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Network routing approaches are widely used to study the evolution in time of self-adapting systems. However,
few advances have been made for problems where adaptation is governed by time-dependent inputs. In this work
we study a dynamical systems where the edge conductivities of a network are regulated by time-varying mass
loads injected on nodes. Motivated by empirical observations, we assume that conductivities adapt slowly with
respect to the characteristic time of the loads. Furthermore, assuming the loads to be periodic, we derive a
dynamics where the evolution of the system is controlled by a matrix obtained with the Fourier coefficients
of the input loads. Remarkably, we find a sufficient condition on these coefficients that determines when the
resulting network topologies are trees. We show an example of this on the Bordeaux bus network where we tune
the input loads to interpolate between loopy and tree topologies. We validate our model on several synthetic
networks and provide an expression for long-time solutions of the original conductivities.
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I. INTRODUCTION

Optimized transport of resources is a pivotal contributing
factor in determining the structural evolution of real-world
networks. Archetypes for self-organizing systems that ram-
ify into networks in order to optimize energy expenditure
rates are xylem conduits in leaves [1–4], river basins [5–9],
and slime molds [10–19]. These formations are not only re-
stricted to the natural realm but can also be generated by
anthropogenic processes. A prominent example is that of
transportation networks such as railway and metro systems,
which are designed to jointly optimize traffic overload and
infrastructural cost [20–22].

Typically, optimal transport of mass in networks is set
as a minimization problem where resources moving through
the edges have to satisfy a set of constraints, e.g., conserva-
tion of mass, while minimizing a suitable transportation cost
[1,3,19,23–30]. Several efficient methods have been proposed
to solve this problem. A popular approach is that of message-
passing algorithms [31], where sources of mass are matched
in sender-receiver pairs and messages encode mass transfer
between them [22,32–36]. Promising results have also been
obtained with optimal transport theory [2,15,20,27,37–42],
the approach we consider in this work. The general idea
behind this method is to describe the transport of mass as a
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process being regulated by edge capacities, quantities evolv-
ing with a dynamical system to allocate mass fluxes.

Despite their usage in modeling transportation problems
across domains, a common drawback of all these methods
is to consider only stationary loads, i.e., resources that are
injected and travel through the network do not change with
time. This assumption may not be valid in certain scenar-
ios. For instance, blood vessels are known for adapting their
structure continuously to meet changing metabolic demands
[25,43–45]. Similarly, passengers in transportation systems
enter stations with hourly, weekly, and seasonal time-varying
rates [46].

A viable approach to model these systems is to control
the network evolution considering an ensemble average of
the stress generated by the loads [24,25,37]. This relies on
assuming stationary loads on nodes but with their positions
varied stochastically. The ensemble average over the loads’
locations is then computed as a proxy of a system with loads
of fixed locations but time-varying amounts. This technique
has also been employed to study network resilience to edge
cutting [3] or for routing problems with spatially correlated
loads [2].

Remarkably, adding stochasticity in the loads may lead
to the emergence of loops in the resulting optimal networks
topologies [2,3,24,25,37]. This result is complementary to the
hierarchical formation of trees since loops provide alternative
routes to accommodate fluctuations or guarantee robustness
against broken links. Recently, loop formation has also been
observed in multicommodity setups [27,28], where the loads
are deterministic inputs of the problem. In this case loop
generation is a consequence of having different commodities
interacting in a unique shared infrastructure.

In all these works, the time-varying character of the trans-
port network loads is neglected because the main problem
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variables are taken on average. Here we develop a model that
considers the explicit time dependence of the mass inflows
and investigate, both analytically and numerically, the long-
term behavior of time-varying transport networks. This allows
us to show that it is not the process uncertainty, inherent in any
stochastic framework, but the nonstationarity of the loads that
promotes loops, which is fundamentally different from what
can be concluded using stochastic formulations.

In particular, we generalize the routing problem in the
work of Facca et al. [41] by considering periodic mass loads
on nodes. We postulate an analytical relationship connecting
physical quantities as the edge conductivities and the coeffi-
cients of the Fourier series expansion of the loads. We then
define a dynamics that rapidly converges to the long-run aver-
age solutions of the original dynamics.

Our model relies on the idea of distinguishing slow-varying
variables from fast ones. The first are capacities of edges that
are regulated by the Fourier coefficients of the forcing; the
second are, for example, loads of passengers entering and
exiting network nodes. The physical intuition is that, while
fluxes of passengers in a transportation system have the same
rate of change of the network loads, roads do not. In fact, it
is reasonable to assume that a network manager has a coarser
observation scale of a transportation system than the users,
whose paths rapidly fluctuate. In practice, this means that
modifications in the network infrastructure occur on a much
larger timescale than that of daily passengers’ fluctuations.

Remarkably, we find that the Fourier decomposition of the
loads yields a sufficient condition to determine whether the
resulting optimal networks will contain loops or be a tree. Per-
forming a numerical validation of our dynamics on synthetic
networks, we are also able to provide an analytical expression
for the long-run conductivities. Precisely, we find that the
conductivities start oscillating around constant values at large
timescales and at certain frequencies that can be expressed in
terms of those of the input loads. Furthermore, we define a
Lyapunov functional for our dynamical formulation, allowing
us to interpret stationary topologies as optimal networks, i.e.,
structures minimizing the global cost to build the graph. Fi-
nally, we examine a case study with loads that are the sum
of decoupled harmonic oscillators, finding that the condition
on the Fourier coefficients can be equivalently reformulated
in terms of the loads’ amplitudes and phases. We numerically
investigate this last setup on the Bordeaux bus network.

II. TIME-VARYING LOADS IN ROUTING
OPTIMIZATION ON NETWORKS

Consider a network G with nodes v ∈ V and edges e ∈ E ,
each of length �e > 0. The orientation of the edges is conven-
tionally assigned by the signed incidence matrix of the graph,
with entries Bve = ±1 if node v is the tail or the head of edge
e, and Bve = 0 otherwise. We consider a routing optimization
problem on G setting time-varying mass loads S(t ) = {Sv (t )}
on nodes being the amount of mass either injected in (Sv (t ) >

0) or extracted from (Sv (t ) < 0) node v. Concretely, one could
think of S(t ) as a time-dependent origin-destination vector of
passengers moving in a transportation network, where mass
entries correspond to the fraction of passenger flowing though
stations. This allows us to write Kirchhoff’s conservation law

as

∑
u

Lvu(μ)pu(t ) = Sv (t ) ∀ v ∈ V ∀ t � 0, (1)

where μ = {μe} are the non-negative edge conductivi-
ties, p(t ) = {pv (t )} are pressure potentials on nodes, and
Lvu(μ) := ∑

e Bve(μe/�e)Bue are the entries of the weighted
Laplacian of the network [47]. The conductivities can be in-
terpreted as the capacities that the edges must have to allocate
the mass loads acting on the nodes; thus we can consider them
proportional to the edges’ sizes. When considering passengers
moving along a transportation network, μ can be seen as the
width of a road or more generally a measure of the infrastruc-
ture’s resources used to carry traffic flows.

We propose a model in which the forcings S(t ) dictate the
time evolution of the conductivities by means of a feedback
dynamics. In particular, we couple Eq. (1) with the system of
ordinary differential equations (ODEs)

dμe(t )

dt
= F 2

e (t )

μ
γ
e (t )

− μe(t ) ∀ e ∈ E , (2)

μe(0) = me ∀ e ∈ E , (3)

with me > 0 initial values. For a solution trajectory μ(t ),
we define the fluxes Fe(t ) ≡ Fe(μ(t ), S(t )) := μe(t )[pu(t ) −
pv (t )]/�e for e = (u, v), with pv (t ) ≡ pv (μ(t ), S(t )) :=∑

u L†
vu(μ(t ))Su(t ) the solution of Eq. (1), where L† denotes

the Laplacian pseudoinverse. We assume that the system is
isolated, namely,

∑
v Sv (t ) = 0 ∀ t � 0, so p(t ) is a well-

defined potential (see [47], Lemma 0). Specifically, Klein
and Randić [47] showed that L generally is not invertible,
but Eq. (1) can be solved by the pseudoinverse within the
subspace orthogonal to the unitary vector, that is, when∑

v Sv (t ) = 0.
In Eq. (2) the growth in time of the conductivities is

proportional to the flux forcing term F 2
e (t ) with μ decaying

exponentially when no flux flows though an edge. In practice,
this corresponds to enlarging a road when many passengers
travel along it and reducing it when there is no traffic. We il-
lustrate this intuition with a schematic representation in Fig. 1.

The free parameter 0 < γ < 2 tunes between dif-
ferent transportation mechanisms [27,38,41]. The case
γ<1 encourages mass consolidation on a few edges,
γ=1 is shortest-path-like, and 1 < γ < 2 penalizes traffic
congestion.

Our dynamical formulation assumes continuous variables
for fluxes and conductivities, but the mass S(t ) could be ar-
bitrarily continuous or discrete. While this is valid in many
scenarios (e.g., when modeling a large number of individu-
als), it may be limiting in cases where a discrete (or atomic)
representation is necessary to capture fine-grain differences
in the number of passengers. For this, one should consider
alternative formulations and approaches, for instance, using
message passing or belief propagation as in [22,32–36].

Finally, we remark that Eq. (2) can be made scale
independent with respect to the model variables by an op-
portune nondimensionalization that we describe in detail in
Appendix A.
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FIG. 1. Schematic visualization of the problem. We highlight
conductivities (brown), the length of an edge (green), and the differ-
ence of pressure (purple) along an edge that triggers their fluxes. In
the rightmost blue and yellow panels we depict two scenarios where
the time-dependent loads S(t ) generate fluxes that move from the
central part of the network to its periphery (t = t1) and vice versa
(t = t2 �= t1). Node and edge widths are proportional to S(t ) and
F (t ), respectively.

III. MODEL CONSTRUCTION

A. Slow adaptation of conductivities

In several biological systems the adaptation time of organ-
isms is much slower (weeks) than the characteristic time of
the mass injected in the system (seconds) [25,43–45]. In order
to describe these organisms, a common approach is that of
approximating the fast time-varying input loads with com-
binations of open and closed switchlike nodes with constant
inflows and to assume that the conductivities are regulated by
an ensemble average of the pressures over different states of
the loads [3,24,25,37].

Instead, here we want to model the evolution of these
slow adapting conductivities taking in account the time depen-
dence of the loads. We formalize this hypothesis by assuming
(i) the existence of a slow timescale τ , with τ = Kt and
K � 1, and that (ii) in a fixed time window �, small with
respect to the slow variable τ but large with respect to the
time t ,

μ̂e(τ + t ′) ≈ μ̂e(τ ) ∀ e ∈ E ∀ t ′ ∈ [0,�) ∀ τ � 0 (4)

holds for some conductivities μ̂ = {μ̂e} with the natural time
of evolution being τ . Timescales are depicted in Fig. 2. We
can interpret t as seconds, � as days, and τ as months. Such
distinction between different natural timescales is observed in
the interplay of rivers and tide loads in coastal delta formation
[9], where the assumption is that tides cycle much faster than
the river channel adaptation, a distinction analogous to that
between t and τ .

Finally, we assume that (iii) the evolution in τ of μ̂ is
determined by the time integral average of the product of the
mass loads. Assumptions (i), (ii), and (iii) together lead to the

tt… …

/ << 1

FIG. 2. Schematic representation of the different time variables.
The two arrows denote timescales t and τ . The time windows �,
large with respect to t , are denoted with blue curved brackets and the
fast period T in orange. Each window � along which we integrate
the dynamics (1)–(3) contains a large number of periods T .

definition of

�̂e(μ̂, τ ) := μ̂
2−γ
e

�2
e

∑
uv

Aeu(μ̂)Aev (μ̂)

× 1

�

∫ τ+�

τ

Su(t )Sv (t )dt − μ̂e (5)

for all e ∈ E and τ � 0, where we introduced Aev (μ̂) :=∑
u BeuL†

vu(μ̂) ∀ e ∈ E ∀ v ∈ V . The functional �̂ is the nat-
ural approximation of the right-hand side of Eq. (2), as shown
in Appendix B.

We define then a trajectory μ̂(τ ) as a solution of the dy-
namics

dμ̂e(τ )

dτ
= �̂e(μ̂(τ ), τ ) ∀ e ∈ E , (6)

μ̂e(0) = m̂e ∀ e ∈ E , (7)

with m̂e > 0 initial conditions. In general, �̂ is difficult to
manipulate as the loads S(t ) may assume any arbitrary ex-
pression, possibly preventing the exact computation of the
time integrals. For this reason, we investigate its behavior for
a particular class of functions S(t ) that allows for analytical
tractability.

B. Periodicity of the loads

We consider periodic loads S(t ), with period T small
with respect to the fixed integration window � introduced in
Sec. III A:

Sv (t + T ) = Sv (t ), T/� 	 1 ∀ v ∈ V ∀ t � 0. (8)

This allows us to express each Sv (t ) using its Fourier series
Sv (t ) = ∑

nv∈Z cnv
v exp(iωnvt ), with ω = 2π/T . Substituting

this into Eq. (5) yields the pivotal result

1

�

∫ τ+�

τ

Su(t )Sv (t )dt = Cuv + O(�), (9)

holding for all u, v ∈ V and τ � 0. The matrix C has entries
Cuv := ∑

nv
(cnv

u )∗cnv
v ∀ u, v ∈ V , with c∗ denoting the com-

plex conjugation of c. The term O(�) contains all negligible
contributions ε, decaying as ε/� → 0 for � → +∞. For a
detailed derivation of this result, one can refer to Appendix C.
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FIG. 3. Characterization of the fast conductivities μ(t ). All results are computed on a synthetic network with |V | = 8 and setting γ = 1.0.
(a) Fast conductivities μ(t ) and fluxes F (t ) are drawn with solid lines, stationary solutions μ̄∞ are dashed. Labels on the x axis correspond
to the number of iterations of the numerical discretization of Eqs. (1)–(3). Conductivities are depicted in two time windows, before and after
their stabilization time tSTAB. Fluxes are drawn only for t � tSTAB. Colors denote different edges. (b) Evolution of L̄γ and of 〈Lγ 〉T in time.
The green and the red circles denote tSTAB and tSTOP, respectively.

C. Periodic-load dynamics

Combining Eqs. (5) and (9), we can build a dynamics for
some new conductivities μ̄ = {μ̄e}, which evolve in the slow
timescale τ . Precisely, we ignore negligible contributions in
Eq. (9) and define

dμ̄e(τ )

dτ
= �̄e(μ̄e(τ )) ∀ e ∈ E , (10)

μ̄e(0) = m̄e ∀ e ∈ E , (11)

with m̄e > 0 initial conditions. The right-hand side of Eq. (10)
is such that �̂ � �̄ for � � 1 and reads

�̄e(μ̄) := μ̄
2−γ
e

�2
e

∑
uv

Aeu(μ̄)Aev (μ̄)Cuv − μ̄e ∀ e ∈ E . (12)

An important point is that the problem in Eqs. (10) and (11)
is not equivalent to the dynamics Eqs. (1)–(3) with each Sv (t )
integrated over T . The latter case would imply that Cvu had
the form Cuv = S̃uS̃v , where S̃v is the integral of Sv (t ) over
the period. This is only a particular case of the dynamics in
Eqs. (10) and (11).

Noticeably, in this case the condition rank(C) = 1 holds,
i.e., since C is symmetric, there exists a vector y ∈ R|V | such
that Cuv = yu yv ∀ u, v ∈ V. This is a sufficient condition for
Eqs. (10) and (11) to return a loopless network at convergence
(see Appendix D for a proof) and confirms previous results
observed for constant loads [23,26,29].

However, this condition does not hold generally for any
arbitrary choice of the loads, as C may have a more general
expression, in particular rank(C) > 1. Moreover, the case of
constant loads is not the only one where rank(C) = 1. We
provide an example of this in Sec. V B, where we explore
the case of each Sv (t ) being the sum of a finite number of
harmonic oscillators.

IV. CHARACTERIZATION OF THE FAST DYNAMICS

Finding an analytical expression for the fast conductivities
μ(t ) solutions of Eqs. (1)–(3) cannot be done by directly
solving the dynamics, because of the nonlinear dependence

on μ(t ) in the Laplacian pseudoinverse. Nevertheless, here we
propose an argument to characterize their long-time behavior.

We support our findings with an empirical validation on
synthetic networks built taking the Delaunay triangulation
of |V | nodes placed at random in the unit square. In our
experiments, we set |V | = 2i, with i = 3, . . . , 9. The vector
of loads S(t ) is S(t ) := 20 S1(t ) + 10 S4(t ) + 5 S8(t ), where
each factor is defined as Sn(t ) := qn cos(ωnt ), with ampli-
tudes extracted at random from a |V |-dimensional Dirichlet
distribution as qn ∼ D(α = 1) − 1/|V | [so that

∑
v Sv (t ) =

0 ∀ t � 0] and n = 1, 4, 8. The period has been conventionally
set to have ω = 2π .

We observe that the evolution of the fast conductivities
is typically divided in two phases, as shown in Fig. 3(a).
First, the conductivities undergo a stabilization transient for
t < tSTAB, where they strongly depend on their initial condi-
tions me and significantly change their mean values. Then,
when t > tSTAB, the conductivities reach a plateau and os-
cillate around fixed values. More precisely, either they move
around mean values that are far from zero and preserve their
oscillatory nature for all times or they decay to zero with
negligible oscillations that are progressively damped as t
increases. These experimental observations suggest the fol-
lowing ansatz for the stabilized solutions, for all t > tSTAB and
e ∈ E :

μe(t ) = ae + be(t ) s.t. ae = const, be(t + T ) = be(t ).

(13)

We compare solutions of the new dynamics (10) and (11)
with those of Eqs. (1)–(3) [see Fig. 3(a) for an example]. In
the figure the conductivities μ(t ) are oscillating around the
constant values of μ̄(τ ) reached at convergence, which we
denote with μ̄∞ = {μ̄∞

e }. Motivated by this empirical obser-
vation, we set

ae = μ̄∞
e ∀ e ∈ E . (14)

We experimentally notice that also the fluxes start to os-
cillate around a constant value after a first stabilization time
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interval [see Fig. 3(a)]. We use this evidence to deduce (see
Appendix E) that the main oscillatory modes of the conduc-
tivities are resonant with the squared fluxes and have the form

be(t ) =
∑

n,m∈N
bm

e bn
e exp[iω(n + m)t] ∀ e ∈ E , (15)

with N := {nv} the set of the Fourier modes of the loads.
Hence, the conductivities oscillate with modes determined
by those of the loads. This result is supported by several
numerical experiments (see Appendix E for details).

Remarkably, these numerical experiments also serve as a
validation for hypothesis (ii) in Sec. III A. In fact, for any
sufficiently slow time τ , the conductivities fluctuate around
a constant value, suggesting the possibility of neglecting
their fast oscillatory nature when studying asymptotics of
Eqs. (1)–(3).

Candidate Lyapunov functional

We empirically observe [see Fig. 3(b)] that our new dy-
namics (10) and (11) admits a candidate Lyapunov functional
reading

L̄γ (μ̄) := 1

2

∑
e

�e

μ̄e
F̄ 2

e (μ̄) + 1

2γ

∑
e

�eμ̄
γ
e , (16)

where for each edge e we define the squared slow fluxes F̄ 2
e :=

(μ̄2
e/�

2
e )

∑
uv Aeu(μ̄)Aev (μ̄)Cuv . Noticeably, if rank(C) = 1

holds, it is possible to formally prove that L̄γ (μ̄) is a well-
defined Lyapunov functional for Eqs. (10) and (11) (see
Appendix D for detailed derivations). In addition, we can
interpret the functional as in Ref. [27] for multicommodity
optimal transport. Namely, the Lyapunov is the sum of a dissi-
pation cost, the first addend in Eq. (16), with an infrastructural
cost, the price needed to build the transport network.

We notice empirically that the functional reaches a plateau
at tSTOP, defined as the time for which �L̄γ /δ̄t < ε is sat-
isfied, with �L̄γ := |(L̄γ )τ+1 + (L̄γ )τ |/(L̄γ )τ+1, where the
upper indices are consecutive iterations in the finite-difference
discretization of Eqs. (10) and (11). In all our experiments, we
set δ̄t = 0.1 as time step of a forward Euler method and the
convergence threshold to ε = 10−5.

Additionally, we observe that the candidate Lyapunov
functional L̄γ converges to a value that is the same achieved
by the running average functional over the period T :

〈Lγ 〉T := 1

T

∫ t+T

t

(
1

2

∑
v

pv (μ)S(t ′) + 1

2γ

∑
e

�eμ
γ
e

)
dt ′,

(17)

with μ that is evaluated along solution trajectories of Eqs. (1)–
(3). The functional (17) reaches a plateau at the stabilization
time tSTAB, when the fast conductivities μ(t ) start oscillating
around constant values. Remarkably, in Fig. 3(b) we see that
tSTAB � tSTOP, which is due to the fact that the time step δt for
the numerical discretization of Eqs. (1)–(3) has to be set much
lower than δ̄t in order to capture the oscillatory nature of the
loads. In our experiments we set it to δt = δ̄t/10. A practical
consequence of this is that the discretization of Eqs. (10) and
(11) is a fast and scalable alternative to extract the conductivi-
ties around which long-run solutions of Eqs. (1)–(3) stabilize.

Because of this analogy between an optimal transport
(functional minimization) setup and the solutions of our dy-
namical system, we can interpret the networks determined
from the dynamics in Eqs. (10) and (11) as optimal topologies
minimizing the infrastructural and dissipation cost. These net-
works can also be obtained by averaging long-run solutions of
the original dynamics in Eqs. (1)–(3). In fact, as discussed
in Sec. IV, long-run trajectories of Eqs. (1)–(3) oscillate
around asymptotics of the newly defined dynamical system
in Eqs. (10) and (11).

V. GENERATION OF LOOPS

A. Conditions for the generation of loops in closed form

If C has rank(C) = 1, i.e., Cvu = yu yv for some y ∈ R|V |,
the dynamics (10) and (11) produces trees at convergence.
One trivial case where this holds is when the loads S(t ) are
static, i.e., constant for all times. However, this is not the only
setting where rank(C) = 1 is satisfied. In particular, there are
cases where such a condition holds but S do change in time.

Here we explore a case of study proposing an ansatz where
the loads are the sum of decoupled harmonic oscillators

Sv (t ) =
Nv∑
i=1

Ai
v cos

(
ωni

vt + φi
v

) + dv ∀ v ∈ V, (18)

with ω = 2π/T , ni
v, Nv ∈ N, and Ai

v, dv ∈ R. By construc-
tion, these loads are periodic in T ; hence we compare
them with their Fourier series representation Sv (t ) = a0

v/2 +∑
nv�1 anv

v cos(ωnvt + ϕnv
v ). Equating this expression with

Eq. (18) yields

cnv

v = Ai
v

2
exp

(
iφi

v

)
δnvni

v
∀ nv ∈ N, (19)

where we conventionally set φ0
v = 0 ∀ v ∈ V and where only

a finite number of Fourier coefficients are different from zero,
given that the sum in Eq. (18) is finite.

The goal here is to express rank(C) = 1 in terms of {Ai
v},

{ni
v}, and {φi

v}, amplitudes, modes, and phases of the harmonic
oscillators, respectively. To do that, we start by noting that
rank(C) = 1 is satisfied if and only if Cuv = yuyv ∀ u, v ∈ V ,
with yv = ±√

Cvv , and where the plus or minus signs have to
be determined among 2|V | possible choices in such a way that∑

v yv = 0 (see Appendix F).
Defining the complex vectors νv = {cnv

v } with entries
of the Fourier coefficients in Eq. (19), we rewrite Cuv =
±√

Cuu
√

Cvv as νu · νv = ±‖νu‖‖νv‖, where the centered dot
denotes the complex dot product and ‖ · ‖ is its correspondent
norm. Thus, the rank condition on C can be reformulated in
terms of an equivalent linear dependence condition of the form
νv = λνu between the vectors νv , v ∈ V , and for λ �= 0. Fi-
nally, substituting Eq. (19) in this linear dependence condition
leads to the following main result.

Proposition 1. Let the time-dependent loads S(t ) injected
in the network nodes be as in Eq. (18). If the following hold,
then, for any γ � 1, a stationary solution of Eqs. (10) and
(11) is a tree: (a) φi

v = φi
u + kπ, k ∈ Z, i.e., sources and sinks

are in phase, and (b) Ai
vδnvni

v
= λ(−1)kAi

uδnuni
u

(implying that
Nv = N for all v),

For a formal justification of this result see Appendix F.
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FIG. 4. Bordeaux bus optimal transport network. (a) Network visualization. Input loads have been built as described in Sec. V B. The tree
network originated by C with rank 1 is plotted in blue, the loopy topology in orange. The yellow and the magenta stars denote the geographical
location of the two loads, the green squares those of the sinks. Here the width of edges corresponds to slow conductivities at convergence μ̄∞

e .
Results are plotted for γ = 0.9. (b) Basis loop fraction against rank(C). Points correspond to averages over 100 runs of the experiments where
positions of the sources and sinks are extracted at random. Shaded regions denote their standard deviations. Results are displayed for γ = 0.5.

B. Numerical tests on the Bordeaux bus

In order to test the rank condition on C we design two
experiments on the real network of the buses of Bordeaux. The
network topology has been constructed focusing on a central
region of the city and using data collected from [48]. Here
we assume that the loads, representing passengers entering or
exiting the network, vary much faster than the conductivities.
These latter quantities can be thought of as the size of the
roads that a network manager needs to design; thus we can
safely assume their evolution to happen on a larger timescale
with respect to that of S(t ).

First, we design a simulation with two source nodes v1 and
v2 [the stars in Fig. 4(a)] and five sinks [the green squares in
Fig. 4(a)] that we extract at random among the nodes of the
network. Then we consider two cases where the sources are
built in such a way that (i) rank(C) = 1 and (ii) rank(C) =
2. These are, respectively, (i) Sv1 (t ) = Sv2 (t ) = 100 cos(ωt ),
with ω = 2π , and (ii) Sv1 (t ) = 100 cos(ω1t ), with ω1 = 2π ,
and Sv2 (t ) = 100 cos(ω2t ), with ω2 = 4π . All the sinks u �=
v1, v2 have loads Su(t ) = −[Sv1 (t ) + Sv2 (t )]/5 in both cases,
to ensure conservation of mass.

We expect that in the first case the network extracted from
Eqs. (10) and (11) with γ � 1 is a tree. In the second case
the network can possibly contain loops. We run the dynamics
setting γ = 0.9 and we display our findings in Fig. 4(a).
The empirical results reflect our predictions: the blue network
(the first case) is a tree. In contrast, in the orange network
(the second case) loops emerge.

We further validate our results on the bus network of
Bordeaux with a second experiment. We assign the loads
Sv (t ) = ∑n

i=1 Si
v (t ), with Si

v = (100/|Qn|) cos(ωit ), to a set
Qn of randomly extracted nodes and Si

v = −[100/(|V | −
|Qn|)] cos(ωit ) to the remaining ones. The modes are n =
1, . . . , 6, while the number of nodes which are randomly
extracted for each n are Q := |Qn| = {1, 5, 10, 20}. We set
again ω = 2π .

Exploiting the exact relation that the matrix C has with
the modes of the loads (see Sec. V A), it is possible to see
that our particular construction of S(t ) gives ranks ranging in

1 � rank(C) � 6. We show our results in Fig. 4(b), where we
plot the fraction of basis loops of the network against the rank
of C. The dynamics is executed for γ = 0.5 and the random
extraction of the forcings has been varied over 100 runs. In the
plot, it is clearly visible that for all values of Q, the fraction
of basis loops is zero at rank(C) = 1. Moreover, we can see
that when we increase the complexity of the problem, i.e.,
when rank(C) grows, the values attained on the y axis also
increase. This suggests that the rank of the C can be used as a
qualitative proxy to predict the number of loops in the optimal
transport network. Finally, as one could intuitively expect, the
basis loop fraction increases with Q, i.e., with the number of
nodes where mass is injected or extracted.

VI. CONCLUSION AND OUTLOOK

Routing models on networks are relevant to study many
real-world problems. While most of the works in the current
literature consider stationary setups, i.e., the inflows injected
in the network do not change in time [2,15,20,27,37–42], few
recent works investigate time-varying loads and the majority
of these models study solely the averaged evolution of the
networks’ variables [3,9,24,37].

In this work we analyzed a dynamical system where the
conductivities are regulated by time-varying mass inflows.
Motivated by empirical observations [25,43–45], we assumed
the existence of auxiliary conductivities that have response
times which are much slower than those of the loads. Further-
more, in order to make the problem analytically tractable, we
supposed that all the loads injected in nodes are periodic, in a
period that is substantially smaller than the adaptation time of
the new conductivities. These two hypothesis together allowed
us to deduce a dynamics where the evolution of the systems
is solely regulated by an input matrix constructed using the
Fourier series expansion of the loads.

The resulting dynamics allowed us to derive the main
findings of our work. In detail, combining theoretical argu-
ments with empirical evidence on synthetic networks, we
found an expression for the long-run solutions of the original
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dynamics, which cannot otherwise be obtained by simply
solving the original dynamics. These long-run solutions are
the sum of stationary components, equal to the asymptotics
of the dynamics we constructed, and an oscillatory one. This
second contribution can be expressed as the sum of periodic
signals, with modes related to those of the loads. Moreover,
we discussed a sufficient condition on the loads that de-
termines when optimal transport networks can be loopless.
Such a condition was numerically validated on the Bordeaux
bus network. Finally, our dynamics can be connected to an
optimization setup, as shown by the proposed candidate Lya-
punov functional. As a result, asymptotic trajectories of our
dynamics minimize the total cost needed to build the network
infrastructure.

Importantly, the numerical discretization of the dynamics
we proposed in this work can be used as an efficient method to
rapidly converge to average long-run solutions of the original
dynamics.

Our results can be extended in several ways. For in-
stance, it would be interesting to investigate different types
of input loads that relax the periodicity hypothesis and use
this to analyze the behavior of the conductivities in differ-
ent problems’ settings. Similarly, it would be interesting to
explore how this formalism adapts to multilayer networks,
where passengers can enter different stations correspond-
ing to different transportation modes [20]. Another relevant
application could be that of integrating our findings with
the recent work of Baptista and De Bacco [19], where
the authors studied how topological properties of the trans-
port network change in time, as we approach stationary
configurations, and how these reflect on the shape of the
conductivities.

While our work constitutes a step towards extending the
formalism of capacitated networks to time-dependent loads,
it is important to remark that our findings are valid in a
particular time limit. Specifically, this is the scenario where
conductivities slowly evolve with the integral average of
periodic forcings, as introduced in Sec. III. It is not clear
how the theoretical analysis presented in this work could be
adapted to scenarios where loads and conductivities evolve
with the same timescale. This could be an interesting av-
enue for future work. Another interesting direction could be
that of considering additional constraints on the evolution of
the conductivities, which are not currently included in our
model. For instance, one could introduce a threshold capacity
above which the edge traffic saturates, causing blockage of
roads.

Altogether, we believe that our results enrich the current
knowledge on network routing problems with time-varying
input loads and have immediate practical implications. In fact,
our model is deterministic, since there is only one single
realization of the inputs and thus adequate to model real-world
scenarios where time-dependent loads are measured quanti-
ties, e.g., the amount of passengers traveling in a metro (which
can be easily tracked), without the need of stochastic formula-
tions that require the introduction of probability distributions
that are hard to characterize.

To facilitate practitioners in using our model, we have
made the algorithmic implementation publicly available [49].
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APPENDIX A: NONDIMENSIONALIZATION
OF THE MODEL

Here we show how our model can be made dimension-
less, i.e., constants can be removed by appropriately rescaling
dimension-dependent quantities. We start from the dimension-
dependent ODEs

dμ̃e(t̃ )

dt̃
= a

F̃ 2
e (t̃ )

μ̃
γ
e (t̃ )

− bμ̃e(t̃ ) ∀ e ∈ E , (A1)

with a and b coefficients with appropriate dimensions. We
then choose the nondimensionalization

t := t̃/tc, (A2)

μe := μ̃e/μc ∀ e ∈ E , (A3)

Sv (t ) := S̃v (t̃ )/Sc ∀ v ∈ V, (A4)

where Sc is the characteristic unit of S. Substituting Eqs. (A2)–
(A4) in Kirchhoff’s law yields Fe(t ) = F̃e(t̃ )/Sc ∀ e ∈ E , with
F (t ) adimensional fluxes.

Recasting all adimensional variables in Eq. (A1), we get

dμe(t )

dt
= a

(
tcS2

c

μ
γ+1
c

)
F 2

e (t )

μ
γ
e (t )

− btc μe(t ) ∀ e ∈ E , (A5)

showing that, to recover Eq. (2), we can set

tc = 1/b, (A6)

μγ+1
c /S2

c = a/b. (A7)

We note that a procedure for the nondimensionalization of
a model similar to ours can be found in [2] (Supplemental
Material Sec. II).

APPENDIX B: DERIVATION OF (5)

In order to define Eq. (5), we perform the calculations on
the right-hand side of Eq. (2),∫ τ+�

τ

�e(μ(t ), t )dt := 1

�

∫ τ+�

τ

μ−γ
e (t )F 2

e (t ) − μe(t )dt

(B1)

= 1

�

∫ τ+�

τ

(
μ

2−γ
e (t )

�2
e

∑
uvmn

BmeBneL†
um(μ(t ))L†

vn(μ(t ))

× Su(t )Sv (t ) − μe(t )

)
dt (B2)

t ′= t−τ= 1

�

∫ �

0

(
μ

2−γ
e (τ + t ′)

�2
e

∑
uvmn

BmeBneL†
um(μ(τ + t ′))

× L†
vn(μ(τ+ t ′))Su(τ+ t ′)Sv (τ + t ′)−μe(τ + t ′)

)
dt ′

(B3)
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(ii)≈ μ
2−γ
e (τ )

�2
e

∑
uv

Aeu(μ(τ ))Aev (μ(τ ))
1

�

∫ �

0
Su(τ + t ′)

× Sv (τ + t ′) − μe(τ + t ′) dt ′ (B4)

t=t ′+τ= μ
2−γ
e (τ )

�2
e

∑
uv

Aeu(μ(τ ))Aev (μ(τ ))
1

�

∫ τ+�

τ

Su(t )

× Sv (t ) − μe(t ) dt (B5)

=: �̂e(μ(τ ), τ ), (B6)

which are valid for all e ∈ E . In detail, in Eq. (B2) we used the
definition of the fluxes Fe(t ) := μe(t )[pu(t ) − pv (t )]/�e ∀ e ∈

E and evaluated the pressure solving Kirchhoff’s law, i.e.,
pv (t ) := ∑

u L†
vu(μ(t ))Su(t ) ∀ v ∈ V . The second important

step is in Eq. (B4), where we used hypothesis (ii) in Sec. III A,
namely, the approximation in Eq. (4), to carry the conductiv-
ities out of the time integral, and we introduced Aev (μ(t )) :=∑

u BeuL†
vu(μ(t )) ∀ e ∈ E ∀ v ∈ V .

APPENDIX C: DERIVATION OF (9)

We enforce the hypothesis of periodicity of the loads, i.e.,
Sv (t ) = Sv (t + T ), with T/� 	 1, and we parametrize the
integration window � as � = KT , K � 1. This allows us to
split the integral in Eq. (9) into two separate contributions.
In detail, making the reasonable hypothesis that Su(t )Sv (t ) is
bounded by M < +∞ for all t � 0 and for all u, v ∈ V , we
can write

1

�

∫ τ+�

τ

Su(t )Sv (t ) dt = 1

�

∫ τ+�

τ

∑
nunv

(
cnu

u

)∗
cnv

v exp[iω(nv − nu)t]dt (C1)

=
∑
nunv

(
cnu

u

)K
cnv

v

( �K�∑
k=1

Ik (nu, nv ) + IK (nu, nv )

)
, (C2)

Ik (nu, nv ) := 1

�

∫ τ+kT

τ+(k−1)T
exp[iω(nv − nu)t]dt ∀ k = 1, . . . , �K�, (C3)

IK (nu, nv ) := 1

�

∫ τ+KT

τ+�K�T
exp[iω(nv − nu)t]dt . (C4)

Hence, we separate the first �K� integrals over the period T
from the last one in (�K�T, KT ). Since K � 1, the first �K�
contributions can be evaluated as

∑
nunv

(cnu
u )∗cnv

v

�K�∑
k=1

Ik (nu, nv ) = �K�
K

∑
nunv

(
cnu

u

)∗
cnv

v δnunv
(C5)

=
∑

nv

(
cnv

u

)∗
cnv

v + O(�), (C6)

with δi j being the Kronecker delta for two indices i and j. As
for the second term, in the limit K � 1 we can write∣∣∣∣∣∣

∑
nunv

(
cnu

u

)∗
cnv

v IK (nu, nv )

∣∣∣∣∣∣ � K − �K�
K

M ∼ O(�), (C7)

showing that integrals over the small interval (�K�T, KT ) are
negligible for a large integration window.

APPENDIX D: SUFFICIENT CONDITION
ON THE RANK FOR OPTIMAL TREES

We discuss in detail the sufficient condition rank(C) = 1 to
obtain loopless optimal networks running the dynamics (10)
and (11). Our argument proceed as follows.

The matrix C is symmetric by construction; thus if its
rank is 1 its eigenvalue decomposition is of the form C =

∑N
i=1 λixix�

i , with all the eigenvalues equal to zero except
one. We conventionally choose it to be λ1 = ∑

v Cvv > 0,
with a unit norm eigenvector x1. Defining y := √

λ1x1 and
substituting the eigendecomposition of C in Eq. (12), we get
that �̄e is proportional to F̂e := (μ̄e/�e)

∑
v Bev p̂v , with p̂v :=∑

u L†
vu(μ̄)yu. In order to conclude, we need to show that p̂ is

a well-defined solution of Kirchhoff’s law
∑

u Luv (μ̄) p̂u = yv ,
i.e., y is a zero-sum vector [47]. This comes as a conse-
quence of conservation of mass. Indeed, since for all times∑

v Sv (t ) = 0 holds, we have
∑

v Su(t )Sv (t ) = 0 ∀ u ∈ V . Us-
ing Eq. (9) and ignoring negligible terms of O(�), this yields∑

v Cuv = 0 ∀ u ∈ V . Finally, substituting the eigendecompo-
sition of C in this last relation gives

∑
v yuyv = 0 ∀ u ∈ V .

This is satisfied only if
∑

v yv = 0, i.e., y is a zero-sum vector.
In this case, Eqs. (10) and (11) correspond to the standard dy-
namics (1)–(3) with constant loads, which are S(t ) = y ∀ t �
0, and we recover the well-known result that optimal networks
are trees for γ � 1 [23,26,29].

Noticeably, if rank(C) = 1, it is possible to prove that
the functional L̄γ (μ̄) proposed in Eq. (16) is a well-defined
Lyapunov functional. This means that for any μ̄(τ ) solution
trajectory of Eqs. (10) and (11), we have dL̄γ (μ̄(τ ))/dτ �
0, with stationarity achieved only by asymptotics of the
dynamics. Having established that p̂ is a well-defined po-
tential, we can write the Lyapunov functional as L̄γ (μ̄) =
(1/2)

∑
v p̂v (μ̄)Sv + (1/2γ )

∑
e �eμ̄

γ
e . This last expression is

useful to conclude the proof, which follows that in Ref. [27].
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APPENDIX E: DERIVATION OF (15)

In order to discern the nature of the fast oscillating com-
ponent be(t ) of the stabilized solutions, we need to investigate
further the original dynamics Eqs. (1)–(3). From our numer-
ical validation we observe that the fluxes start to oscillate
around a constant value after a first stabilization time inter-
val [see Fig. 3(a)], analogously to the conductivities. This
suggests the ansatz Fe(t ) = ∑

ne∈Z F ne
e exp(iωnet ) ∀ e ∈ E for

all times t sufficiently larger than tSTAB and with the terms
F ne

e amplitudes of the Fourier series decomposition. We ar-
gue that pairing this expression with Kirchhoff’s law, i.e.,∑

e BveFe(t ) = Sv (t ), yields

Fe(t ) =
∑
n∈N

F n
e exp(iωnt ) ∀ e ∈ E , (E1)

with N := {nv} the set of Fourier modes of the loads injected
in the network. Our argument is the following.

Assuming the ansatz Fe(t ) = ∑
ne∈Z F ne

e exp(iωnet ) ∀ e ∈
E , we separate the contributions

Fe(t ) = ϕe(t ) + ψe(t ), (E2)

ϕe(t ) =
∑

ne∈N
F ne

e exp(iωnet ), (E3)

ψe(t ) =
∑

ne /∈N
F ne

e exp(iωnet ). (E4)

Substituting Eqs. (E2)–(E4) in Kirchhoff’s law returns the
conditions ∑

e

Bveϕe(t ) = Sv (t ), (E5)

∑
e

Bveψe(t ) = 0, (E6)

valid for all v ∈ V . Now, in order to guarantee that the fluxes
{ϕe(t ), ψe(t )} are well defined, we suppose the existence
of two time-dependent potentials α(t ) = {αv (t )} and β(t ) =
{βv (t )}. These are defined on the network nodes and such that
for all e ∈ E we have

ϕe(t ) := μe

�e

∑
v

Bveαv (t ), (E7)

ψe(t ) := μe

�e

∑
v

Bveβv (t ). (E8)

Note that these definitions lead to Fe(t ) being a potential-
based flux and yield pv (t ) = αv (t ) + βv (t ) ∀ v ∈ V . Substi-
tuting Eqs. (E7) and (E8) in Eqs. (E5) and (E6), respectively,
implies that ψe(t ) = 0 ∀ e ∈ E and for sufficiently large times.
Hence, the only nonzero terms in the Fourier decomposition
of Fe(t ) have modes in N .

This result is particularly useful to describe the behavior
of μ(t ) at large times. First, we recall that μe(t ) = μ̄∞

e +
be(t ) ∀ e ∈ E , as discussed in Sec. IV. Moreover, we observe
that in our numerical experiments [see Fig. 3(a)] the size of
the amplitude of the oscillatory term be(t ) is negligible in size
with respect to μ̄∞

e , unless μe(t ) decays to zeros. This allows
us to approximate Eq. (2) as

dμe(t )

dt
� F 2

e (t )(
μ̄∞

e

)γ − μe(t ) ∀ e ∈ E . (E9)

Finally, substituting Eq. (E1) in Eq. (E9), we get the desired
results, i.e., the main oscillatory modes of the conductivities,
hence of be(t ), are resonant with the squared fluxes. Thus we
obtain Eq. (15).

Validation on synthetic networks

We test these expressions numerically on networks
generated as described in Sec. IV. We compute Pe :=∫
R |F[be]( f )|2df , the total spectral density of the os-

cillatory components be(t ), after the conductivities μ(t )
stabilize. Here F[·]( f ) is the Fourier transform opera-
tor. Additionally, we calculate PN , obtained summing the
atomic contributions of the spectral density on the modes
k ∈ K := {k s.t.k = n + m for n, m ∈ N }, namely, PN ,e :=∑

k∈K
∫
R |F[be]( f )|2δ( f − k)df ∀ e ∈ E .

From Eq. (15) we expect to have most of the spec-
tral density of be(t ) concentrated on the modes in K, i.e.,
the ratio Pe/PN ,e should be close to 1 for each edge. In
Fig. 5(a) we plot P = {Pe} versus PN = {PN ,e} for the
example network considered in Fig. 3. The plot supports
Eq. (15); indeed, the elementwise ratio P/PN is close to 1
for all points (each correspondent to a different edge) with a
slight deviation only for small (thus negligible) values of the
conductivities.

We further validate this result on an additional synthetic
example network. We construct the Delaunay networks de-
scribed in Sec. IV considering 100 combinations of seeds
for the nodes’ positions and for the random input loads.
Then we compute the spectral densities P and plot them
against δP, with entries δPe := (PN ,e − Pe)/Pe. We show in
Fig. 5(b) results for γ = 0.5, 1, 1.5 on 100 random graphs
of size |V | = 8. Here we clearly see that δP are negligible
for any edge with P larger than a threshold α (in our ex-
periments we set α = 10−3), further supporting the result in
Fig. 5(a).

It is worth mentioning how the points cluster in different
regions of the plot for different values of γ . The green points,
corresponding to γ = 0.5, are divided into two clusters: one
around P small and δP = 1 and another with P large and δP
negligible. This reflect the tendency of γ < 0.5 to aggregate
fluxes on few edges. The blue points, corresponding to γ =
1.5, are instead concentrated around a region with P large and
δP small, since in this case fluxes are distributed on more
edges. Finally, the orange points, corresponding to γ = 1,
represent a transition between the two cases and are located
in a cluster placed in between the other two. This result is
consistent with the behavior of γ mentioned in Sec. II.

We test the scalability of our result by running the same
validation just described, but increasing the graphs sizes. We
plot our results in Fig. 5(c). Here we show the compatibility
of δPα := ∑

e δPeI(δPe > α)/E ′ with zero. Here I(·) is the
indicator function and E ′ the number of the edges that do not
get trimmed by α. We see that all values attain values close
to δPα = 0 and all error bars (expressing standard deviations
over 100 random graph realizations) are always intersecting
the line highlighting δPα = 0. The decreasing trend of δPα for
γ = 0.5 can be attributed to the fact that we fixed the cutoff
threshold α a priori and thus we do not have a precise trim for
P for larger networks.
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FIG. 5. Spectral density validation. (a) Plot of PN versus P for the example network of Fig. 3. Each point corresponds to an edge; the color
scale is that of Fig. 3(a). (b) Plot of P versus δP. Each point corresponds to an edge; marker color denotes γ = 0.5, 1, 1.5. The dashed line is
the cutoff used to build δPα . (c) Compatibility of δPα with δPα = 0 for different networks’ sizes. Markers and bars correspond to averages and
standard deviations over 100 random configurations of the problem, respectively. The networks have been obtained pairing ten seeds for node
coordinate generation and ten seeds for mass and conductivity initialization μe ∼ U (0, 1).

APPENDIX F: HARMONIC-OSCILLATOR CONDITIONS

We already established that if rank(C) = 1, then there ex-
ists a zero-sum vector y such that Cuv = yuyv ∀ u, v ∈ V (see
Appendix D). Inspecting the diagonal elements of C, it is
immediate to get yv = ±√

Cvv ∀ v ∈ V . Here the choice of
the plus or minus sign is constrained among 2|V | possibilities,
to those for which

∑
v yv = 0 holds. The right-to-left impli-

cation comes naturally from the definition of C. Namely, if
we suppose that Cuv = yuyv ∀ u, v ∈ V , we are imposing that
all the columns of C are scalar multipliers of each other, i.e.,
rank(C) = 1.

Substituting Eq. (19) in νv = λνu leads to

Ai
v exp

(
iφi

v

)
δnvni

v
= λAi

u exp
(
iφi

u

)
δnuni

u
, (F1)

which needs to be satisfied for each pair of nu, nv ∈ N. This
is valid if the phases are such that φi

v = φi
u + kπ, k ∈ Z, i.e.,

condition (i) in Sec. V A holds. Substituting this last equality
in Eq. (F1), we get

Ai
v exp

(
iφi

v

)
δnvni

v
= λAi

u exp
(
iφi

v

)
(−1)kδnuni

u
, (F2)

Ai
vδnvni

v
= λAi

u(−1)kδnuni
u
, (F3)

which is precisely (ii) in Sec. V A. In conclusion, fixing the
input loads in such a way that (i) and (ii) hold leads to
rank(C) = 1, which is sufficient to get optimal tree topologies,
as shown in Appendix D.
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