Both the estimated boundaries agree well with the
simulation. Figures 3(c) and 3(d) clearly shows that the phase
boundary is independent of u provided TN−1 < 1/Nu holds.

Here, we demonstrate that the discreteness in molecular
number can induce a reversal of chemical current. In contrast
to the small-number effect in the steady state distribution [e.g.,
emergence of bistability as shown in Fig. 1(b)], the reversal
of chemical current is a characteristic small-number effect
to a innately non-equilibrium system. This phenomenon can
emerge for a relatively large N , as is seen in Fig. 2(d), which
does not require an absolute small number, such as 0,1 or 2.
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FIG. 3. (Color online) Phase diagrams of the three-component
model in the (a),(b) N -kc plane and (c),(d) N -u plane. White
and shaded regions represent positive and negative J (clockwise
and counterclockwise current), respectively, as determined by the
simulations. Thick red and blue lines indicate the theoretical results
from Eqs. (11) and (13), respectively, while the dotted lines indicate
the results for which the validity condition for the theoretical estimate
is not satisfied.

IV. 2TK MODEL WITH EXTERNAL FLOW

Reversal of flow by smallness in molecule number in
the last section is a novel discovery, but a set of reactions
involved therein may be a bit complicated to be realized. In
this section, we show generality of such discreteness-induced
reversal, by taking a two-component autocatalytic reaction
system under external flow. To be specific, we extend the
2TK model under external flow so that the total number of
molecules is not conserved, to demonstrate both the applica-
bility of our analytic method and generality of the reversal
phenomena.

As shown in Fig. 4(a), this model is composed of two
chemicals, A and B, and the following eight reactions:

A + B −→
k1

2A, A + B −→
k2

2B,

A −→
u2

B, B −→
u1

A,

A −→
do

φ, φ −→
di

A,

B −→
do

φ, φ −→
di

B. (14)

Here the annihilation and creation of A and B in the last two
lines are added to the 2TK model. The master equation of this
model is given by

Ṗn,m = T n+
n−1Pn−1,m − T n+

n Pn,m + T n−
n+1Pn+1,m − T n−

n Pn,m

+T m+
m−1Pn,m−1 − T m+

m Pn,m + T m−
m+1Pn,m+1

−T m−
m Pn,m + T

n+,m−
n−1,m+1Pn−1,m+1 − T n+,m−

n,m Pn,m

+T
n−,m+
n+1,m−1Pn+1,m−1 − T n−,m+

n,m Pn,m, (15)

d
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FIG. 4. (Color online) Behaviors of the 2TK model under ex-
ternal flow. (a) Schematic representation of the 2TK model un-
der external flow. (b) Dependence of current of the chemical
reaction B → A on volume V . Parameters k1 = 1,k2 = 0.99,u1 =
0.001,u2 = 0.005,di = 0.01, and do = 0.01 are used. The black
points represent simulation results, while the thick line shows the
analytical results. With these parameters, the chemical reaction
current J shows a reversal at approximately V = 40.

where the transition rates are given by

T n+
n = diV , T n−

n = don,

T m+
m = diV , T m−

m = dom, (16)

T n+,m−
n,m = u1m + k1

nm

V
, T n−,m+

n,m = u2n + k2
nm

V
.

In this model, V represents the volume of the system. For
infinitely large V , the model is described by the following rate
equations:

ȧ = (k1 − k2)ab + u1b − u2a + di − doa,

ḃ = (k2 − k1)ab − u1b + u2a + di − dob. (17)

The major difference between the 2TK model with and without
external flow is that the former model has a chemical reaction
flow J from A to B as calculated by J = (k1 − k2)a∗b∗ +
u1b

∗ − u∗
2a, in which a∗ and b∗ represent the steady state

solutions of the above equations, while in the 2TK model
without external flow, J is always zero.

Similar to the three-component model that we proposed,
this 2TK model under external flow shows significant deviation
from the chemical reaction current estimated by the rate
equation, when the system size V becomes small. Specifically,
a reversal of the chemical reaction flow is observed for small V ,
when (k1 − k2)a∗b∗ + u1b

∗ − u2a
∗ and (u1b

∗ − u2a
∗) have

different signs. Figure 4(b) shows an example of the reversal
of J against the change in V .

The 2TK model under external flow satisfies neither the
requirement of conservation of the total number of molecules
nor cyclic symmetry, as is the case in the three-component
model. Therefore, it is difficult to describe the chemical
reaction current as a successive fixation of one of the chemical
species, as was accepted for the three-component model
analysis. Here, we apply an alternative approach to mapping
from the two-variable Markov process to a one-variable
Markov process. Recalling that the rate of change in transition
probability following the application of n → n ± 1 [e.g.,
(T n+

n − T n+
n±1)/T n+

n ] is negligible when n is large, we assume
that Pn±1,m ∼ Pn,m for n > m and Pn,m±1 ∼ Pn,m for n � m.
We also assume that d, the reaction rate for φ → A and
φ → B, is sufficiently small. With these assumptions, the
two-variable master equation is reduced to a one-variable
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master equation, such that

Ṗn,m = λn−1Pn−1,m+1 − λnPn,m + μn+1Pn+1,m−1 − μnPn,m,

(18)

where

λn = u1m + k1
nm

V
+ diV

μn,m = u2n + k2
nm

V
+ don

for n � m, (19)

λn = u1m + k1
nm

V
+ dom

μn,m = u2n + k2
nm

V
+ diV

for n > m. (20)

The reduced model given in Eq. (18) indicates that the
total number of molecules is conserved as N = n + m and,
thus, m can be expressed as m = N − n. By Ṗn,m = 0, the
steady state distribution of Pn,m with boundary condition
μ1,N−1P1,N−1 − λ0,NP0,N = 0 is obtained as

Pn,m =
∏n

j=1 λj−1/μj∑N
i=0

∏i
j=1 λj−1/μj

ρ(N ), (21)

where ρ(N ) is the probability of n + m = N . Equation (16)
indicates that the transition probability of N → N + 1 is
2diV and that of N → N − 1 is doN , indicating that ρ(N )
is the Poisson distribution ρ(N ) = e−

N/N !, where 
 =
2diV/do.

The chemical reaction flow J from A to B is calculated
from

J =
∞∑

N=0

N∑
n=0

(
u1

N − n

V
+ k1

n(N − n)

V 2

−u2
n

V
− k2

n(N − n)

V 2

)
Pn,N−n,

and the estimated J is shown in Fig. 4(b). Note, however, that
this approximation is only valid for sufficiently small d.

Here, we have shown that the change in chemical reaction
flow due to the small-number effect generally occurs in
the presence of the reaction A + B → 2A/2B. For some

parameter values, the current of chemical reaction B → A

is even reversed with the decrease in molecule number.

V. DISCUSSION

In this paper, we have investigated small-number effects in
chemical reactions using a method based on a single-variable
Markov process. After analyzing the 2TK model, we have
analyzed the three-component model and a two component
model under external flow in order to demonstrate a novel
type of small-number effect, i.e., the reversal of the reaction
current. This reversal is first reported here and demonstrates a
small-number effect in a non-equilibrium system. The three-
component model here consists of homogeneous cyclic reac-
tions, but extensions to chain-like reactions and systems with
inhomogeneous reaction coefficients [6] are straightforward.
In the case of chain-like reactions, the dominant molecule
in the steady state may change depending on N because the
direction of the reaction current may change. Although the
proposed three-component model includes relatively complex
chemical reactions, the reversal in reaction current is not
specific to this model. Indeed, in Sec. IV, we have shown
that a simple autocatalytic reaction set can also exhibit the
reversal of chemical current.

The emergence of multi-stability induced by the small-
number effect in a real biological system has been found
and has attracted much interest [15,22–24], with most of
the chemical reaction systems examined in those studies
having autocatalytic reactions. As autocatalytic reactions can
potentially show the reversal in chemical current, the reversal
(or, at least, change) in chemical current we proposed here will
be observed in these biological systems also, and provides a
novel mechanism of controlling the reaction process based on
the number of molecules within the system, rather than their
concentration.
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