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We analyze the origin of dramatic breakdown of diffractive factorization, observed in single-diffractive
(SD) dijet production in hadronic collisions. One of the sources is the application of the results of
measurements of the diagonal diffractive deep inelastic scattering to the off-diagonal hadronic diffractive
process. The suppression caused by a possibility of inelastic interaction with the spectator partons is
calculated at the amplitude level, differently from the usual probabilistic description. It turns out, however,
that interaction with the spectator partons not only suppresses the SD cross section, but also gives rise to the
main mechanism of SD dijet production, which is another important source of factorization failure. Our
parameter-free calculations of SD-to-inclusive cross section ratio, performed in the dipole representation,
agrees with the corresponding CDF Tevatron (Run II) data at

ffiffiffi
s

p ¼ 1.96 TeV in the relevant kinematic
regions. The energy and hard scale dependences demonstrate a trend, opposite to the factorization-based
expectations, similarly to the effect observed earlier in diffractive Abelian radiation.

DOI: 10.1103/PhysRevD.98.114021

I. INTRODUCTION

A. Why diffractive factorization fails

Hadronic diffraction at high energies provides oppor-
tunities for a better understanding of an interplay between
short- and long-range QCD interactions. Diffractive proc-
esses, even diffractive deep inelastic scattering (DIS) at
high Q2 [1], are typically dominated by soft interactions
that are difficult to predict from first-principle QCD [2,3].
A special class of hard diffractive reactions that necessarily
involves a large rapidity gap and hard interactions, in
particular high-pT particle production, have been inten-
sively studied over past two decades.
Factorization of short and long distance interactions has

been expected to hold for this class of processes in analogy
to inclusive reactions. It looked natural to assume that one
can measure the PDFs of the Pomeron in the diffractive
DIS, and assuming their universality, apply the results
to hard diffractive processes in hadronic collisions [4].
However, CDF data [5] on diffractive dijet production

revealed a dramatic, order of magnitude, breakdown of
such a diffractive factorization. The mechanism, leading to
failure of factorization, is usually related to the presence
of spectator partons in hadronic collisions. Sometimes it
results in an additional suppression factor, called rapidity
gap survival probability. The diffraction amplitude, how-
ever, is a linear combination of elastic amplitudes of
different Fock components of the proton, which contain
rapidity gaps by default.
Other mechanisms of factorization breaking, related to

the multigluon Pomeron structure were proposed in [6–8].
Differently from diffractive DIS, in hadronic collisions the
Pomeron can be attached simultaneously to the projectile
gluon and to the produced parton pair. In other words, the
back-to-back high-pT pair, which has a lifetime substan-
tially shorter than the projectile gluon in the incoming
hadron, may be produced during the interaction.
A novel mechanism of diffractive factorization breaking

was proposed in Refs. [9,10] for the Drell-Yan process, for
gauge and Higgs bosons in Refs. [11,12], and for diffractive
heavy flavor production in Ref. [13]. For a review on
breakdown of diffractive factorization in hadronic colli-
sions, see Refs. [14,15].
The main reason of nonuniversality of the diffractive

structure functions, measured in DIS, is the principal
difference between the diagonal and off-diagonal diffrac-
tive processes. Diffractive DIS, γ� þ p → X þ p, is pre-
dominantly diagonal (elastic q̄qþ p → q̄qþ p), so one
should not apply the results of such measurements to the
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off-diagonal diffractive processes (e.g., dijets) in hadronic
collisions. In terms of the Regge approach diffraction is
related to the Pomeron exchange, but the Pomerons in the
above two cases are different. Even if the Pomeron were a
true Regge pole with a universal intercept, the residue
functions would have very different features, leading to a
breakdown of factorization (see below).
Diagonal diffraction, i.e., elastic scattering, with the

forward amplitude related via the unitarity relation to the
total cross section, in terms of the optical analogy can be
treated as a shadow of inelastic processes. The stronger are
inelastic interactions, the larger is the elastic cross section.
The maximum is reached at the unitarity bound, so called
“black-disk” limit.
The off-diagonal diffractive dynamics is more involved.

Extending the optical analogy, one can interpret the off-
diagonal diffractive amplitude as a linear combination of
shadows of different inelastic channels, which tend to
compensate each others. In the black-disk limit they
cancel completely, and diffraction vanishes. These features
follow from the quantum-mechanical picture of diffraction
[16–18], which can be illustrated by switching to the
eigenstate representation [19,20].
As far as a hadron is subject to diffractive excitation, it is

apparently not an eigenstate of interaction, but can be
expanded over the complete set of eigenstates jαi of the
elastic amplitude operator, f̂eljαi ¼ fαjαi [3,19,21],

jhi ¼
X
α¼1

Ch
αjαi; ð1:1Þ

where the coefficients Ch
α satisfy the orthogonality relation,

hh0jhi ¼
X
α¼1

ðCh0
α Þ�Ch

α ¼ δhh0 ð1:2Þ

Correspondingly, the elastic and single diffraction hadronic
amplitudes can be expressed via the eigenamplitudes as,

fh→h
el ¼

X
α¼1

jCh
αj2fα ð1:3Þ

fh→h0
sd ¼

X
α¼1

ðCh0
α Þ�Ch

αfα ð1:4Þ

At the unitarity bound, all the eigenamplitudes Imfα ¼ 1,
so the positively defined elastic amplitude (1.3), as men-
tioned above, reaches a maximum. At the same time, the
off-diagonal diffractive amplitude (1.4) consists of terms
with alternating signs, which tend to cancel each other, and
the amplitude vanishes in the black-disk limit, according to
the orthogonality relation (1.2) [16–18].
Frequently, the failure of the predictions based on

factorization, is explained and attempted to be improved
by introducing a suppression factor, so called gap survival
probability, evaluated within probabilistic models [22,23].

Such an ad hoc way to cure the factorization prescription
cannot replace the quantum-mechanical expression (1.4),
so it cannot be correct. The diffractive amplitude (1.4), is a
linear combination of elastic amplitudes, which contain a
rapidity gap by definition. Therefore, this expression does
not need any gap survival factor.

B. Dipole representation

The eigenstates of interaction jαi in high-energy QCD
are color dipoles [20]. The eigen amplitudes fα cannot be
calculated reliably, but can be extracted from low-x DIS
data. Relying on such a color-dipole phenomenology we
calculate below the diffractive amplitude (1.4) for dijet
production. This process at the Tevatron pp̄ → p̄þ gapþ
jjþ X is characterized by the presence of two jets in the
final state, a large rapidity gap void of particles, and a
leading anti-proton p̄, which survives the collision and
remains intact.
The breakdown of diffractive factorization, the most

striking result of Ref. [5], was seen as an order of
magnitude suppression of the measured dijet diffractive
cross section compared to the theoretical predictions based
upon the diffractive parton densities fitted to HERA data
on diffractive DIS. The main source of this problem, as
demonstrated above, is application of the results of the
analysis of data on diagonal DIS diffraction to the essen-
tially off-diagonal diffractive excitation of hadrons.
Diffractive gluon Bremsstrahlung off a projectile

quark has been studied in the color dipole approach in
the limit of small gluon fractional light-cone momentum
α ≪ 1 in Ref. [21]. In the hadronic case diffractive gluon
Bremsstrahlung appears to be the leading-twist process due
to interaction with the spectator partons [13], that is similar
to the Abelian case (see, e.g., Refs. [9,10]). While for the
forward scattering the corresponding process does not
vanish (contrary to the Abelian case), QCD factorization
is still expected to be broken due to an interplay between
hard and soft fluctuations. In this paper, being motivated by
the Tevatron data on SD production of dijets, we extend the
dipole formalism of Ref. [21] to the case of arbitrary α
of diffractively produced gluon, then we apply it for the
hadronic case where large distances are necessarily
involved and present the key features of the SD-to-inclusive
ratio that indicate the dramatic breakdown of diffractive
factorization in non-Abelian diffraction. The light-cone
dipole approach enables to incorporate such effects coher-
ently at the amplitude level, which has been previously
proven to work well in the diffractive Abelian radiation
processes [10–12] and diffractive heavy flavor production
[13]. In this paper, following the original studies of
inclusive [24,25] and diffractive diffractive gluon radiation
[13,21,26], we apply the light-cone dipole approach to the
analysis of inclusive and diffractive gluon radiation beyond
QCD factorization. By comparing the dipole model results
with the Tevatron data for the SD-to-inclusive ratio, we

KOPELIOVICH, PASECHNIK, and POTASHNIKOVA PHYS. REV. D 98, 114021 (2018)

114021-2



check whether the gap survival effects are properly
accounted for in the dipole treatment of the diffractive
non-Abelian radiation.
The paper is organized as follows. In Sec. II, we develop

the dipole model formulation of the inclusive dijet pro-
duction in the target rest frame based upon the gluon
Bremsstrahlung mechanism (quark excitation) as well as
from the gluon splitting mechanism (gluon excitation). In
Sec. III, the models for the universal dipole cross section
are briefly discussed in the soft and hard dipole scattering
regimes. In Sec. IV, we extend the dipole formulation to the
SD dijet production and derive the corresponding parton-
and hadron-level amplitudes as well as the SD cross
sections in the hard scattering limit. Then, in Sec. V we
construct the SD-to-inclusive ratio of the cross sections
taking into account the CDF Run II experimental con-
straints on the phase space and present the numerical
results. Finally, concluding remarks are given in Sec. VI.

II. INCLUSIVE BACK-TO-BACK DIJETS

A. Dijets from quark excitations

At forward rapidities inclusive production of high-pT
jets in the dipole picture is dominated by the gluon
Bremsstrahlung mechanism off a projectile quark [24]
(similar to the Drell-Yan process [27–30]). The leading
order (“skeleton”) diagrams of this process are depicted in
Fig. 1. In this case, x1 ≡ pþ=Pþ

1 ≲ 1, x2 ≡ p−=P−
2 ≪ 1,

where p is the 4-momentum of the radiated gluon, and P1;2

are the 4-momenta of the projectile and target nucleons,
respectively.
Let us denote the transverse momenta (relative to the

projectile quark) of the final quark and gluon as p⃗2 and p⃗,
respectively, their total momentum as q⃗⊥ ¼ p⃗2 þ p⃗, and
the relative momentum as κ⃗ ¼ αp⃗2 − ᾱ p⃗ in terms of the
light-cone momentum fraction α carried by the gluon.
In the case of collinear projectile quark, the transverse
momentum transfer is equal to q⃗⊥. Then, the inclusive dijet
production amplitude B̂lðq⃗⊥; κ⃗Þ reads

B̂lðq⃗⊥; κ⃗Þ ¼
Z

d2bd2reib⃗q⃗⊥eir⃗ κ⃗ÂlðqN → qGN�
8Þ; ð2:1Þ

in terms of the corresponding amplitude ÂlðqN → qGN�
8Þ

found in impact parameter representation as sum over three
contributions in Fig. 1

ÂlðqN → qGN�
8Þ

¼
ffiffiffi
3

p

2

X
a

�
τlτahN�

8jγ̂aðb⃗1ÞjNi − τaτlhN�
8jγ̂aðb⃗2ÞjNi

−
X
b

iflabτbhN�
8jγ̂aðb⃗3ÞjNi

�
Ψq→qGðr⃗; αÞ; ð2:2Þ

where l is the color index of the radiated gluon G, N�
8 is

the color-octet remnant of the target nucleon, for which the
completeness relation holds, jN�

8ihN�
8j ¼ 1; λa ¼ 2τa are

the Gell-Mann matrices; and γ̂a is the effective gluon-
nucleon interaction vertex GN → N�

8. The impact param-
eters of the projectile, ejectile quarks and the radiated
gluon are

b⃗1 ≡ b⃗; b⃗2 ≡ b⃗ − αr⃗; b⃗3 ≡ b⃗þ ᾱ r⃗; ᾱ≡ 1 − α;

ð2:3Þ
such that r⃗ is the transverse separation of the qG system,
and b⃗ is the distance between its center of gravity and the
target N. The light-cone distribution function for the qG
Fock state (with transversely polarized gluon) in the
projectile quark Ψ̂q→qG is given by [24,27,28]

Ψ̂q→qGðr⃗; αÞ ¼
2ffiffiffi
3

p
ffiffiffiffiffi
αs

p
2π

χ†fΓ̂χiK0ðτrÞ;

τ2 ¼ α2m2
q þ ð1 − αÞm2

G;

Γ̂ ¼ imqα
2e⃗G · ½n⃗ × σ⃗� þ αe⃗G · ½σ⃗ × ∇⃗�

− ið2 − αÞe⃗G · ∇⃗; ð2:4Þ
where αs ¼ αsðμ2Þ is the QCD coupling constant deter-
mined at the hard scale μ2, mG (mq) is the effective gluon
(quark) mass; χ is the quark spinor, e⃗G is the transverse
polarization vector of the radiated gluon; K0ðxÞ is the
modified Bessel function of the second kind; and

∇⃗ ≡ ∂=∂r⃗. The corresponding wave function in momen-
tum representation reads

ˆ̃Ψq→qGðκ⃗; αÞ ¼
2

ffiffiffiffiffi
αs

p
ffiffiffi
3

p χ†f
ˆ̃Γχi

1

κ2 þ τ2

ˆ̃Γ ¼ imqα
2e⃗G · ½n⃗ × σ⃗� þ iαe⃗G · ½σ⃗ × κ⃗�

− ð2 − αÞðe⃗G · κ⃗Þ; ð2:5Þ

FIG. 1. The leading-order contributions to the gluon Bremsstrahlung mechanism of high-pT back-to-back dijets production in quark-
nucleon qN → qGX scattering.
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If the gluon is radiated with large transverse momentum, it
is likely to turn into a hard jet, due to intensive radiation.
The differential cross section for the inclusive qN →

qGX process has the form,

d3σinclðqN→qGXÞ
dðlnαÞd2κ ¼1

3

1

ð2πÞ2
Z

d2q⊥
ð2πÞ2

×
X
l

Tr½B̂†
l ðq⃗⊥; κ⃗ÞB̂lðq⃗⊥; κ⃗Þ�; ð2:6Þ

where the numerical prefactor indicates at the averaging
over colors of the projectile quark. We employ complete-
ness of the remnant N�

8 states and average over the target
nucleon degrees of freedom as follows,

hNjγ̂aðb⃗kÞγ̂a0 ðb⃗lÞjNi ¼ 3

4
δaa0ϕðb⃗k; b⃗lÞ; γ̂a ¼ γ̂†a: ð2:7Þ

Then integrating over q⃗⊥ one arrives at the differential cross
section expressed in terms of the symmetric partial dipole
amplitude ϕðb⃗k; b⃗lÞ ¼ ϕðb⃗l; b⃗kÞ,

d3σinclðqN → qGXÞ
dðln αÞd2κ

¼ 1

ð2πÞ2
Z

d2rd2r0eiðr⃗−r⃗0Þκ⃗
X

Ψ̂q→qGðr⃗; αÞΨ̂†
q→qGðr⃗0; αÞ

× Σq→qG
eff ðr⃗; r⃗0; αÞ: ð2:8Þ

Here the distribution function squared (averaged over the
projectile quark spins) is given by

X
Ψ̂ Ψ̂† ≡ X

λg¼�1

1

2

X
σf;σi

Ψ̂q→qGðr⃗;αÞΨ̂†
q→qGðr⃗0; αÞ

¼ 2αs
3π2

�
m2

qα
4K0ðτrÞK0ðτr0Þ

þ ½1þ ᾱ2�τ2 r⃗ · r⃗
0

rr0
K1ðτrÞK1ðτr0Þ

�
; ð2:9Þ

and the effective dipole cross section reads,

Σq→qG
eff ðr⃗; r⃗0; αÞ

¼
Z

d2b

�
ϕðb⃗1; b⃗01Þ þ

1

8
ϕðb⃗1; b⃗02Þ −

9

8
ϕðb⃗1; b⃗03Þ

þ 1

8
ϕðb⃗2; b⃗01Þ þ ϕðb⃗2; b⃗02Þ −

9

8
ϕðb⃗2; b⃗03Þ

−
9

8
ϕðb⃗3; b⃗01Þ −

9

8
ϕðb⃗3; b⃗02Þ þ

9

4
ϕðb⃗3; b⃗03Þ

�
: ð2:10Þ

It depends on impact parameters,

b⃗01 ¼ b⃗1 ≡ b⃗; b⃗02 ≡ b⃗ − αr⃗0; b⃗03 ≡ b⃗þ ᾱr⃗0:

ð2:11Þ

The partial dipole amplitude ϕðb⃗k; b⃗lÞ introduced in
Eq. (2.7) is directly related to the universal dipole-nucleon
cross section σqq̄ as follows (see also Refs. [21,24])

σq̄qðr⃗1 − r⃗2Þ≡
Z

d2b½ϕðb⃗þ r⃗1; b⃗þ r⃗1Þ

þ ϕðb⃗þ r⃗2; b⃗þ r⃗2Þ − 2ϕðb⃗þ r⃗1; b⃗þ r⃗2Þ�;
ð2:12Þ

so that the b-integration in Eq. (2.10) yields

Σq→qG
eff ðr⃗; r⃗0; αÞ ¼ 1

2
fσGqq̄ðᾱ r⃗; ᾱ r⃗þαr⃗0Þ

þ σGqq̄ðᾱr⃗0; ᾱr⃗0 þ αr⃗Þ − σqq̄ðαðr⃗ − r⃗0ÞÞ
− σGGðᾱðr⃗ − r⃗0ÞÞg: ð2:13Þ

The gluonic GG dipole cross section [31] and the effective
three-body Gqq̄ dipole cross section [32,33], read,

σGGðr⃗Þ ¼
9

4
σqq̄ðr⃗Þ;

σGqq̄ðr⃗1; r⃗2Þ ¼
9

8
ðσqq̄ðr⃗1Þ þ σqq̄ðr⃗2ÞÞ −

1

8
σqq̄ðr⃗1 − r⃗2Þ;

ð2:14Þ

respectively.
In the collinear approximation for the projectile parton,

the inclusive hadronic NN → qGþ X cross section reads

d4σNNincl
dðln xqÞdðln αÞd2κ

¼ Qðxq; μ2Þ
d3σðqN → qGþ XÞ

dðln αÞd2κ ;

ð2:15Þ

where xq is the fractional light-cone momentum carried by
the projectile quark in the parent nucleon, and the projectile
quark distribution distribution function is

Qðxq; μ2Þ≡ xqqðxq; μ2Þ ð2:16Þ

at the hard scale μ2 being the invariant mass squared of the
produced qG (or dijet) system μ2 ≃M2

qG.

B. Dijets from gluon excitations

At central rapidities inclusive high-pT dijet production
can acquire large contributions from the gluon-initiated
subprocesses GN → qq̄X or GN → GGX, as is shown in
Fig. 2 by upper and lower rows, respectively.
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The amplitude of the inclusive process GN → qq̄N�
8

is given by the sum of three terms corresponding to the
diagrams shown in the upper row of Fig. 2,

ÂlðGN → qq̄N�
8Þ

¼
ffiffiffi
2

p X
a

χμq†
�
τaτlhN�

8jγ̂aðb⃗3ÞjNi − τlτahN�
8jγ̂aðb⃗2ÞjNi

− i
X
c

falcτchN�
8jγ̂aðb⃗1ÞjNi

�
Ψ̂G→qq̄ðr⃗; αÞχ̃μ̄q̄; ð2:17Þ

where χ̃μ̄q̄ ¼ iσyðχμ̄q̄Þ�, the impact parameters b⃗1;2;3 are
defined in Eq. (2.3), χq;q̄ are the two-component spinors
normalized as

X
μ;μ̄

χ̃μ̄q̄ðχμq†Þ� ¼ 1̂;
X
μ;μ̄

ðχμq†âχ̃μ̄q̄Þ�ðχμq†b̂χ̃μ̄q̄Þ ¼ Trðâ†b̂Þ;

ð2:18Þ

and the distribution amplitude of the G → qq̄ splitting
Φ̂G→qq̄ reads

Ψ̂G→qq̄ðr⃗;αÞ ¼
ffiffiffiffiffi
αs

p
ð2πÞ ffiffiffi

2
p fmqðe⃗ · σ⃗Þ þ ið1− 2αÞðσ⃗ · n⃗Þðe⃗ · ∇⃗Þ

− ðe⃗× n⃗Þ · ∇⃗gK0ðϵrÞ;

with ϵ2 ¼ m2
q − αᾱm2

G.
When taking square of the total inclusive Gþ N →

qq̄þ X amplitude

jAj2ðr⃗1; r⃗2Þ≡ 1

8

Z
d2sdfXg

X
λ�;l;μ;μ̄

hAμμ̄
l ðs⃗; r⃗1ÞðAμμ̄

l Þ†ðs⃗; r⃗2Þi

ð2:19Þ

one performs an averaging over color index and, implicitly,
over polarization λ� of the projectile gluon G as well as

valence quarks and their relative coordinates in the target
nucleon. The corresponding inclusive cross section

d3σinclðGN → qq̄XÞ
dðln αÞd2κ ¼ 1

ð2πÞ2
Z

d2rd2r0eiðr⃗−r⃗0Þκ⃗

×
X

Ψ̂G→qq̄ðr⃗; αÞΨ̂†
G→qq̄ðr⃗0; αÞ

× ΣG→qq̄
eff ðr⃗; r⃗0; αÞ ð2:20Þ

where

X
Ψ̂�

G→qq̄ðα; r⃗ÞΨ̂G→qq̄ðα; r⃗0Þ

¼ αs
4π2

�
m2

qK0ðϵrÞK0ðϵr0Þ

þ ðα2 þ ᾱ2Þϵ2 r⃗ · r⃗
0

rr0
K1ðϵrÞK1ðϵr0Þ

�
; ð2:21Þ

and the effective dipole cross section reads

ΣG→qq̄
eff ðr⃗; r⃗0; αÞ ¼ 1

2
fσGqq̄ð−αr⃗; ᾱr⃗0Þ þ σGqq̄ðᾱ r⃗;−αr⃗0Þ

− σqq̄ðαðr⃗ − r⃗0ÞÞ − σqq̄ðᾱðr⃗ − r⃗0ÞÞg;
ð2:22Þ

in terms of the Gqq̄ cross section defined in Eq. (2.14).
Analogically, the amplitude for inclusive GN →

G1G2N�
8 process in gluon-target scattering reads [see

Fig. 2 (second row)]

Âl0lsðGN → G1G2N�
8Þ

¼ 1

2
ffiffiffi
6

p
X
a;b

fflabfl0sbhN�
8jγ̂aðb⃗3ÞjNi

− flsbfl0abhN�
8jγ̂aðb⃗2ÞjNi

þ fl0lbfasbhN�
8jγ̂aðb⃗1ÞjNigΨG→G1G2

ðr⃗; αÞ; ð2:23Þ

FIG. 2. The leading-order contributions to high-pT dijet production in gluon-nucleon scattering (GN → qq̄X—upper row, and
GN → GGX—lower row) in the dipole picture.
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where s, l0, l are the color indices of the initial G and final
G1, G2 gluons having polarizations e⃗, e⃗1, e⃗2, respectively,
and the G → G1G2 distribution amplitude is given by

ΨG→G1G2
ðr⃗;αÞ¼

ffiffiffiffiffiffiffi
8αs

p
π

fαᾱðe⃗�1 · e⃗�2Þðe⃗ · ∇⃗Þ−αðe⃗�1 · e⃗Þðe⃗�2 · ∇⃗Þ

− ᾱðe⃗�2 · e⃗Þðe⃗�1 · ∇⃗ÞgK0ðωrÞ ð2:24Þ
with ω2 ¼ m2

Gð1 − αᾱÞ, such that

d3σinclðGN → G1G2XÞ
dðln αÞd2κ

¼ 1

ð2πÞ2
Z

d2rd2r0eiðr⃗−r⃗0Þκ⃗

×
X

ΨG→G1G2
ðr⃗; αÞΨ†

G→G1G2
ðr⃗0; αÞΣG→G1G2

eff ðr⃗; r⃗0; αÞ
ð2:25Þ

where

X
ΨG→G1G2

ðα; r⃗ÞΨ†
G→G1G2

ðα; r⃗0Þ ¼ 8αsω
2

π2
r⃗ · r⃗0

rr0
ð1 − αᾱÞ2

× K1ðωrÞK1ðωr0Þ;
ð2:26Þ

and the effective dipole cross section reads

ΣG→G1G2

eff ðr⃗; r⃗0; αÞ ¼ 9

16
fσqq̄ðαr⃗Þ þ σqq̄ðᾱ r⃗Þ

þ σqq̄ðαr⃗0Þ þ σqq̄ðᾱr⃗0Þ
þ σqq̄ðᾱ r⃗þαr⃗0Þ þ σqq̄ðαr⃗þ ᾱr⃗0Þ
− 2σqq̄ðαjr⃗ − r⃗0jÞ − 2σqq̄ðᾱjr⃗ − r⃗0jÞg:

ð2:27Þ
In the limit of small α ≪ 1, it can be represented as

ΣG→G1G2

eff ðr⃗; r⃗0; αÞjα→0

¼ 1

2
fσ3Gðr⃗;αÞ þ σ3Gðr⃗0; αÞ − σ3Gðr⃗ − r⃗0; αÞg; ð2:28Þ

in terms of effective 3-gluon cross section

σ3Gðr⃗; αÞ ¼
9

8
fσqq̄ðr⃗Þ þ σqq̄ðαr⃗Þ þ σqq̄ðᾱ r⃗Þg

≃ σGGðr⃗Þ≡ 9

4
σqq̄ðr⃗Þ; α ≪ 1: ð2:29Þ

Then for small α ≪ 1, the ratio between the qG and GG
total cross sections

σG→G1G2

σq→qG
¼ 6 ð2:30Þ

is given by the color factors only.

III. HARD VS SOFT DIPOLE SCATTERING

The phenomenological dipole cross section is the essen-
tial ingredient of the color dipole approach [20]. Typically,
it is introduced in the form of a saturated ansatz [34]

σqq̄ðx; r⃗Þ ¼ σ0

�
1 − e

− r2

R2
0
ðxÞ
�
; ð3:1Þ

whose Bjorken x-dependence is phenomenologically moti-
vated by a wealth of experimental data from HERA. Its
parametrization fitted to HERA DIS data known as the
Golec-Biernat-Wüsthoff (GBW) model reads

R2
0 ≡ 4

Q2
s
; Q2

sðxÞ≡Q2
0

�
x0
x

�
λ

; Q2
0 ¼ 1 GeV2;

x0 ¼ 4.01 × 10−5; λ ¼ 0.277; σ0 ¼ 29 mb: ð3:2Þ
Such a parametrization, although does not account for the
QCD evolution of the target gluon density, still provides a
good overall description of many observables in lepton-
hadron and hadron-hadron collisions at small x≲ 0.01 and
at not very large Q2.
During past two decades, various saturation-based para-

metrizations for the universal dipole cross section that
accommodate QCD evolution has been proposed based
upon the observation of Refs. [35–38] that the saturation
scale is proportional to the collinear gluon density in the
target nucleon

Q2
s ¼ Q2

sðx; μ2Þ ∝ αsðμ2Þxgðx; μ2Þ; ð3:3Þ
with the hard scale μ2 ∼ 1=r2. Provided that this scale is
not too large, like in the case under consideration of pT-
integrated observables of dijet production, we will not
explicitly incorporate such a dependence, but for the sake
of simplicity, will employ the GBW parametrization [34].
Besides saturation, a common property of all the dipole

parametrization is the color transparency limit [20], mean-
ing that a pointlike colorless object does not interact with
external color fields, i.e.,

σqq̄ðx; r⃗Þ ≃ σ0
r2

R2
0ðxÞ

; r2 ≪ R2
0ðxÞ; ð3:4Þ

which concerns the hard dipole scattering at the scale
μ ≫ QsðxÞ. The quadratic dependence of the universal
dipole cross section σqq̄ ∝ r2 is a straightforward conse-
quence of gauge invariance and non-Abelian nature of QCD.
Integrating the inclusive dijet cross section (2.8) over κ⃗,

we write,

dσinclðqN → qGXÞ
dðln αÞ ¼

Z
d2rjΨq→qGðr⃗; αÞj2Σq→qG

eff ðr⃗; r⃗; αÞ:

ð3:5Þ
Here the effective dipole cross section in the small dipole
size limit r ≪ R0ðx2Þ
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Σq→qG
eff ðr⃗; r⃗;αÞ ≃Kq→qG

incl ðx2; αÞr2;

Kq→qG
incl ðx2; αÞ ¼

σ0
R2
0ðx2Þ

·
�
9

4
ᾱþ α2

�
; x2 ¼

M2

xqs
; ð3:6Þ

and s is the nucleon-nucleon c.m. energy squared. The fully
differential cross section for the inclusive qþ G production
in this approximation takes a very simple form

dσNNincl
dΩ

≃
Kq→qG

incl ðx2;αÞ
ð2πÞ2 qðxq; μ2Þ

Z
d2rd2r0eiκ⃗ðr⃗−r⃗0Þðr⃗ · r⃗0Þ

×Ψq→qGðr⃗; αÞΨ†
q→qGðr⃗0; αÞ; ð3:7Þ

where the phase space volume element is

dΩ ¼ dxqd ln αd2κ: ð3:8Þ

For the gluon-initiated processes G → qq̄ and G → G1G2

we have

KG→qq̄
incl ðx2;αÞ ¼

σ0
R2
0ðx2Þ

·

�
1 −

9

4
αᾱ

�
;

KG→G1G2

incl ðx2;αÞ ¼
9σ0

4R2
0ðx2Þ

· ½1 − αᾱ�; ð3:9Þ

respectively.
In the soft limit Q2 → Λ2

QCD one can reach very small
values of x defined in Eq. (3.6) even at low energies. This
signals about inappropriate use of variable x2 in this limit.
In soft and semi-soft reactions such as pion-proton scatter-
ing, or diffractive processes Drell-Yan and gluon radiation,
the saturation scale depends on the gluon-target collision
c.m. energy squared ŝ ¼ xqs which is a more appropriate
variable than the Bjorken x. Such reactions are charac-
terized by the associated scale Q2 ∼ Λ2

QCD ∼ 1=R2
had at the

soft hadronic scale Rhad. Keeping the saturated ansatz of the
dipole cross section (3.1), the corresponding parametriza-
tion for σ0 → σ̄0ðŝÞ and R0 → R̄0ðŝÞ has been found in
Ref. [21]

R̄0ðŝÞ ¼ 0.88 fmðs0=ŝÞ0.14;

σ̄0ðŝÞ ¼ σπptot ðŝÞ
�
1þ 3R̄2

0ðŝÞ
8hr2chiπ

�
:

in terms of the pion-proton total cross section given by
σπptot ðŝÞ ¼ 23.6ðŝ=s0Þ0.08 mb [39], s0 ¼ 1000 GeV2, the
mean pion charge radius squared hr2chiπ ¼ 0.44 fm2 [40].
This parametrization describes well the HERA data for
the proton structure function at medium-high scales up to
Q2 ∼ 10 GeV2. The model (3.10) will be referred below
to as the Kopeliovich-Schäfer-Tarasov model and used in
our analysis of diffractive dijet production in high-energy
hadronic collisions.

IV. SINGLE-DIFFRACTIVE
DIJETS PRODUCTION

The main contribution to the diffractive dijets production
cross section at very forward rapidities is given by the
diffractive gluon bremsstrahlung off the projectile valence
quarks q → qG as is demonstrated in Fig. 3 (for an
analogous discussion in the case of diffractive Abelian
bremsstrahlung, see Refs. [9–12,14]). At hadron colliders
such as Tevatron, however, the jet rapidities may extend
down to central values where the contribution from
diffractive gluon excitation, given by the gluon splitting
subprocesses G → qq̄ and G → GG, become important.
Diffractive excitation of the projectile sea-quarks also
contributes, but negligibly less compared with gluons. In
what follows, we discuss all these reactions on the same
footing and derive the corresponding SD cross sections.

A. Diffractive excitation of a projectile quark

The hadron-level SD amplitude with the gluon brems-
strahlung process q → qG can be conveniently decom-
posed into three parts,

Âqi;SD
l ¼ Âqi;ðIÞ

l þ Âqi;ðIIÞ
l þ Âqi;ðIIIÞ

l ; ÂSD
l ≡X3

i¼1

Âqi;SD
l ;

ð4:1Þ
with color index l of the gluon by the projectile quark qi
(i ¼ 1, 2, 3). In what follows, we keep the earlier
introduced notation notation for the total transverse
momentum transfer q⃗⊥ conjugated to the impact parameter
b⃗, like in the inclusive case.
First, let us consider the three graphs in the upper row of

Fig. 3 corresponding to the amplitude Âq;ðIÞ
l of diffractive

gluon radiation in nucleon-nucleon scattering NN →
ð3qÞ8GN. One of the t-channel gluons, which couples to
the hard scale μ2 (large filled circle in Fig. 3), we call
“active” gluon. In order to keep the whole t-channel
exchange colorless, as is required in a diffractive process,
there should be an additional effective color octet exchange
between any projectile or produced parton and the target,

which we call “screening” gluon. Then, the amplitude Âq;ðIÞ
l

is related to the amplitude of diffractive gluon radiation in
the quark-nucleon qN → qGN scattering Âq

l as follows,

Âq;ðIÞ
l ¼ −2ihð3qÞ8jÂq

l jð3qÞ1iΦN→ð3qÞ1 ; ð4:2Þ
where ΦN→ð3qÞ1ðr⃗1; r⃗2; r⃗3; α1; α2; α3Þ is the nucleon wave
function describing a fluctuation of the projectile nucleon
into a colorless system ð3qÞ1 of three valence quarks i ¼ 1,
2, 3 with transverse positions and light-cone momentum
fractions fr⃗ig and fαig respectively.
At high energies, the diffractive amplitude is predomi-

nantly imaginary. So, using the generalized optical theorem

DIFFRACTIVE DIJET PRODUCTION: BREAKDOWN OF … PHYS. REV. D 98, 114021 (2018)

114021-7



for the unitarity cut (dashed vertical lines in Fig. 3) between
the “active” and “screening” gluons, and summing up the
corresponding contributions, we obtain

Âq
l ¼

i
2

X
N�

8

h
Â†
l ðqGN → qN�

8ÞÂðqN → qN�
8Þ

þ
X
l0
Â†
ll0 ðqGN → qG0N�

8ÞÂl0 ðqN → qG0N�
8Þ
i
:

ð4:3Þ

Here the first term corresponds to the first diagram in Fig. 3,
and the second one to the sum of the second and third
diagrams, with explicit summation over intermediate color
index of the G0 gluon l0 and nucleon octet-charged remnant
N�

8 ≡ ð3qÞ8.
In the impact parameter representation, the scattering

amplitude Âl0 ðqN → qG0N�
8Þ has the same form as the

inclusive production amplitude Eq. (2.2), while the other
amplitudes read

ÂðqN → qN�
8Þ ¼

X
a

τahN�
8jγ̂aðb⃗1ÞjNi;

Â†
ll0 ðqGN → qG0N�

8Þ ¼ δll0
X
a

τahN�
8jγ̂aðb⃗2ÞjNi −

X
a

ifll0ahN�
8jγ̂aðb⃗3ÞjNi;

Â†
l ðqGN → qN�

8Þ ¼
ffiffiffi
3

p

2

X
a

h
τlτahN�

8jγ̂aðb⃗1ÞjNi − τaτlhN�
8jγ̂aðb⃗2ÞjNi

−
X
b

iflabτbhN�
8jγ̂aðb⃗3ÞjNi

i
Ψq→qGðr⃗; αÞ: ð4:4Þ

Then, using Eq. (2.7) one arrives at the SD amplitude of
qN → qGN process

Âq
l ¼

3i
ffiffiffi
3

p

16
τlΨq→qGðr⃗; αÞ

�
4

3
ðϕðb⃗1; b⃗1Þ − ϕðb⃗2; b⃗2ÞÞ

þ 3ðϕðb⃗2; b⃗3Þ − ϕðb⃗3; b⃗3ÞÞ
�
; ð4:5Þ

which is infrared finite and vanishes in the color trans-
parency limit r⃗ → 0, despite the divergency in the ampli-
tude ϕðb⃗k; b⃗lÞ. The symmetry properties of ϕðb⃗k; b⃗lÞ in
particular imply,

Z
d2b

X
i

Ciϕðd⃗i; d⃗iÞ ¼ 0 for
X
i

Ci ¼ 0; d⃗i ¼ b⃗þ y⃗i

for any y⃗i such that in the forward diffractive scattering
limit q⃗⊥ → 0 we finally have,

Âq
l ðq⃗⊥; κ⃗Þjq⊥→0 ¼

Z
d2bd2reiκ⃗ r⃗Âq

l ðb⃗; r⃗Þ

¼ −
9i

ffiffiffi
3

p

32
τl

Z
d2reiκ⃗ r⃗Ψq→qGðr⃗; αÞσqq̄ðr⃗Þ:

ð4:6Þ

FIG. 3. Dijet production from diffractive quark excitation in NN collisions. Additional graphs come from q1 ↔ q2 and q1 ↔ q3
permutations. Large filled circle corresponds to three perturbative leading-order contributions depicted in Fig. 1.
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For small dipoles r2 ≪ R2
0ðxÞ, the diffractive amplitude

transforms to

Âq
l ðq⃗⊥; κ⃗Þjq⊥→0 ≃

9i
ffiffiffi
3

p

32

σ0
R2
0ðxÞ

τlð∇⃗κ · ∇⃗κÞ ˆ̃Ψq→qGðκ⃗; αÞ;

ð4:7Þ

where ∇⃗κ ¼ ∂=∂κ⃗, such that

ð∇⃗κ · ∇⃗κÞ ˆ̃Ψq→qGðκ⃗;αÞ ≃
8

ffiffiffiffiffi
αs

p
ffiffiffi
3

p χ†ffiαe⃗G · ½σ⃗ × κ⃗�

− ð2 − αÞðe⃗G · κ⃗Þgχi
1

κ4
: ð4:8Þ

Diffractive quark-to-dijet excitation offers another test
of factorization. Indeed, in this case there are no spectator
partons, which would cause a suppressive gap survival
probability, which is usually identified as the reason for
factorization breaking. However, factorization fails even
without such a gap survival factor. Indeed, the correspond-
ing differential cross section of the SD dijets production in
the quark-nucleon scattering qN → qGN has the following
form (cf. Ref. [21])

d3σSDðqN → qGNÞ
dðln αÞd2q⊥

				
q⊥→0

¼ 1

3

1

ð2πÞ2
Z

d2κ
ð2πÞ2

X
l

Tr½Âq
l ðq⃗⊥; κ⃗ÞÂq†

l ðq⃗⊥; κ⃗Þ�jq⊥→0

¼ 1

16π2

Z
d2rjΨq→qGðr⃗; αÞσ̃qq̄ðr⃗Þj2; σ̃qq̄ðr⃗Þ≡ 9

8
σqq̄ðr⃗Þ;

ð4:9Þ

where the factor 1=3 stands for averaging over colors of the
projectile quark. In the color transparency (or large radiated
gluon transverse momentum) limit, we get

d3σSDðqN → qGNÞ
dðlnαÞd2κd2q⊥

				
q⊥→0

¼ 1

16π2
81

64

σ20
R4
0ðxÞ

1

ð2πÞ2
1

2

×
X
i;f;λG

jð∇⃗κ · ∇⃗κÞ ˆ̃Ψq→qGðκ⃗;αÞj2;

where the amplitude squared (averaged over the incoming
quark helicities) reads explicitly

1

2

X
i;f;λG

jð∇⃗κ · ∇⃗κÞ ˆ̃Ψq→qGðκ⃗; αÞj2 ¼
128αs
3

2 − αð2 − αÞ
κ6

:

ð4:10Þ

If factorization were true, the diffractive structure func-
tions are nearly scale independent (only logarithmically).
Therefore, all the dependence on κ comes from the hard
parton-parton scattering, i.e., should scale as 1=κ4, in
apparent contradiction with the result (4.10).
Coming to the hadron-level SD amplitude NN →

ð3qÞ8GN, we define the impact parameters for a gluon
radiation off the ith projectile quark (i ¼ 1, 2, 3) in terms of
its transverse position r⃗i relative to the impact parameter b⃗
as follows,

b⃗ðiÞ1 ≡ b⃗þ r⃗i; b⃗ðiÞ2 ≡ b⃗þ r⃗i − αρ⃗i;

b⃗ðiÞ3 ≡ b⃗þ r⃗i þ ᾱρ⃗i; ρ⃗i ¼ ρ⃗ − r⃗i; ð4:11Þ

where the difference between transverse coordinates of the
radiated gluon, ρ⃗, and the position of the parent projectile
quark is r⃗i. Thus, the first term in Eq. (4.1) for gluon
radiation off the projectile quark q1 can be presented as,

Âq1;ðIÞ
l ¼ 2i ·

i
ffiffiffi
3

p

4
hð3qÞ8jτðq1Þl jð3qÞ1iΦN→ð3qÞ1

×Ψq→qGðρ⃗1; αÞσ̃qq̄ðρ⃗1Þ

¼ iflabffiffiffi
3

p hð3qÞ8jτðq1Þa τðq1Þb jð3qÞ1iΦN→ð3qÞ1

×Ψq→qGðρ⃗1; αÞσ̃qq̄ðρ⃗1Þ; ð4:12Þ

Notice that the mean transverse size of the perturbative
fluctuation q → qGwith a high-pT gluon, controlled by the
light-cone distribution function Ψq→qGðρ⃗iÞ [see Eq. (2.4)],
is much smaller than the interquark separation in the
nucleon, which is RN ∼ 1 fm, i.e.,

jρ⃗ij ≪ jr⃗ijj ∼ RN; i ≠ j; r⃗ij ≡ r⃗i − r⃗j: ð4:13Þ

For the second and third terms, Âq1;ðIIÞ
l and Âq1;ðIIIÞ

l , in
Eq. (4.1) corresponding to the first and second diagrams in
the second row of Fig. 3, respectively, we write,

Âq1;ðIIÞ
l ¼ hð3qÞ8jÂ†ðq2N → q2N�

8ÞÂlðq1N → q1GN�
8Þjð3qÞ1iΦN→ð3qÞ1

¼ 3
ffiffiffi
3

p
ΦN→ð3qÞ1Ψq→qGðρ⃗1; αÞ

16
fhð3qÞ8jτðq2Þa τðq1Þl τðq1Þa jð3qÞ1iðσqq̄ðr⃗12Þ − σqq̄ðr⃗12 þ ᾱρ⃗1ÞÞ

þ hð3qÞ8jτðq2Þa τðq1Þa τðq1Þl jð3qÞ1iðσqq̄ðr⃗12 þ ᾱρ⃗1Þ − σqq̄ðr⃗12 − αρ⃗1ÞÞg; ð4:14Þ
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Âq1;ðIIIÞ
l ¼ hð3qÞ8jÂ†ðq3N → q3N�

8ÞÂlðq1N → q1GN�
8Þjð3qÞ1iΦN→ð3qÞ1

¼ 3
ffiffiffi
3

p
ΦN→ð3qÞ1Ψq→qGðρ⃗1; αÞ

16
fhð3qÞ8jτðq3Þa τðq1Þl τðq1Þa jð3qÞ1iðσqq̄ðr⃗13Þ − σqq̄ðr⃗13 þ ᾱρ⃗1ÞÞ

þ hð3qÞ8jτðq3Þa τðq1Þa τðq1Þl jð3qÞ1iðσqq̄ðr⃗13 þ ᾱρ⃗1Þ − σqq̄ðr⃗13 − αρ⃗1ÞÞg; ð4:15Þ

in terms of the partial amplitudes given in Eqs. (2.2)
and (4.4).
In practical calculations, it is convenient to employ the

following relation

ðτðq1Þa þ τðq2Þa þ τðq3Þa Þjð3qÞ1i ¼ 0 ð4:16Þ

and a more generic formula for cyclic permutations
fq1; q2; q3g of the products of τðqjÞ-matrices,

ðPq1Pq2Pq3 þ Pq2Pq3Pq1 þ Pq3Pq1Pq2Þjð3qÞ1i ¼ 0;

Pqj ¼ τ
qj
a τ

qj
b …; ð4:17Þ

for any product of τ-matrices Pqj along a quark line qj,
j ¼ 1, 2, 3 or unity. Averaging over the nucleon state
jð3qÞ1i in the SD amplitude squared is performed as
follows

hð3qÞ1jAðτðq1ÞÞBðτðq2ÞÞCðτðq3ÞÞjð3qÞ1i

¼ 1

6
ðTr½A�Tr½B�Tr½C� þ Tr½ABC� þ Tr½ACB�

− Tr½A�Tr½BC� − Tr½B�Tr½AC� − Tr½C�Tr½AB�Þ

where A, B,C are any products of τ-matrices corresponding
to q1;2;3 projectile quarks, respectively.
Assuming the saturated form of the dipole cross section,

up to the terms containing the first power of ρi ≪ rij, we
write for two distinct cases

hard regime∶ σqq̄ðρ⃗iÞ ≃ σ0
ρ2i

R2
0ðxÞ

; ð4:18Þ

soft regime∶ σqq̄ðr⃗ijÞ − σqq̄ðr⃗ij − αρ⃗iÞ

≃ 2αðρ⃗i · r⃗ijÞ
σ̄0ðŝÞ
R̄2
0ðŝÞ

e−r
2
ij=R̄

2
0
ðŝÞ; ð4:19Þ

where the sets of parameters in the universal dipole cross
section fσ0; R0ðxÞg and fσ̄0ðŝÞ; R̄0ðŝÞg are determined in
the hard-dipole scattering [GBW model (3.2)] and soft-
dipole scattering [Kopeliovich-Schäfer-Tarasov model
(3.10)] regimes, respectively. Provided that ρi ≪ rij, we
can safely neglect the interference terms for gluon emis-
sions off different projectile quarks, such that only the
diagonal product,

jΨq→qGðρ⃗i; αÞj2 ¼
4

3

αsðμ2Þ
2π2

fm2
qα

4K2
0ðτρiÞ

þ ½1þ ð1 − αÞ2�τ2K2
1ðτρiÞg; ð4:20Þ

contributes to the final result for the (integrated) SD cross
section.
When computing the SD amplitude squared we have

to use the completeness relation jN�
8ihN�

8j ¼ 1 which
accounts for the momentum conservation for the nucleon
remnant wave function ΨN�

8
. More explicitly,

X
N�

8

ΨN�
8
ðr⃗1; r⃗2; r⃗3; fx1;2;…q g; fx1;2;…g gÞ

×Ψ�
N�

8
ðr⃗01; r⃗02; r⃗03; fx01;2;…q g; fx01;2;…g gÞ

¼ δðr⃗1 − r⃗01Þδðr⃗2 − r⃗02Þδðr⃗3 − r⃗03Þ
Y
j

δðxjq=g − x0jq=gÞ:

ð4:21Þ
The wave function of the initial nucleon state ΦN→ð3qÞ1
depends on transverse coordinates and fractional momenta
of all the projectile (valence and sea) quarks and gluons. We
assume that all sea quarks and gluons are localized within
gluonic “spots”, around the constituent valence quarks,
whose small transverse size ∼0.3 fm. The smallness of the
spots allows to explain the observed weakness of diffractive
gluon radiation [21] (the puzzling smallness of the triple-
Pomeron coupling). There are many other observables
confirming such a conclusion [41]). This picture supports
the popular two-step model [42–44], in which the initial
valence-quark distribution function is fixed at a low scale,
and then is developed to a higher scale perturbatively by
radiative generation of the sea and gluons.
Thus, the valence-like spatial wave function of the

proton introduced at a low scale, is not subject to further
variations as function of scale. For the impact parameters
r1, r2, r3 of the valence quarks we use the symmetric
(normalized) Gaussian parametrization of the valence part
of the proton wave function reads

jΦN→ð3qÞ1 j2 ¼
3a2

π2
e−aðr21þr2

2
þr2

3
ÞRðfxqg; fxggÞ

× δðr⃗1 þ r⃗2 þ r⃗3Þδ
�
1 −

X∞
j¼1

xjq −
X∞
j¼1

xjg

�
;

ð4:22Þ
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where a≡ hr2chi−1p is the inverse proton mean charge radius
squared,R is the generalized parton distribution function in
the projectile nucleon. In fact, the spatial distribution of the
valence quarks in the proton, even the string configuration
(triangle vs star shapes), are still under debate. Different
models were tested in Ref. [45] on data of soft diffraction.
Only the Model IV with symmetric dependence on r1, r2,
r3, and the saturated dipole cross section, was found to be
able to explain the observed puzzling smallness (only few
percent of elastic) of the low-mass diffraction cross section.
The latter is described by the PPR term in the triple-Regge
phenomenology [46]. It corresponds to diffractive excita-
tion of the valence quark skeleton (in contrast to diffractive
gluon radiation, giving the PPP term), this is why small-
mass diffraction is so sensitive to the valence quark
distribution.
In the case of diffractive quark excitation we obtain

Z Y
j≠1

dxjq
Y
k

dxkgδ
�
1 −

X∞
j¼1

xjq −
X∞
j¼1

xjg

�
Rðfxqg; fxggÞ

¼ qðxq; μ2Þ; ð4:23Þ

in terms of the quark PDF qðxq; μ2Þ where the projectile
(valence or sea) quark momentum fraction is x1q ≡ xq.
The SD quark-gluon dijet production cross section in

nucleon-nucleon collisionsN þ N → qGX þ N is found as

d3σSD
d ln αd2q⊥

				
q⊥→0

¼ 1

ð4πÞ2
Z

d2r1d2r2d2r3
Y
i;j

dxiqdx
j
g

×
Z

d2ρ
X

ÂSD
l ðÂSD

l Þ†; ð4:24Þ

where q2⊥ ¼ −t. The momentum conservation reduces the
integral over the incoming nucleon wave function as

Z
d2r1d2r2d2r3e−aðr

2
1
þr2

2
þr2

3
Þδðr⃗1 þ r⃗2 þ r⃗3Þ

¼ 1

9

Z
d2r12d2r13e−

2a
3
ðr2

12
þr2

13
þr⃗12·r⃗13Þ ð4:25Þ

such that the basic integrals appearing in the SD cross
section

3a2

π2
1

9

Z
d2R1d2R2e−

2a
3
ðR2

1
þR2

2
þR⃗1·R⃗2Þe−ðR

2
iþR2

j Þ=R̄2
0ðR⃗i · R⃗jÞ;

i; j ¼ 1; 2; 3; ð4:26Þ

where R⃗1 ≡ r⃗12, R⃗2 ≡ r⃗13, R⃗3 ≡ r⃗23 ¼ r⃗13 − r⃗12, can be
taken fully analytically. Finally, as usual the SD cross
section is the forward limit is inversely proportional to the
standard Regge-parametrized diffractive t-slope, BSDðsÞ,
namely,

d2σSD
dΩ

≃
1

BSDðsÞ
d3σSD
dΩdt

				
t→0

;

BSDðsÞ ≃ hr2chip=3þ 2α0P lnðs=s1Þ; s1 ¼ 1 GeV2;

ð4:27Þ

where α0P ¼ 0.25 GeV−2 and the phase space volume
element dΩ is defined in Eq. (3.8).
Following the above footsteps, straightforward calcula-

tions lead to the following representation of the fully
differential cross section for the SD qG production in
nucleon-nucleon collisions

dσq→qG
SD

dΩ
≃
Kq→qG

SD ðs; ŝ;αÞ
ð2πÞ2 qðxq;μ2Þ

Z
d2ρd2ρ0eiκ⃗ðρ⃗−ρ⃗0Þðρ⃗ · ρ⃗0Þ

×
X

Ψ̂q→qGðρ⃗;αÞΨ̂†
q→qGðρ⃗0;αÞ; ð4:28Þ

where

Kq→qG
SD ¼ 1

BSD

9aσ̄0ðŝÞ2
256π

�
W1ðŝÞ

�
1 −

2α

3
þ 7α2

27

�

þW2ðŝÞ
�
1þ 2α

3
−
13α2

27

��
; ð4:29Þ

where the ŝ-dependent functions read

W1ðŝÞ ¼
8

ð4þ aR̄2
0Þ2

þ 12

ð12þ aR̄2
0Þ2

; ŝ ¼ xqs;

R̄0 ¼ R̄0ðŝÞ;

W2ðŝÞ ¼
6a2R̄4

0

ð3þ 8aR̄2
0 þ a2R̄4

0Þ2
−

a2R̄4
0

ð3þ 4aR̄2
0 þ a2R̄4

0Þ2
:

ð4:30Þ

B. Diffractive excitation of a projectile gluon

Turning now to the diffractive gluon excitations, the
differential SD cross sections can be written as

dσG→qq̄
SD

dΩ
≃
KG→qq̄

SD ðs; ŝ;αÞ
ð2πÞ2 gðxg;μ2Þ

Z
d2ρd2ρ0eiκ⃗ðρ⃗−ρ⃗0Þðρ⃗ · ρ⃗0Þ

×
X

Ψ̂G→qq̄ðρ⃗;αÞΨ̂†
G→qq̄ðρ⃗0;αÞ; ŝ¼ xgs;

ð4:31Þ

dσG→G1G2

SD

dΩ
≃
KG→G1G2

SD ðs; ŝ; αÞ
ð2πÞ2 gðxg; μ2Þ

×
Z

d2ρd2ρ0eiκ⃗ðρ⃗−ρ⃗0Þðρ⃗ · ρ⃗0Þ

×
X

Ψ̂G→G1G2
ðρ⃗; αÞΨ̂†

G→G1G2
ðρ⃗0; αÞ; ð4:32Þ
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for G → qq̄ and G → G1G2 subprocesses, respectively. In
analogy with the diffractive bremsstrahlung process dis-
cussed in detail above, we find

KG→qq̄
SD ¼ 1

BSD

9aσ̄0ðŝÞ2
256π

�
W1ðŝÞ

�
16

27
−
4α

3
þ α2

�

þW2ðŝÞ
�
32

27
−
8α

3
þ α2

��
; ð4:33Þ

KG→G1G2

SD ¼ 1

BSD

9aσ̄0ðŝÞ2
256π

�
W1ðŝÞ

�
5

6
− αᾱ

�

þW2ðŝÞ
�
1

6
− αᾱ

��
; ð4:34Þ

where W1;2 are defined above in Eq. (4.30). In what
follows, these formulas will be used in analysis of the
SD-to-inclusive ratio.

V. DIFFRACTIVE TO INCLUSIVE RATIO

The CDF Run II experimental data [47] on SD dijet
production are given, in particular, in terms of the SD-to-
inclusive ratio RSD=incl, which is defined as follows

RSD=incl ¼
ΔσSD=Δξ
Δσincl

; Δξ ¼ 0.06; ξ≡ 1 − xF ¼ M2
X

s
;

ð5:1Þ

where MX is the invariant mass squared of the diffractive
system X, M2

X, containing the dijet, xF is the Feynman
variable of the recoil antiproton, ΔσSD (Δσincl) are the SD
(inclusive) dijet cross sections integrated over the detector
acceptance regions in ξ≡ 1 − xF variable, 0.03 < ξ <
0.09, in jet pseudorapidities, jη1;2j < 2.5, in jet transverse
energies, E1;2

T > 5 GeV, and in the antiproton transverse
momentum squared, jtj < 1 GeV2. The SD-to-inclusive
ratio is then measured as function of the hard scale Q2 ≫
R2
0 of the dijet and xBj,

Q2 ¼ ðE1
T þ E2

TÞ2
4

; xBj ¼
1ffiffiffi
s

p
X3jets
i¼1

Ei
Te

−ηi : ð5:2Þ

It is difficult to make one-to-one correspondence
between theory and data for the observables entering
Eq. (5.1), but one can rely on approximations. Consi-
dering, for example, the gluon Bremsstrahlung mechanism
q → qG as a suitable example which was thoroughly
discussed in the previous sections, a dominant contribution
to the sum in Eq. (5.2) comes from the high-pT gluon jet G
with a small longitudinal momentum fraction xG ≪ 1.
Indeed, in the high-pT limit, the leading jets are mostly
back-to-back, i.e., pG

T ∼ pq
T ∼ E1;2

T , the third subleading jet
is more likely to be produced at a smaller transverse

momentum pjet¼3
T ≪E1;2

T , while the gluon Bremstrahlung
is enhanced at small α ≪ 1 and thus is radiated at smallest
pseudorapidity among the leading jets such that

xG ¼ xqα; xG ≪ xq < 1: ð5:3Þ

Besides, the invariant mass squared of the dijet system,M2,
can be approximately identified with the hard scaleQ2, i.e.,

μ2 ≃M2 ≃Q2: ð5:4Þ

As we will see below, these approximations are vital for a
comparison of the dipole model results with the data.
In the experimental definition (5.1), the numerator

ΔσSD
Δξ

∼
dσSD
dξ

ð5:5Þ

is essentially the differential SD dijet cross section aver-
aged over the bin interval Δξ. The dipole formula for the
differential SD dijet cross section (4.28) is differential in
dijet mass squared M2 ¼ Q2 (or x2), and not in M2

X, so the
analysis of its ξ dependence as well as implementation of ξ
cuts cannot be directly performed. Following the proposal
of Ref. [11], the way out of this issue is to employ the
ξ-dependence provided by the phenomenological SD cross
section in the triple-Regge form [46]

−
d2σppSD
dξdq2⊥

¼
ffiffiffiffiffi
s1
s

r
GPPRð0Þ
ξ3=2

e−B
pp
PPRq

2⊥ þ G3Pð0Þ
ξ

e−B
pp
3Pq

2⊥ ;

ð5:6Þ

such that the main effect of constraints on ξ variable in this
Regge-based cross section and in our result (4.28) is
expected to be roughly the same. In the above formula (5.6),
we use the results of Ref. [46]

s1 ¼ 1 GeV2; Bpp
PPi ¼ R2

PPi − 2α0P ln ξ; i ¼ P;R;

G3Pð0Þ ¼ GPPRð0Þ ¼ 3.2 mb=GeV2; R2
3P ¼ 4.2 GeV−2;

R2
PPR ¼ 1.7 GeV−2;

where α0P ≈ 0.25 GeV−2 is the Pomeron trajectory slope.
Although these parameters were determined by the fit to
data long time ago at relatively low energies (ISR), they
well predicted data on diffraction at LHC (see Appendix A
in [48]).
When integrating Eq. (5.6) over ξ interval allowed by the

detector constraints, its upper limit is equal to the maximal
measured ξmax ¼ 0.09 (the largest momentum that can be
taken by the “active” gluon) while its minimal value
coincides with xBj characterizing the hard dijet system.
Then, the correction factor relating the integrated SD cross
section with the experimentally constrained ΔσSD as a
function of xBj reads
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δ ¼
R
dt

R
ξmax
xBj

dξ d2σ
dtdξR

dt
R
0.3
ξ� dξ d2σ

dtdξ

; ξ� ¼ Q2

s
≪ xBj; ð5:7Þ

where ξ� is associated with the minimal produced diffrac-
tive mass X, containing only the dijet. As the result is
practically nonsensitive to the upper limit of ξ, we fix it to
0.3 corresponding to a situation when a constituent quark in
the target looses most of its energy into a hard radiation of
the t-channel gluon [11]. Notably, the correction factor
(5.7) automatically accounts for the jet pseudorapidity
constraint such that the resulting SD cross section vanishes
when approaching the kinematical boundary xBj → ξmax as
expected.
The most important results of the previous sections, are

the dipole formulas for the differential inclusive and SD
dijet cross sections given by Eqs. (3.7) and (4.28),
respectively. One immediately notices that the differential
cross sections (3.7) and (4.28) are proportional to each
other, similarly to what was seen earlier in the case of
Abelian radiation in Refs. [10–12]. When calculating the
SD-to-inclusive ratio, however, one notices that KSD and
Kincl are functions of α which has to be integrated out in the
corresponding cross sections. For example, using the above
results with q → qþ G subprocess, we obtain

Δσq→qG
SD ≡ dσq→qG

SD

dxG
¼ δ

Z
1

xG

dα
α2

Kq→qG
SD ðs; ŝ; αÞ

×
X
q;q̄

½qðxq;Q2Þ þ q̄ðxq;Q2Þ�

×
4

3

αsðQ2Þ
π

Z
ρmax

ρmin

dρρ3fm2
qα

4K2
0ðτρÞ

þ ½1þ ð1 − αÞ2�τ2K2
1ðτρÞg; ð5:8Þ

where

xq ¼
xG
α
; ŝ ¼ sxq; ð5:9Þ

and τ ¼ τðαÞ is defined in Eq. (2.4), Kq→qG
SD is defined in

Eq. (4.30), and the integration limits are ρmin ∼ 1=Q and
ρmin ∼ 1=E1;2

T;min, E
1;2
T;min ¼ 5 GeV.

Analogically, for the inclusive dijet cross section for the
gluon Bremsstrahlung q → qG subprocess, we write

Δσq→qG
incl ≡ dσq→qG

incl

dxG
¼

Z
1

xG

dα
α2

Kq→qG
incl ðx2; αÞ

X
q;q̄

½qðxq;Q2Þ

þ q̄ðxq;Q2Þ�

×
4

3

αsðQ2Þ
π

Z
ρmax

ρmin

dρρ3fm2
qα

4K2
0ðτρÞ

þ ½1þ ð1 − αÞ2�τ2K2
1ðτρÞg; ð5:10Þ

whereKq→qG
incl is defined in Eq. (3.6), and x2 ¼ Q2=sxG (see

also Ref. [10]). The cross sections for the gluon-initiated
subprocesses, such as G → qq̄ and G → G1G2, can be
obtained in complete analogy to the above expressions,
except that the (anti)quark densities are replaced by the
gluon one.
Finally, the SD-to-inclusive ratio is written as follows

RSD=incl

¼ 1

Δξ
dσq→qG

SD =dxG þ dσG→qq̄
SD =dxG þ dσG→G1G2

SD =dxG
dσq→qG

incl =dxG þ dσG→qq̄
incl =dxG þ dσG→G1G2

incl =dxG
;

ð5:11Þ

accounting for the proper phase space constraints. In Fig. 4
we show the SD-to-inclusive ratio RSD=incl computed by
using Eq. (5.11) as function of xBj variable for three
different values of the hard scale Q2 ¼ 102, 202 and
402 GeV2 and compared to the corresponding CDF Run
II data [47]. In addition, in Fig. 5 we show partial con-
tributions to the SD-to-inclusive ratio RSD=inclðxBj; Q2Þ at
fixed Q2 ¼ 402 GeV2 corresponding to G → GG (solid
line), q → qG (dashed line) and G → qq̄ (dash-dotted line)
subprocesses. Apparently, G → GG process is dominant in
the SD production of dijets in the considered kinematical
region.
Notice that while the GBW parametrization of the dipole

cross section, Eq. (3.1), is sufficiently accurate for many
applications, the DGLAP evolution within the used scale
range might be not negligible. Therefore, we introduced
here a scale dependence of the parameter R0 in (3.1) in
accordance with the model [38]. We found the effect rather
small, but it somewhat improves agreement with data.

FIG. 4. The SD-to-inclusive ratio RSD=inclðxBj; Q2Þ given by
Eq. (5.11) as function of xBj for three different values of the hard
scale Q2 ¼ 102, 202 and 402 GeV2 in comparison to the CDF
Run II data [47].

DIFFRACTIVE DIJET PRODUCTION: BREAKDOWN OF … PHYS. REV. D 98, 114021 (2018)

114021-13



The energy and hard scale dependences of the SD-to-
inclusive ratio RSD=incl are typically considered to be an
important qualitative measure of the diffractive factorization
breaking. Similarly to the SD Drell-Yan [9,10] and gauge
boson [11] production cases, an important feature of the ratio
RSD=incl in the SD dijet production case also inconsistent
with a factorization-based analysis, is its unusual energy
and scale dependence shown in Fig. 6. It appears to be
remarkably universal for both SD Abelian and non-Abelian
types of radiation. As was discussed earlier in Refs. [14,15],
the ratio RSD=incl, in particular, its normalization and slopes
in

ffiffiffi
s

p
and Q2, is sensitive only to a particular (process-

dependent) linear combination of the universal dipole cross
section evaluated at different separations causing an inter-
play between hard and soft fluctuations (see also Ref. [9]).

Notably, the sign of these slopes is the same for all the SD
reactions, that have been studied in the dipole picture so far,
but it is clearly opposite to that in the existing factorization-
based predictions (cf. Ref. [49]). In this sense, the SD-to-
inclusive ratio can be used as an important probe for the
QCD mechanism of diffraction that is essentially determined
by an interplay between hard and soft interactions. As a
possible direction for future studies, in order to quantify the
factorization breaking effects, it would be instructive to make
a more detailed comparison between the predictions of the
dipole and factorization-based models.

VI. SUMMARY AND CONCLUSIONS

In this work, we computed the inclusive and single-
diffractive cross sections for dijet production in hadron-
hadron collisions in the dipole picture accounting for the
quark (q → qG) and gluon (G → qq̄, GG) excitations.
Applied for the kinematics of the CDF experiment at the
Tevatron, we estimated the SD-to-inclusive cross section
ratio RSD=incl as function of xBj and hard scale of the
processQ2. Diffractive factorization is found to be severely
broken for many reasons.
First, the diffractive structure functions, measured in the

diagonal diffractive DIS, should not be applied to an off-
diagonal hadronic diffraction, like dijet production. Such a
mismatch causes dramatic effects, usually related to the
rapidity gap survival probability. Working at the amplitude
level in the dipole representation the gap survival factor is
by default embedded into our calculation of the diffractive
amplitude.
The gap survival amplitude is related to possible inter-

actions with the spectator partons. However, we found that
factorization is broken even in the case of diffractive
excitation of a projectile quark, q → qG, the process free
of spectators. Our calculations within the dipole formalism
results in a cross section falling with relative jet transverse
momentum as 1=κ6, while the factorization would lead to
1=κ4 dependence.
Remarkably, interactions with the spectator partons in

the projectile hadron, not only suppress the cross section,
but also considerably increase it, giving rise to a new
mechanism of diffractive dijet production. Interaction with
the spectator quarks, separated by large transverse distance
from the active one, causes an interplay of the long-range
interactions with the spectator partons, and the hard-scale
interactions with a given Fock state. A similar conclusion,
which has resulted in a dynamically calculated rapidity gap
survival factor derived from the modelling of multiparton
interactions, has been made in Ref. [50].
The results for RSD=inclðxBj; Q2Þ exhibit an overall con-

sistency with the data available from Tevatron. Notice that
these results for non-Abelian (gluon Bremsstrahlung and
splitting) types of radiation, and SD Abelian diffractive
radiation (Drell-Yan [9,10]) demonstrate an interesting
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FIG. 6. The SD-to-inclusive ratio RSD=inclðxBj; Q2Þ as function
of Q2 for three different values of the c.m. energyffiffiffi
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similarity in shapes and magnitudes, pointing at a universal
character of the diffractive factorization breaking effects in
hadronic diffraction.
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