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Eigenstate thermalization hypothesis beyond standard indicators:
Emergence of random-matrix behavior at small frequencies
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Using numerical exact diagonalization, we study matrix elements of a local spin operator in the eigenbasis of
two different nonintegrable quantum spin chains. Our emphasis is on the question to what extent local operators
can be represented as random matrices and, in particular, to what extent matrix elements can be considered as
uncorrelated. As a main result, we show that the eigenvalue distribution of band submatrices at a fixed energy
density is a sensitive probe of the correlations between matrix elements. We find that, on the scales where the
matrix elements are in a good agreement with all standard indicators of the eigenstate thermalization hypothesis,
the eigenvalue distribution still exhibits clear signatures of the original operator, implying correlations between
matrix elements. Moreover, we demonstrate that at much smaller energy scales, the eigenvalue distribution
approximately assumes the universal semicircle shape, indicating transition to the random-matrix behavior, and
in particular that matrix elements become uncorrelated.
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I. INTRODUCTION

Questions of equilibration and thermalization in isolated
quantum many-body systems have experienced an upsurge of
interest both from the theoretical and the experimental side
over the last decades [1–3]. In this context, the eigenstate
thermalization hypothesis (ETH) has been established as a key
concept to explain the emergence of thermodynamic behavior,
by assuming a certain matrix structure of physical operators
O in the eigenbasis of generic Hamiltonians H [4–6]. Specif-
ically, let Omn = 〈m|O |n〉 denote the matrix element of O
within the eigenstates |m〉 and |n〉 of H, then the ETH ansatz
reads [3,7]

Omn = O(Ē )δmn + �
− 1

2 (Ē ) f (Ē , ω)rmn, (1)

where ω = Em − En is the difference between the eigenener-
gies Em and En with mean energy Ē = (Em + En)/2, O(Ē )
and f (Ē , ω) are smooth functions of their arguments, and
�(Ē ) is the density of states. Furthermore, the rmn = r∗

nm
are conventionally assumed to be (pseudo-)random Gaussian
variables with zero mean and unit variance. (For earlier work,
see also Refs. [8,9].) While the ETH is an assumption and
a formal proof is absent, its validity (including the Gaussian
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distribution of the rnm) has been numerically confirmed for
a variety of models and observables [10–18]. Generally, the
ETH is believed to hold for nonintegrable models and physical
(for instance, spatially local) observables. In contrast, the ETH
is violated in integrable systems due to their extensive number
of integrals of motion [19], as well as in strongly disordered
models which undergo a transition to a many-body localized
phase in one dimension [20]. In these cases, the off-diagonal
matrix elements rnm deviate from the Gaussian distribution
[18,21]. In addition, models exhibiting a weaker violation of
the ETH, such as, models featuring so-called “quantum scars,”
where rare less entangled states are embedded in an otherwise
thermal spectrum, have recently attracted a significant amount
of interest (see, e.g., Refs. [22,23]).

While the formulation of the ETH in Eq. (1) is conven-
tional [3], it is to some degree incomplete with regard to
the statistical properties of the Omn. Specifically, for a given
H and O, the matrix elements Omn are predetermined, and
therefore the notion of (pseudo-)randomness of the rnm needs
to be carefully defined. In the spirit of the Bohigas-Giannoni-
Schmit conjecture [24], we here advocate the strongest point
of view, that below a certain energy scale all statistical prop-
erties of the off-diagonal matrix elements would match those
of a Gaussian random ensemble. The central question of this
paper is therefore to what extent the matrix elements Omn can
be represented as independently drawn random numbers?

Clearly, all Omn cannot be random in the strict sense as they
are constrained by the fact that the observables have to obey
various algebraic relations (e.g., O2 = 1 in case of O being a
Pauli matrix acting on an individual spin). Furthermore, corre-
lations between the rmn are necessary to reproduce the growth
of certain four-point correlation functions in chaotic systems
[25–27]. Likewise, the consistency of relaxation dynamics in
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local systems also requires the rmn to be correlated [28]. We
therefore arrive at the important conclusion that the onset of
random-matrix behavior has to be limited to matrix elements
Omn within a certain energy window specified by the relevant
energy scale �ERMT.

In this paper, we test the ETH in the case of a local spin
operator in the eigenbasis of the paradigmatic spin-1/2 XXZ
chain, for which we break integrability by means of (i) an ad-
ditional next-nearest neighbor interaction or (ii) a single-site
magnetic field in the center of the chain. (See Refs. [29–32]
for related studies of the ETH and the emergence of quantum
chaos in these models.) Going beyond the “standard” indica-
tors of the ETH, we particularly investigate the existence of
the scale �ERMT below which random matrix theory (RMT)
prevails. To this end, we establish the eigenvalue spectrum of
O as a sensitive probe of the correlations between the Omn.
While the spectrum of the full spin operator includes only
two eigenvalues ±1/2, we particularly focus on the spectrum
of band submatrices at a fixed energy density Ē where the
Omn are restricted to a narrow band |En − Em| � ωc. For such
band submatrices, we demonstrate that the Omn are in con-
vincing agreement with conventional indicators of the ETH
in the following sense: (i) the diagonal matrix elements form
a “smooth” function of energy O(Ē ), (ii) the off-diagonal
matrix elements follow a Gaussian distribution with a vari-
ance f 2(Ē , ω) that depends smoothly on the mean energy
and respective energy difference, and (iii) the ratio between
the variances of diagonal and off-diagonal elements for small
ω takes on the value predicted by RMT. However, despite
(i)–(iii) being satisfied, we find that the eigenvalues of the
band submatrices for ωc larger than a certain value �ERMT

still exhibit clear signatures of the original operator, implying
correlations between matrix elements. At the same time, when
the bandwidth is sufficiently decreased, the spectrum takes on
an approximately semicircular shape, marking the transition
where genuine random-matrix behavior occurs.

Outline and reader’s guide

While our main goal is to demonstrate the existence of
the scale �ERMT, this paper includes a detailed discussion
of standard indicators of the ETH extensively studied in this
context. A reader already familiar with numerical studies of
the ETH, including Refs. [3–7,10–18], may go directly to the
relevant sections concerned with the investigation of �ERMT.
This paper is structured as follows. In Sec. II we introduce the
models and observables and describe our approach to study
the ETH. In particular, the spectrum of band submatrices as
a probe for the onset of random-matrix behavior is discussed
in Sec. II B 3. Our numerical results are then presented in
Sec. III. Specifically, we present data for “standard” indicators
of the ETH in Sec. III A, while the main results concerning
the existence of the scale �ERMT are analyzed in Sec. III B.
A summary and discussion is given in Sec. IV, where we put
our findings into context with previous studies of the ETH and
outline future directions of research.

II. SETUP

A. Models and observable

In order to test the ETH ansatz (1), we consider differ-
ent (integrable and nonintegrable) quantum spin chains. A
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FIG. 1. Level-spacing distribution P(s) of (a) HXXZ, (b) H1, and
(c) H2. The parameters are chosen as � = 1.5, �′ = 1.2, hL/2 = 1,
and L = 18. Correct extraction of P(s) requires unfolding of the
spectrum.

convenient starting point is provided by the one-dimensional
XXZ model with open boundary conditions,

HXXZ =
L−1∑
�=1

Sx
�Sx

�+1 + Sy
�Sy

�+1 + �Sz
�Sz

�+1, (2)

where L denotes the number of lattice sites, Sx,y,z
� are spin-1/2

operators at site �, and � is an anisotropy in the z direction. (In
the following, we set the anisotropy to � = 1.5.) While HXXZ

is integrable in terms of the Bethe ansatz, we break integrabil-
ity by either an additional next-nearest neighbor interaction of
strength �′ [17,33,34],

H1 = HXXZ + �′
L−2∑
�=1

Sz
�Sz

�+2, (3)

or by means of a single-site magnetic field hL/2 in the center
of the chain [29–32,35,36],

H2 = HXXZ + hL/2Sz
L/2. (4)

Note that, although not written explicitly in Eqs. (2)–(4), we
furthermore always include a small magnetic field at the first
lattice site, h1Sz

1 with h1 = 0.1, which breaks the spin-flip and
reflection symmetry of the model.

While HXXZ and H1,2 conserve the total magnetization
Sz = ∑

� Sz
�, all results presented in this paper are obtained for

the largest symmetry subspace which corresponds to Sz = 0
and has dimension

D =
(

L

L/2

)
= L!

(L/2)!(L/2)!
. (5)

For L = 18, which is the largest system size we can treat
numerically, we have D = 48 620. Moreover, our simu-
lations are performed for a representative choice of the
integrability-breaking parameters, i.e., �′ = 1.2 and hL/2 = 1,
for which both H1 and H2 are robustly nonintegrable (see also
Refs. [17,33–36] for other parameter choices).

The transition from the integrable XXZ chain to the non-
integrable models H1 and H2 can for instance be seen from
the level-spacing distribution P(s) which is shown in Fig. 1.
While the level spacings follows the Poisson distribution in
the integrable case, P(s) matches the Wigner-Dyson distribu-
tion for H1,2. In this context, let us note that the field h1 at
the edge of the chain does not break integrability of HXXZ

[35], while the single impurity hL/2 in the center of the chain
induces the onset of chaos [35,36].
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FIG. 2. (a) The ETH ansatz (1) is studied for the spin-1/2 op-
erator Sz

L/2 written in the eigenbasis of the respective Hamiltonian
H. The oval shaded area indicates matrix elements around a fixed
value of Ē where the density of states is approximately constant,
while the smaller square-shaped shaded area indicates a submatrix
in this energy window. (b) For square-shaped submatrices with di-
mension D′ < D, the ratio �2(n, μ) defined in Eq. (10) between the
variances of diagonal and off-diagonal matrix elements is obtained
for regions of size μ shifted along the diagonal. Note that the matrix
shown here comprises actual data for the example of H1 and L = 12.
(c) We introduce a cutoff frequency ωc, where off-diagonal matrix
elements are set to zero, Omn = 0, if |Em − En| > ωc, resulting in a
band matrix with relative bandwidth W/D′. We study how the dis-
tribution of eigenvalues λωc

1 , . . . , λωc
D′ of the submatrix evolves upon

reducing ωc.

For nonintegrable models such as H1,2, it is a general
expectation that the matrix elements of physical observables
O will follow the eigenstate thermalization hypothesis [3]. In
this paper, we test the ETH for the case of a local spin-1/2
operator acting on the central lattice site of the chain,

O = Sz
L/2. (6)

Specifically, we employ full exact diagonalization to obtain
the matrix elements Omn. Note that the indices m and n always
refer to the eigenbasis of H. The Omn are real numbers for the
chosen operator and the symmetry subspace.

B. Testing the ETH and the onset of RMT

In the following, we introduce the quantities studied in
this paper. An accompanying sketch is provided in Fig. 2. A
reader familiar with the “standard” indicators of the ETH may
directly go to Sec. II B 3.

1. Indicators of diagonal ETH

The ETH ansatz (1) consists of the diagonal part and the
off-diagonal part. The diagonal part of the ETH asserts that
the function O(Ē ) becomes “smooth” in the thermodynamic
limit L → ∞. In particular, the eigenstate-to-eigenstate fluc-
tuations Omm − Om+1m+1 should rapidly decrease with the
system size L. One way to test this statement is to study the
variance σ 2

d (Ē ) of the diagonal matrix elements,

σ 2
d (Ē ) = 1

NĒ

∑
m

[Omm]2 −
(

1

NĒ

∑
m

Omm

)2

, (7)

where the sum runs over all NĒ eigenstates |m〉 with eigenen-
ergies Em ∈ [Ē − �E/2, Ē + �E/2] in a microcanonical
energy window around a fixed Ē . For nonintegrable systems

including our cases, it has been found that σ 2
d (Ē ) decreases ex-

ponentially with increasing L, while the scaling for integrable
models is polynomial; see, e.g., Refs. [3,11,17,37].

2. Indicators of off-diagonal ETH

Next, in order to test the off-diagonal part of the ETH, we
consider matrix elements Omn in a (sufficiently narrow) en-
ergy window around a fixed Ē , where �(Ē ) is approximately
constant, which facilitates the analysis of the ω dependence
of f (Ē , ω) and of the distribution of the Omn; see Fig. 2(a).
A useful quantity in this context is the average over matrix
elements in a small ω interval, which we denote in this paper
by an overline. For instance, the average over |Omn|2 in an
interval of width �ω 	 ω (with fixed Ē ) is given by

|Omn|2(ω) = 1

Nω

∑
n, m

Em − En ≈ ω

|Omn|2, (8)

where the sum runs over all Nω matrix elements with Em −
En ∈ [ω − �ω/2, ω + �ω/2]. Plotting |Omn|2(ω) versus ω

yields the function f 2(Ē , ω) [cf. Eq. (1)] except for an overall
prefactor [18,38,39].

Assuming the Omn have zero mean, i.e., Omn = 0, (which
holds with a very high accuracy), we study the following
quantity recently introduced in Ref. [18], which is sensitive
to the distribution of rnm,


(ω) = |Omn|2/|Omn|2. (9)

When Omn = 0, the nominator in Eq. (9) coincides with the
variance of the Omn while the denominator is the squared
mean of the folded distribution. In particular, if Omn were to
follow the Gaussian distribution, 
(ω) = π/2. The value we
find numerically in Sec. III is very close. To further confirm
that the distribution P(Omn) of the Omn is indeed Gaussian, we
plot the histogram of Omn from narrow windows with fixed Ē
and ω; see Fig. 5 below.

Next, we consider square-shaped submatrices of O of di-
mension D′ < D around a fixed mean energy Ē . In Fig. 2
(b), an example for such a submatrix comprising actual nu-
merical data is shown. As a further check that the Omn are
normally distributed, we calculate the ratio �2(n, μ) between
the variances of diagonal and off-diagonal matrix elements for
eigenstates in (small) regions [n − μ/2, n + μ/2] of width μ

[cf. Fig. 2(b)],

�2(n, μ) = σ 2
d (n, μ)

σ 2
od(n, μ)

. (10)

Here σ 2
d (n, μ) and σ 2

od(n, μ) are defined analogously to the
variance in Eq. (7); see also Ref. [40] for details.

For an actual random matrix drawn from the Gaussian
orthogonal ensemble (GOE), �2

GOE = 2. Agreement with the
GOE was anticipated in Ref. [3] and then verified numerically
in, e.g., Refs. [15,16,41]. Our results for �2(n, μ) in Sec. III
are also in agreement with the GOE value.

3. Indicators of correlations between off-diagonal matrix elements

While the indicators of ETH given in Eqs. (7)–(10) have
been studied before, this work particularly scrutinizes the
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FIG. 3. Diagonal matrix elements of Sz
L/2 in the eigenbasis of

(a) H1 and (b) H2, for system sizes L = 14, 16, 18. The shaded area
indicates the energy window Em/L ∈ [−0.15, −0.05] which is used
in the following to further study the properties of off-diagonal matrix
elements. For the example of H1, the inset in (a) shows that the
variance σ 2

d (Ē ) of the Omm in this window decreases exponentially
with increasing L.

presence of correlations between the Omn. To this end, we
consider the eigenvalue distribution of the submatrices with
dimension D′ < D around mean energy Ē [see Fig. 2(b)],
and show that it provides a much more sensitive probe of
the statistical properties of the Omn. For a full random matrix
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FIG. 4. [(a),(b)] Running averages |Omn|2 of matrix elements
in the energy window Ē/L ∈ [−0.15, −0.05], calculated for sys-
tem sizes L = 14, 16, 18 and frequency bins of width �ω = 0.01.
(c, d) Close-up of the low-frequency regime using a bin width of
�ω = 5 × 10−4. Note that both the horizonal and the vertical axis
have been rescaled. Panels (a) and (c) show results for H1, while
panels (b) and (d) show data for H2. The shaded area in panels
(a) and (b) indicates the ω range which is probed when considering
a square-shaped submatrix with eigenstates in an energy interval of
width �E/L = 0.1.
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FIG. 5. [(a),(b)] 
(ω) for matrix elements in the energy win-
dow Ē/L ∈ [−0.15, −0.05] and system sizes L = 14, 16, 18. The
dashed line indicates the value π/2 for a Gaussian distribution. The
shaded area indicates the ω range which is probed when considering
a square-shaped submatrix with eigenstates in an energy interval
of width �E/L = 0.1. (c, d) Distribution P(Omn) of off-diagonal
matrix elements for L = 18 and ω = 0.2, 0.4, . . . , 2 (arrow). The
data are collected in frequency bins [ω − �ω/2, ω + �ω/2] with
�ω = 0.002. Panels (a) and (c) show results for H1, while panels
(b) and (d) show data for H2.

with all matrix elements being independent, the eigenvalue
distribution will follow the celebrated Wigner’s semicircle
[3,42]. In contrast, if there are correlations between the Omn,
deviations from the semicircle shape should emerge. Impor-
tantly, we find that the eigenvalue spectrum unambiguously
shows that the rnm can not be represented as independent
Gaussians variables, even though all standard indicators of
the ETH are fulfilled; see Sec. III B below. We note that this
finding is in accord with recent theoretical arguments from
Ref. [28]. In particular, Ref. [28] showed that consistency with
transport in a quantum many-body system imposes constraints
on the matrix elements entering the ETH and requires them
to be correlated. The strongest constraint is provided by the
slowest mode probed by the operator O. For instance, con-
sider a system exhibiting diffusive transport with O being
coupled to the diffusive quantity (such a scenario is real-
ized in the present paper as O = Sz

L/2 and spin transport is
presumably diffusive in the nonintegrable models H1,2 [43]).
In this case, the slowest Fourier mode is expected to decay
as ∝ e−t/τ with τ ∝ L2/D and D being the diffusion con-
stant. While this picture would suggest that the Omn should
become stuctureless and independent for frequencies below
τ−1 ∝ L−2, Ref. [28] proved that the scale �ERMT, below
which genuine random-matrix may occur, in fact has to be
parametrically smaller, �ERMT � (1/τ )/L ∼ L−3. The bound
�ERMT � (1/τ )/L with τ being the timescale of the slow-
est mode applies to any kind of transport. Therefore, in full
generality, �ERMT ∝ 1/L2 is the loosest possible bound in
a local system. Studying the signatures discussed below, we
demonstrate in the present work that the scale �ERMT indeed
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exists. Moreover, while we do not explicitly address its scaling
with L, we specifically show that �ERMT is drastically smaller
than the scales where “standard” indicators of the ETH are
already well fulfilled.

To identify the scale at which the transition to RMT be-
havior occurs, we analyze how the eigenvalue distribution
depends on the width W of the band; see Fig. 2(c). Specifi-
cally, let ωc denote some cutoff frequency. Then we define the
new operator Oωc with matrix elements

Oωc
mn =

{Omn, |Em − En| < ωc

0, otherwise , (11)

resulting in a band matrix with the relative bandwidth W/D′.
Band random matrices have been extensively used in physics
to model quantum systems and study their properties [44–49].
Furthermore, the largest eigenvalues of full (square) and band
submatrices have been studied in Refs. [28,41,50] in connec-
tion with the transition from integrability to chaos as well as
relaxation dynamics and thermalization. However, to the best
of our knowledge, the full eigenvalue distribution of (band)
submatrices of local operators has not been previously consid-
ered as a quantity to characterize the presence of correlations
between the matrix elements Omn. Provided all matrix ele-
ments are independent and identically distributed (except for
an overall amplitude which may depend on ω), the eigenvalue
distribution of band random matrices is expected to converge
towards a semicircle for small W/D′ [46], although there are
corrections at intermediate W/D′ and the detailed shape is
more complicated [51]; see Appendix C.

In addition to band submatrices, we also consider the
eigenvalue distribution of full submatrices with varying di-
mension D′ in Appendix A. One advantage of keeping D′
fixed and varying W , however, is that the number of eigenval-
ues remains unchanged and is comparatively large. As shown
in Appendix A, the properties of the smaller full submatrices
are in fact similar and consistent with our findings for the band
submatrices (11).

Given the ordered eigenvalues λωc
α obtained by diagonal-

izing Oωc for the cutoff frequency ωc, an important quantity
characterizing Oωc is the mean ratio 〈rωc〉 of adjacent level
spacings,

〈rωc〉 = 1

Nr

∑
α

min{�α,�α+1}
max{�α,�α+1} , (12)

where �α = |λωc
α+1 − λωc

α | denotes the gap between two ad-
jacent eigenvalues and the averaging is performed over a
number (here Nr ≈ D′/2) of gaps around the center. For a
random matrix drawn from the GOE, one expects rGOE ≈
0.53, while for uncorrelated Poisson distributed eigenvalues,
one finds rPoisson ≈ 0.39 [52]. In addition to 〈rωc〉, the central
quantity in this paper is the full eigenvalue distribution Pωc (λ)
of the band submatrix Oωc ,

Pωc (λ) = 1

D′

D′∑
α=1

δ
(
λ − λωc

α

)
, (13)

where δ(·) denotes the δ function, and it is understood that
individual peaks are collected in small bins such that Pωc (λ)
forms a “continuous” distribution.

Given the corrections to the semicircle distribution for
band random matrices with intermediate W/D′, a particu-
larly simple and effective scheme to test the randomness of
Oωc is to compare the eigenvalue distribution Pωc (λ) with
the eigenvalue distribution of the suitably randomized Õωc .
For a similar comparison of the properties of bare and sign-
randomized matrices, see Refs. [53,54]. Specifically, Õωc is
constructed by assigning random signs to the individual ma-
trix elements Oωc

mn (while keeping Õωc Hermitian),

Õωc
mn =

{Oωc
mn, 50% probability

(−1)Oωc
mn, 50% probability

. (14)

If the matrix elements Oωc
nm were random, we expect that the

eigenvalue distribution would remain unchanged under this
“sign randomization.” In contrast, if the matrix elements of
Oωc are correlated, these correlations will be erased by the
randomization procedure and the eigenvalue distribution of
the original and randomized matrices will be different. In
order to quantify the difference (and its dependence on ωc)
between Pωc (λ) and the distribution P̃ωc (λ) of the randomized
operator, we introduce

d2(ωc) =
∫ ∞

−∞

[
Pωc (λ) − P̃ωc (λ)

]2
dλ, (15)

where Pωc (λ) and P̃ωc (λ) should be understood as the con-
tinuous distributions resulting from a binning procedure [see
below Eq. (13)]. If d2(ωc) → 0, both distributions are very
similar, which will be interpreted as a further indication that
the matrix elements Oωc

mn are randomly distributed.

III. RESULTS

Let us now turn to our numerical results for the matrix
structure of Sz

L/2 in the eigenbasis of the two nonintegrable
models H1 and H2. The properties of diagonal and
off-diagonal matrix elements are discussed in Secs. III A 1
and III A 2, respectively, while Sec. III B presents results for
the eigenvalue distribution of band submatrices. Additional
results for the integrable XXZ chain can be found in
Appendix B.

A. “Standard” indicators of the ETH

1. Diagonal matrix elements

As a first step, we study the diagonal part of the ETH. To
this end, Figs. 3(a) and 3(b) show the matrix elements Omm =
〈m| Sz

L/2 |m〉 as a function of the corresponding energy density
Em/L for H1,2 and different system sizes L = 14, 16, 18. For
energy densities in the center of the spectrum, we find that the
“cloud” of matrix elements becomes narrower with increasing
L [11,17,29]. This finding is in good accord with the ETH
prediction that the Omm should form a “smooth” function of
energy in the thermodynamic limit L → ∞. At the edges
of the spectrum, the scaling with L is significantly slower.
Especially for H1 [Fig. 3(a)] and Em/L � 0.2, the Omm are
found to fluctuate very strongly. This can be understood as
follows. The eigenstates of H1 with the highest energies are
weakly dressed domain-wall states. Consider, for instance,
the states |n1〉 = |↑ · · · ↑↓ · · · ↓〉 and |n2〉 = |↓ · · · ↓↑ · · · ↑〉
(note that |n1〉 and |n2〉 are not exact eigenstates).
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While |n1〉 and |n2〉 have almost the same energy, one finds
that 〈n1| Sz

L/2 |n1〉 ≈ 1/2 whereas 〈n2| Sz
L/2 |n2〉 ≈ −1/2 such

that ETH is not satisfied. We expect the range of energy
densities where the ETH applies to increase with L.

Given the distribution of the Omm, we restrict ourselves
in the following to eigenstates in an energy window Em/L ∈
[−0.15,−0.05] which is close to the center of the spectrum
(shaded area in Fig. 3). As shown in the inset of Fig. 3(a),
the variance σ 2

d (Ē ) of the Omm in this window decays ap-
proximately exponentially with L (at least for the system sizes
numerically available), indicating that the diagonal part of the
ETH is fulfilled.

2. Off-diagonal matrix elements

Let us now analyze the properties of the off-diagonal
matrix elements Omn = 〈m| Sz

L/2 |n〉. In view of the previous
results for the diagonal matrix elements in Fig. 1, we focus on
eigenstates with mean energy density Ē/L ∈ [−0.15,−0.05]
as said above. For matrix elements in this window, running av-
erages |Omn|2 of their absolute squares are shown in Figs. 4(a)
and 4(b) as a function of ω both for H1 and H2. The data
are obtained for frequency intervals of width �ω = 10−2 and
system sizes L = 14, 16, 18. Overall, the situation is qualita-
tively similar for the two models H1,2. Namely, |Omn|2 decays
comparatively slowly at low frequencies, while a substantially
quicker (presumably superexponential [55,56]) decay can be
found at higher ω. In Figs. 4(a) and 4(b) the values of |Omn|2
for different L form smooth curve which collapse on each
other when rescaled by the respective Hilbert-space dimen-

sion D. [The rescaling by D accounts for the factor �
− 1

2 (Ē )
in Eq. (1).] Except for a prefactor, these smooth curves corre-
spond to the function f 2(Ē , ω) from the ETH ansatz (1).

For a more detailed analysis of |Omn|2, Figs. 4(c) and 4(d)
show a close-up of the low-frequency regime (note that the
horizontal and the vertical axis have been rescaled to account
for possible finite-size effects at such small ω). For both H1

and H2, we observe that |Omn|2 clearly approaches a nonzero
value as ω → 0 with an approximately constant plateau for
small ωL2, where the data collapse achieved by the L2 rescal-
ing indicates diffusive spin dynamics (see also the discussion
in Ref. [30]).

Next, in order to study the distribution of the Omn,
Figs. 5(a) and 5(b) show the frequency-dependent ratio 
(ω),
defined in Eq. (9). For small ω, we find that 
(ω) is close
to the Gaussian value π/2, while visible deviations appear at
higher frequencies. However, these deviations decrease with
the increasing system size L, indicating that the Omn follow
a Gaussian distribution over a wide range of frequencies
if L is sufficiently large. In addition, the full distribution
P(Omn) of the off-diagonal matrix elements is shown in
Figs. 5(c) and 5(d) for system size L = 18 and frequen-
cies ω = 0.2, 0.4, . . . , 2. For all curves shown, we find that
P(Omn) is indeed well described by the Gaussians with zero
mean (see also Refs. [12,18,21]). The width of the Gaussians
is found to decrease with increasing ω, which is consistent
with the data for |Omn|2 shown in Figs. 4(a) and 4(b).

Let us finally comment on the shaded gray area at low
frequencies in Figs. 4(a) and 4(b) and Figs. 5(a) and 5(b).
This area indicates the frequency range which is covered
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FIG. 6. [(a),(b)] Ratio �2(n, μ) between the variances of di-
agonal and off-diagonal matrix elements for two different square
sizes μ = 100, 1000 and all embeddings n ∈ [1 + μ/2,D′ − μ/2].
The data are obtained for system size L = 18 and the dashed line
indicated the value �2

GOE = 2 predicted from RMT. [(c),(d)] Average
value �2(μ) versus μ for system sizes L = 14, 16, 18. Note that for
the largest system size L = 18, the maximum μ = 2 × 103 shown
here is still considerably smaller than the full submatrix dimension
D′ ≈ 1.3 × 104. Panels (a) and (c) show data for H1 while panels
(b) and (d) show data for H2.

when considering a square-shaped submatrix in the interval
Ē/L ∈ [−0.15,−0.05]; cf. Fig. 2. Specifically, since this in-
terval has a width �E/L = 0.1, the largest energy difference
for L = 18 is ωmax = 0.1L = 1.8. Therefore, when studying
the eigenvalue distribution of such a submatrix further below,
we are probing the region where |Omn|2 varies comparatively
slowly and 
(ω) ≈ π/2.

To conclude the analysis of the off-diagonal matrix ele-
ments, Figs. 6(a) and 6(b) show the ratio �2(n, μ) between
the variances of diagonal and off-diagonal matrix elements.
Specifically, the data are obtained for L = 18 with two differ-
ent square sizes μ = 100, 1000 and all possible embeddings
along the diagonal of the submatrix with dimension D′. (Note
that for the chosen energy window, we have D′ ≈ D/4.) For
small μ = 100, we find that �2(n, μ) fluctuates around the
GOE value �2

GOE = 2, both for H1 and H2. Increasing the
square size to μ = 1000, we observe that the fluctuations
of �2(n, μ) are visibly reduced. For the larger value of μ,
�2(n, μ) is still rather close to �2

GOE for H1, while clear
deviations between �2(n, μ) and �2

GOE can be seen in the case
of H2.

Figures 6(c) and 6(d) show the averaged value,

�2(μ) = 1

D′ − μ

D′−μ/2∑
n=1+μ/2

�2(n, μ), (16)

calculated from all embeddings n ∈ [1 + μ/2,D′ − μ/2].
We find that �2(μ) ≈ �2

GOE for small μ, while �2(μ)
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monotonously grows with increasing μ (this growth is par-
ticularly pronounced in the case of H2). This behavior of
�2(μ) follows from the ω dependence of |Omn|2 shown in
Fig. 4. Since |Omn|2 decreases with increasing ω, the vari-
ance σ 2

od(n, μ) likewise decreases with increasing μ, simply
because matrix elements at higher frequencies are included.
Comparing �2(μ) for different system sizes, we find that
�2(μ) remains closer to �2

GOE for a wider range of μ as L
increases (see also Ref. [16]). Therefore in the thermodynamic
limit L → ∞ one can expect Omn to approach an actual ran-
dom matrix drawn from the GOE, at least for a finite region
around the diagonal.

To summarize, in this subsection we considered different
quantities conventionally considered as standard indicators
of ETH. The results presented in Figs. 3–6 confirm that the
matrix structure of the local spin-1/2 operator O = Sz

L/2
in the eigenbasis of the nonintegrable models H1,2 is in
good agreement with the ETH ansatz (1), at least for the
chosen energy window close to the center of the spectrum.
Nevertheless, in the next subsection, we will show that the
matrix elements Omn within this energy window can not be
considered as fully uncorrelated, i.e., the standard indicators
in Figs. 3–6 are not sufficient when it comes to the statistical
properties of the Omn.

B. Beyond “standard” indicators: Eigenvalue distribution of
band submatrices

We now turn to the eigenvalue distribution for the band
submatrices centered around Ē/L = −0.1 with �E/L = 0.1.
First, we discuss the ratio of the adjacent level spacings
〈rωc〉 defined in (12), which is shown in Fig. 7 versus W 2/D′
[Figs. 7(a) and 7(b)] as well as versus ωc [Figs. 7(c) and
7(d)]. We find that the behavior of 〈rωc〉 is very similar for H1

and H2. Specifically, over a wide range of ωc, 〈rωc〉 ≈ 0.53
approximately matches the GOE value, while the transition
towards the Poissonian value 〈rωc〉 ≈ 0.39 occurs when the
bandwidth becomes too narrow. The crossover from rGOE to
rPoisson can be understood from the well-known fact that the
eigenstates of a band random matrix with a sufficiently small
value of W 2/D′ are localized and the eigenvalues become
uncorrelated [45]. In order to avoid localization effects while
studying the eigenvalue distribution Pωc (λ), we restrict our
analysis to ωc � 0.03 (shaded area in Fig. 7), such that
〈rωc〉 ≈ rGOE.

In Fig. 8 we show the full spectrum Pωc (λ) for H1,2 with
L = 18 and four exemplary choices of the cutoff frequency
ωc. Specifically, we have chosen ωc = 1.8 (i.e., the full non-
band submatrix), as well as ωc ≈ 1, ωc ≈ 0.4, and ωc ≈ 0.03,
which are all above the transition point of 〈rωc〉. In all cases,
we compare the spectrum of the bare operator Oωc to the
distribution P̃ωc (λ) of the sign-randomized version Õωc ; see
Eq. (14). As can be clearly seen in Figs. 8(a) and 8(b),
Pωc (λ) and P̃ωc (λ) differ strongly for the largest ωc considered.
Specifically, while P̃ωc (λ) closely follows the semicircle law
appropriate for random matrices, Pωc (λ) still exhibits pro-
nounced peaks at ±1/2, which is reminiscent to the original
spectrum of the spin-1/2 operator. This deviation between
Pωc (λ) and P̃ωc (λ) illustrates that the matrix elements Omn

of a small submatrix cannot automatically be considered as
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FIG. 7. Mean ratio 〈rωc 〉 of adjacent level spacing of the operator
Oωc versus [(a),(b)] the scaling parameter W 2/D′ and [(c),(d)] the
cutoff frequency ωc. Panels (a) and (c) show data for H1 while panels
(b) and (d) show data for H2. The data is obtained for system sizes
L = 16, 18 and the dashed horizontal lines indicate the GOE value
rGOE ≈ 0.53 and the Poisson value rPoisson ≈ 0.39. For our analysis
of Pωc (λ), we restrict ourselves to ωc � 0.03 [shaded area in panels
(c) and (d)], such that 〈rωc 〉 ≈ rGOE.

independent random variables, notwithstanding all standard
indicators of ETH being in agreement with the Gaussian dis-
tribution. This is a main result of the present paper.

Lowering the cutoff frequency to ωc ≈ 1, 0.4 and ωc ≈
0.03 [see Figs. 8(c)–8(h)], we find that the spectra of the
bare and the randomized submatrices become more and more
similar. Especially for H1, Pωc (λ), and P̃ωc (λ) are very similar
for ωc ≈ 0.4 and virtually indistinguishable from each other
for ωc ≈ 0.03. Moreover, the bulk of the spectrum is con-
vincingly described by a semicircular distribution (the width
of the semicircle shrinks with ωc), while small deviations
from a perfect semicircle can be observed at the spectral
edges. This similarity of P̃ωc (λ) and Pωc (λ) as well as their
semicircular shape can be interpreted as an indication that
the correlations between the matrix elements are significantly
reduced for frequencies around and below ω � �ERMT ≈ 0.4,
i.e., on these smaller scales the Omn can be represented as
independent random variables. This is another central result
of the present work. Let us emphasize that the full distribution
Pωc (λ) is sensitive to the RMT scale �ERMT while the mean
gap ratio 〈rωc〉 takes on the GOE value for all ωc considered
in Fig. 8.

Comparing properties of H1 and H2, we find that Pωc (λ)
and P̃ωc (λ) still differ visibly for ωc ≈ 0.4 in the case of
H2 [see Fig. 8(f)] but become very similar for the smaller
ωc ≈ 0.03; see Fig. 8(h). This is in accord with Fig. 9, which
suggests that �ERMT ≈ 0.1 is smaller in the case of H2.

While it certainly would be desirable to study the eigen-
value distribution Pωc (λ) for even smaller values of ωc in a
controlled manner, this is difficult to do numerically as the

042127-7



JONAS RICHTER et al. PHYSICAL REVIEW E 102, 042127 (2020)

0

0.1

0.2 H1 ωc = 1.8 H2 ωc = 1.8

0

0.05 H1 ωc ≈ 1 H2 ωc ≈ 1

0

0.05 H1 ωc ≈ 0.4 H2 ωc ≈ 0.4

0

0.09

−0.5 0 0.5

H1 ωc ≈ 0.03

−0.5 0 0.5

H2 ωc ≈ 0.03

P
ω

c
(λ

) O
˜O

P
ω

c
(λ

)
P

ω
c
(λ

)
P

ω
c
(λ

)

λλ

FIG. 8. Eigenvalue distributions Pωc (λ) and P̃ωc (λ) of bare
and sign-randomized submatrices in the energy window Ē/L ∈
[−0.15, −0.05] for system size L = 18. The cutoff frequencies are
chosen as (a, b) ωc = 1.8 (i.e., the full nonband submatrix of di-
mension D′ < D), [(c),(d)] ωc ≈ 1, [(e),(f)] ωc ≈ 0.4, and [(g),(h)]
ωc ≈ 0.03. For comparison, the solid curves indicate a semicircle
distribution. Left column shows data for H1, while right column
shows data for H2. The skewed distribution in the case of H2 can
be explained by the diagonal matrix elements Omm [see Fig. 3(b)]
which have a mean that (i) is nonzero within the energy window and
(ii) grows with E , in contrast to the case of H1; cf. Fig. 3(a).

value of W and the relative bandwidth size W/D′ become
too small. Likewise, if one instead diagonalizes full nonband
submatrices with smaller dimension D′ (see Appendix A), the
number of eigenvalues becomes significantly reduced, which
complicates the analysis.

Finally, Figs. 9(c) and 9(d) show the difference d2(ωc)
between the two distributions Pωc (λ) and P̃ωc (λ). Consistent
with our previous observation in Fig. 8, we find that d2(ωc) de-
creases upon reducing ωc. Moreover, the decrease is slower in
the case of H2. The minimum of d2(ωc) is reached around the
values of ωc which we associate with �ERMT (�ERMT ≈ 0.4
in case of H1 and �ERMT ≈ 0.1 in case of H2), and d2(ωc)
remains low for smaller ωc.

IV. DISCUSSION

In this paper we have studied matrix elements of
the spin-1/2 operator O = Sz

L/2 in the eigenbasis of two

10−5
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d
2
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c
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L = 16
L = 18

ΔERMT

FIG. 9. d2(ωc ) for (a) H1, and (b) H2. System sizes are chosen
as L = 14, 16, 18. The dashed vertical lines indicate the approximate
location of �ERMT below which random-matrix behavior occurs.

nonintegrable quantum spin chains. Specifically, we have
considered the one-dimensional XXZ model in the presence
of two different integrability-breaking perturbations: an ad-
ditional next-nearest-neighbor interaction and a single-site
magnetic field in the center. For these models and an energy
window close to the center of the spectrum, we have shown
that the matrix elements of O are in good agreement with
the eigenstate thermalization hypothesis ansatz in the sense
that (i) variance of the diagonal matrix elements decreases
exponentially with the increasing system size, (ii) the off-
diagonal matrix elements follow a Gaussian distribution with
a variance that depends smoothly on the energy difference
ω, and (iii) the ratio between the variances of diagonal and
off-diagonal matrix elements approximately takes on the value
predicted by random matrix theory. Overall, our results are in
full agreement with previous works [29–32] and the conven-
tional expectation that for local operators and nonintegrable
Hamiltonians the ETH is satisfied.

The central question of this paper was to study to what
extent off-diagonal matrix elements Omn can be treated as
independently drawn random variables. To this end, we have
considered submatrices around a fixed mean energy Ē and
restricted the Omn to lie inside a sufficiently narrow band
|En − Em| � ωc. We have established the form of the full
eigenvalue distribution to be a sensitive probe to correlations
between matrix elements. By comparing the eigenvalue
distribution of the band submatrix with its sign-randomized
counterpart (14), we have shown that the Omn cannot be
considered as independently distributed, even on scales
where Omn follow a Gaussian distribution with a variance
that varies comparatively slowly with ω, i.e., on the scales
where the ETH function f (Ē , ω) is approximately constant.
Specifically, while the spectrum of the sign-randomized
matrix closely followed the semicircle law, matching the
theoretical expectation for a random matrix, the eigenvalue
distribution of the original submatrix was found to exhibit
signatures of the spin operator, implying correlations between
the matrix elements. When the cutoff frequency ωc is
sufficiently reduced, we have found that the eigenvalue
distribution of the original and the sign-randomized operator
become similar and well described by a semicircle. The
energy scale �ERMT when this transition occurs marks the
onset of validity of the random-matrix behavior.

It should be noted that many important results rooted in
the ETH are not sensitive to the statistics of the off-diagonal
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matrix elements Omn. This includes the central argument that
the ETH ensures thermalization [3,6,57], which essentially
relies on the exponential smallness of the Omn. At the same
time, within the contemporary understanding of ETH, it is
often assumed that matrix elements posses additional statis-
tical properties matching the GOE (or some other appropriate
Gaussian ensemble); see, e.g., Refs. [3,12,15,21]. In this
work, we have advocated that below a certain energy scale
all statistical properties of the off-diagonal matrix elements
would match those of a Gaussian random matrix. We have
provided numerical evidence that this onset of random-matrix
behavior takes place below a certain energy scale �ERMT for
specific models and observables. Our results suggest that for
frequencies ω < �ERMT, the notion of (pseudo-)randomness
of the rmn entering the ETH can be interpreted in an even
stricter sense. At the same time, we have clearly seen that the
scale �ERMT, where this transition to genuine random-matrix
behavior occurs, is distinctly smaller than the scales on which
“standard” indicators of the ETH are fulfilled.

Our work raises a number of straightforward questions.
First, we note that our numerical observation �ERMT 	 Eτ

mirrors the analytical bound �ERMT � Eτ /L established in
Ref. [28], where Eτ is defined as the width of the plateau of
f (Ē , ω) (note that Eτ is sometimes referred to as Thouless
energy [38]). A natural question would be to establish the
scaling of �ERMT with the system size L and, in particular, to
investigate if (�ERMT)−1 can be associated with the timescale
of late time chaos at which the dynamics of various observ-
ables is captured by RMT [58–61].

Another direction is to contrast the behavior in chaotic sys-
tems with the integrable counterparts. We repeat the analysis
of Sec. III for the integrable XXZ model in the Appendix B.
One particular observation to point out is that off-diagonal
matrix elements in the integrable case also can be regarded
as random and independent, although not Gaussian, below a
certain energy scale. We leave for the future the question of
better understanding this transition, and the universal proper-
ties of Omn in the integrable case.

Eventually, one avenue of research is to characterize the na-
ture of the correlations between off-diagonal matrix elements
for ω > �ERMT, and to understand their potential impact
on self-averaging properties of the Omn exploited in various
works [39,49,62,63]. At the same time, it would be interesting
to study the connection between universal properties of Omn

at small frequencies and transport, which could be diffusive or
ballistic [43].
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APPENDIX A: EIGENVALUE DISTRIBUTION OF FULL
NONBAND SUBMATRICES

In Sec. III B we have demonstrated that the eigenvalue
distribution of band submatrices approximately takes on a
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FIG. 10. Eigenvalue distributions Pωc (λ) and P̃ωc (λ) for full (non-
band) submatrices in the case of the model H1 with L = 18. The
matrices are centered around the mean energy Ē/L = −0.1, but the
width of the energy window is now smaller compared to the main
text, i.e., we choose (a) �E/L = 0.06 and (b) �E/L = 0.012, which
would correspond cutoff frequencies ωc ≈ 1 and ωc ≈ 0.2.

semicircle shape when the band is sufficiently narrow. In
Fig. 10 we show a qualitatively similar result for the Hamil-
tonian H1 and full (nonband) submatrices, where the width
of the energy window is now chosen as �E/L ≈ 0.06 and
�E/L ≈ 0.012, i.e., narrower than in the main text. Recall
that a smaller �E implies a smaller submatrix dimension
D′. For the examples shown here, we have D′ ≈ 8000 and
D′ ≈ 1500. While Pωc (λ) still exhibits pronounced features at
λ = ±1/2 for the larger �E in Fig. 10(a), we find that the
distributions Pωc (λ) and P̃ωc (λ) are essentially indistinguish-
able for the smaller �E in Fig. 10(b). Moreover, analogous
to the results for the band submatrices in Fig. 8, small de-
viations from a perfect semicircle law appear at the spectral
edges if �E is lowered. While we cannot entirely exclude the
possibility of finite-size effects, we conclude that our results
for band submatrices in the main text, i.e., a semicircular bulk
with small deviations at the spectral edges, are not just caused
by the finite bandwidth, but are stable features which appear
for full nonband matrices as well.

APPENDIX B: RESULTS FOR THE INTEGRABLE
MODEL HXXZ

In Figs. 3–6 we have analyzed the ETH structure of Sz
L/2

written in the eigenstates of the two nonintegrable models
H1 and H2. In Fig. 11 we present analogous data for the
integrable model HXXZ. As expected, the results for HXXZ

are drastically different compared with the nonintegrable sys-
tems H1,2. In particular, (i) the width of the distribution of
the diagonal matrix elements does not visibly shrink with
increasing L, (ii) 
(ω) �= π/2 and is nonconstant and depen-
dent on L, in agreement with [18], (iii) the ratio �2(n, μ)
is orders of magnitude larger compared to �2

GOE = 2, and
(iv) the distribution P(Omn) is clearly non-Gaussian (see also
Refs. [12,18]). Overall, these results confirm the expectation
that the ETH is not satisfied in the case of integrable models.
The only quantity which exhibits a similar behavior for HXXZ

and H1,2 is the running average |Omn|2 shown in Fig. 11(b).
Namely, we find that plotting |Omn|2 versus ω for system
sizes L = 14, 16, 18 yields smooth curves which collapse
onto each other when rescaled by the respective Hilbert-space
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dimension D. This behavior is in agreement with the recent
studies in Refs. [18,64].

Finally, we consider eigenvalue distribution for the band
submatrices in the case of integrable model HXXZ. Fig-
ure 12(a) shows results for the level-spacing ratio 〈rωc〉,
while Fig. 12(b) shows the eigenvalue distributions Pωc (λ)
and P̃ωc (λ) of the original and the randomized band subma-
trices with the cutoff frequency ωc ≈ 0.1. Comparing with
the results for the nonintegrable models H1,2, the qualitative
behavior of both 〈rωc〉 and Pωc (λ) appears to be very similar.
Namely, we find that 〈rωc〉 exhibits a crossover from rGOE

to rPoisson when the cutoff frequency ωc (or bandwidth W )
decreases. Furthermore, Pωc (λ) and P̃ωc (λ) have the very sim-
ilar shape for the considered value of ωc, which indicates
that Omn within the corresponding band can be considered
as independent. Accordingly, as discussed in Appendix C,
eigenvalue distribution is approximately semicircular. Given
these results, we conclude that mutual independence of the
off-diagonal matrix elements below certain energy scale
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FIG. 12. Properties of eigenvalues of band submatrices for the
integrable model HXXZ. Analogous to the results presented in the
main text, the energy window is chosen as Ē/L ∈ [−0.15, −0.05].
(a) 〈rωc 〉 for L = 16, 18. (b) Pωc (λ) and P̃ωc (λ) for L = 18 and
ωc ≈ 0.1.

ω < �ERMT is also present in the integrable models, raising
the question if an appropriate non-Gaussian random matrix
theory can capture the universal properties of the Omn in this
case.

APPENDIX C: EIGENVALUE DISTRIBUTION OF BAND
RANDOM MATRICES

In this section we briefly review the work of Molchanov
et al. [51], which derives an integral equation satisfied by
the eigenvalue distribution function of a band random matrix.
Namely, we consider an D × D matrix

Onm = v(t )√
D

rnm, t = (n − m)/D, (C1)

where v is a piece-wise continuous function and rnm are in-
dependently distributed random variables with zero mean and
unit variance. Notice that rnm do not have to be Gaussian, it
is sufficient that all rnm are drawn from the same distribution.
So far band submatrices of local operators considered in this
paper (11) are small enough such that the density of states is
approximately constant, they can be modeled by the random
matrix (C1) with

v2(ω/�E ) =
{

(�E ) f 2(Ē , ω), |ω| � ωc,

0, |ω| > ωc.
(C2)

where �E = ED − E1. The resolvent

r(z) = Tr
1

z − O (C3)

can be expressed in terms of an auxiliary function r(t, z), |t | �
1/2 which satisfies

r(z) =
∫ 1/2

−1/2
r(t, z) dt, (C4)

r(t, z)

[
z +

∫ 1/2

−1/2
v2(t − t ′)r(t ′, z) dt ′

]
+ 1 = 0. (C5)

There are two limiting cases which can be solved analytically,
square random matrix with v2 = const (this is the case of
ωc = �E ) and infinitely narrow band matrix v2(t ) = v2

0 δ(t )

042127-10
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(this is the case of ωc 	 �E ). In both cases r(t, z) = r(z) is
t-independent and satisfies v2

0r2 + z r + 1 = 0 where

v2
0 =

∫ 1/2

−1/2
v2(t ) dt = 2

∫ ω̄

0
f 2(Ē , ω) dω, (C6)

ω̄ = min(ωc,�E/2). (C7)

The eigenvalue distribution is then the semicircle of radius
2v0,

P(λ) = lim
ε→0+

1

π
�[r(λ + iε)] =

√
4v2

0 − λ2

2πv2
0

. (C8)
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[46] M. Kuś, M. Lewenstein, and F. Haake, Phys. Rev. A 44, 2800

(1991).
[47] Y. V. Fyodorov, O. A. Chubykalo, F. M. Izrailev, and G. Casati,

Phys. Rev. Lett. 76, 1603 (1996).
[48] F. Borgonovi, F. M. Izrailev, L. F. Santos, and V. G. Zelevinsky,

Phys. Rep. 626, 1 (2016).
[49] L. Dabelow and P. Reimann, Phys. Rev. Lett. 124, 120602

(2020).
[50] A. Dymarsky, Phys. Rev. B 99, 224302 (2019).
[51] S. Molchanov, L. Pastur, and A. Khorunzhii, Theor. Math. Phys.

90, 108 (1992).
[52] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111 (2007).
[53] D. Cohen and T. Kottos, Phys. Rev. E 63, 036203 (2001).
[54] T. Kottos and D. Cohen, Phys. Rev. E 64, 065202(R) (2001).
[55] D. A. Abanin, W. De Roeck, and F. Huveneers, Phys. Rev. Lett.

115, 256803 (2015).
[56] A. Avdoshkin and A. Dymarsky, arXiv:1911.09672 (2019).

042127-11

https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1038/nature06838
https://doi.org/10.1088/0305-4470/32/7/007
https://doi.org/10.1103/PhysRevA.34.591
https://doi.org/10.1103/PhysRevLett.66.986
https://doi.org/10.1103/PhysRevE.82.031130
https://doi.org/10.1103/PhysRevE.89.042112
https://doi.org/10.1103/PhysRevE.91.012144
https://doi.org/10.1103/PhysRevE.90.052105
https://doi.org/10.1103/PhysRevE.93.032104
https://doi.org/10.1103/PhysRevE.96.012157
https://doi.org/10.1103/PhysRevB.99.155130
https://doi.org/10.1103/PhysRevE.87.012118
https://doi.org/10.1103/PhysRevE.100.062134
https://doi.org/10.1088/1742-5468/2016/06/064002
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/PhysRevLett.117.170404
https://doi.org/10.1103/PhysRevLett.119.030601
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1103/PhysRevE.99.042139
https://doi.org/10.1103/PhysRevLett.122.220601
https://doi.org/10.1103/PhysRevLett.123.230606
http://arxiv.org/abs/arXiv:1804.08626
https://doi.org/10.1103/PhysRevLett.125.070605
https://doi.org/10.1103/PhysRevB.102.075127
http://arxiv.org/abs/arXiv:2004.05043
https://doi.org/10.1103/PhysRevResearch.2.043034
https://doi.org/10.1103/PhysRevA.82.011604
https://doi.org/10.1103/PhysRevB.97.174430
https://doi.org/10.1088/0305-4470/37/17/004
https://doi.org/10.1103/PhysRevB.80.125118
https://doi.org/10.1103/PhysRevB.91.155123
https://doi.org/10.1103/PhysRevB.96.104201
https://doi.org/10.1103/PhysRevE.99.050104
https://doi.org/10.1103/PhysRevE.99.010102
http://arxiv.org/abs/arXiv:2003.03334
https://doi.org/10.1103/PhysRevLett.64.1851
https://doi.org/10.1103/PhysRevLett.67.2405
https://doi.org/10.1103/PhysRevA.44.2800
https://doi.org/10.1103/PhysRevLett.76.1603
https://doi.org/10.1016/j.physrep.2016.02.005
https://doi.org/10.1103/PhysRevLett.124.120602
https://doi.org/10.1103/PhysRevB.99.224302
https://doi.org/10.1007/BF01028434
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevE.63.036203
https://doi.org/10.1103/PhysRevE.64.065202
https://doi.org/10.1103/PhysRevLett.115.256803
http://arxiv.org/abs/arXiv:1911.09672


JONAS RICHTER et al. PHYSICAL REVIEW E 102, 042127 (2020)

[57] M. Rigol and M. Srednicki, Phys. Rev. Lett. 108, 110601
(2012).

[58] J. Cotler, N. Hunter-Jones, J. Liu, and B. Yoshida, J. High
Energy Phys. 11 (2017) 48.

[59] J. Cotler and N. Hunter-Jones, arXiv:1911.02026 (2019).
[60] S. Moudgalya, T. Devakul, C. W. von Keyserlingk, and S. L.

Sondhi, Phys. Rev. B 99, 094312 (2019).

[61] M. Schiulaz, E. J. Torres-Herrera, and L. F. Santos, Phys. Rev.
B 99, 174313 (2019).

[62] C. Nation and D. Porras, Phys. Rev. E 99, 052139 (2019).
[63] J. Richter, F. Jin, L. Knipschild, H. De Raedt, K. Michielsen,

J. Gemmer, and R. Steinigeweg, Phys. Rev. E 101, 062133
(2020).

[64] K. Mallayya and M. Rigol, Phys. Rev. Lett. 123, 240603 (2019).

042127-12

https://doi.org/10.1103/PhysRevLett.108.110601
https://doi.org/10.1007/JHEP11(2017)048
http://arxiv.org/abs/arXiv:1911.02026
https://doi.org/10.1103/PhysRevB.99.094312
https://doi.org/10.1103/PhysRevB.99.174313
https://doi.org/10.1103/PhysRevE.99.052139
https://doi.org/10.1103/PhysRevE.101.062133
https://doi.org/10.1103/PhysRevLett.123.240603

