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Lattice Boltzmann model for simulating flows
with multiple phases and components
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A lattice Boltzmann model is developed which has the ability to simulate flows containing multiple
phases and components. Each of the components can be immiscible with the others and can have
different mass values. The equilibrium state of each component can have a nonideal gas equation
of state at a prescribed temperature exhibiting thermodynamic phase transitions. The scheme
incorporated in this model is the introduction of an interparticle potential. The dynamical rules in
this model are local so it is highly efBcient to compute on massively parallel computers. This model
has many applications in large-scale numerical simulations of various types of fluid flows.

PACS number(s): 47.55.Kf, 02.70.+d, 05.70.Fl

There are many difBculties in numerically simulating
multiphase fluids or immiscible fluids with conventional
methods. These flows include, for example, a flow of a
water and vapor mixture or an oil and water mixture.
Not only different phases may merge, separate or break,
they may also change from one phase to another during
a first-order phase transition process.

It is known that Quid phenomena seen in nature are
the statistical behaviors of their associated microsystems.
The thermodynamic properties and the boundary con-
ditions for a fluid system are, therefore, natural conse-
quences of the dynamics in these physical microsystems.
To compute various fluid flows, it is, however, impractical
to simply follow the evolutions of these realistic physical
microsystems because of far too many degrees of free-
dom not essential to their fluid behaviors. Fortunately,
due to the nonunique correspondence between a fluid sys-
tem and a microsystem, artificial microsystems may be
constructed which are simple enough to be simulated on
a computer, but yet contain all the required physics of
a realistic fluid system. Based on this idea, a compu-
tational approach called lattice Boltzmann (LB) method
has recently been developed [1—4]. The LB method is
derived from the lattice gas automata (LGA) method
[5—7] and inherited from the LGA some of its major ad-
vantages over the conventional computational methods.
One important improvement in the LB method is that
it can fully recover the Navier-Stokes equations at the
macroscopic scale [3, 4]. It is parallel in nature due to
the fact that all the information transfer is local in time
and space, so that it is most suitable for the massively
parallel computers. In addition, since this method deals
with the fluid properties at the microkinetic level, it is ca-
pable of handling complex boundary conditions and var-
ious thermodynamic properties of a fluid system, such as
multiphase flows, in a relatively straightforward way.

Since Rothman and Keller [8] introduced the first LGA
model for simulating immiscible fluids, there have been
LGA and LB models constructed for simulating immis-
cible fluids [8—12]. However, there are problems in these
models in dealing with components with different molec-

ular mass values. More importantly, these models cannot
be successfully extended to flows having thermodynamic
phase transitions because of their non-Galilean invariant
nature and unphysical interfacial properties. In this pa-
per, we show how to overcome both of these problems
and present an alternative LB model which has the abil-
ity to simulate flows with immiscible components as well
as multiple phases.

In this LB model, the following lattice Boltzmann
equation is solved for a fluid with S total components
on a two-dimensional (2D) hexagonal lattice or on a 4D
face-centered hypercubic lattice [6, 7]:

n (x+ e, t+ 1) —n (x, t) = 0 (x, t),

o = 1, . . . , S, a=0, . . . , b,

where n (x, t) is the single-particle distribution function
for the crth component and Aa~(x, t) is the collision term.
The set of vectors (ea; a = 0, . . . , b) are the possible ve-
locities a particle can have in order to move from a lattice
site to one of the b numbers of the nearest-neighboring
sites at each time step. ~eo~ = 0 is associated with the
rest ("stopped") particles, and ~e

~

= c (a = 1, . . . , b),
where c is the lattice constant. For simplicity, we adopt
a "single relaxation time" form for the collision term [3,
4, 13, 14],

where ~ is the mean collision time for the o.th component
and determines its fluid viscosity [13, 4]. n (' is the
equilibrium distribution with a given functional form at
site x. and time t [14]. An H theorem can be proved for

this system for arbitrarily given form of n~ ', as long
as this equilibrium distribution function is positive [15].
For the purpose of recovering correct Quid equations, the
following form for na '~ is adopted [3, 4],
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o (eq} o.
+a

o (eq}
alp

1 —do D „D(D+2)„+ 2 eg, : u + 4 eg, ea: u
6 c26 2c46

C7 CT

do
C2

D
2c2g

a= l, . . . , b;

where n = P n and u are respectively the number
density and the averaged particle velocity for component
cr at (x, t) after collision. dz (( 1) is a constant and
determines the compressibility of each component of the
fluid [16]. For sufficiently small u, the above form for
the equilibrium distribution function will be positive. It
has been analytically shown, with the above choice [3,
4], that at the fluid scale, each of the components obeys
the isothermal Navier-Stokes equations with an ideal gas
equation of state, if

u =u= — m e n
P

(4)

with p (= P m, P n ) and pu being, respectively, the
total mass density and net momentum at (x, t) before
collision. m is the molecular mass of the o th component.

In order to simulate multiple component fluids or flu-
ids with nonideal gas equations of state, nonlocal interac-
tions among the particles must be incorporated. Hence
u~ will be determined differently from the prescription
above. In this new model, we present an efBcient way for
introducing this kind of nonlocal interaction. We define
an interaction potential,

V(x, x') = G -(x, x')@ (x)Q (x'),

where G -(x, x') is a Green's function. The quantity Q
[= F (n )] plays a role as the effective number density
for component o with its physical significance seen clearly
below. For the purpose of dealing with the problems
concerned here, it is suFicient to only involve nearest-
neighbor interactions, namely

site. This may be the most distinct feature of this model.
However, it can be shown directly that the total momen-
tum of the system obtained by summing over. the net
momenta at every site is still exactly conserved, provided
g — is a symmetric S x S matrix, and no net momentum
exchange has occurred at the boundary. Therefore, the
momentum conservation is achieved in a more general
sense than the local sitewise momentum conservation.

We demonstrate below that this dynamical rule ex-
hibits thermodynamic phase transitions for a single com-
ponent (S = 1) case. Multiplying Eq. (1) by 1 and e
and summing over a, after substituting the functional
form from Eq. (3) for n '~ and some straightforward
algebra, we obtain

Bp
Ot

(pu) = 0,

( 8 l (1 —dp)c
pi —+u V iu+(Bt ) D Vp —V [pVu]

+V[I,"V u] = —VV,

at low frequency and long-wavelength limit. Without
—VV on the right-hand side of the second equation, the
momentum equation above is the usual Navier-Stokes
equation with an isothermal ideal gas equation of state,

0, fx —x'i &c
G~~(x —x') = g' (6) 2.5

Nl 0
max -~---

The magnitude of g — controls the strength of the inter-
action potential between components o and o., while its
sign determines whether it is attractive or repulsive.

Having the interaction potential defined, the rate of
net momentum change induced at each site is simply

S b

(x) = -Q (x) ) g —) Q (x + e )e ,
a=1 a=o

which equals —V'V as c ~ 0. Therefore, after a collision,
the new net momentum at site w for the cath component
now becomes

2
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p (x)u (x) = p (x)u(x) + 7. (x),

where p (x) = i7i n (x) is the mass density of the ath
component. Apparently, with the interaction potential,
the collision does not conserve the net momentum at each

plG. 1. Maximum and minimum density values (p~«and
p; ), and the order parameter M as functions of g. Phase
separation, indicated. by the bifurcation of the system from
homogeneous into two-phase, occurs at the analytically cal-
culated critical value g = —1/3.
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and viscosities p = p, (p) and ( = ((p) [3, 4]. The explicit
form of the additional term can be derived from Eq. (7)
in the long-wavelength limit as

state is ready to be written down as

C2 6
(1 —do) p+ 2A'(p)

V = g@2
2D

where g = jib for the single-component fluid. Combin-
ing the two gradient terms in Eq. (9), the equation of

which is, in general, not an ideal gas equation of state.
The second term on the right-hand side adds an eKec-
tive potential tail to the elastic interaction represented
by the first term. Consequently, thermodynamic phase
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FIG. 2. Phase transition in a LB simulation on a 256 x 256 lattice with a single component. Shown are the time evolution
of the number density distribution at t = 20 (a), t = 200 (b), t = 2000 (c), and t = 20000 (d). The variation of the density
is shown in gray scale with the minimum in black and the maximum in white. Since the lattice is hexagonal, the graphics are
distorted by a factor of ~3j2 in one direction. g = —0.45, po = 1, and (p) = 0.693 = ln 2.
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transitions will occur if p is not a monotonically increas-
ing function of the density p. This will be possible, ac-
cording to the above expression, if g (which is related to
temperature) is sufficiently negative and Q is a monoton-
ically increasing but bounded function of p; therefore, V
is bounded too.

We now present some results of numerical simulations
for a two-dimensional system in which a first-order phase
transition occurs. For simplicity, we have chosen Q =
pp [1 —exp( —p/po)], where po is a constant. The critical
value can be obtained analytically as Q, = —4(1—do)/6po
at p, = pain 2. Below this critical value, there will ex-
ist a range of p values in which dJi/dp is negative, which
signals the occurrence of a phase transition. The nu-
merical simulations reported here are on a 2D 256 x 256
hexagonal lattice; and we took do = 0.5, po = 1.0 and

(p) = paln2 = 0.693. Hence the critical value is at
g, = —1/3. (( ) is a spatial average over the entire lat-
tice. ) Initially the density distribution is homogeneous
and with a small (1%) random perturbation. Figure 1
is a plot of the maximum and minimum densities, and
the order-parameter M = g((p —(p))~)/(p) in the fi-
nal steady state as functions of the parameter P. As Q
gets below the critical value, the system changes from a
single-phase Quid to a two-phase fluid. The numerically
measured bifurcation point is between g = —0.333 and
—0.335. Displayed in Fig. 2 in gray scale are the evo-
lution of the mass density distributions at Q = —0.45.
To be seen is the separation of two different thermody-
namic phases and the existence of surface tension. This
calculation takes 0.012 s for each step on a 16K processor
CM-200 machine.

Besides having the capability of modeling multiphase
flows, this model can also simulate fluids with immisci-
ble components. For demonstrating this effect, here we
consider brieffy a system of S mutually equal repulsive
components. That is, g = 0 and g — = g for cr g o;
and g = n . Clearly for this case, the Navier-Stokes
equations are satis6ed with an ideal gas equation of state

B(nA)
Bt

(unA) = V'
[ le(n'A)], (12)

where the spin field, A, is defined as

nA=) ) on
a o

In this case, the spin diffusivity, q, can be shown to have
the following form:

c' ( 11
D q 2)

7.b
gn (13)

Therefore, when g is large enough [& (~ —1/2)rnS/wbn]
the diffusivity will become negative. This indicates a sep-
aration of components, which is the basic property of im-
miscible fluids [8]. Numerically we have indeed observed
this phenomenon on a 2D 256 x 256 hexagonal lattice for
the two-component case. We have chosen m = 1, 7. = 1,
(n) = 1, and (n )/(n ) = 4/6. Therefore, g, = 1/6. The
time evolution of the component patterns is qualitatively
similar to that in Fig. 2 for the density distribution for the
two-phase one-component case. Figure 3 is the surface
plot of the total number density distribution n, of this
two-component system at time t = 20000 with g = 0.25.
Component 1 is seen to have separated from component 2
and formed circular "drops. " Figure 4 is a measure, from
Fig. 3, of the total density difference inside and outside a
single-component drop, as a function of the inverse drop
radius. Since the pressure for this case is proportional to
the total density inside and outside a drop, it is seen that

in each single-component region [8]. The interesting dy-
namics only occur when different components coexist in
the same region. For the sake of analytical simplicity, if
we also choose ~ = ~ and m = m, then an equation
governing the evolution of the infinitesimal perturbation
of a spin field [17] can be obtained:

'e&c~~l)

I"IG. 3. Total density distribution of the two-component system on a 256 x 256 lattice at time t = 20000 and g = 0.25.
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FIG. 4. The density difFerence inside and outside a drop
as a function of the inverse drop radius for the two-component
system at t = 20000 and Q = 0.25.

Laplace's law [8, ll],
A

P1& POut —+ y

is satisfied within the accuracy of our measurement,
where p;„and p „tare, respectively, the pressures inside
and outside a single-component drop of radius R.

In this paper, we have presented a LB model which has
the capability of simulating multiphase and multicompo-
nent immiscible fiuids with different masses in constant
temperature. The fundamental feature in this model is

the introduction of an interparticle potential, which elec-
tively adds an attractive or repulsive tail to the sitewise
elastic collision. By selecting the appropriate values of
the matrix g — and @, the properties of this potential
can be varied so that the various fluids can be simu-
lated. The detailed description and study of this model
will be presented in a future paper [18]. One of the ma-
jor improvements to this model would be to extend it to
include a dynamical temperature. Due to perhaps the
discretized nature of the "lattice Boltzmann" approach,
there are some small anomalous velocities observed, as re-
ported in other multi-phase models [19], in the interfacial
region which is subjected to further studies. Because of
the fact that the LB method is naturally suitable for mas-
sively parallel computation, this model can be used for
large-scale simulations of complex fluids in various spe-
cific cases and boundary conditions. We have also found,
for the single-component case, flows with Reynolds num-
ber up to 10 can be simulated. With all these unique
features, many potential scientific and industrial appli-
cations of this model can be expected.
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