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Game theory formalizes certain interactions between physical particles or between living beings in biology,
sociology, and economics and quantifies the outcomes by payoffs. The prisoner’s dilemma �PD� describes
situations in which it is profitable if everybody cooperates rather than defects �free rides or cheats�, but as
cooperation is risky and defection is tempting, the expected outcome is defection. Nevertheless, some biologi-
cal and social mechanisms can support cooperation by effectively transforming the payoffs. Here, we study the
related phase transitions, which can be of first order �discontinuous� or of second order �continuous�, implying
a variety of different routes to cooperation. After classifying the transitions into cases of equilibrium displace-
ment, equilibrium selection, and equilibrium creation, we show that a transition to cooperation may take place
even if the stationary states and the eigenvalues of the replicator equation for the PD stay unchanged. Our
example is based on adaptive group pressure, which makes the payoffs dependent on the endogenous dynamics
in the population. The resulting bistability can invert the expected outcome in favor of cooperation.
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I. INTRODUCTION

Game theory goes back to von Neumann �1�, one of the
superminds of quantum mechanics. Originally intended to
describe interactions in economics, sociology, and biology
�1–3�, it has recently become a quickly growing research
area in physics, where methods from nonlinear dynamics and
pattern formation �4,5�, agent-based or particle-like models
�5,6�, network theory �7�, and statistical physics �8� are ap-
plied. There are even quantum theoretical contributions �9�.

When two entities characterized by the states, “strate-
gies,” or “behaviors” i and j interact with each other, game
theory formalizes the result by payoffs Pij and the structure
of the payoff matrix �Pij� determines the kind of the game.
The dynamics of a system of such entities is often delineated
by the so-called replicator equations

dp�i,t�
dt

= p�i,t���
j

Pijp�j,t� − �
j,l

p�l,t�Pljp�j,t�� �1�

�3�. p�i , t� represents the relative frequency of behavior i in
the system, which increases when the expected “success”
Fi=� jPijp�j , t� exceeds the average one, �iFip�i , t�.

Many collective phenomena in physics such as agglom-
eration or segregation phenomena can be studied in a game-
theoretical way �5,6�. Applications also include the theory of
evolution �10� and the study of ecosystems �11�. Another
exciting research field is the study of mechanisms supporting
the cooperation between selfish individuals �1–3� in situa-
tions such as the “prisoner’s dilemma �PD�” or public goods
game, where they would usually defect �free ride or cheat�.
Contributing to public goods and sharing them constitute
ubiquitous situations, where cooperation is crucial, for ex-
ample, in order to maintain a sustainable use of natural re-
sources or a well-functioning health or social security sys-
tem.

In the following, we will give an overview of the station-
ary solutions of the replicator Eq. �1� and their stability prop-
erties. Based on this, we will discuss several “routes to co-
operation,” which transform the prisoner’s dilemma into

other games via different sequences of continuous or discon-
tinuous phase transitions. These routes will then be con-
nected to different biological or social mechanisms accom-
plishing such phase transitions �12�. Finally, we will
introduce the concept of “equilibrium creation” and distin-
guish it from routes to cooperation based on “equilibrium
selection” or “equilibrium displacement.” A new
cooperation-promoting mechanism based on adaptive group
pressure will exemplify it.

II. STABILITY PROPERTIES OF DIFFERENT GAMES

Studying games with two strategies i only, the replicator
Eq. �1� simplifies, and we remain with

dp�t�
dt

= p�t��1 − p�t����1�1 − p�t�� − �2p�t�	 , �2�

where p�t�= p�1, t� represents the fraction of cooperators and
1− p�t�= p�2, t� represents the fraction of defectors. �1= P12
− P22 and �2= P21− P11 are the eigenvalues of the two sta-
tionary solutions p= p1=0 and p= p2=1. If 0��1 / ��1+�2�
�1, there is a third stationary solution p= p3=�1 / ��1+�2�
with eigenvalue �3=−�1− p3��1. For the sake of our discus-
sion, we imagine an additional fluctuation term ��t� on the
right-hand side of Eq. �2�, reflecting small perturbations of
the strategy distribution.

Four different cases can be classified �3�: �1� if �1�0 and
�2�0, the stationary solution p1 corresponding to defection
by everybody is stable, while the stationary solution p2 cor-
responding to cooperation by everyone is unstable. That is,
any small perturbation will drive the system away from full
cooperation towards full defection. This situation applies to
the PD defined by payoffs with P21� P11� P22� P12. Ac-
cording to this, strategy i=1 �“cooperation”� is risky, as it
can yield the lowest payoff P12, while strategy i=2 �“defec-
tion”� is tempting since it can give the highest payoff P21. �2�
If �1�0 and �2�0, the stationary solution p1 is unstable,
while p2 is stable. This means that the system will end up
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with cooperation by everybody. Such a situation occurs for
the so-called harmony game �HG� with P11� P21� P12
� P22, as mutual cooperation gives the highest payoff P11.
�3� If �1�0 and �2�0, the stationary solutions p1 and p2 are
unstable, but there exists a third stationary solution p3, which
turns out to be stable. As a consequence, the system is driven
towards a situation, where a fraction p3 of cooperators is
expected to coexist with a fraction �1− p3� of defectors. Such
a situation occurs for the snowdrift game �SD� �also known
as hawk-dove or chicken game�. This game is characterized
by P21� P11� P12� P22 and assumes that unilateral defec-
tion is tempting as it yields the highest payoff P21 but also
risky as mutual defection gives the lowest payoff P22. �4� If
�1�0 and �2�0, the stationary solutions p1 and p2 are both
stable, while the stationary solution p3 is unstable. As a con-
sequence, full cooperation is possible but not guaranteed. In
fact, the final state of the system depends on the initial con-
dition p�0� �the “history”�: if p�0�� p3, the system is ex-
pected to end up in the stationary solution p1, i.e., with full
defection. If p�0�� p3, the system is expected to move to-
wards p2=1, corresponding to cooperation by everybody.
The history dependence implies that the system is multi-
stable �here: bistable� as it has several �locally� stable solu-
tions. This case is found for the stag hunt game �SH� �also
called assurance�. This game is characterized by P11� P21
� P22� P12, i.e., cooperation is rewarding, as it gives the
highest payoff P11 in case of mutual cooperation but it is also
risky as it yields the lowest payoff P12 if the interaction
partner is uncooperative.

III. PHASE TRANSITIONS AND ROUTES
TO COOPERATION

When facing a prisoner’s dilemma, it is of vital interest to
transform the payoffs in such a way that cooperation be-
tween individuals is supported. Starting with the payoffs Pij

0

of a prisoner’s dilemma, one can reach different payoffs Pij,
for example, by introducing strategy-dependent taxes Tij
= Pij

0 − Pij �0. When increasing the taxes Tij from 0 to Tij
0 , the

eigenvalues will change from �1
0= P12

0 − P22
0 and �2

0= P21
0

− P11
0 to �1=�1

0+T22−T12 and �2=�2
0+T11−T21. In this way,

one can create a variety of routes to cooperation, which are
characterized by different kinds of phase transitions. We de-
fine route 1 �PD→HG� by a direct transition from a prison-
er’s dilemma to a harmony game. It is characterized by a
discontinuous transition from a system, in which defection
by everybody is stable, to a system, in which cooperation by
everybody is stable �see Fig. 1�a��. Route 2 �PD→SH� is
defined by a direct transition from the prisoner’s dilemma to
a stag hunt game. After the moment t�, where �2 changes
from positive to negative values, the system behavior be-
comes history dependent: when the fluctuations ��t� for t
� t� exceed the critical threshold p3�t�=�1 / ��1+�2�t��, the
system will experience a sudden transition to cooperation by
everybody. Otherwise one will find defection by everyone, as
in the prisoner’s dilemma �see Fig. 1�b��. In order to make
sure that the perturbations ��t� will eventually exceed p3�t�
and trigger cooperation, the value of �2 must be reduced to
sufficiently large negative values. It is also possible to have a

continuous rather than sudden transition to cooperation: we
define route 3 �PD→SD� by a transition from a prisoner’s
dilemma to a snowdrift game. As �1 is changed from nega-
tive to positive values, a fraction p3�t�=�1�t� / ��1�t�+�2� of
cooperators is expected to result �see Fig. 1�c��. When in-
creasing �1, this fraction rises continuously. One may also
implement more complicated transitions. Route 4, for ex-
ample, establishes the transition sequence PD→SD→HG
�see Fig. 1�d��, while we define route 5 by the transition
PD→SH→HG �see Fig. 1�e��. One may also implement the
transition PD→SD→HG→SH �route 6, see Fig. 1�f��, es-
tablishing a path-dependence, which can guarantee coopera-
tion by everybody in the end. �When using route 2, the sys-
tem remains in a defective state if the perturbations do not
exceed the critical value p3.�

IV. RELATIONSHIP WITH COOPERATION-SUPPORTING
MECHANISMS

We will now discuss the relationship of the above-
introduced routes to cooperation with biological and social
mechanisms �“rules”� promoting the evolution of coopera-
tion. Nowak performed his analysis of five such rules with
the reasonable specifications T=b�0, R=b−c�0, S=−c
�0, and P=0 in the limit of weak selection �12�. Coopera-
tion is assumed to require a contribution c�0 and to produce
a benefit b�c for the interaction partner, while defection
generates no payoff �P=0�. As most mechanisms leave �1 or
�= ��1+�2� /2 unchanged, we will now focus on the payoff-
dependent parameters �1 and � �rather than �1 and �2�. The
basic prisoner’s dilemma is characterized by �1

0=−c and �0

=0.
According to the supporting online material of Ref. �12�,

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �
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FIG. 1. �Color online� Schematic illustration of the phase tran-
sitions defining the different routes to cooperation. The order pa-
rameter is the stationary frequency of cooperators, while the control
parameters are the parameters r, w, k, m, or q in Nowak’s
cooperation-enhancing rules �12� �see main text� or, more generally,
�non�linear combination of the model parameters b and c. Solid
�red� lines represent stable stationary proportions of cooperators,
dashed lines unstable fix points. Diagonal lines show the additional
stationary solution p3, where 0� p3�1. �p=proportion of coopera-
tors; DEFECT=defection is stable, i.e., everybody defects; COOP
=cooperation is stable, i.e., everybody cooperates; COEX
=mixture of defectors with a proportion p3 of cooperators;
BISTAB=cooperation is stable if p3� p�0�, where p�0� means the
initial proportion of cooperators, otherwise everybody defects.�
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kin selection �genetic relatedness� transforms the payoffs into
P11= P11

0 +r�b−c�, P12= P12
0 +br, P21= P21

0 −cr, and P22= P22
0 .

Therefore, it leaves � unchanged and increases �1 by T22

−T12=br, where r represents the degree of genetic related-
ness. Direct reciprocity �repeated interaction� does not
change �1, but it reduces � by − 1

2 �b−c��1 / �1−w�−1��0,
where w is the probability of a future interaction. Network
reciprocity �clustering of individuals playing the same strat-
egy� leaves � unchanged and increases �1 by H�k�, where
H�k� is a function of the number k of neighbors. Finally,
group selection �competition between different populations�
increases �1 by �b−c��m−1�, where m is the number of
groups, while � is not modified. However, �1 and � may also
change simultaneously. For example, indirect reciprocity
�based on trust and reputation� increases �1 by cq and re-
duces � by − 1

2 �b−c�q�0, where q quantifies social acquain-
tanceship.

Summarizing this, kin selection, network reciprocity, and
group selection preserve �=0 and increase the value of �1
�see route 1 in Fig. 2�. Direct reciprocity, in contrast, pre-
serves the value of �1 and reduces � �see route 2a in Fig. 2�.
Indirect reciprocity promotes the same transition �see route
2b in Fig. 2�. Supplementary, one can analyze costly punish-
ment. Using the payoff specifications made in the Supporting
Information of Ref. �13�, costly punishment changes � by
−��+�� /2�0 and �1 by −� �13�, i.e., when � is increased,
the values of � and �1 are simultaneously reduced �see route
2c in Fig. 2�. Here, ��0 represents the punishment cost
invested by a cooperator to impose a punishment fine ��0
on a defector, which decreases the payoffs of both interaction
partners. Route 3 can be generated by the formation of
friendship networks �14�. Route 4 may occur by kin selec-
tion, network reciprocity, or group selection when starting
with a prisoner’s dilemma with �0�0 �rather than �0=0 as
assumed before�. Route 5 may be generated by the same
mechanisms if �0�0. Finally, route 6 can be implemented
by time-dependent taxation �see Fig. 2�.

V. FURTHER KINDS OF TRANSITIONS
TO COOPERATION

The routes to cooperation discussed so far change the ei-
genvalues �1 and �2 and leave the stationary solutions p1 and
p2 unchanged. However, transitions to cooperation can also
be generated by shifting the stationary solutions or creating
new ones, as we will show now. For this, we generalize the
replicator Eq. �2� by replacing �1 with f�p� and � with g�p�
and by adding a term h�p�, which can describe effects of
spontaneous transitions such as mutations. To guarantee 0
� p�t��1, we must have h�p�=v�p�− pw�p� with functions
w�p�	v�p�	0. The resulting equation is dp /dt=F�p�t��
with F�p�= �1− p��f�p�−2g�p�p�p+h�p�, and its stationary
solutions pk are given by F�pk�= �1− pk��f�pk�−2g�pk�pk�pk
+h�pk�=0. The associated eigenvalues �k=dF�pk� /dp deter-
mining the stability of the stationary solutions pk are

�k = �1 − 2pk��fk − 2pkgk� + pk�1 − pk��fk� − 2pkgk� − 2gk� + hk�,

where we have used the abbreviations fk= f�pk�, gk=g�pk�,
hk=h�pk�. fk�= f��pk�, gk�=g��pk�, and hk=h��pk� are the de-
rivatives of the functions f�p�, g�p�, and h�p� in the points
p= pk.

VI. CLASSIFICATION

We can now distinguish different kinds of transitions from
defection to cooperation: if the stationary solutions p1=0 and
p2=1 of the prisoner’s dilemma are modified, we talk about
transitions to cooperation by equilibrium displacement. This
case occurs, for example, when random mutations are not
weak �h�0�. If the eigenvalues �1 or �2 of the stationary
solutions p1=0 and p2=1 are changed, we speak of equilib-
rium selection. This case applies to all routes to cooperation
discussed before. If a new stationary solution appears, we
speak of equilibrium creation. The different cases often ap-
pear in combination with each other �see the summary be-
low�. In the following, we will discuss an interesting case,
where cooperation occurs solely through equilibrium cre-
ation, i.e., the stationary solutions p1 and p2 of the replicator
equation for the prisoner’s dilemma as well as their eigen-
values �1 and �2 remain unchanged. We illustrate this by the
example of an adaptive kind of group pressure that rewards
mutual cooperation �T11�0� or sanctions unilateral defection
�T21�0�. Both, rewarding and sanctioning reduces the value
of �2, while �1 remains unchanged. Assuming here that the
group pressure vanishes, when everybody cooperates �as it is
not needed then�, while it is maximum when everybody de-
fects �to encourage cooperation� �15�, we may set f�p�=�1

0

and g�p�=�0−K�1− p�t��, corresponding to �2�t�=�2
0−2K�1

− p�t��. It is obvious that we still have the two stationary
solutions p1=0 and p2=1 with the eigenvalues �1=�1

0�0
and �2=2�0−�1

0�0 of the original prisoners dilemma with
parameters �1

0 and �2
0 or �0. However, for large enough val-

ues of K �namely for K�K0=�0+ 
�1
0
+�
�1

0
�2�0+ 
�1
0
��, we

find two additional stationary solutions;

p
 =
1

2
−

�0

2K

��1

2
−

�0

2K

2

−

�1

0

2K

. �3�

p− is an unstable stationary solution with p1� p−� p+ and
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FIG. 2. �Color online� Phase diagram of expected system behav-
iors based on an analysis of the game-dynamical replicator Eq. �2�
as a function of the parameters � and �1. The different routes to
cooperation are illustrated by arrows. Terms in capital letters are
defined in Fig. 1. Inset: stable stationary solutions �solid lines� and
unstable ones �broken lines� as functions of the parameter K when
the reward depends on the proportion of cooperators. The bifurca-
tion at the “tipping point” K=K0 “inverts” the system behavior �see
main text�.
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�−=dF�p−� /dp�0, while p+ is a stable stationary solution
with p−� p+� p2 and �+=dF�p+� /dp�0 �see inset of Fig.
2�. Hence, the assumed dependence of the payoffs on the
proportion p of cooperators generates a bistable situation
�BISTAB�, with the possibility of a coexistence of a few
defectors with a large proportion p+ of cooperators, given
K�K0. If p�0�� p−, where p�0� denotes the initial condition,
defection by everybody results, while a stationary proportion
p+ of cooperators is established for p−� p�0��1. Surpris-
ingly, in the limit K→�, cooperation is established for any
initial condition p�0��0 �or through fluctuations�.

VII. SUMMARY

We have discussed from a physical point of view what
must happen that social or biological payoff-changing inter-
action mechanisms can create cooperation in the prisoner’s
dilemma. The possible ways are �i� moving the stable sta-
tionary solution away from pure defection �routes 3, 4, and
6�, �ii� stabilizing the unstable solution �routes 1, 2, 4, 5, and
6�, or �iii� creating new stationary solutions, which are stable
�routes 3, 4, and 6�. Several of these points can be combined.

If �i� is fulfilled, we speak of equilibrium displacement if
their eigenvalues change, we called this equilibrium selec-
tion, and if �iii� is the case, we talk of equilibrium creation.
The first case can result from mutations, the second one ap-
plies to many social or biological cooperation-enhancing
mechanisms �12�. We have discussed an interesting case of
equilibrium creation, in which the outcome of the replicator
equation is changed, although the stationary solutions of the
PD and their eigenvalues remain unchanged. This can, for
example, occur by adaptive group pressure �15�, which in-
troduces an adaptive feedback mechanism and thereby in-
creases the order of nonlinearity of the replicator equation.
Surprisingly, already a linear dependence of the payoff val-
ues Pij on the endogenous dynamics p�t� of the system is
enough to destabilize defection and stabilize cooperation,
thereby inverting the outcome of the prisoner’s dilemma.
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