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Empirical evidence shows that the rate of irregular usage of English verbs exhibits discontinuity as a function
of their frequency: the most frequent verbs tend to be totally irregular. We aim to qualitatively understand the
origin of this feature by studying simple agent-based models of language dynamics, where each agent adopts
an inflectional state for a verb and may change it upon interaction with other agents. At the same time, agents
are replaced at some rate by new agents adopting the regular form. In models with only two inflectional states
(regular and irregular), we observe that either all verbs regularize irrespective of their frequency, or a continuous
transition occurs between a low-frequency state, where the lemma becomes fully regular, and a high-frequency
one, where both forms coexist. Introducing a third (mixed) state, wherein agents may use either form, we find
that a third, qualitatively different behavior may emerge, namely, a discontinuous transition in frequency. We
introduce and solve analytically a very general class of three-state models that allows us to fully understand these
behaviors in a unified framework. Realistic sets of interaction rules, including the well-known naming game (NG)
model, result in a discontinuous transition, in agreement with recent empirical findings. We also point out that
the distinction between speaker and hearer in the interaction has no effect on the collective behavior. The results
for the general three-state model, although discussed in terms of language dynamics, are widely applicable.
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I. INTRODUCTION

Language is structured by rules [1,2]—but linguistic rules
often have exceptions. This fact kindled a longstanding debate
in cognitive science centering on how individual learners ac-
commodate rule sets rife with exceptions (e.g., see Refs. [3,4]).
However, how exceptions arise and evolve over time within a
language system remains a largely open question.

The study of the English past tense is widely used as an
exemplar of the interplay between rules and exceptions [5–8].
A recent study of historical corpus data [9] looks at rules in the
language system rather than individual learners, shedding light
on the relationship between the verb frequency and regularity
(Fig. 1). Each verb in the language can be characterized by I ,
the fraction of irregular past tense tokens over the total number
of tokens in the past tense, and ν, its frequency of usage.
An interesting transition is found in the behavior of I as a
function of ν: regular verbs dominate the low-frequency range,
while most irregular verbs are located at higher frequencies
(see also Refs. [10,11]). For intermediate values of ν fully
regular (I = 0) and fully irregular (I = 1) verbs coexist. Only
a small subset of verbs exhibit both regular and irregular forms
(0 < I < 1) and occur primarily in a rather narrow range of
frequencies between the dominant regular and irregular states.

The work presented in this paper takes a theoretical
approach to the relationship between rules and exceptions
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in a population of interacting speakers. We investigate the
dynamics of a set of very simple agent-based models aimed
at describing the fundamental mechanisms by which rules and
exceptions may be shared or disappear in a population, in the
same spirit of the naming game (NG) [12,13] investigations of
the emergence of shared naming conventions. We consider a
single lemma and examine two-state and three-state models.
In a two-state model, an individual has an internal inflectional
inventory, which can contain either the regular (R) or irregular
(I ) inflection for the lemma. In a three-state model, the
inflectional state can be either R, I , or mixed (M). The
mixed state represents intraspeaker variation [14], where an
individual may accommodate both regular and irregular forms
for a single word [15]. For example, there is evidence that
regular and irregular past-tense verb forms are simultaneously
known and potentially used in seemingly free variation within
a single speaker (e.g., both sneaked and snuck are accept-
able [15]). Agents are endowed at the start of the dynamics
with some inflectional state for the word and engage at rate ν

in pairwise interactions, i.e., one of them utters the verb under
consideration and the other listens to it. During interaction,
the inflectional states of the speaker and hearer change
according to a predefined set of interaction rules. In addition to
interaction events, we implement a replacement mechanism:
at rate r an agent is replaced with a “child” who engages in
overregularization: these “child” agents assume the regular
inflection applies to all words in the vocabulary, representing a
known bias of child learners [16–18]. Replacement represents
turnover in the population: as a child learner enters, an adult
leaves (i.e., is replaced), so that the population size remains
constant.

We first approach some specific models analytically, within
the framework of mean-field theory. This analytical approach

1539-3755/2015/91(1)/012808(12) 012808-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.012808
http://creativecommons.org/licenses/by/3.0/


FRANCESCA COLAIORI et al. PHYSICAL REVIEW E 91, 012808 (2015)

1/
101

I

102 103 104 105 106

0.2

0.4

0.6

0.8

1

0

0 0.5 1

FIG. 1. (Color online) Plot of I , the fraction of times a verb is
used in the irregular past tense form as a function of the inverse of its
frequency of usage ν, for 2840 English verbs in the CoHA corpus for
the decade 1980–1989. The color (shade) of each symbol represents
the average value of I across 16 decades between 1830 and 1989.
(Adapted from Ref. [9].)

allows for quantitative predictions regarding which state a
population of speakers will reach given a particular set of
interaction rules and the type of transition which may occur
depending on the ratio between the frequency and replacement
rates. It turns out that different interaction rules lead to
qualitatively different types of behavior. Two-state models
lead to total regularization or to a continuous transition as a
function of r/ν. Three-state models, on the other hand, have the
potential to exhibit a discontinuous transition with some highly
frequent, mostly irregular words, reminiscent of findings in
empirical data. To understand these variations and understand
their origin, we introduce a very general three-state model,
encompassing all possible sets of interaction rules that do not
favor either the regular or irregular state in their outcome. We
provide a formal solution for any value of the model parameters
and study in detail the conditions under which no transition
(i.e., total regularization) occurs, and the conditions under
which we observe a continuous or discontinuous transition.
Our analysis also shows that assuming asymmetric influence
of the speaker over the hearer in the interaction has no
effect on the collective behavior. The results for this general
model are discussed in terms of language dynamics, but
their applicability is fully general: they give the solution for

any three-state model of population dynamics with unbiased
interaction rules and biased replacement.

II. TWO-STATE MODELS

Let us start by considering two-state models, where each
individual can be found in one of two possible rule states,
regular (R) or irregular (I ). While in this case the two states
represent regular and irregular inflections, this framework can
represent any set of binary options (e.g., the choice between
two possible words to name an object, two alternative opinions
on a given topic, etc.). As a specific example, the Abrams-
Strogatz model [19] used a two-state approach to examine the
dynamics of endangered languages, providing a prime example
of the dynamics of languages in competition more generally.

Using this general two-state model approach, we focus here
on the binary options of regular (R) or irregular (I ) inflection
for a single word, characterized by its frequency of usage, ν.
At each interaction step, two agents are selected at random
(i.e., mixing is homogeneous) and assigned the role of either
speaker or hearer. With probability ν they engage in a pairwise
interaction (i.e., the speaker utters the verb under consideration
to the hearer), which affects their inflectional states according
to specific interaction rules. Then, with probability r , one
individual in the population is replaced with a “child” having
its inflectional state set to R. This part of the dynamics mimics
the turnover of some segment of the adult population into
child learners at rate r , keeping the population size N fixed,
and assuming over-regularization behavior in new learners. In
this way the population replacement is biased toward one of
the two options, in this case, regularity. The quantity 1/r can
be interpreted as the life expectancy of an individual in the
population.

Among the possible two-state interaction rules, we consider
the sets presented in Table I. In the irregular-biased (A) and
regular-biased (B) models, the speaker and the hearer roles are
symmetric; in other words, which agent identifies as speaker
or hearer is irrelevant, but the presence of an I (R) state in the
interaction leads the rules. In A(B) an agent switches to the
I (R) state whenever interacting with a partner in the I (R) state,
regardless of which agent is the speaker and which the hearer.
In these cases the speaker can affect the hearer’s state, and the
hearer can also affect the speaker’s. In the speaker-leads model
(C), the roles are not symmetric: the speaker never changes its
state and the hearer always adopts the state of the speaker.

TABLE I. Interaction rules for the two-state models. The two columns on the left refer to the status of speaker and hearer prior to interaction.
The next three pairs of columns refer to the status of speaker and hearer after the interaction in the three models.

After

Model A: Model B: Model C:
Before irregular-biased regular-biased speaker leads

Speaker Hearer Speaker Hearer Speaker Hearer Speaker Hearer

R R R R R R R R

R I I I R R R R

I R I I R R I I

I I I I I I I I
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The irregular-biased model is perfectly equivalent to one
of the most fundamental models of nonequilibrium statistical
physics: the contact process [20]. The temporal behavior of
this model is easily understood by writing down the mean-field
evolution equation for the density ρI of individuals in the I

state (the density of R individuals, ρR , being trivially 1 − ρI )

ρ̇I = −rρI + 2νρI (1 − ρI ). (1)

Equation (1) is solved straightforwardly and yields, for any
initial configuration ρI (0), ρR(0) = 1 − ρI (0),

ρI (t) = 2/n − 1

2/n + ( 2/n−1
ρI (0) − 2/n

)
e−r(2/n−1)t

, (2)

where n = r/ν.
For long time scales, the system reaches (for any initial

configuration) a stationary state that exhibits a continuous
transition for a critical value nc = 2, between a fully regular
state (ρI = 0) for n > nc, and a state with individuals in both
the R and the I state (ρI > 0):

ρI =
{

0 n � nc

1 − n
2 0 � n < nc.

(3)

The solutions for the regular-biased and speaker-leads models
are obtained from Eq. (2) by simply replacing n → −n

and n → ∞, respectively, and both result in an exponential
relaxation to the stationary fully regular state (ρI = 0) for any
physical value of n. Unlike in case A, in these two cases the
interaction rules are biased in favor of R (case B) or unbiased
(C) and they cannot compensate for the increase in R states
due to replacement, leading to a fully regular absorbing state.

As it will be demonstrated in Sec. IV A, no two-state
model can give rise to a discontinuous transition between
the fully regular state and a state with ρI > 0. Empirical
data, however, exhibit such a discontinuous transition, and
research shows that speakers can accommodate regular and
irregular forms simultaneously [15]. For these reasons, we
now turn our attention to a more complex modeling scheme
that integrates a third, mixed state (M), wherein agents
accommodate either the R or I . We will show that introducing
this psychologically plausible, mixed state, a qualitatively
different behavior appears, namely, a discontinuous transition
in regularity, reminiscent of empirical data.

III. THREE-STATE MODELS

In three-state models there are still only two alternative
inflections that can be applied to a word (R and I ) during an
interaction event, but internally, each individual can be in one
of the three possible states: R (regular), I (irregular), and M

(mixed). In the mixed state the individual can accommodate
both R and I forms; this accounts for agents undecided on
which is the correct form to use, or that consider both the
regular and the irregular form acceptable.

The study of three-state models has a long history in
the investigation of language dynamics (for a review see
Ref. [21]). In particular, Wang and Minett proposed [22,23]
deterministic models for the competition of two languages,
which included a third potential state of bilingual individuals.
Castelló et al. [24] proposed a modified version of the voter

TABLE II. Interaction rules for the three examples of three-state
models. The two columns on the left refer to the status of speaker and
hearer prior to the interaction. The following three pairs of columns
refer to the status of speaker and hearer after the interaction for
the three different rule sets: the naming game (NG), the continuous
transition (CT) model, and the no transition (NT) model. When
two alternative inflections are possible because of a mixed state,
the probability of each of them is 1/2. In the only case with three
alternative outcomes (I,I ) and (R,R) occur each with probability
1/4, while (M,M) occurs probability 1/2.

After

Before Model NG Model CT Model NT

Speaker Hearer Speaker Hearer Speaker Hearer Speaker Hearer

R R R R R R R R

R I R M R M M M

R M R R R M R R

M M

I R I M I M M M

I I I I I I I I

I M I I I M I I

M M

M R M M R R R R

R R I M M M

M I I I I I I I

M M R M M M

M M I I R M I I

R R I M R R

M M

model [25,26] to examine language that included bilingual
individuals, the so-called AB model. Synonymy, the possibility
for having multiple potential names for a single meaning
(much like multiple inflections for a single verb as in the
mixed state) has also been examined in the classic naming
game (NG) model [12,27]. The naming game and its variants
have examined structures of increasing complexity, often
including agents who can have multiple internal states,
from the categorization of colors [28,29] to basic syntactic
structures [30].

We now study the dynamics of three specific examples in
the class of three-state models, with different microscopic rules
leading to qualitatively different behaviors (see Table II). The
first set of rules is known as the naming game.

A. The naming game with biased replacement: A three-state
model with a discontinuous transition

The interaction dynamics of the naming game with three
states are as follows: first, at each time step a speaker and
a hearer are selected at random. With the probability ν they
interact; the speaker conveys to the hearer either the R or
I form depending on his inventory (if in the mixed state he
utters R or I with equal probability). If the hearer’s inventory
contains the inflection used in the utterance, both agents
update their inventories keeping only the form involved in
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the interaction. Otherwise, the hearer adds the form to his
inventory (thus switching to the mixed state). Table II (first
four columns) summarizes these interaction rules. In addition
to these rules, the population turnover is implemented as in
the previous two-state models: at each time step an individual
is selected at random and, with probability r , is replaced by a
new individual in state R.

In a generic three-state model, two densities are needed
to specify the global state of the system. We choose ρI and
ρR , the density of the mixed state being ρM = 1 − ρR − ρI .
The mean-field equations for the naming game with biased
replacement are

ρ̇I = −rρI + ν
(
1 + ρ2

R − 2ρR − ρI

)
(4)

ρ̇R = r(1 − ρR) + ν
(
1 + ρ2

I − 2ρI − ρR

)
.

Notice that the equations for the usual naming game with
three states [12,31] are recovered by setting r = 0 and ν = 1.
Imposing the stationarity condition, after some algebra one
finds that the density of individuals in the irregular state is
given by the fourth order equation

ρI (1 + n)3 = ρ2
I (ρI − 2)2, (5)

where n = r/ν. One solution is, for any n, the trivial value
(ρ(1)

I ,ρ
(1)
R ) = (0,1), corresponding to the fully regular state.

Regarding the three other solutions, since (1 + n)3 is always
larger than 1, it follows that one solution (ρ(4)

I ,ρ
(4)
R ) is always

real but unphysical (being larger than 1), while the two
others are complex for n > (2 3

√
4/3 − 1) ≈ 0.0583. Below

this critical value (corresponding to a saddle-node bifurcation),
these two solutions are real and physical:

ρ
(2)
I = 4

3

[
1 + cos

(
cos−1

[
27
16 (1 + n)3 − 1

]
3

+ 4π

3

)]
, (6)

ρ
(3)
I = 4

3

[
1 + cos

(
cos−1

[
27
16 (1 + n)3 − 1

]
3

+ 2π

3

)]
, (7)

with the stationary value of ρR given by

ρ∗
R = 1 − √

(1 + n)ρ∗
I . (8)

For n = 0 the solutions converge to the values found for
the usual naming game [12,31]: (ρ(2)

I ,ρ
(2)
R ) = (1,0), and

(ρ(3
I ,ρ

(3)
R ) = ((3 − √

5)/2,(3 − √
5)/2).

The physical stationary solutions are represented in Fig. 2
as a function of n. The stability of the generic solution (ρ∗

I ,ρ
∗
R)

as a function of n is investigated by looking at the eigenvalues
and eigenvectors of the stability matrix, defined through the
equations:

d

dt

[
δρI

δρR

]
=

[ −r − ν 2ν(ρ∗
R − 1)

2ν(ρ∗
I − 1) −r − ν

] [
δρI

δρR

]
. (9)

The eigenvalues are given by

λ1,2 = ±2ν
√

(ρ∗
I − 1)(ρ∗

R − 1) − (r + ν). (10)

Figure 3 reports the complete phase flow in the space (ρI ,
ρR) for n = 0 and n = 0.025. For (ρ(1)

I ,ρ
(1)
R ) = (0,1) both

eigenvalues are negative: the fully regular state is always
attractive and stable and for n > (2 3

√
4/3 − 1) ≈ 0.0583 it

is the only physical solution. For n < (2 3
√

4/3 − 1) ≈ 0.0583
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FIG. 2. (Color online) Phase diagram of the NG model as a
function of n = r/ν. The black line indicates the stationary solution
ρ

(1)
I , while green (light gray) and red (dark gray) curves indicate

solutions ρ
(2)
I (stable) and ρ

(3)
I (unstable), respectively. Symbols are

the stationary values of the fraction of irregulars ρI and regulars ρR

from numerical simulations with different initial conditions: from top
to bottom ρI (t = 0) = 0.8, 0.5, and 0.3. The three panels show the
dependence of the stationary state on the initial condition.

the two other physical solutions appear. (ρ(2)
I , ρ

(2)
R ) is always

stable and attractive and, for n > 0, it always corresponds to
states for which ρI + ρR < 1. Let us now focus on the (ρ(3)

I ,
ρ

(3)
R ) solution. This solution corresponds to a saddle point

(the red circles in Fig. 3) since it has one positive and one
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ρ R

ρI

ρ R

ρI

FIG. 3. (Color online) Phase-space (ρI , ρR) for the NG model
with biased population replacement illustrating fixed points, sepa-
ratrix, and phase flows (represented by blue dashed lines) for (left)
n = 0 and (right) n = 0.025. The green squares are the attractive
stable solution (1) and (2), while the red circles are the solution
(3) that correspond to a saddle point with an attractive and a
repulsive direction. Only the fraction of the physical phase space
with ρI + ρR < 1 is represented.

negative eigenvalue. The separatrix in the attractive direction
corresponds to the eigenvector associated to the negative
eigenvalue:

ρR = ρ
(3)
R + m

(
ρI − ρ

(3)
I

)
, (11)

with m =
√

(1 − ρ
(3)
I )/

√
(1 + n)ρ(3)

I (the thick red solid line
in the figure). The other separatrix is locally approximated in
the neighborhood of (ρ(3)

I , ρ
(3)
R ), by

ρR = ρ
(3)
R − m

(
ρI − ρ

(3)
I

)
(12)

(the thin green solid line in the Fig. 3). In Appendix A we
report the explicit expressions for the limit case n = 0, i.e.,
the original naming game. The model exhibits a discontinuous
transition between a phase (high values of n = r/ν) where,
whatever the initial condition, the stationary state is fully
regular and a phase (low values of n) where both the fully
regular state [solution (1)] and a state with a large fraction
of irregulars [solution (2)] are stable. As depicted in Fig. 3,
the initial condition determines which one of the two states is
asymptotically reached. In particular, if the initial condition is
above the separatrix corresponding to the attractive direction
(thick red line) all individuals converge to the fully regular state
[solution (1)]; on the other hand, if the initial condition is below
that separatrix the system converges to the solution (2) where
a fraction ρ

(2)
I (ρ(2)

I = 1 for the case with no replacement,
n = 0) of irregulars coexists dynamically with regular and
mixed individuals. Only initial conditions exactly on the
separatrix (thick red line) lead to convergence to solution (3).
The predictions of the MF theory are confirmed by numerical
simulations of the actual agent-based model (Fig. 2).

In summary, the naming game with biased population
replacement exhibits a discontinuous transition as a function
of n. The discontinuity also implies a dependence of the
final steady state on the initial condition, which provides
a theoretical justification for the observation of a range of
frequencies where both fully regular and mostly irregular

verbs exist (see Fig. 1). For every frequency in this interval,
verbs will converge to the fully regular state (1) or to the
mostly irregular state (2), depending on the initial values of
ρR and ρI . This phenomenology is in agreement the empirical
findings reported in [9] of the existence of a discontinuous
transition between regular and irregular forms as a function of
the frequency of usage.

B. Model CT: A three-state model with a continuous transition

We now consider a model with the interaction rules
presented in Table II, columns CT, which differs from the
NG case essentially because the hearer never discards the
mixed state. The mean-field equations for the evolution of
the densities in this case are written as

ρ̇I = −rρI + ν
{ − ρIρR + 1

2ρR[1 − (ρI + ρR)]

+ 1
2 [1 − (ρI + ρR)]2

}
ρ̇R = r(1 − ρR) + ν

{ − ρIρR + 1
2ρI [1 − (ρI + ρR)]

+ 1
2 [1 − (ρI + ρR)]2

}
. (13)

By imposing the stationarity condition ρ̇I = ρ̇R = 0 and
summing and subtracting the two equations it is possible to
reduce them to

r(1 − y) − ν

2
y(1 − x) = 0

(14)
r(1 − x) + ν

2

(
y2 − 3x + 2

) = 0,

where we have introduced the auxiliary variables x = ρR + ρI

and y = ρR − ρI . From the second equation one obtains x =
(n + 1 + y2/2)/(n + 3/2). Inserting this expression into the
first equation, one is left with a third-order algebraic equation,
which always admits three real solutions. One of them is, for
any n, the fully regular solution (x,y) = (1,1). The two others
are always unphysical (being larger than 1 or smaller than −1)
except for n � nc = (

√
17 − 3)/4 ≈ 0.2807. In such a case

another physical solution appears,

y = 2
√

−Q cos

(
θ + 4π

3

)
, (15)

where Q = [2(n + 1) − (2n + 1)(2n + 3)]/3, R = −n(2n +
3), and θ = cos−1[R/

√
−Q3]. The expressions for ρR and ρI

are obtained from the relations ρR = (x + y)/2 and ρI = (x −
y)/2. The physical stationary solutions are reported in Fig. 4,
along with the results of the numerical simulations of the agent-
based model that well fit the theoretical predictions. The plot
illustrates that the transition occurring at nc = (

√
17 − 3)/4 is

continuous.

C. Model NT: A three-state model without a transition

Let us now focus on another set of rules, reported in Table II,
column NT. Consider the case in which an individual in the
mixed state M is undecided about which one of R and I is
acceptable, and let the interactions between speaker and hearer
be symmetric. When an individual in a state I interacts with
one in a state R both become confused on which form is
right and therefore both switch to M . When an individual in
a state M interacts with one in a state I or R, the outcome of
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FIG. 4. (Color online) Stationary value of the fraction of irreg-
ulars ρI , regulars ρR , and mixed ρM , as a function of n, for the
rules of model CT. Results of numerical simulations (symbols) are
compared with the analytical predictions (solid lines). The rounding
of the transition in simulation results is due to finite-size effects.

the interaction depends on which form the individual in the
mixed state uses: if it is the same one used by his partner (with
probability 1/2) then nothing changes, if it is the alternative
one (with probability 1/2) then the partner becomes confused
and also switches to the mixed state M . Interactions among
individuals both in the same state I or R do not produce any
change. The outcome of an interaction among two individuals
in a state M depends on which form they use: if they both
use the regular inflection (with probability 1/4) they both
switch to status R, if they both use the irregular inflection
(probability 1/4) they both switch to status I , if they use
different inflections (probability 1/2) they both remain in
the mixed state M , coherently with the rules regulating the
outcomes of the previous interactions.

It is easily seen that under this rule set the system converges
to the fully regular state for any value of the ratio r/ν. The MF
equations are

ρ̇I = −rρI + ν
{ − 2ρIρR + 1

2 [1 − (ρI + ρR)]2
}

(16)
ρ̇R = r(1 − ρR) + ν

{ − 2ρIρR + 1
2 [1 − (ρI + ρR)]2

}
.

Summing and subtracting the first equation from the second,
one obtains

ẏ/ν = n(1 − y)
(17)

ẋ/ν = n(1 − x) − 2x + y2 + 1,

which shows that, for n > 0, the fully regular state ρR = 1,
ρI = 0 is the only possible stationary state. The conclusion is
that, for any value of ν (and n > 0), this set of rules always
leads to a completely regular state for all individuals.

Unlike the previous models this one is discontinuous in the
limit n → 0: the model with replacement does not converge
in the limit of vanishing replacement to the model with n = 0.
It is easy to see that in the case n = 0 from Eq. (17) ẏ ≡ 0;
therefore, the unbalance y0 between ρI and ρR present in
the initial condition is preserved during the dynamics, while
x converges to (1 + y0)/2. Therefore, the stationary state is
continuously dependent on the initial condition, and given
by ρR = (1 + y0)2/4, ρI = (1 − y0)2/4, which gives the fully

regular solution only as long as the system is initiated in the
fully regular state.

To conclude this section, we observe that in three-state
models different microscopic interaction rules give rise to
qualitatively different behaviors. In the next section we present
a general approach to the modeling schemes presented so far,
clarifying why they give rise to different phenomenologies.

IV. GENERAL THEORY

In this section we present a very general three-state model
that provides a unified framework for generic sets of interaction
rules, and we solve it analytically within the mean-field
approximation. This framework allows us to comprehend the
origin of the different behaviors found in the specific models
investigated in the previous sections, providing a complete
understanding of the global phenomenology of three-state
models. We start by considering a general two-state model first,
as this elucidates why the more complex three-state model is
needed and how it behaves. We then consider a very general
three-state model, encompassing all models considered before
as particular cases. This approach will clarify a number of
general points. In particular, it will show how the nature of
the transition for both two and three-state models depends on
the microscopic rules and clarify the role of asymmetries in
the behavior of the speaker and hearer in the communication
process.

A. General two-state model

Each individual is either in state R or I . At rate r each
individual is replaced by one in state R. At rate ν an interaction
occurs among two randomly selected individuals, the speaker
and the hearer. We indicate the state of the pair of individuals in
interaction as (X,Y ), where X is the state of the speaker and Y

of the hearer. As reasonable, we assume that nothing happens if
the two individuals are in the same state [(R,R) → (R,R), (I,I )
→ (I,I )]. We first consider the case of deterministic rules, i.e.,
the state at the end of the interaction is fully determined by
the initial state. Starting with the state (R,I ) we parametrize
the interaction rule by means of the coefficient γRI , which
gives the variation in the number of individuals in state I.
For example, for the interaction [(R,I ) → (R,R)] γRI = −1,
while for [(R,I ) → (I,I )] γRI = 1. Analogously, when the
initial state is (I,R) the rule is parametrized by γIR .

The mean-field equation for this process is simply

ρ̇I = −rρI + ν(γRI + γIR)ρI (1 − ρI ). (18)

Obviously, ρR = 1 − ρI . It follows immediately from Eq. (18)
that assuming distinct asymmetric roles between speaker and
hearer has no effect whatsoever on the collective behavior,
since only the cumulative coefficient γ = γRI + γIR enters
the equation. The distinction between hearer and speaker is
therefore irrelevant and any model defined by an asymmetric
set of rules behaves exactly as its symmetrized version. This
observation allows us to specify any two-state model by means
of just one parameter, γ , with values between −2 and 2.

The general solution of Eq. (18) is obtained by replacing n

with 2n/γ in Eqs. (2) and (3). The sign of γ determines the
nature of the transition: for γ > 0 (rules biased in favor of I )
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there exists a continuous transition with nc = γ , while for γ �
0 (rules unbiased or biased against I ) there is no transition, and
the fully regular state is the only stationary solution. Therefore,
we conclude in general that the system is driven toward a fully
regular state unless a bias in the interactions compensates for
the increase in the R population due to replacement.

In the most general case, the outcome of each interaction is
decided probabilistically. In this case, γIR and γRI are defined
as the average increase in I states in the interaction, each of
them assuming any real value in [−1,1]. Correspondingly, γ

can assume any real value in [−2,2]. It is immediate to realize
that the dynamics is again described by Eq. (18) and all the
above conclusions hold.

B. General three-state model

As demonstrated explicitly in the case of two-state models,
asymmetric interaction rules (such as those in Table II) produce
exactly the same behavior as their symmetrized version also
in three-state models. It is therefore possible to express
all possible interaction rules among individuals in a way
analogous of what we have done for the two-state case. Let us
define γi , φi , and δi as the average variation in the number
of individuals in state I , R, or M , respectively, occurring
when an interaction of type i takes place. We will denote
with i = 1 the interactions with initial state (I,R) and (R,I ),
i = 2 for (R,M) and (M,R), i = 3 for (I,M) and (M,I ), and
i = 4 for (M,M). As above, we are assuming that no change
occurs when two individuals in state R (or two individual
in state I ) interact. The interaction is instead nontrivial in
the case (M,M). Conservation of the number of individuals
implies γi + φi + δi = 0, for any i = 1,2,3,4, which reduces
the number of independent parameters from 12 to 8. Notice
that these quantities may be noninteger when we allow for
different possible final states from a given initial state (each
with a given probability).

With this parametrization of the dynamical rules we can
write the rate equations for the evolution of the system in the
most general case:

ρ̇I /ν = −nρI + {2γ1ρIρR + 2γ2ρR[1 − (ρI + ρR)]

+ 2γ3ρI [1 − (ρI + ρR)] + γ4[1 − (ρI + ρR)]2}
ρ̇R/ν = n(1 − ρR) + {2φ1ρIρR + 2φ2ρR[1 − (ρI + ρR)]

+ 2φ3ρI [1 − (ρI + ρR)] + φ4[1 − (ρI + ρR)]2},
(19)

where n = r/ν is the rate of the replacement process relative
to the frequency of interaction.

We now focus on the case of unbiased interactions that do
not favor either the regular or the irregular form of the verb.
In other words, the interaction rules are perfectly symmetric
under the exchange between R and I ; the only mechanism that
breaks the symmetry between the regular and the irregular form
is replacement, which favors the diffusion of the former. This
choice is based on the observation that, while in the two-state
case unbiased interaction rules always drive the system toward
the fully regular state, the existence of a mixed state allows the
survival of the irregular form even for some R-I symmetric
interactions. This can be deduced from the three models

presented in the previous section, which all have unbiased
rules yet exhibit three qualitatively different behaviors. Hence
symmetric interaction rules are general enough to lead to
continuous or discontinuous transitions or to the absence of
any transition.

The assumption of unbiased interaction implies the follow-
ing additional relations among the parameters:

φ1 = γ1, φ2 = γ3, φ3 = γ2, φ4 = γ4 , (20)

thus reducing the number of free parameters to 4 (we choose
to use the four γi). The values of these parameters are not
arbitrary. An (R,I ) interaction cannot produce an increase
in the number of individuals in the I state, since the same
change must occur also for individuals in the R state, since
γ1 = φ1; hence, γ1 � 0. In the same interaction the number
of irregulars cannot decrease by more than 1; −1 � γ1. With
similar considerations it is not difficult to verify that the γi

parameters are bounded as follows:

−1 �γ1 � 0, 0 �γ2 � 2, − 1 �γ3 � 1, 0 �γ4 � 1. (21)

Introducing the relation Eqs. (20) in Eqs. (19) it is possible
to write Eqs. (19) in a particularly simple form by defining
the auxiliary quantities x = ρR + ρI and y = ρR − ρI , which
represent the fraction of individuals in an unmixed state,
and the excess fraction of R states with respect to I states,
respectively:

ẋ/ν = ax2 + cy2 + 2dx + f
(22)

ẏ/ν = (2(γ3 − γ2) − n)y − 2(γ3 − γ2)xy + n,

where

a = γ1 − 2(γ2 + γ3) + 2γ4 c = −γ1

d = (γ2 + γ3) − 2γ4 − n/2 f = 2γ4 + n.
(23)

Physically sensible solutions must be in the range 0 � x � 1
and −x � y � x. Notice that c � 0, f � 0, while the sign of
a and d may vary and the coefficients are related by

a + c + 2d + f = 0 . (24)

Equation (24) implies that, for any choice of the parameters,
(x,y) = (1,1) [which corresponds to the fully regular state
(ρR = 1,ρI = 0)] is always a stationary solution of Eq. (22).
By imposing stationarity in Eqs. (22), other stationary solu-
tions can be determined. For specific values of the parameters
γi it is always straightforward to solve analytically for the
stationary solutions of Eqs. (22) (which boils down to the
solution of a third-order algebraic equation) and study their
behavior as a function of n.

In the following we derive instead in full generality
conditions on the parameters γi for the existence, as a function
of n, of a continuous transition, a discontinuous one or no
transition at all.

1. Case γ3 = γ2: No transition

Let us first consider the special class of models with γ3 =
γ2. In this case the second of Eqs. (22) trivially yields at
stationarity y = 1, giving the two solutions (x1,y1) = (1,1)
and (x2,y2) = [−(2d + a)/a,1]. The second solution is always
unphysical. Indeed, from Eq. (24) it follows that −(2d + a) >

0. Hence, x2 is smaller than 0 if a < 0. On the other hand,
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TABLE III. The table summarizes the values of the set of γi

parameters for the three models studied in the previous section.

Model NT Model CT Model NG

γ1 −1 −1/2, −1/2
γ2 0 1/4 0
γ3 0 0 1/2
γ4 1/2 1/2 1

for γ3 = γ2 the value of γ3 + γ2 is always positive, since γ2 �
0. This implies −(2d + a) > a so that x2 > 1 if a > 0. We
conclude that when γ3 = γ2 the only possible stationary state
is the fully regular one: no transition may occur. As shown
in Table III the NT model considered in the previous section
falls in this class of models, featuring γ2 = γ3 = 0. We will
see below that also the degenerate case γ1 = 0 implies no
transition, irrespective of the value of the other parameters.

2. Case γ3 �= γ2: Existence of a transition

Assuming now γ3 �= γ2, and imposing stationarity in
Eq. (22), we get

ax2 + cy2 + 2dx + f = 0[C1]
(25)

y[x − (1 − ε)] = ε[C2],

where ε = n/[2(γ3 − γ2)]. The solutions of Eq. (25) are given
by the intersections between two conic sections C1 and C2.
C2 is a hyperbola with asymptotes y = 0, and x = 1 − ε.
Depending on the sign of ε, the two branches of the hyperbola
lie in different quadrants with respect to the asymptotes (see
Fig. 5). In the limit ε → 0, which corresponds to the case
with no replacement, the hyperbola degenerates into the pair
of asymptotes, y = 0 and x = 1. The conic section C1 is an
ellipse for a > 0 and an hyperbola for a < 0, turning into
a parabola for a = 0, with axes in all cases parallel to the
Cartesian coordinate system. The intersections of C1 with the
y = 0 axis are, for a �= 0,

x1 = −d − �

a
, x2 = −d + �

a
, (26)

where � =
√

d2 − af =
√

(d + f )2 + cf > 0. It is not dif-
ficult to show that x1 is always physical (between 0 and
1) while x2 is always unphysical (see Appendix B). In
particular, x2 > 1 if a > 0 and x2 < 0 if a < 0. In the limit
a → 0, x1 → −f/(2d) (which is the intersection point for
the parabolic case a = 0) while x2 → ±∞, depending on the
sign of a. Hence, despite the change in the global behavior
for different values of a, C1 has always a similar shape in the
region of physical interest 0 � x � 1: it crosses the y = 0 axis
for x = x1 and is concave toward the right, passing through the
two points (x,y) = (1,1) and (x,y) = (1, − 1) for any value
of the parameters. Notice that also C2 always goes through the
point (x,y) = (1,1), so that the fully regular state is always a
stationary solution.

We now investigate in full generality the possible existence
of other stationary solutions, i.e., other intersections in the
physical region. Only the case c = 0 (γ1 = 0) needs to be
treated separately, because the conic section C1 degenerates

0 0.5 1 1.5 2x
-2

-1

0

1

2

y

C1   n < nc
C1   n > nc
C2   n < nc
C2   n > nc

0 0.5 1 1.5 2x
-2

-1

0

1

2

y

C1   n < nc
C1   n > nc
C2   n < nc
C2   n > nc

FIG. 5. (Color online) Plot of the two conic sections C1 and C2 for
γ3 > γ2 (top) and for γ3 < γ2 (bottom), illustrating the intersections
above [red (gray) curves] and below (black curves) the critical nc.
The triangle is the region of physical interest. The circles denote the
intersections other than the fully regular solution.

into a pair of lines: (x − 1)[x + (2d + a)/a] = 0, one (x = 1)
on the boundary of the physical region, the other outside it. The
fully regular solution (x,y) = (1,1) is then the only stationary
state, and there is no transition. We will assume c �= 0 in what
follows.

γ3 > γ2: Discontinuous transition. For γ3 > γ2 (ε > 0),
the hyperbolaC2 lies in the upper-right and lower-left quadrants
with respect to the asymptotes (see Fig. 5). Notice that the ver-
tical asymptote is always at x < 1. Apart from the fully regular
solution, one intersection occurs always for x < 0 or x > 1 and
is thus unphysical. Two other intersections may instead occur
between C1 and the lower-left branch of C2. For large n these
intersections do not exist as it can be recognized by observing
that for ε > 1 the lower branch of C2 has x < 0 while C1

has x > x1 > 0. However, when n → 0, C2 shrinks toward its
asymptotes x = 1 − ε and y = 0, while C1 does not change
much. At some critical value n = nc, C2 starts intersecting C1,
so that for n < nc there are two intersections (see Fig. 5), both
in the physical region because the derivative of C1 for x = 1 is
−[1 + (d + f )/c] < −1. In this case the system undergoes a
discontinuous transition at nc. Notice when these two solutions
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exist they are in the region y � 0, implying that ρI � ρR , i.e.,
the fraction of individuals in the I state is larger than the
fraction of those in the R state. As indicated in Table III, the
model NG, which features γ3 − γ2 = 1/2, belong to this class
and this explains why it undergoes a discontinuous transition.

γ3 < γ2: Continuous transition. For γ3 < γ2 (ε < 0), the
hyperbola C2 lies in the upper-left and lower-right quadrants
(see Fig. 5). The lower branch has x > 1 − ε > 1 and hence
is unphysical. Therefore, at most two of the four solutions (the
intersections of the upper branch with C1) are physical. One of
them is the fully regular state. To investigate the location of the
other intersection one can compare the slope of the two conic
sections for x = 1. If the slope of C1 is larger than the slope of
C2 (which happens for large n) the second intersection occurs
for x > 1, it is unphysical and as a consequence the fully
regular state is the only stationary solution. If n is reduced, the
slope of C1 at x = 1 decreases while the slope of C2 grows. At
a critical value nc the two slopes are equal and for n < nc the
second intersection becomes physical (x < 1). We conclude
therefore that the system undergoes a continuous transition
between a fully regular state and a state with coexisting regular
and irregular individuals. Notice that in this case, since the
physical intersections have y � 0, necessarily ρI � ρR . The

value of nc is easily determined by the condition that the two
slopes are equal and turns out to be

nc = (γ1−γ2−γ3)±
√

(γ1−γ2−γ3)2 + 4γ1(γ3 − γ2), (27)

which has always one positive value (the other being always
negative), coherently with the fact that there is always a
transition. Remarkably, the value of nc does not depend at
all on the coefficient γ4, regulating the M-M interaction.
The model CT in the previous section has γ3 = 0, γ2 = 1/4,
and γ1 = −1/2 (see Table III). These values explain why it
undergoes a continuous transition at nc = (

√
17 − 3)/4.

3. Stability analysis

So far we have shown that below some critical value of n

additional stationary solutions appear, beyond the fully regular
solution. To complete the demonstration of the existence of
phase transitions we must analyze their stability.

By linearizing Eqs. (22) around the solution (x∗,y∗), one
gets

1

2ν

d

dt

[
δx

δy

]
=

[
ax∗ + d cy∗

−(γ3 − γ2)y∗ (γ3 − γ2)(1 − x∗) − n
2

][
δx

δy

]
.

(28)
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FIG. 6. (Color online) Phase flow in the (x,y) space for discontinuous (top) and continuous (bottom) transition both below (left) and above
(right) the transition. The triangle is the region of physical interest. The thick curves are C1 (solid) and C2 (dashed). Symbols indicate stationary
solutions. The red circles are saddle points with an attractive and a repulsive direction. The squares are attractive stable solutions. Thin solid
lines are flow lines converging to the stable solution denoted by symbols with the same color (shade).
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For the fully regular state (x∗,y∗) = (1,1) the eigenvalues of
the stability matrix M can be evaluated explicitly yielding

λ1,2 = [tr(M) ±
√

�1]/2, (29)

where the trace of the matrix is tr(M) = γ1 − γ2 − γ3 − n and
�1 = (γ1 + γ2 + γ3)2 − 8γ1γ2 � 0. Notice that �1 is inde-
pendent of n and positive, implying that the two eigenvalues
are always real.

In the case γ3 > γ2, both eigenvalues are negative, as can be
deduced by considering that tr(M) (the sum of the eigenvalues)
is always negative (being the sum of four negative terms)
and det(M) = n2/4 − n(γ1 − γ2 − γ3)/2 − γ1(γ3 − γ2) (the
product of the eigenvalues) is always positive for n > 0. This
last condition can be understood by considering that det(M)
is a parabola with upward concavity and zeros for negative
values of n [given by Eq. (27)]. Hence, the fully regular state
is always stable. For small n, the two other solutions appearing
in the physical region are a saddle and a stable fixed point [see
Fig. 6]: a discontinuous transition occurs.

In the case γ3 < γ2, corresponding to a continuous tran-
sition, det(M) is positive for large n, but it changes sign for
n < nc [where nc is the only positive determination of Eq. (27)]
thus implying that one of the eigenvalues becomes positive.
Hence, below the transition the fully regular state corresponds
to a saddle, while the other solution appearing in the physical
region is stable [see Fig. 6].

Finally, we remark that the parameters corresponding to
the naming game, considered in the previous section as
an example of models with discontinuous transition, give
�1 = 0, corresponding to two degenerate eigenvalues, and
only one eigenvector. In this case the fully regular state is
stable but defective: in principle arbitrarily small changes of
the parameters may result in a standard stable fixed point if
�1 > 0, or in a stable spiral when �1 < 0. This last case would
change the physical picture, because spiralling trajectories
would cross the boundary of the physical domain before
reaching the fixed point, and therefore the physical system
would be driven toward the boundary of the physical region
without reaching the fixed point. However, this possibility is
ruled out by the condition �1 � 0, which holds for physically
sensible values of the parameters γi .

4. Wrap-up of the theory for the general model

The conclusions that follow from the theory presented in
this section are very general and simple. The existence and the
nature of a transition depends only on the sign of γ3 − γ2. If
γ3 > γ2, as the frequency increases a discontinuous transition
occurs between a fully regular state and a state with coexistence
of fully regular and mostly irregular inflections. If γ3 < γ2, the
transition is instead continuous. If γ3 = γ2, no transition occurs
and the system always reaches a fully regular state.

It is important to notice that the condition γ3 > γ2 has a very
natural interpretation in the context of language dynamics.
It simply means that (recalling that γ2 = φ3) an interaction
between an individual in state M and one in state I will
produce an increment in the use of the irregular inflection
larger than the increment in the use of the regular inflection.
The fact that this asymmetry alone is sufficient to give rise to a

discontinuous transition is a strong indication of the relevance
of these theoretical modeling efforts for the interpretation of
empirical data.

V. CONCLUSIONS

This work has presented an investigation of agent-based
models aimed at understanding the processes regulating the
interplay between rules and exceptions in language dynamics.
In particular, the models aim to investigate the observed
behavior of verbs in natural language. Corpus data from natural
language points to the existence of a discontinuous transition
as a function of the frequency of usage: high-frequency items
are highly irregular and low-frequency ones are regular, while
in an intermediate frequency range coexistence between the
two behaviors is observed.

In the minimal models considered each agent is endowed
with an inventory, containing the possible inflections (regular
or irregular) of a lemma. Two processes have the potential
to change agents’ inventories over time: interaction and
replacement. In interaction, individuals influence each other,
adding or deleting forms from their inventories according
to a specific set of interaction rules. In replacement events,
agents are substituted by new “child” individuals, who are
automatically biased toward the regular form by being “born”
with a regular inventory.

We analyze two classes of models. In the first one each
individual may store in the inventory only one of the two
competing inflections, either the regular or the irregular one.
Three-state models instead integrate a mixed state, which
represents an individual who finds both the regular and
irregular forms acceptable. We solve these models analytically
within the mean-field framework and confirm the results by
means of numerical simulations. We first focus on a few
specific models, including the naming game for language
dynamics. The analysis reveals that the the global phenomenol-
ogy changes qualitatively depending on the interaction rules:
one can observe the absence of a transition with a move to
total regularity, a continuous transition, or a discontinuous
one. We then consider a very general three-state model,
encompassing all previous examples as special cases, which
allows the description of the previous models with a set of four
minimal parameters describing the interaction rules. From this
comprehensive approach several results follow:

(i) Asymmetries in the influence of the speaker and of the
hearer in interaction do not play any role in the collective
behavior of the system.

(ii) In two-state models the fully regular state is the only
attractor unless the interaction rules are biased in favor of
the irregular inflection; the three-state models have instead
nontrivial behavior even when the rules are unbiased;

(iii) Allowing for a third state is crucial for the appearance
of a discontinuous transition that cannot arise in two-state
versions of the model.

(iv) In three-state models the quantity γ3 − γ2 rules the
macroscopic behavior by changing the nature of the transition:
when γ3 > γ2, a discontinuous transition is observed to a
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state where irregular inflection is prevalent (ρI > ρR); in
the opposite case, when γ3 > γ2 a continuous transition is
observed, to a state with 0 < ρR < ρI ; in the case γ3 = γ2

there is no transition and the fully regular state is reached for
any frequency.

(v) In the case γ3 > γ2, above the discontinuous transition
the steady state depends on the initial condition: verbs with the
same frequency can end up as fully regular or mostly irregular,
similarly to what is observed in empirical data.

(vi) In the context of language dynamics, the condition
γ3 > γ2 is satisfied by sets of more plausible rules, so that a
discontinuous transition is to be expected.

This model provides a framework that could potentially be
used to consider additional, more complex aspects of rule
dynamics in language. In particular, empirical data shows
that the growth of language contributes to the expansion of
regularity [9], since a core aspect of a linguistic rule’s utility
is that it can be generatively applied to new forms (e.g., the
past tense of the neologism selfie is uncontroversially selfied).
Our model considers a word’s frequency to be static over
time; however, natural languages are living, and populations,
vocabulary sizes, and turnover rates are not static. Furthermore,
there are other cognitive mechanisms beyond child learner
biases that may contribute to regularity dynamics. General
memory constraints may contribute to the persistence of highly
frequent irregular forms [32], and adult learners may possess
qualitatively different regularization biases from children [33].
Moreover, the use of a disordered topology for the pattern of
interaction, as opposed to the homogeneous mixing assumed
by the MF approach, combined with the interaction among
the different lemmas in the agents’ inventories may lead to
different patterns of regularization in frequency. Future models
might also consider another key aspect in the persistence of
irregularity: the notion that irregular forms are not always
exceptions, but sometimes constitute subrules [34] (e.g., foot-
feet/goose-geese, sing-sang/ring-rang). Our model provides
a basic starting point from which to consider the complex
dynamics underlying temporal trends of the rules that form
the core of language.

Finally, it is very important to stress that while models
and results are presented in this paper in terms of linguistic
rule dynamics, they are fully general and apply to any system
where individuals have three possible internal states and
the population exhibits turnover. The results presented in
this paper, and in particular the conditions determining the
existence of a transition and its nature, may have strong
implications not only for linguistic rules, but also for all those
systems.
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APPENDIX A

In this appendix we report the stability analysis for the
naming game without biased replacement, i.e., with n = 0 as
discussed in Sec. III A. For the case n = 0 the stability matrix
is given by

d

dt

[
δρI

δρR

]
=

[ −1 2(ρR − 1)
2(ρI − 1) −1

] [
δρI

δρR

]
, (A1)

whose eigenvalues are

λ1,2 = ±√
4(ρ∗

I − 1)(ρ∗
R − 1) − 1, (A2)

where, as before, (ρ∗
I , ρ∗

R) indicates the generic stationary
solution. For (ρ(1)

I , ρ
(1)
R ) and (ρ(2)

I , ρ
(2)
R ) both eigenvalues are

negative and the solutions are both stable. For (ρ(3)
I 	 0.382,

ρ
(3)
R 	 0.382) the eigenvalues are one positive (λ1 = 2.236)

and one negative (λ2 = −4.236) and this corresponds to a
saddle point with an attractive and a repulsive direction. The
separatrix in Fig. 3 (left) in the attractive direction corresponds
to the eigenvector associated to the negative eigenvalue:
ρR = ρI (the red line in figure). The other separatrix is
locally approximated in the neighborhood of (ρ(3)

I , ρ
(3)
R ), by

the eigenvector associated to the positive eigenvalue ρR =
−ρI + 2ρ

(3)
I (the green line in figure). The phase flow is such

that if the initial condition is such that ρI < ρR (ρI > ρR)
the system will deterministically converge to the regular
(irregular) state. On the other hand, if the initial condition
is such that ρI = ρR the system will converge to the stationary
solution (ρ(3)

I , ρ
(3)
R ) (see also Refs. [12,31]).

APPENDIX B

In this appendix, we provide explicit proofs that the
intersections x1 and x2 of the conic section C1 with the
axis y = 0 [see Eq. (26)] are always physical and always
unphysical, respectively.

Let us first consider the case a > 0. A crucial point
to recognize is that, since a + 2d = −(c + f ) < 0, if a is
positive d must be negative. Hence, � =

√
d2 − af � |d| =

−d. As a consequence, x1 = −(� + d)/a � 0. The alternative
expression of � =

√
(a + d)2 + ac implies, since both a and

c are positive, � � |a + d|. This means that � � −(a + d)
so that x1 = −(� + d)/a � 1. It also implies � � (a + d),
which, inserted into the expression x2 = (� − d)/a � 1,
yields x2 � 1.

The arguments are similar for a < 0. In this case, � =√
d2 − af � |d| � −d so that x1 = (−d − �)/a � 0. By

the same token, � =
√

d2 − af � d, implying x2 = (� −
d)/a � 0. Finally, to show that x1 � 1 we start from � =√

(a + d)2 + ac � |a + d|. The quantity a + d is negative for
a < 0, because a + 2d < 0 implies 2a + 2d < a < 0. Hence,
� � |a + d| = −(a + d), so that x1 = −(d + �)/a < 1.
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