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We discuss a novel scenario for early cosmology, when the inflationary quasi–de Sitter phase
dynamically originates from the initial quantum state represented by the microcanonical density matrix.
This genuine quantum effect occurs as a result of the dynamics of the topologically nontrivial sectors in a
(conjectured) strongly coupled QCD-like gauge theory in expanding universe. The crucial element of our
proposal is the presence in our framework of a nontrivial S1 which plays the dual role in construction: it
defines the periodic gravitational instanton (on the gravity side) and it also defines a nontrivial gauge
holonomy (on the gauge side) generating the vacuum energy. The effect is global in nature and cannot be
formulated in terms of a gradient expansion in an effective local field theory. We also discuss a graceful exit
from holonomy inflation due to the helical instability. The number of e-folds in the holonomy inflation
framework is determined by the gauge coupling constant at the moment of inflation, and estimated as
Ninfl ∼ α−2ðH0Þ ∼ 102. We also comment on the relation of our framework with the no-boundary and
tunneling cosmological proposals and their recent criticism.
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I. INTRODUCTION

The inflationary scenario is widely recognized as one of
the most successful candidates for the description of the
early Universe leading to its observable large scale struc-
ture. The majority of effective and fundamental models of
this scenario are based on the assumption that matter
energy density driving the quasiexponential expansion of
the Universe during inflation stage is generated by local
field-theoretical degrees of freedom (d.o.f.), like a scalaron
field in the Starobinsky R2-gravity [1] or a scalar field
inflaton ΦðxÞ with its potential VðΦÞ in chaotic and other
inflationary models [2]; see textbook [3] for a general
overview.
However, it is also very possible that the generation of

this type of uniformly distributed energy might not be
associated with any local propagating particles. Instead, it
might be related to some global characteristics (such as
holonomy) or topological d.o.f. which cannot be expressed
in terms of any local fields such as inflatonΦ. Examples, in
particular, include the global d.o.f. arising in the context of
the recently suggested generalized unimodular gravity
theory [4]. Another example is represented by a strongly

coupled QCD-like gauge theory when the vacuum energy is
generated by some nontrivial topological features of the
gauge systems [5–7].
Here we apply the ideas when the vacuum energy is

induced by the topologically nontrivial holonomy [5–7] to
the mechanism of inflation in the early quantum Universe
driven by the thermal states [8,9]. This model, which
incorporates the idea of the microcanonical density matrix
as the initial quantum state of the Universe [10], is
conceptually very attractive because of the minimum set
of assumptions underlying it and, moreover, because of a
mechanism restricting the cosmological ensemble to sub-
Planckian energy domain and avoiding the infrared catas-
trophe inherent in the no-boundary wave function [11].
Furthermore, this thermally driven cosmology [8,9] can
serve as initial conditions for the observationally consistent
models of R2 and Higgs inflation; see original paper [12]
and the recent development [13,14] based on induced
gravity aspects of the theory.
As we argue below our construction, which can be

viewed as a synthesis of two naively unrelated ideas [8–10]
and [5–7] correspondingly, shows a number of very
desirable and remarkable features. On the gravity side
[8–10] the nontrivial element of the construction is repre-
sented by the Euclidean spacetime with a time compactified
to a circle S1. On the gauge field theory side [5–7] the same
S1 plays a crucial role when the gauge configurations may
assume a nontrivial holonomy along S1. Precisely the
gauge configurations with the nontrivial holonomy along
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S1 may serve as a source of vacuum energy density
sustaining the inflationary scenario. Furthermore, as we
argue below this construction provides a system with a sub-
Planckian energy scale such that a number of well-known
and undesirable properties which always accompany the
conventional inflationary scenario when a system is for-
mulated in terms of a local field ΦðxÞ, does not even occur
in our framework.
Our presentation is organized as follows. We begin in

Sec. II with a brief overview of the first crucial element of
the proposal: the thermally driven cosmology when the
initial state is described by the microcanonical density
matrix as originally discussed in [8–10]. In Sec. III we
overview a second crucial element of our proposal related
to a fundamentally new source of the vacuum energy as
suggested in [5–7].
Then in Secs. IV and V we construct two different

inflationary models based on similar building principles,
but different field contexts. In both models the inflationary
vacuum energy is generated by the holonomy of gauge
fields. In the first model studied in Sec. IVone can carry out
all the computations in theoretically controllable semi-
classical approximation as a result of special selection of
the matter context. The second model studied in Sec. V is
much more attractive phenomenologically, though the
semiclassical approximation cannot be justified in this case.
We discuss how the inflation ends in our scenario (the so-

called reheating epoch) in Sec. VI. In particular, we
demonstrate that the number of e-folds Ninfl is always
very large Ninfl ∼ α−2ðHÞ ∼ 100 as a result of small gauge
coupling constant αðHÞ ∼ 0.1 at the Hubble scale H. We
also compare our holonomy inflation with conventional
description in terms of the local inflaton Φ and potential
V½Φ� in Sec. VI F.
We conclude in Sec. VII with a formulation of the basic

results and profound consequences of our proposal. We
also describe in Sec. VII C how this new form of the
topological vacuum energy can be tested in tabletop
experiments in the physical Maxwell system. We also
comment in Sec. VII D on differences of our framework
with well-known no-boundary and tunneling proposals.
Finally, we summarize a number of technical aspects
relevant to our topological inflation scenario in
Appendix A. In particular, we overview the nature of the
contact term in gauge theories in Sec. A 1, the generation of
the “nondispersive” vacuum energy due to the holonomy in
Sec. A 2, and its role in cosmological context in Sec. III C.

II. ORIGIN OF INFLATION IN THE THERMALLY
DRIVEN COSMOLOGY

Our goal here is to overview the previous results [8–10]
with emphasis on the periodic properties of S1 where
gravitational instantons are defined and serve as initial
conditions for the cosmological evolution of the scale
factor aðtÞ. Analytical continuation to the physical

Lorentzian spacetime demonstrates the de Sitter-like
behavior with constant H. This is precisely the main goal
of this section.
The model of quantum initial conditions in cosmology in

the form of the microcanonical density matrix was sug-
gested in [10], where its statistical sum was built as the
Euclidean quantum gravity path integral,

Z ¼
Z

Periodic

D½gμν;Φ�e−S½gμν;Φ�; ð1Þ

over the metric gμν and matter fields Φ which are periodic
on the Euclidean spacetime with a time compactified to a
circle S1. This statistical sum has a good predictive power
in the Einstein theory with the primordial cosmological
constant and the matter sector which mainly consists of a
large number of quantum fields conformally coupled to
gravity [8,9]. The dominant contribution of numerous
conformal modes allows one to overstep the limits of
the usual semiclassical expansion, because the integration
over these modes gives the quantum effective action of the
conformal fields ΓCFT½gμν� exactly calculable by the method
of conformal anomaly. On the Friedmann-Robertson-
Walker (FRW) background,

ds2 ¼ dτ2 þ a2ðτÞd2Ωð3Þ; ð2Þ

with a periodic scale factor aðτÞ, the functions of the
Euclidean time belonging to the circle S1 [8], this action is
calculable by using the local conformal transformation to
the static Einstein universe and the well-known trace
anomaly,

gμν
δΓCFT

δgμν
¼ 1

4ð4πÞ2 g
1=2ðα□Rþ βEþ γC2

μναβÞ; ð3Þ

which is a linear combination of Gauss-Bonnet E ¼
R2
μναγ − 4R2

μν þ R2, Weyl tensor squared C2
μναβ and □R

curvature invariants with spin dependent coefficients.1 The
resulting ΓCFT½gμν� turns out to be the sum of the anomaly
contribution and the contribution of the static Einstein
universe—the Casimir and free energy of conformal matter
fields at the temperature determined by the circumference
of the compactified time dimension S1. This is the main
calculational advantage provided by the local Weyl invari-
ance of Φ conformally coupled to gμν. Solutions of
equations of motion for the full effective action—saddle

1With the nonvanishing background values of matter fields
there are additional contributions to the conformal anomaly like
the square of the relevant Yang-Mills strength F2

μν or a conformal
scalar field ϕ4, [15]. We disregard them, because in what follows
their values are assumed to be either 0 or negligible compared to
the contribution of the gravitational structures with large coef-
ficients α, β and γ.
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points of the microcanonical statistical sum (1)—are the
periodic cosmological instantons of S1 × S3 topology (in
what follows we assume spatially closed cosmology which
explains spherical topology of its spatial sections). These
statistical sum instantons follow by a usual tracing pro-
cedure from the two-boundary instantons of the relevant
microcanonical density matrix, which is depicted on Fig. 1.
In their turn, the density matrix instantons serve as initial
conditions for the cosmological evolution aLðtÞ in the
physical Lorentzian spacetime. The latter follows from aðτÞ
by the analytic continuation aLðtÞ ¼ aðτ� þ itÞ at the point
of the maximum value of the Euclidean scale factor
aþ ¼ aðτ�Þ, as shown on Fig. 2.
This construction is described in [8–10] and we refer the

readers to these original papers. The only comment we
make here is that the starting point of the analysis [8–10] is,
of course, the density matrix ρðϕ;ϕ0Þ with two surfaces
carrying its field arguments. These surfaces semiclassically
are the boundaries of either Euclidean or Lorentzian
spacetime, depending on the relevant size of the scale
factor. The entire saddle-point solution for ρðϕ;ϕ0Þ consists
respectively of the Euclidean spacetime interpolating
between them or of the Euclidean spacetime between Σ
and Σ0, sandwiched between the two layers of the
Lorentzian spacetime. These two layers interpolate from
Σ to the unprimed argument of the density matrix and
from Σ0 to its primed argument and correspond in the
density matrix to the chronological and antichronological
evolution factors of the well-known Schwinger-Keldysh
technique [16] for expectation values in thermal field
theory. When calculating the trace in the statistical sum
in view of unitarity these two factors cancel out, and the

only contribution to the statistical sum remains from the
Euclidean domain between the Euclidean-Lorentzian tran-
sition surfaces Σ and Σ0. These surfaces are uniquely
determined from the condition of smooth periodicity in
the Euclidean time on the compact S1, or as two turning
points of the Euclidean trajectory for aðτÞ.
The equations for these cosmological instantons have the

form of the effective Friedmann equation in the Euclidean
time τ ( _a ¼ da=dτ),

−
_a2

a2
þ 1

a2
− B
�

_a4

2a4
−

_a2

a4

�
¼ ρ

3M2
P
þ C
a4

; ð4Þ

C ¼ B
2
þ RðηÞ
3M2

P
; ð5Þ

B ¼ β

8π2M2
P
; ð6Þ

where MP ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is the reduced Planck mass, ρ is the

overall energy density of matter fields other than the
conformal particles, β is the coefficient of the Gauss-
Bonnet term in the total conformal anomaly of these
particles and RðηÞ is their radiation energy density.2 The
latter is given by a boson or fermion sum over field modes
with energies ω on a unit 3-sphere at the comoving
temperature 1=η, the inverse of the instanton circumference
S1 measured in units of the conformal time,

RðηÞ ¼ 1

2π2
X
ω

ω

eωη ∓ 1
; η ¼

Z
S1

dτ
a
: ð7Þ

Note that γ does not contribute to the above equations in
view of conformal flatness of the FRW metric, while the
coefficient α can always be renormalized to 0 by a local R2

counterterm, changes in α thus being equivalent to the
inclusion of the nonminimally coupled scalaron of the
Starobinsky model; see discussion in [17,18].
The integrodifferential equations (4) and (5) form a

bootstrap—the amount of radiation constant C is deter-
mined from (5) by the underlying scale factor history aðτÞ
which, in its turn, is generated by the backreaction of this

FIG. 1. Transition from the density matrix instanton to the
periodic statistical sum instanton.

Σ Σ’

FIG. 2. Density matrix instanton. Dashed lines depict the
Lorentzian Universe nucleating at minimal surfaces Σ and Σ0.

2It should be emphasized that nonconformal matter was not
completely excluded in the original setup and the gravitational
sector of the theory was not assumed to beWeyl invariant at all. In
particular, the role of ρ could be played by a fundamental
cosmological constant, its particular value being selected from
the existence of the periodic Euclidean saddle-point solution, as it
was in the simplest model of [9]. In more realistic models the role
of ρ is played by the nonconformal inflaton field in the slow-roll
regime or the scalaron field of the Starobinsky R2-model [17,18];
see below. Moreover, ρ can contain ordinary particle matter of
negligible amount in the early Universe, but quantum created
during inflation in view of its nonconformal nature and, therefore,
starting to dominate at later stages of the evolution; see footnote 4.
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radiation on aðτÞ via the effective Friedmann equation (4).
Their solutions represent the set of periodic S3 × S1

gravitational instantons3 with the oscillating scale factor,
garlands [8,10], that can be regarded as the thermal version
of the Hartle-Hawking instantons [11]. When the matter
density is constant or nearly constant and forms a “Hubble
factor”

H2 ≡ ρ

3M2
P

ð8Þ

the scale factor oscillatesm times (m ¼ 1; 2; 3;…) between
the maximum and minimum values, a− ≤ aðτÞ ≤ aþ, so
that the full period of the conformal time (7) is the 2m-
multiple of the integral between the two neighboring
turning points of aðτÞ, _aðτ�Þ ¼ 0. Similarly, the full period
of the proper Euclidean time on these periodic m-fold
garland instantons is given by the analogous integral,

T ¼
I
S1

dτ ¼ 2m
Z

aþ

a−

da
_a
: ð9Þ

These garland-type instantons exist only in the limited
range of H2 [8]. As shown in [8], periodic solutions should
necessarily belong to the domain

B − B2H2 ≤ C ≤
1

4H2
; ð10Þ

where they form a countable, m ¼ 1; 2;…, sequence of
one-parameter families interpolating between the lower and
upper boundaries of this domain in the two-dimensional
plane of H2 and C. This sequence with m → ∞ accumu-
lates at the upper bound of H2

max ¼ 1=2B (and minimal
value of Cmin ¼ B=2), which corresponds to the bound on
the effective cosmological constant

Λmax ¼
12π2M2

P

β
: ð11Þ

The lower bound H2
min, the lowest point of the m ¼ 1

family, can be obtained numerically for any field content of
the model.
For solutions close to the upper boundary of the domain

(10), C ≃ 1=4H2, the scale factor oscillates with a very
small amplitude, and one can write down the following
approximation,

a2 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4CH2

p
cosðΩτÞ

2H2
; ð12Þ

Ω ¼ 2Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2BH2

p ; ð13Þ

which is valid for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4CH2

p
≪ 1–2BH2 [17,18]. The full

period of the m-folded instanton is thus

T ¼ 2πm
Ω

¼ πm
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2BH2

p
: ð14Þ

Remarkably, the bootstrap equations (4) and (5) have
explicit solution for large m and close to the upper
boundary of the domain (10) [8]. In this limit the
Hubble parameter is close to the upper bound of its range

H2 ≃
1

2B

�
1 −

ln2m2

2π2m2

�
; m ≫ 1; ð15Þ

corresponding to the maximal value of the effective
cosmological constant (11).
We make a few comments on the physical meaning of the

topological parameter m which enters Eq. (9). This param-
eter looks very similar to the integer instanton number in
gauge theories where the Euclidean path integral is defined
as the sum over all topological sectors, so that it is tempting
to consider summation over m. However, m is not an
independent parameter of the cosmological instantons of
the above type. Each instanton is parametrized by two
dimensional parameters, H2 ¼ Λ=3, the cosmological con-
stant or the energy scale of the model and MP, the
Planckian mass or gravitational coupling constant. The
folding numberm is in one-to-one correspondence with the
energy scale H as in (15). Therefore, under a general
assumption that at later times the cosmological models with
different values ofH decohere and become observable, one
should not sum over different values of m in the contri-
bution to the initial conditions for inflation with a given H.
The concrete values ofH andm should, thus, be selected by
matching with observations.
Inflation stage in this model starts after the “nucleation”

of the system from the gravitational instanton when the
evolution in the Lorentzian time begins. The Lorentzian
time history of the scale factor aLðtÞ originates by the
analytic continuation of the approximate solution (12) to
τ ¼ 2mπ=Ωþ it. This leads to the replacement of oscil-
latory behavior of cosðΩτÞ by exponentially growing
coshðΩtÞ, so that at later times nonlinear effects start
dominating. When solved with respect to _a2 Eq. (4) takes
in the Lorentzian spacetime, _a2ðτÞ ¼ − _a2LðtÞ, the mani-
festly general relativistic form [cf. (26) and (27) below],

_a2L
a2L

þ 1

a2L
¼ ε

3M2
effðεÞ

; ε ¼ ρþ R
a4L

; ð16Þ

3We use the term gravitational instanton to avoid confusion
with conventional instanton-type solutions which describe the
interpolation between topologically distinct but physically iden-
tical winding sectors jki in gauge theories. The corresponding
periodic instantons (the so-called calorons with nontrivial hol-
onomy) are the subject of the Appendix A where we overview
relevant for the present work results.
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M2
effðεÞ ¼

M2
P

2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

βε

12π2M4
P

s !
; ð17Þ

with the effective Planck mass MeffðεÞ depending on the
full matter density ε which together with ρ includes the
primordial radiation of the conformal cosmology.
As shown in [17,18], the above Euclidean-Lorentzian

scenario remains valid also when the matter density ρ is
represented by an appropriate potential of the slowly
varying scalar field playing the role of the inflaton. The
evolution consists in the fast quasiexponential expansion
during which the primordial radiation gets diluted; the
inflaton field and its density ρ slowly decay by a conven-
tional exit scenario and go over into the quanta of
conformally noninvariant fields produced from the vac-
uum.4 They get thermalized and reheated to give a new
postinflationary radiation with a sub-Planckian energy
density, ε → εrad ≪ M4

P=β. Therefore, Meff tends to MP,
and one obtains a standard general relativistic inflationary
scenario for which initial conditions were prepared by the
garland instanton of the above type.
Interestingly, this model can serve as a source of

quantum initial conditions for the Starobinsky R2-inflation
[1] and Higgs inflation theory [13,14], in which the
effective H2 is generated respectively by the scalaron
and Higgs field. In particular, the observable value of
the cosmic microwave background (CMB) spectral tilt
ns ≃ 0.965 in these models can be related to the exponen-
tially high instanton folding number [17,18],

m ≃ exp
2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1 − nsÞ
p ∼ 108; ð18Þ

whereas the needed inflation scale in these models H ∼
10−6MP determines the overall parameter β ∼ 1013 gen-
erated by a hidden sector of conformal fields [18,19]. If this
sector is built of higher spin conformal fields [19],5 then the
gravitational cutoff [20,21] of the model turns out to be
several orders of magnitude higher than the inflation scale,
which justifies the omission of the graviton loop contri-
bution and the use of the above nonperturbative (trace
anomaly based) method. This concludes our overview of

the previous results [8–10,17,18] which play an important
role in constructions presented in the following sections.

III. THE TOPOLOGY AS THE SOURCE
OF THE VACUUM ENERGY

The goal here is to overview the basic ideas advocated in
[5–7]. We explain a number of technical elements related to
these ideas in Appendix A, while here we present the
corresponding arguments using simple plain language and
analogies; see next Sec. III A. The basic prescription of the
vacuum energy which enters the Friedmann equations is
explained in Sec. III B. In Sec. III C we list a number of key
technical elements of the proposal relevant for cosmologi-
cal applications.

A. Intuitive picture

The new paradigm advocated in [5] is based on a
fundamentally novel view on the nature and origin of
the inflaton field which is drastically different from the
conventional viewpoint that the inflaton is a dynamical
local field Φ. In this new framework the inflation is a
genuine quantum effect in which the role of the inflaton is
played by an auxiliary topological field. A similar field,
e.g., is known to emerge in the description of a topologi-
cally ordered condensed matter (CM) system realized in
nature. This field does not propagate, and does not have a
canonical kinetic term, as the sole role of the auxiliary field
is to effectively describe the dynamics of the topological
sectors of a gauge theory which are present in the system.
The corresponding physics is fundamentally indescribable
in terms of any local propagating fields [such as ΦðxÞ]. It
might be instructive to get some intuitive picture for the
vacuum energy in this framework formulated in terms of a
CM analogy. Such an intuitive picture is quite helpful in
getting a rough idea about the nature of the inflaton in the
framework advocated in this work.
Imagine that we study the Aharonov-Casher effect. We

insert an external charge into a superconductor when the
electric field E is screened, i.e., E ∼Q expð−r=λÞ with λ
being the penetration depth. Nevertheless, a neutral mag-
netic fluxon will still be sensitive to an inserted external
charge Q at arbitrary large distances in spite of the
screening of the physical field. This genuine quantum
effect is purely topological and nonlocal in nature and can
be explained in terms of the dynamics of the gauge sectors
which are responsible for the long range dynamics. Imagine
now that we study the same effect but in a time-dependent
background. The corresponding topological sectors which
saturate the vacuum energy are modified due to the
external background. However, this modification cannot
be described in terms of any local dynamical fields, as there
are no propagating long range fields in the system since the
physical electric field is screened. For this simplified
example, the dynamics of the inflaton corresponds to the

4A realistic model should contain a sector of nonconformal
fields which can be negligible on top of conformal fields in the
early Universe but eventually starts dominating in the course of
cosmological expansion.

5Such a high value of β cannot be reached with low spin
conformal fields having β ¼ ð1=180ÞðN0 þ 11N1=2 þ 62N1Þ,
unless the numbers Ns of fields of spin s are tremendously high.
On the contrary, this bound on β can be reached with a relatively
low tower of higher spin conformal fields, because partial
contribution of spin s to β grows as s6 and, moreover, this
scaling guarantees that the theory with multiple quantum species
remains deeply below its gravitational cutoff [20,21].
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effective description of the modification of topological
sectors when the external background slowly changes. The
effect is obviously nonlocal in nature as the Aharonov-
Casher effect itself is a nonlocal phenomenon, and cannot
be expressed in terms of Fμν.
One should emphasize that many crucial elements of this

proposal have in fact been tested using the numerical lattice
Monte Carlo simulations in strongly coupled QCD.
Furthermore, this fundamentally new sort of energy can
be in principle studied in tabletop experiments by meas-
uring some specific corrections to the Casimir pressure in
the Maxwell theory; see remarks and references in con-
cluding Sec. VII C. In the next subsection we specifically
list some important technical elements which are used in
the construction.

B. QCD holonomy mechanism of vacuum energy

Let us now get to the discussion of the nature of the
effective cosmological constant or a Hubble factor (8) in the
modified Euclidean Friedmann equation (4). Our interpre-
tation in the present work is based on the prescription that
the relevant energy is in fact the difference Δρ≡ ρ − ρflat
between the energies of a system in a nontrivial background
and flat spacetime geometry, similar to the well-known
Casimir effect when the observed energy is a difference
between the energy computed for a system with conducting
boundaries and infinite Minkowski flat space. In this
framework it is quite natural to define the “renormalized
vacuum energy” to be 0 in flat spacetime vacuum wherein
the Einstein equations are automatically satisfied as the
Ricci tensor identically vanishes.
In the present context such a definition Δρ≡ ρFLRW −

ρMink for the vacuum energy for the first time was
advocated in 1967 by Zeldovich [22] who argued that
ρvac ¼ Δρ ∼Gm6

p must be proportional to the gravitational
constant with mp being the proton’s mass. Later on such a
definition for the relevant energy Δρ≡ ρFLRW − ρflat which
enters the Einstein equations was advocated from different
perspectives in a number of papers written by researchers
from different fields, including particle physics, cosmol-
ogy, and condensed matter physics; see e.g., relatively
recent works [23–27], and review article [28] with a large
number of the original references.
This subtraction prescription is consistent with conven-

tional subtraction procedure of the divergent ultralocal bare
cosmological constant because in the infinitely large flat
spacetime the corresponding contribution is proportional to
the δ4ðxÞ function; see (A5). At the same time the nontrivial
corrections to Δρ are nonlocal functions of the geometry
and cannot be renormalized by any UV counterterms.
Precisely this feature of nonlocality implies that the

relevant energy Δρ which enters the Friedmann equation,
see (19) below, cannot be expressed in terms of a gradient
expansion in any effective field theory. Additional argu-
ments supporting the same claim on the impossibility to

formulate the relevant physics in terms of any local
effective field, such as inflaton ΦðxÞ, are presented in
the following Sec. III C.
This prescription is also consistent with the renormal-

ization group (RG) approach advocated in [28–30]. In fact,
it is a direct consequence of the renormalization group
approach when we fix a physical parameter at one point of
normalization to predict its value at a different normaliza-
tion point. In the present work with the geometry S3 × S1,
the proper length of the S1-period being T , it implies that
the vacuum energy in the Friedmann equation (4) is
ρ≡ ρðT −1Þ − ρð0Þ, where ρðT −1Þ is the energy of the
gauge field holonomy on a compactified spacetime coor-
dinate of length T . It can be interpreted as the RG
normalization point μ ∼ T −1, where T is the size of the
compactified Euclidean time dimension given by (9). As
we already mentioned, this prescription is consistent with
the Einstein equations when the vacuum energy approaches
0, Δρ → 0, for the flat spacetime which itself may be
considered as a limiting case with T → ∞.
Finally, with the expression for the energy of the gauge

field holonomy winding across the compactified coordinate
of the length T whose derivation we give in next Sec. III C,
one has

ρ≡ ρvac½S3 × S1� − ρvac½R4� ¼
c̄T Λ3

QCD

T
; ð19Þ

where ΛQCD is the scale of the underlying QCD-like gauge
field theory and c̄T is some dimensionless Oð1Þ constant
whose precise value is not important for our argumentation.
Our final comment in this subsection goes as follows. As

we already mentioned the energyΔρ can be interpreted as a
running cosmological constant within the renormalization
group approach advocated in [28–30] with the only differ-
ence being that odd powers of H are also included in the
series as a result of the IR sensitivity and nonlocality (in
contrast with conventional UV renormalization) as dis-
cussed in Appendix A. The linear correction (which is a
particular example of the odd power of H) to the vacuum
energy can be interpreted in terminology [28–30] as the
possibility of running cosmological constant at very low
μ ∼ T −1 ≪ MP. This running is originated from nonper-
turbative and nonlocal physics in QFT (through the non-
trivial holonomy along S1) and cannot be seen at any finite
level in perturbation theory, as entire nondispersive vacuum
energy cannot be generated in perturbation theory; see
some technical comments on this matter in Appendix A 2.
As we see in the next subsection, the leading correction

to the vacuum energy (19) is in fact proportional to H, and
this linear in H correction in the effective Friedmann
equation is saturated by the IR-sensitive topological con-
figurations with nontrivial holonomy which cannot be
expressed in terms of any local propagating d.o.f.
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C. Nondispersive vacuum energy.
Cosmological context.

We define the nondispersive vacuum energy Evac in
gauge theory in conventional way in terms of the path
integral; see Appendix A 1. Precisely this vacuum energy
enters all the relevant correlation functions, including the
topological susceptibility as defined by (A1).
1. From the arguments of Appendix A 1 one can

infer that the θ-dependent portion of the vacuum energy
EvacðθÞ cannot be identified with any propagating d.o.f.
Furthermore, all effects are obviously nonanalytical in
coupling constant ∼ expð−1=g2Þ and cannot be seen in
perturbation theory. These arguments obviously suggest
that there is no local effective field ΦðxÞ (inflaton) which
could describe these features of the vacuum energy in
gauge theories. These arguments are obviously consistent
with our discussions in previous Sec. III B.
2. One can view the relevant topological Euclidean

configurations which satisfy the properties from item 1
above as the three-dimensional magnetic monopoles wrap-
ping around S1 direction. These configurations are char-
acterized by the nonvanishing holonomy (A6), which
eventually generates the linear correction ∼1=T to the
vacuum energy density represented by Eqs. (20) and
(24) below.
3. In the cosmological context such configurations are

highly unusual objects: they obviously describe the non-
local physics as the holonomy (A6) is a nonlocal object.
Indeed, the holonomy defines the dynamics along the entire
history of evolution of the system in the given confined
phase: from the very beginning to the very end. There is no
contradiction with causality in the system as there are no
physical d.o.f. to propagate along this path; see item 1
above. Furthermore, this entire gauge configuration is a
mere saddle point in Euclidean path integral computation
which describes the instantaneous tunneling event, rather
than propagation of a physical d.o.f. capable of carrying
any information/signal.
4. The generation of the nondispersive energy Evac is a

highly nonlocal effect. In particular, formulas (20) and (24)
below explicitly show that small variations of the back-
ground produce large linear correction ∼T −1 at small
T −1 → 0 as a result of this nonlocality. Precisely this
feature of nonlocality implies that the relevant energy Δρ
which enters the Friedmann equation (19) cannot be
expressed in terms of a gradient expansion in any effective
local field theory as emphasized in Sec. III B.
5. Our subtraction prescription as explained in Sec. III B

is consistent will all fundamental principles of QFT. What
is more important is that the correction to the energy Δρ
which enters the Friedmann equation (19) cannot be
renormalized by any UV counterterms as it is generated
by nonlocal configurations.
6. The basic assumption of this work is that the same

pattern (as highlighted in items 1–5 above) holds for other

manifolds. In other words, we assume that the vacuum
energy density for the S3 × S1 manifold receives a linear
correction T −1 in comparison with flat R3 × S1 geometry,
similar to the computations in hyperbolic space S1 × H3

where computations can be explicitly performed, as
reviewed in Appendix A 2, i.e.,

Evac½S3 × S1�
Evac½R3 × S1� ≃

�
1 −

cT
T ΛQCD

�
; ð20Þ

where cT is a coefficient of order one, similar to compu-
tations in Appendix A 2. Formula (20) plays the crucial role
in our arguments in Secs. IV and V.
One can use conventional thermodynamical relation

dF ¼ TdS − PdV; P ¼ −
∂F
∂V
����
S

ð21Þ

to convince oneself that the correction ∼T −1 does not
modify the equation of state (EoS). In fact, it behaves
exactly in the same way as the cosmological constant
does, i.e.,

P ¼ −
∂F
∂V ¼ þ 32π2

g4
Λ4

QCD

�
1 −

cT
T ΛQCD

�

ρ ¼ F
V
¼ −

32π2

g4
Λ4

QCD

�
1 −

cT
T ΛQCD

�
; ð22Þ

where we use formula (A8) for F with correction factor
(20). The correction ∼T −1 does not modify the equation
of state w ¼ −1, which is normally associated with the
cosmological constant contribution,

w≡ P
ρ
¼ −1: ð23Þ

Finally, using (20) the vacuum energy for S3 × S1 manifold
can be represented as follows,

Evac½S3 × S1� ≃ −
32π2

g4
Λ4

QCD

�
1 −

cT
T ΛQCD

�

≃ −
32π2

g4
Λ4

QCD
þ Λ3

QCD

c̄T
T

þO
�

1

T 2

�
;

ð24Þ

where we redefined c̄T ≡ 32π2

g4 cT as the parameter cT ∼ 1

is expected to be order of 1 (based on the previous
experience) but is not yet known.
We conclude this section with a few important comments

which are relevant for the physical interpretation of the
obtained results.

(i) All computations presented above, as usual, are
performed in the Euclidean spacetime where the
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relevant gauge configurations describing the tun-
neling processes are defined. Using this technique
we computed the energy density ρ and the pressure
P in the Euclidean space. As usual, we assume
that there is analytical continuation to Lorentizan
spacetime where the physical energy density has
the same form. This is of course conventional
procedure for the QCD practitioners who normally
perform computations on the lattice using the
Euclidean formulation, while the obtained results
are expressed in physical terms in Minkowski
spacetime. In our context it means that the
parameters P, ρ and EoS as given by (23) are
interpreted as the corresponding parameters in
physical Lorentizan spacetime.

(ii) Therefore, the driving force for the de Sitter behavior
in the Lorentzian space is not a local dynamical
inflaton field ΦðxÞ which never emerges in our
framework. Rather the driving force in our scenario
should be thought of as a Casimir-type vacuum
energy which is generated by numerous tunneling
transitions in a strongly coupled gauge theory
determined by the dimensional parameter ΛQCD.
Precisely this parameter replaces the dimensional
parameters from inflaton potential V½ΦðxÞ� which
cosmology practitioners normally use in their
studies.

(iii) The equation of state (23) in Lorentizan spacetime
obviously implies the de Sitter expansion. The
corrections due to the radiation ρr and matter ρm
can be easily incorporated into the Friedmann
equation written in Lorentizan spacetime. The in-
teraction of the system with standard model (SM)
particles modifies the EoS (23). Precisely these
modifications to EoS (23) are responsible for the
end of inflation as described in Sec. VI.

IV. THE HOLONOMY INFLATION. MODEL 1

The origin of inflation in the model reviewed in pre-
vious Sec. II is based on two important ingredients—the
vacuum energy (8) of a certain local nature and the
hidden sector of conformal fields critically important for
the contribution of the conformal anomaly and generation
of the thermal radiation in effective Friedmann equation.
The key technical element for the successful inflation is
the presence of S1 which emerges in the system as a
result of thermal initial state formulated in terms of the
density matrix. We keep this first ingredient of our
construction from previous studies as is explained below
in Sec. IVA.
A new idea which is advocated in the present work is that

the second important ingredient of this framework, the
vacuum energy, may be originated from some nontrivial
nonlocal gauge configurations. This structure in our pro-
posal is fundamentally different from all conventional

inflationary models because this source of the vacuum
energy cannot be expressed in terms of any local d.o.f. such
as scalar inflaton ΦðxÞ.
In our construction this source of the vacuum energy

is generated by the gauge configurations with nontrivial
holonomy in the QCD-like field theory as explained in
Sec. III B. This construction uses exactly the nontrivial
topology S1 × S3 of the gravitational instanton considered
above. In its turn, the origin of this topology, compacti-
fication of the Euclidean time on a circle S1, is entirely
due to a subtle effect of conformal radiation, whereas
the inflation compatible value of the vacuum energy is the
effect of this holonomy in the QCD-like gauge theory with
a sub-Planckian scale as explained in Sec. IV B.
We treat model 1 considered in this section as a toy

model where, one hand, one can demonstrate all the
crucial elements of the construction. On the other hand,
one can adjust parameters in a such a way that all
computations are under complete theoretical control and
the semiclassical approximation is justified. Unfortunately,
this model is not very natural as it requires very large
instanton folding number m and very large β to be
consistent with observations.
In the next section V we consider model 2, which is

naturally consistent with all presently available observa-
tions without special selection of the parameters β or m.
However, we should relax some technical requirements for
model 2 in which case the semiclassical approach is not
formally justified.

A. The effect of the radiation generating S1

The effect of the radiation related to the difference
C − B=2 in (5) is indeed quite subtle because the radiation
itself is strongly suppressed. For a high folding number
m ≫ 1 according to equation (15) it is proportional to

C −
B
2
≃ B

�
lnm
πm

�
2

ð25Þ

and very small for instanton solutions at the tip of the
triangular domain (10) withH2 ≃ 1=2B and C ≃ 1=4H2. At
the same time merely the existence of the radiation enforces
us to consider the topology S3 × S1. If one ignores the
radiation then the topology S3 × S1 reduces to S4. This
easily follows from the effective Friedmann equation (4)
with ρ ¼ 3M2

PH
2 when it is cast, by solving it with respect

to _a2, into the form

−
_a2

a2
þ 1

a2
¼ H2ðaÞ; ð26Þ

H2ðaÞ≡ 1

B

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2BH2 −

2BR
3M2

Pa
4

s !
: ð27Þ
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For R ¼ 0 it gives as a solution the Euclidean sphere,
aðτÞ ¼ sinðHτÞ=H, of the radius 1=H ¼ ð1=2H2Þ×
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2BH2

p
Þ, whereas any however small amount

of radiation would provide a bouncing of a back from
some nonzero minimal value, otherwise a ¼ 0 occurring at
the pole of S4.
But the contribution of such spherical (Hartle-

Hawking) instantons to the path integral is completely
suppressed as argued in [8,31]. Technically, this suppres-
sion occurs as a result of the conformal anomaly which
changes the sign of the negative classical action on S4

and, moreover, makes it divergent at the poles of the
4-sphere at a → 0. Thus, it is entirely due to the radiation
of conformal particles that the scale factor never shrinks
to 0, which allows one to compactify time on a circle and
get the S3 × S1 topology, which can bear a nontrivial
gauge field holonomy.

B. QCD holonomy and inflation scale

The prescription we are advocating in the present
work essentially corresponds to the identification of
the vacuum energy (19) with the energy density ρ in
the Hubble factor H2 (8) of the effective Friedmann
equation (4), i.e.,

H2 ¼ λ

T
; λ≡ c̄T Λ3

QCD

3M2
P

: ð28Þ

With the instanton period of m-folded garland (14),
which is inverse proportional to H, this immediately
gives

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2BH2

p
¼ λ

πm
: ð29Þ

This equation is always correct for any value of BH2.
However, the bootstrap self-consistency solution

always has the property that 2BH2 ¼ Oð1Þ as shown
in detail in previous papers on CFT driven cosmology.
The corresponding results are discussed at the end of this
subsection, while now we make a few comments related
to the small value of parameter BH2 ≪ 1, which can be
achieved in model 2, to be discussed in the next
section V.
If we formally take BH2 ≪ 1 in expression (29) the term

BH2 ≪ 1 can be numerically neglected in which case
λ ∼H and Eq. (19) assumes the form

ρðHÞ≡ ρvac½S3 × S1� − ρvac½R4� ≃H
c̄T Λ3

QCD

πm
; ð30Þ

which explicitly shows the linear dependence of the
vacuum energy on the Hubble constant, ρðHÞ ∼H, as
previously claimed. One can see from (20) and (24) that

the source of this linear correction to the vacuum energy
is related to the term proportional to T −1 which repre-
sents the inverse size of S1 manifold for our geometry,
and proportional to H in our framework. Needless to say,
this linear (with respect to H) correction is saturated
by the IR topological configurations with nontrivial
holonomy which cannot be expressed in terms of any
local propagating fields as explained in Appendix A.
Therefore, this term cannot be written in a conventional
gradient expansion in an effective field theory as it
represents a global rather than local characteristic of
the system.
Our next step is to make these computations self-

consistent satisfying the semiclassicality condition.
Formally, this condition is expressed as the bootstrap
equation with solution (15). The physical meaning of the
enforcement of the bootstrap equation as explained in
previous Sec. II and original papers [8–10] is that the
temperature of the system (therefore the size of S1) cannot
be an arbitrary parameter. Instead, it must be determined by
the system itself. In other words, the size of the manifold
changes as a result of accounting for the feedback to adjust
the changes of the vacuum energy. This formal enforcement
obviously implies that all dimensional parameters must be
of the order of MP as the only scale of the problem. The
deviation from the Planck scale may only occur if some
very small or very large dimensionless parameters are
present in the system. In our model 1 there are two free
parameters, β, which effectively count the number of d.o.f.,
and the instanton number m which, in principle, assumes
any value.
In this section, in model 1, we proceed with self-

consistent computations. Therefore, we enforce the semi-
classicality conditions. In this case, for large m and the
value of H determined by the bootstrap solution (15) this
equation gives the expression for the parameter λ which
is equivalent to ΛQCD, i.e.,

λ ≃
lnmffiffiffiffi
B

p ¼
ffiffiffiffiffiffiffi
8π2

p MPffiffiffi
β

p lnm; ð31Þ

ΛQCD ≃
�
6
ffiffiffi
2

p
π lnm
c̄T

�1=3 MP

β1=6
: ð32Þ

As this model is considered to be a toy model, we
can take β as a free parameter and consider β ≫ 1 such
that

ΛQCD

MP
∼

1

β1=6
≪ 1;

H
MP

≃
2π

β1=2
≪ 1: ð33Þ

The key observation we make here is that both param-
eters, H and ΛQCD, belong to the sub-Planckian scale
according to (33), which justifies the use of the semi-
classical expansion discarding a negligible contribution of
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graviton loops.6 Furthermore, there is a hierarchy of
scales which parametrically holds for large β ≫ 1,

H ≪ ΛQCD ≪ MP: ð34Þ

This hierarchy of scales once again demonstrates the self-
consistency of the computations (on the gauge side)
because the nondispersive vacuum energy (19) related
to the holonomy is only generated in the confined phase
of the gauge QCD theory at temperature below ΛQCD,
which is automatically satisfied as a result of the
hierarchy (34).
The inflation scenario in the Lorentzian domain

described in Sec. II [Eqs. (16) and (17) above] holds also
in the gauge holonomy inflation model advocated in the
present work. However the exit from inflation takes place
via a decay of H due to helical instability to be discussed
below. As mentioned above, if one attempts to match the
parameters m and β with observational numbers, one
should take extremely high values of these parameters.
Indeed, the model becomes phenomenologically compat-
ible with the CMB data within the Starobinsky R2 or Higgs
inflation theory when the scale H ∼ 10−6MP. It can be
generated by the scenario [8] with β ≃ 1013. In particular, it
matches the observable value of the spectral tilt ns ≃ 0.97
when the number of instanton folds equals (18),m ∼ 108. If
we assume that instead of the R2-mechanism or the Higgs
potential the vacuum energy is entirely due to the QCD
holonomy mechanism of the above type, then from (32) it
follows that

ΛQCD ∼ 0.05MP; H ∼ 10−6MP: ð35Þ

The necessity to have a very high value of β, which now can
only be generated by a large hidden sector of conformal
higher spin fields [19], makes this model rather speculative
even though it justifies semiclassical expansion below the
gravitational cutoff of [20,21]. Therefore we consider the
second, much more natural model without any hidden
sectors filled by a large number of conformal fields.

V. THE HOLONOMY INFLATION. MODEL 2

The starting point in this section is the same set of
equations discussed in previous sections. However, in (4)
we now ignore the higher derivative terms ∼B _a2 and ∼B _a4.

It corresponds to disregarding the higher derivative terms in
the effective action as the typical scales of the problem are
much lower than the Planck scale MP. The corresponding
set of equations has been reviewed above, but now we
consider the limit BH2 ≪ 1 and for the convenience of the
readers repeat some important formulas below.

A. Overview of gravitational instanton solution

The scale factor aðτÞ oscillates between the maximum
and minimum values a� determined as follows:

a2� ¼ 1

2H2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4CH2

p
Þ; a� ≡ aðτ�Þ;

Λ
3
≡H2:

The solution for the scale factor aðτÞ is also known,

a2ðτÞ ¼ 1

2H2
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4CH2

p
cos ð2HτÞÞ: ð36Þ

Now we implement the ideas formulated in the previous
subsection. To proceed with this task we identify the energy
(24) with the vacuum energy entering the Friedmann
equations as we discussed in the previous section, i.e.,

ρ≡ ρvac½S3 × S1� − ρvac½R4� ¼
c̄T Λ3

QCD

T
: ð37Þ

The prescription we are advocating in the present work
essentially corresponds to the identification of the vacuum
energy (37) with the cosmological constant Λ=3 entering
the equation (8), i.e.,

3M2
PH

2 ¼ ρ ¼
c̄T Λ3

QCD

T
: ð38Þ

Up to this point Eq. (38) identically coincides with our
analysis in Eqs. (19)–(28) from the previous section.

B. Relaxing the semiclassical approximation

The new element for model 2 is as follows. We relax the
bootstraplike equation and its solution (15) for this model.
Essentially we unlink a few parameters which were
previously tightly linked. In particular, the de Sitter temper-
ature being expressed in terms of the size of S1 is
unambiguously fixed by the radiation parametrized by
parameter β. This relation essentially fixes the size of S1

which is generated by the radiation and determined by the
backreaction of S1 to the corresponding radiation. The size
of S3 is also not a free parameter in the semiclassical
gravitational instanton solution. Essentially, by relaxing
these links we assume that there could be another physics
which determines the size of the gravitational instanton (or
a complicated network of strongly interacting gravitational
instantons). A self-consistent semiclassical approximation
obviously cannot be justified when some parameters enter

6Sub-Planckian scale of the model does not imply, however,
that the B-terms in (4) quadratic in curvature and generated by the
conformal anomaly can be discarded. Effective action generating
the conformal anomaly is nonlocal and strong in the infrared
which is an artifact of the conformal invariance of the matter
fields. In contrast to the quantum loops of the conformal non-
invariant graviton, loop effects of conformal matter are not
suppressed by inverse powers of the Planck mass and their
gravitational effect is treated beyond perturbation theory.
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from different physics. In Appendix A 3 we overview a
well-known example in strongly coupled gauge theory
where the holonomy (and corresponding size of the
manifold) is not fixed by hand, but rather is determined
dynamically by strong quantum fluctuations. We suspect
that a similar physics may emerge here.
In any case, for model 2 we unlink the size of S1 from the

radiation and treat it as a free parameter. To simplify our
formulas, we also assume the lowest possible instanton
number m ¼ 1 in all expressions in this section, which
should be contrasted with our studies in the previous
section analyzing model 1 where the consistent description
exists only for very large m ∼ 108. This simplification does
not modify our main results as the instanton number always
accompanies dimensional parameter ΛQCD and dimension-
less coefficient c̄T , which are not yet known and can always
be redefined.7

With these preliminary remarks, and after substituting
T ¼ π=H (which is a good approximation in the regime
CH2 ≪ 1 we are interested in, see below), Eq. (38) can be
rewritten in the following form:

3M2
PH

2 ¼
c̄T Λ3

QCD

π
H: ð39Þ

This equation is very important as it relates the Hubble
constant H for our Euclidean geometry S3 × S1 with the
vacuum energy generated by the gauge configurations with
nontrivial holonomy,

H ¼
c̄T Λ3

QCD

3πM2
P

; ρ ¼
c̄2T Λ

6

QCD

3π2M2
P
: ð40Þ

A few comments are in order. First of all, the hierarchy of
scales (33) and (34) characterizing model 1 from the
previous section still holds in the present case,

H ≪ ΛQCD ≪ MP: ð41Þ

However, in model 2 the hierarchy emerges not as a result
of extremely large parameter β ≫ 1, but rather, as a result
of new scale of the problem, ΛQCD, which is a free
dimensional parameter of the system generated by the
dimensional transmutation in classically conformal field
theory and plays the same role in QCD as ΛQCD ≃
170 MeV plays in QCD physics.

H
MP

∼
c̄T
3π

�ΛQCD

MP

�
3

≪ 1;
ΛQCD

MP
≪ 1: ð42Þ

ParameterΛQCD=MP ≪ 1 plays the same role in model 2 as

parameter β−1=6 ≪ 1 plays in model 1 as expressed by
Eq. (33). The crucial difference, however, is that we unlink
the size of S1 from the radiation by treating ΛQCD as a free
dimensional parameter which defines a new gauge theory
coined as QCD. It is assumed8 at this point that the size S1

where the holonomy is defined is determined by a different
physics as discussed in Appendix A 3.

C. Subtle effects of the radiation

Due to the hierarchy of scales mentioned in the previous
subsection, one can explicitly check that the relevant
parameter ϵ≡ 4CH2 entering Eq. (36) is very small,

ϵ≡ 4CH2 ∼
�ΛQCD

MP

�
6

≪ 1: ð43Þ

Indeed, as it follows from Eq. (36), ϵ ≤ 1 because for larger
ϵ the turning points disappear and monotonically changing
aðτÞ cannot form a periodic solution—the saddle point
of the partition function path integral. Thus in view of (5)
the amount of radiation RðηÞ is always bounded from
above—though the Universe is born not in the vacuum state
it is still essentially cold. The hottest possible Universe
corresponding to a maximal value ϵ ¼ 1 and minimal η ¼
π
ffiffiffi
2

p
has a moderate maximal value of RðηÞ ¼ Oð1Þ.

Actual smallness of ϵ assumed above follows from a
sub-Planckian value of H ≪ MP, because Eq. (5) is then
equivalent to ϵ ¼ ðβ þOð1ÞÞH2=4π2M2

P ≪ 1.
Thus one can simplify the formula (36) and present an

approximate solution for aðτÞ in the following form,

aðτÞ ≃ 1

H
j sinðHτÞj; ð44Þ

which is valid everywhere except the points close to 0’s of
sinðHτÞ. In the approximation (44) we neglected the terms
∼ϵ in accordance with (43). In particular, aðτ ¼ 0Þ is in fact

7It does not imply that the system suffers from some ambi-
guities. In fact, the coefficient c̄T can be in principle computed
from the first principles, while the observation of the tensor
fraction r would unambiguously fix the relation between H and
Λ ¯QCD; see Sec. VI with details. If both these parameters are
known, the instanton number m saturating the path integral can
also be computed.

8We make a short comment here why and how such unlink
between these two parameters may occur. In weakly coupled
semiclassical approximation in model 1 the two parameters (the
intensity of radiation characterized by the size of S1, which in its
turn depends on the anomaly parameter β in view of the bootstrap
equation) are tightly linked. In strongly coupled gauge theory as
reviewed in Appendix A 3 the holonomy and size of effective S1

is determined dynamically. This is precisely the reason why these
two parameters in strongly coupled regime are not linked. As
reviewed in Appendix A 3 it is believed that in strongly coupled
QCD the holonomy is also determined by the dynamics, the so-
called “confining holonomy” when the instanton dissociates into
N constituents. Such a phenomenon may only occur for topo-
logical configurations with nontrivial holonomy (A7). The
known dependence of the vacuum energy on θ as cosðθNÞ is an
explicit manifestation of the same nontrivial holonomy.
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∼
ffiffiffi
ϵ

p
rather than 0, and the exact solution (36) is required

for the computation of η; see (46).
Now we consider only single-folded instantons and

compute the full period of conformal time η which can
be rewritten as follows,

η ¼ 1

H

�Z
π=2

0

dϕ
aðτÞ þ

Z
π

π=2

dϕ
aðτÞ

�
; ϕ≡ 2Hτ; ð45Þ

and reduced to incomplete elliptic integral. Within the ln ϵ
accuracy it reads

η ≃
1ffiffiffi
2

p ln
1

ϵ
: ð46Þ

During this long evolution represented by conformal
Euclidean time (46) the scale factor aðτÞ makes some
drastic changes in size as one can see from the following
estimation,

aþ
a−

≃
1ffiffiffiffiffiffiffiffiffiffi
CH2

p ∼
1ffiffiffi
ϵ

p ≫ 1: ð47Þ

One should observe here that there is a qualitative differ-
ence with discussions of model 1 when the ratio (47) was
always parametrically of order 1. In the present model 2
this ratio (47) could be parametrically very large which
implies that the largest and smallest sizes in the garland
construction could have parametrically different scales.9

We conclude with the following comment. Merely the
existence of the radiation forces us to consider the topology
S3 × S1. If one ignores the radiation and the presence
of S1 then the system defined on S3 × S1 becomes defined
on S4, in which case the corresponding contribution to the
path integral is strongly suppressed as argued in [31].
Technically, this suppression occurs as a result of the
conformal anomaly which changes the sign of the classical
Euclidean action. In addition, the positive action which is
generated due to the conformal anomaly is divergent at
a → 0 for S4. This divergence leads to the infinitely strong
suppression of these vacuum S4 configurations; see [31] for
comments and details. One should also add that in model 2
the relevant S1 structure might be generated not only by
radiation but also by the quantum interactions in strongly
coupled gauge theories as argued in Appendix A 3 such that
size of the S1 is a free parameter of the model and it is

determined by the dimensional parameter ΛQCD of the

strongly coupled QCD gauge theory.

VI. HOW THE HOLONOMY INFLATION ENDS

The main goal of this section is to argue that the
holonomy inflation paradigm advocated in this work is
consistent with all presently available observations. One
should emphasize that a theory describing the end of
inflation (similar to prereheating and reheating stages in
conventional inflationary scenario) in our framework is yet
to be developed. The required technique which would
answer the relevant questions is formulated in Sec. VI B by
items 1–4. Therefore, this section should be treated as a
description of a vision and foresight for a future develop-
ment rather than a final formulation of the theory describing
the end of inflation.
We focus on three items to demonstrate the consistency

of the framework. First of all we argue that the EoS almost
identically coincides with the EoS which is normally
attributed to the cosmological constant. Secondly, we argue
that the nondispersive vacuum energy which plays the
key role in this framework is capable of transferring its
energy to the real propagating gauge fields of the SM.
Therefore, the topological inflation could end with a
successful reheating epoch. Finally, we estimate the num-
ber of e-folds Ninfl for this framework to show that it is
perfectly consistent with presently available observations.

A. Equation of state

We start with the following generic remark. Consider the
holonomy which assumes a nontrivial value along S1

directed in time direction as discussed in the previous
section. In this case the Hubble constant and the energy
density remain constant even after the nucleation from the
gravitational instanton in spite of the fact that the topology
of the manifold is not S3 × S1 anymore. Further to this
point, the system is not described by the Euclidean metric
after the nucleation, but rather assumes the conventional
Lorentzian signature.
The corresponding Hubble constantH is unambiguously

determined by the dimensional parameter ΛQCD of a
strongly coupled gauge theory as Eq. (40) states. This
solution after the nucleation corresponds to the inflationary
(almost) de Sitter behavior such that the EoS and parameter
aðtÞ assume the form

w≡ P
ρ
≃ −1; aðtÞ ∼ expðHtÞ; ð48Þ

in accordance with Eqs. (22) and (23).
The inflationary regime described by (48) would be the

final destination of our Universe if the interaction of the
QCD fields with SM particles were always switched off.
One should emphasize that the driving force for this

9Note that a large value of the ratio aþ=a− does not essentially
affect the thermal history of the inflation in the Lorentzian
spacetime modulo the determination of its original energy scale,
because the low temperature primordial radiation in Eq. (16) gets
quickly diluted during inflationary expansion and does not
contribute to the reheating at the exit from the inflationary
scenario.
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inflationary de Sitter behavior (48) in the Lorentzian space
is not a local inflaton field ΦðxÞ which is not present in our
system at all. Rather the driving force should be thought of
as a Casimir-type vacuum energy which is generated by
numerous tunneling transitions in a strongly coupled gauge
theory determined by the dimensional parameter ΛQCD.
Precisely this parameter replaces the dimensional param-
eters from inflaton potential V½ΦðxÞ� which cosmology
practitioners normally use in their studies.
When the coupling of the QCD fields with SM particles

is switched back on, the end of inflation is triggered
precisely by this interaction which itself is unambiguously
fixed by the triangle anomaly as we discuss below.

B. Anomalous coupling of the nondispersive
vacuum energy with gauge fields

Before we explain the structure of the relevant interaction
we make a few comments in order to explain the physical
nature of such unusual coupling between propagating and
nonpropagating d.o.f. First of all, we have to recall that the
physics responsible for the generating of the nondispersive
vacuum energy (dubbed as a “strange energy” in [5–7])
which eventually leads to the de Sitter behavior (48) cannot
be formulated in terms of any physical propagating d.o.f. as
discussed in great detail in Sec. III C. Instead, the gen-
eration of this energy can be explained in terms of tunneling
transitions between topologically distinct but physically
identical jki states.
The corresponding technique to describe these tunneling

transitions is normally formulated in terms of the Euclidean
path integral and the corresponding field configurations
interpolating between distinct topological sectors. In con-
ventional QFT computations the corresponding procedure
selects a specific superposition of the jki states which
generates the jθi state with energy EvacðθÞ. In the context of
inflation, when the background assumes a nontrivial
geometry (instead of R4 in the conventional case) the
corresponding computations become profoundly more
complicated, though the corresponding procedure is well
defined.
1. One should describe the relevant Euclidean configu-

rations satisfying the proper boundary conditions for a
nontrivial geometry (similar to calorons with nontrivial
holonomy, reviewed in Appendix A 2).
2. One should compute the corresponding path integral

which includes all possible positions and orientations of the
relevant gauge configurations.
3. The corresponding computations for the vacuum

energy ρ and pressure P must be done with all fields
which couple to QCD gauge theory. Precisely this coupling
is responsible for transferring the vacuum energy to SM
particles.
4. As the last step, one should subtract the corresponding

expression computed on R4 as explained in Sec. III B.
Precisely this remaining part of the vacuum energy is

interpreted as the relevant energy which enters the
Friedmann equation, and which cannot be removed by
any subtraction procedure and cannot be renormalized by
any UV counterterms. The corresponding formulas for ρ, P
depend, in general, on properties of the manifold and
relevant coupling constants.
While these steps are well defined in principle, it is

not feasible to perform the corresponding computations
because even the first step in this direction, a finding of the
relevant Euclidean configurations satisfying the proper
boundary conditions for a nontrivial geometry, is yet
unknown. Nevertheless, this procedure, in principle, shows
that the de Sitter behavior (48) in this framework emerges
without any local inflaton field ΦðxÞ as explained in
previous Sec. VI A because the physical force driving
the inflation has a completely different nature in this
proposal.
Fortunately, the key ingredients which are relevant for

our future studies can be understood in an alternative way,
in terms of the auxiliary topological nonpropagating
fields bðx;HÞ which effectively describe the relevant IR
physics representing the key elements of steps 1–4 high-
lighted above.
The corresponding formal technique is widely used in

particle physics and CM communities. For the convenience
of the readers we provide (within our cosmological context)
the main ideas and results of this approach in Appendix B.
In particular, this approach is extremely useful in the
description of the topologically ordered phases when the
IR physics is formulated in terms of the topological Chern-
Simons (CS)-like Lagrangian. One should emphasize that
the corresponding physics, such as the calculation of the
braiding phases between quasiparticles, computation of the
degeneracy etc., can be computed (and in fact originally
was computed) without Chern-Simons Lagrangian and
without auxiliary fields. Nevertheless, the discussion of
the IR physics in terms of CS-like effective action proves to
be very useful, beautiful and beneficial. In our case,
unfortunately, we cannot proceed with explicit computa-
tions along the lines of 1–4 as explained above. Therefore,
the alternative technique in terms of the auxiliary topo-
logical nonpropagating fields is the only remaining option
in our case.
We refer to Appendix B where we overview the

corresponding technique in the context of the inflationary
cosmology. We also explain there the physical meaning of
these auxiliary field bðx;HÞ which should be thought of
as the source of the topological fluctuations, similar to the
axion field; see below. Precisely this auxiliary nonpropa-
gating field eventually generates the nondispersive energy
(37) and consequently leads to the de Sitter behavior (48).
This auxiliary field bðx;HÞ effectively describes (through
the correlation functions) the modification of the tunneling
rates between topological jki sectors as a result of external
background field parametrized by H. In other words, a
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profoundly complicated procedure of summation over
all topological configurations interpolating between jki-
sectors in the background parametrized by H as outlined
above (steps 1–4) can be expressed in terms of the auxiliary
field bðx;HÞ which, of course, remains the nonpropagating
auxiliary field in background H.
The only information which is required for future

analysis is that the relevant auxiliary field bðx;HÞ, satu-
rating the nondispersive vacuum energy (37), couples to the
SM particles precisely in the same way as the θ parameter
couples to the gauge fields. This claim is explained in
Appendix B and is based on analysis of the exact
anomalous Ward identities. In many respects the coupling
of the bðx;HÞ field to the gauge fields is unambiguously
determined similar to unique coupling of the η0 field to the
gluons, photons and gauge bosons.
As a consequence of this fundamental feature the

topological auxiliary bðx;HÞ field is in fact an angular
topological variable and it has the same 2π periodic
properties as the original θ parameter. As it is known
the θ parameter can be promoted to the dynamical axion
field θðxÞ by addicting the canonical kinetic term ½∂μθðxÞ�2
to the effective Lagrangian. The difference of the bðx;HÞ
field with the dynamical axion θðxÞ field is that the
auxiliary topological field bðx;HÞ does not have a conven-
tional axion kinetic term.
For simplicity we also assume that QCD has a single

flavor Nf ¼ 1 quark which couples to the non-Abelian
QCD gauge gluons as well as to the E&W gauge fields,
similar to conventional QCD quarks. This is precisely
the coupling which provides the interaction between the
(conjectured) high-energy QCD and the low-energy E&W
gauge fields. It is natural to assume that the mass of the
corresponding η̄0 is of order mη̄0 ∼ ΛQCD, similar to the
QCD case. Therefore, this heavy d.o.f. can be safely
ignored in what follows. In other words, the desired
coupling of bðx;HÞ auxiliary field with E&W gauge field
is [5]

LbγγðxÞ ¼
αðHÞ
8π

NQ2½θ − bðx;HÞ� · FμνF̃μνðxÞ; ð49Þ

where αðHÞ is the fine-structure constant measured during
the period of inflation, Q is the electric charge of a QCD
quark, N is the number of colors of the strongly coupled
QCD, and Fμν is the usual electromagnetic field strength.
As we already mentioned, the coupling (49) is unambig-
uously fixed because the auxiliary bðxÞ field always
accompanies the so-called θ parameter in the specific
combination ½θ − bðx;HÞ� as explained in Appendix B,
and describes the anomalous interaction of the topological
auxiliary bðx;HÞ field withE&W photons. In formula (49)
we also ignored the heavy η̄0 field which couples in the
same way as auxiliary bðx;HÞ field, i.e., ½θ − η̄0 − bðx;HÞ�.
However, η̄0 field is very heavy as explained above, in

contrast with auxiliary field which generates a topologi-
cally protected pole as explained in Appendix B.
The coupling of the bðx;HÞ with other E&W gauge

bosons can be unambiguously reconstructed as explained
in [5], but we keep a single E&W field Fμν to simplify
the notations and emphasize the crucial elements of the
dynamics, related to the helical instability which triggers
the end of inflation; see next Sec. VI C.
Based on coupling (49) we present our numerical

estimates for number Ninfl of e-folding in Sec. VI D.
Finally, in Sec. VI E we interpret the obtained results
and give an intuitive explanation of why and how the
nondynamical auxiliary field bðx;HÞ can, nevertheless,
produce the real physical propagating d.o.f. in a time-
dependent background parametrized by H.

C. The helical instability and the end of inflation

It has been known for quite some time that the structure
of the interaction (49) in many respects has a unique and
mathematically beautiful structure with a large number of
very interesting features. The most profound property
which is crucial for our present analysis of the inflationary
Universe is the observation that the topological term (49)
along with the conventional Maxwell term F2

μν leads to an
instability with respect to photon production if _bðx;HÞ
does not vanish. This is the so-called helical instability and
has been studied in condensed matter literature [32] as well
as in particle physics literature including some cosmologi-
cal applications [33].
In the context of our studies, the closest system where the

helical instability develops is the system of heavy ion
collisions [34] wherein h _bðx;HÞi can be identified10 with
the so-called axial chemical potential μ5. One can explicitly
demonstrate that the interaction (49) leads to the exponen-
tial growth of the low-energy modes with

k ≤
αðHÞμ5

π
; μ5 ≡ h _bðx;HÞi: ð50Þ

The growth (50) signals that the instability of the system
with respect to production of the real photons develops
[34]. It is also known that the fate of this instability is to
reduce the axial chemical potential μ5 which was the source
of this instability. In the inflationary context the corre-
sponding instability reduces H which plays the role of μ5;
see discussions below. One should also comment here that
parameter μ5 in heavy ion collisions is also not a dynamical
field, but rather is an auxiliary fluctuating field which

10The simplest way to demonstrate the correctness of this
identification is to perform the path integral Uð1ÞA chiral time-
dependent transformation to rotate away the coupling (49). The
corresponding interaction reappears in the form of a nonvanishing
axial chemical potential μ5; see Appendix B of Ref. [5] with
details and references.
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accounts for the dynamics of the topological sectors in
QCD, similar to our case when h _bðx;HÞi describes the
dynamics of the topological sectors in QCD.
This short detour into the nature of helical instability as a

result of interaction (49) has direct relevance to our studies
because the auxiliary field bðx;HÞ entering Eq. (49)
exhibits all the features of parameter μ5 which was the
crucial element in the analysis of the helical instability in
heavy ion collisions. Indeed, both these auxiliary fields
originated from the same physics and they both describe the
dynamics of the topological sectors in strongly coupled
gauge theories.
In terms of physics these nonpropagating fields effec-

tively account for the long range variation of the tunneling
processes as a result of some external influence of the
backgrounds expressed in terms of H for inflation and in
terms of μ5 for heavy ion collisions respectively; see some
additional comments on this analogy in Appendix B
of Ref. [5].
The net result of the interaction (49) and instability (50)

is that the holonomy inflation in this framework inevitably
ends by transferring the nondispersive vacuum energy
proportional to H as Eq. (30) states into the real propa-
gating gauge fields. One can interpret this energy transfer
as a backreaction to the auxiliary field bðx;HÞ as a result of
adjustment of the system due to the interaction (49). How
can this backreaction effect be in principle computed? The
corresponding computations based on the first principles as
listed in Sec. VI B by items 1–4 are not presently feasible as
we already mentioned. Effective description in terms of the
dynamics of the auxiliary field bðx;HÞ can be, in principle,
carried out along the lines mentioned at the very end
of Appendix B.
One may also wonder if the entire vacuum energy will be

transferred to the radiation in the form of the SM gauge
field, which is the key element for successful graceful exit
from inflation. Our comment here is that the transfer of the
vacuum energy in this framework is a continuous process,
rather than a one-time event. This is obviously the same
backreaction effect which is mentioned in the previous
paragraph: the radiation decreases the magnitude of the
vacuum energy. This process continues as long as the
vacuum energy still remains a source of the radiation. This
process lasts as long as h _bðx;HÞi ≠ 0.
The physical picture of this energy transfer is as

follows.11 Nonvanishing value for h _bðx;HÞi ≠ 0 leads to
the particle production. This radiation of particles obvi-
ously decreases the value of h _bðx;HÞi (and the correspond-
ing vacuum energy) as the source of this radiation. In terms
of real physical processes this energy transfer corresponds

to the modification of the tunneling transition rate with
emission of the real particles in a nontrivial background
which also varies. The radiation continues as long as the
background deviates from the flat Minkowski spacetime.
The technical description of this energy transfer cannot

be carried out in a conventional way, let us say, in terms of
physical propagating d.o.f. For example, we cannot model
these radiation processes by adding a kinetic term to
bðx;HÞ field because the corresponding anomalous
Ward identities cannot be satisfied with physical propa-
gating d.o.f. as explained in Appendix B. We think that the
holographic description mentioned in Appendix B offers a
possible framework which potentially can accommodate
the dynamics of the auxiliary bðx;HÞ field, strange features
of the nondispersive vacuum energy and backreaction
effects due to the coupling with the SM fields (49). At
the present time we do not know yet how to formulate a
proper computational framework to answer this question.
To conclude this subsection we comment that the energy

transfer between nondynamical auxiliary fields and propa-
gating dynamical fields can, in principle, be tested in a
tabletop experiment based on the Maxwell system. We
explain the relevant physics and also offer a possible design
for a tabletop experiment in Sec. VI E where such an
unusual effect can, in principle, be experimentally tested in
simplified settings.

D. Estimates for the e-folds

The number of e-folds in the holonomy inflation is
determined by the time τinst when the helical instability
fully develops, which explains our subscript τinst. This is
exactly the time scale where a large portion of the energy
density ρ from Eq. (30) which eventually generates the
Hubble constant H according to (40) is transferred to SM
light fields. The corresponding time scale for the heavy ion
system is known [34] and it is given by τ−1inst ∼ μ5α

2. For our
system μ5 should be interpreted as h _bðx;HÞi ∼H, as the
only relevant scale of the problem; see also a few additional
arguments in Appendix B supporting this estimate. At the
moment τinst the de Sitter growth (48) cannot be maintained
anymore as the source of this behavior ∼H is completely
exhausted due to the transferring of its energy to the gauge
fields of the SM.
Therefore we arrive at the following order of magnitude

estimate for the number of e-foldsNinfl in QCD inflationary
paradigm,

τ−1inst ∼Hα2ðHÞ; ⇒ Ninfl ∼
1

α2ðHÞ ∼ 102; ð51Þ

where the number of e-folds NInf is, by definition, the
coefficient in front of H−1 in the expression for the time
scale τinst. At this moment the energy density ρ from
Eq. (30) ceases to exist as the dominant portion of the
energy of the system.

11The intuitive picture presented below is based on our
understanding of the fate of the helical instability in heavy ion
collisions leading to reduction in the axial chemical potential μ5
which itself is the source of this instability.
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The key element of this holonomy inflationary scenario
is that the number of e-folds Ninfl when the de Sitter
behavior (48) ends is determined in this framework by the
gauge coupling constant αðHÞ rather than by dynamics of
ad hoc inflaton field Φ governed by some ad hoc infla-
tionary potential VðΦÞ.
In Sec. VI E we explain the concept of mechanism of the

energy transfer at the end of inflation. It is very different
from conventional mechanism when propagating inflaton
Φ couples with physical particles and transfers the energy.
In Sec. VI F we compare our framework with the conven-
tional inflationary scenario to show some similarities and
differences between the two approaches.

E. Interpretation

In this subsection we explain a fundamentally new type
of particle production which is the key element in all our
discussions in this section related to the question how the
inflation ends in this framework due to the coupling (49) of
the auxiliary field with real physical gauge fields from
the SM.
The main point is that the driving force for inflation in

this framework is the nondispersive vacuum energy which
generates the EoS given by (48). Without anomalous
coupling (49) it would be the final destination of the
Universe. How does this coupling produce the particles?
The main point is that the topological fluctuations with the
typical scale ∼ΛQCD which saturate the vacuum energy are
slightly different in the presence of background with scale
∼H ≪ ΛQCD. This time-dependent background generates
the particle production with the rate ∼H which is precisely
the reason why inflation eventually ends in this framework
on the time scale (51).
We test this mechanism of the particle production from

nondispersive vacuum energy using the Maxwell theory as
a playground. The corresponding Maxwell system can, in
principle, be designed and fabricated with existing tech-
nology; see the relevant references in concluding Sec. VII
C. Therefore, in principle, this novel phenomenon can be
tested in a tabletop experiment in a lab.
The basic idea is that there is a new contribution to the

Casimir pressure which emerges as a result of tunneling
processes when the Maxwell system is formulated on a
nontrivial manifold permitting the E&M configurations
with nontrivial topology π1½Uð1Þ� ¼ Z. Precisely these
tunneling transitions between physically identical but
topologically distinct states play the same role in the
Maxwell system as the topologically nontrivial configura-
tions in QCD. The corresponding extra energy generated
due to these transitions is the direct analog of the non-
dispersive contribution to the energy which is the key
player of the present work as it explicitly enters (30), (28),
and (38) in previous sections. This nondispersive energy in
the Maxwell system is similar to our studies of the non-
Abelian gauge theories reviewed in Appendix A; this extra

energy also cannot be formulated in terms of conventional
propagating photons with two transverse polarizations.
If the same system is considered in the background of a

small external time-dependent field, then real physical
particles are emitted from the vacuum, similar to the
dynamical Casimir effect (DCE) when photons are radiated
from the vacuum due to time-dependent boundary con-
ditions. Essentially, the reheating epoch as advocated in this
section when the vacuum energy can radiate real particles
in a time-dependent background is analogous to the DCE.
The difference is that in conventional DCE the virtual
particles from vacuum become real propagating particles in
a time-dependent background and get emitted. In our case
the E&M configurations which describe the interpolations
between different topological sectors get excited in time-
dependent background and emit real particles; see con-
cluding Sec. VII C for references and details.
We hope this intuitive explanation provides the basic

conceptual picture on how the particles can be produced
from the vacuum, which represents the key element of the
graceful exit from inflation.

F. Relation to the conventional inflationary scenario

The goal of this section is to collect a number of
comments made in different places in this work related
to the (possible) connection between our framework and
conventional description in terms of a scalar inflation ΦðxÞ
governed by a potential V½Φ�. For obvious reasons this
is not a one-to-one correspondence between drastically
different descriptions. Nevertheless, these comments, hope-
fully, may generate some thoughts about the source of
the vacuum energy in nature, and find a proper technical
framework to describe it.
We start with a few generic remarks. The topological

inflationary mechanism as formulated in this proposal is
fundamentally nonlocal in nature and cannot be modeled
by any local effective inflationary potential VðΦÞ.
Furthermore, this mechanism is fundamentally “nondis-
persive” in nature and cannot be described in terms of any
propagating physical d.o.f. such as inflaton ΦðxÞ with
canonical kinetic term ð∂μΦðxÞÞ2. Further to this point, we
introduced the topological auxiliary fields aðx;HÞ and
bðx;HÞ in Appendix B to describe the physics in terms
of effective long range fields which, in principle, should
describe the relevant IR physics. These fields are not
propagating, in contrast with the inflaton ΦðxÞ field. The
physical meaning of these fields as explained in
Appendix B is as follows: the □aðx;HÞ describes the
distribution of the topological density in the system, while
bðx;HÞ acts as the axion field (without kinetic term) being
the source of the topological density distribution.
These obvious differences between drastically different

frameworks must obviously lead to distinct observational
results. In particular, the conventional computations of
the cosmological perturbations are based on treating the
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inflaton ΦðxÞ as the conventional scalar field with canoni-
cal kinetic term ð∂μΦðxÞÞ2. The corresponding results can
be expressed in terms of the vacuum energy ρ and pressure
P as it is formulated in [3]. However, mere existence of a
local inflaton field ΦðxÞ has been assumed in computations
in [3], while the final results are presented in terms of
energy-momentum tensor. Computations in our framework
require a different technique, which is not yet developed as
explained at the very beginning of this Sec. VI. Therefore, it
is natural to expect that the outcome would be different
even when the final results are expressed in terms of the
energy-momentum tensor’s parameters ρ and P. However,
as the corresponding technical tools are not yet developed,
it is very hard to quantify the corresponding differences.
In what follows we make a few comments on some

similarities between these two distinct approaches. In
particular, we identify (on an intuitive level) the topological
auxiliary fields aðx;HÞ and bðx;HÞ with the inflaton ΦðxÞ
field in a sense that both fields eventually generate the de
Sitter behavior, and both approaches lead to the inflationary
EoS (48). The fundamental difference between the two is
that the inflaton ΦðtÞ satisfies the classical equation of
motion and depends on time t, while aðx;HÞ and bðx;HÞ
are truly quantum objects, such that all observables in
principle must be expressed exclusively in terms of the
correlation functions and expectation values when the time
dependence enters the physics exclusively in terms of the
Hubble parameter H.
Still, there are some hints which apparently suggest that

some links between the two approaches may exist.
Indeed, let us introduce a few important parameters

which are normally used in conventional inflationary
analysis and compare them with our description. For this
purpose we introduce conventional slow-roll parameters;
see e.g., [35]

ϵ ¼ M2
P

2

�
Vϕ

V

�
2

; Vϕ ≡ ∂V½ϕ�
∂ϕ : ð52Þ

For example, the computation of the number of
e-foldings in conventional slow-roll approximation and
estimates (51) in the holonomy inflationary scenario both
produce numerically large magnitudes. In the conventional
approach one can use the following relation [35]:

Ninfl ≃
1

M2
P

Z
ϕ

ϕend

dϕ

�
V
Vϕ

�
: ð53Þ

The large numerical value for Ninfl ≫ 1 in the conventional
approach is due to the specific choice of the potential (52)
when the integrand entering (53) is parametrically large
and proportional to ϵ−1. It should be compared with the
holonomy inflationary scenario when Ninfl ≫ 1 is para-
metrically large due to the enhancement factor α−2 as
estimate (51) suggests.

We conclude this section with a few generic comments.
First of all, while we identify (on the intuitive level) the
auxiliary topological fields with inflaton, the aðx;HÞ and
bðx;HÞ fields remain to be quantum (not classical) fluc-
tuating fields, saturating the relevant correlation functions.
We observed above that there are a number of instances
when the holonomy inflationary scenario behaves very
much in the same way as the conventional description
represented by formulas (52) and (53) discussed above. Is it
a coincidence or is there a deeper reason for these relations?
We formulate the same question in a different way: Is it

possible to make any connection between conventional
description in terms of auxiliary aðx;HÞ and bðx;HÞ fields
and local inflaton ΦðxÞ field which satisfies the classical
equation of motion determined by the potential V½Φ�? We
do not know how to do it. The main obstacle to make such a
connection is related to the fact that the auxiliary topo-
logical fields, by construction (reviewed in Appendix B),
saturate the topological susceptibility (and the correspond-
ing vacuum energy) with the positive sign according to
(A3) and (A5), generating the topologically protected pole
(A4), while any conventional d.o.f. (including dynamical
propagating inflaton) can only produce a negative sign
according to (A2).
One possible path to overcome this obstacle is to define

the auxiliary fields12 using the holographic description
along the lines suggested in [36]. In this case the axion
field which is represented by our auxiliary field bðx;HÞ
becomes the dynamical propagating field in the bulk of
multidimensional space but acts as a conventional (non-
dynamical) term on the boundary (representing our space-
time). This feature is precisely what is required for our
auxiliary field bðx;HÞ defined on physical spacetime.

VII. CONCLUDING COMMENTS

We conclude this work with formulation of our basic
results in Sec. VII A. We next formulate the profound
consequences of our framework in Sec. VII B. To convince
the readers that we study a real physical effect, we suggest
testing this new nondispersive type of vacuum energy in a
laboratory using the physical Maxwell system as high-
lighted in Sec. VII C. Finally, we make a few comments on
the relation of our approach with no-boundary and tunnel-
ing proposals in Sec. VII D.

A. Basic results

The heart of the proposal suggested in the present work
is a synthesis of two, naively unrelated, ideas.

12We recall the physical meaning of the auxiliary fields: the
□aðx;HÞ describes the distribution of the topological density in
the system, while bðx;HÞ acts as the axion field (without kinetic
term) being the source of the topological density distribution.
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The first idea represents the self-consistent treatment of
the problem formulated on the Euclidean S3 × S1 manifold
through the bootstrap equation [8–10].
The second novel idea [5–7] is a proposal to treat the

vacuum energy entering the Friedmann equation as a
nondispersive vacuum energy which is always generated
in non-Abelian gauge theories as a result of tunneling
transitions between topologically nontrivial sectors in a
system. This type of energy is very unusual in many
respects. First of all, it is nonanalytical in coupling constant
∼ expð−1=g2Þ and cannot be seen in perturbation theory as
reviewed in Appendix III C. Secondly, this vacuum energy
is nonlocal in nature as it cannot be expressed in terms of
any local operators in a gradient expansion in any effective
field theory. Rather, it can be expressed in terms of the
nonlocal holonomy, similar to Aharonov-Casher effect as
mentioned in Sec. III.
We coin the marriage of these two sets of ideas as the

holonomy inflation which has a number of very attractive
and desirable features. First of all, there is the hierarchy of
scales for both models given by Eqs. (34) and (41)
correspondingly which indicates that the distances smaller
than Planck scale M−1

P never appear in our framework.
Secondly, the equation of state (48) assumes its de Sitter
behavior as a result of nucleation as Fig. 2 shows. Thirdly,
the number of e-folds Ninfl is naturally determined by the
gauge coupling constant αðHÞ as Eq. (51) suggests.

B. Implications and future development

There are a few important and generic consequences of
this framework.
1. The conventional scenarios of the eternal self-

producing inflationary universes are always formulated
in terms of a physical scalar dynamical inflaton field
ΦðxÞ. This problem with self-reproduction of the
Universe does not even emerge in our framework as there
are no any fundamental scalar dynamical fields in the
system responsible for inflation. Instead, the de Sitter
behavior in our framework is a pure quantum phenomenon,
which is a consequence of the dynamics of the long ranged
topological configurations with nontrivial holonomy, rather
than a result of a physical fluctuating dynamical field. This
type of energy manifests itself in terms of the “wrong” sign
in the correlation function which cannot be formulated in
terms of any local propagating d.o.f. as explained in
Appendix A 1. Therefore, the problem with eternal infla-
tion does not even occur in our framework.
2. There are many other problems in conventional

formulation of the inflation in terms of scalar inflaton field
ΦðxÞ. For example, the initial value Φin ≫ MPL for the
inflaton is normally very large. This problem does not
occur in our holonomy inflation scenario as the hierarchy of
scales (34) always holds in our framework.
3. We should also mention that the energy described by a

formula similar to Eqs. (19) and (30), which eventually

leads to the de Sitter behavior (36), has been previously
postulated [37–39] as the driving force for the dark energy
(admittedly, without much deep theoretical understanding
behind the formula at that time). The model has been
(successfully) confronted with observations13; see recent
review papers [40,41], and many original references
therein, where it has been claimed that this proposal is
consistent with all presently available data.
Our comment here is that history of evolution of the

Universe may repeat itself by realizing the de Sitter
behavior twice in its history. The QCD-dynamics was
responsible for the holonomy inflation considered in
present work, while the QCD dynamics is responsible
for the dark energy in the present epoch. In this case the
dark energy (DE) density is given by an expression similar
to (30); i.e., ρDE ∼HΛ3

QCD ∼ ð10−3 eVÞ4 is amazingly
close to the observed value without any fine-tunings or
adjustments of the parameters.
4. One should also mention that some recent lattice

simulations [42] implicitly support our results. Indeed,
the author of Ref. [42] studied the rate of particle
production in the de Sitter background. The rate turns
out to be linearly proportional to the Hubble constant
∼H, rather than naively expected H2. It is fully consistent
with our proposal.14 We hope that some further lattice
computations in time-dependent background can further
elucidate the role of holonomy in generating the vacuum
energy.
5. Finally, we make a comment about possible future

development. As we already mentioned at the beginning
of Sec. VI the relevant technique describing the end
of inflation in our framework (including computations
of the cosmological perturbations) is yet to be developed.
We already mentioned in the text a number of technical
challenging problems which need to be resolved, and do
not repeat them here in the conclusion.

13We note that the structure of the relevant vacuum energy
which enters the Friedman equations (19) and (30) is deter-
mined by the size of S1 and behaves in all respects as the
cosmological constant. Therefore, it is obviously consistent
with presently available data as it does not modify the equation
of state as explained in Appendix III C.

14Indeed, the rate of the particle production in quantum field
theory in general is determined by the imaginary part of the stress
tensor, Im½Tν

μ�, while the vacuum energy is related to the real part
of the stress tensor, Re½Tν

μ�. Analyticity suggests that both
components must have the same corrections on H at small H.
Therefore, the lattice measurements [42] of the linear dependence
on H of the particle production strongly suggest that the vacuum
energy (which is determined by the real part of the same stress
tensor) must also exhibit the same linear ∼H correction. The
corresponding lattice computations of the θ-dependent portion
of the vacuum energy and topological susceptibility in time-
dependent background are possible, in principle, but are techni-
cally much more involved than the analysis performed in
Ref. [42].
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C. Possible tests of the cosmological ideas in a lab?

Our comment here is that we cannot experimentally test
the first element of the proposal advocated in [8–10] in any
simplified settings. However, we can test the second
element of this proposal advocated in [5–7] in tabletop
experiments. This subsection should convince the readers
that we are dealing with new physical phenomena which
can be realized in cosmology (which is the subject of the
present work) as well as in the MaxwellUð1Þ gauge theory.
The basic idea goes as follows. The fundamentally new

type of energy advocated in the present work can, in
principle, be studied in a tabletop experiment by measuring
some specific corrections to the Casimir vacuum energy in
the Maxwell theory as suggested in [43–47]. This funda-
mentally new contribution to the Casimir pressure emerges
as a result of tunneling processes, rather than due to the
conventional fluctuations of the propagating photons with
two physical transverse polarizations. Therefore, it was
coined as the topological casimir effect. The extra energy
computed in [43–47] is the direct analog of the QCD
nondispersive vacuum energy (A10) and (24) which is the
key player of the present work as it explicitly enters (37),
(28), and (38) in the main text. In fact, an extra contribution
to the Casimir pressure emerges in this system as a result
of nontrivial holonomy similar to (A6) for the Maxwell
field. The nontrivial holonomy in the E&M system is
enforced by the nontrivial boundary conditions imposed in
Refs. [43–47], and related to the nontrivial mapping
π1½Uð1Þ� ¼ Z relevant for the Maxwell Abelian gauge
theory. Furthermore, the reheating epoch when the physical
particles can be emitted from the vacuum in a time-
dependent background, similar to the dynamical Casimir
effect, can also be tested in the Maxwell system as argued
in [46].
A similar new type of energy can, in principle, also be

studied in the superfluid He-II system which also shows a
number of striking similarities with non-Abelian QCD as
argued in [48]. For the superfluid He-II system the crucial
role is played by the vortices which are classified by
π1½Uð1Þ� ¼ Z similar to the Abelian quantum fluxes
studied in the Maxwell system in [43–47].

D. Cosmological density matrix vs no-boundary
and tunneling states

We conclude this section with a few comments on status
of the density matrix initial conditions in cosmology
(which is the key element of the present work) as compared
to the well-known no-boundary [11] and tunneling [49–51]
proposals for the wave function of the Universe.
As is known, observer independent treatment of the no-

boundary state leads to an insufficient amount of inflation.
Phenomenologically, the volume weighting [52,53] or
top-down approach [54] to the no-boundary state seems
to resolve this issue but remains with the problem of

consistency of complex tunneling geometries and normal-
izability of the quantum ensemble in cosmology.
On the other hand, the tunneling state has a rather

uncertain ground based on the hyperbolic rather than
Schroedinger nature of the Wheeler-DeWitt equation.
No-boundary wave function within the Euclidean path
integral construction represents a special quasivacuum
state. The tunneling state within the approach of path
integration over Lorentzian geometries leads to nonnorma-
lizable wave function with unstable quantum matter and
gravity perturbations. This fact has been known since [50],
long before the recent works [55–57] which extended this
criticism also to the no-boundary wave function.
Diversity of the definitions of the no-boundary and

tunneling states (defined either as propagators or solutions
of the homogeneous Wheeler-DeWitt equation either in
Euclidean or Lorentzian spacetime) as discussed in [55–57]
actually indicates that neither of these states has a rigorous
canonical quantization ground. However, the critical ver-
dict of [55–57] invalidating both the no-boundary and
tunneling states, though it requires deeper consideration,
does not actually achieve its goal. This is because what is
actually required is not the construction of the wave
function itself, but rather scattering amplitudes, mean
values and probabilities generated by it. The step from
the wave function (or the density matrix) to these quantities
is very nontrivial and requires additional integration over
the end points of the path integral histories. This integration
can also run along the complex contours of the steepest
decent approximation; it can bear UV divergences and
might lead to the effects invalidating the main conclusions
of [55–57].15
This is exactly what is done in the microcanonical

density matrix setup of [8–10]—we do not calculate the
density matrix itself, but directly go over to its partition
function dominated by the real valued periodic history in
Euclidean spacetime. The starting point is the microca-
nonical density matrix of a spatially closed cosmology,
which is defined as a projector on the space of solutions of
the Wheeler-DeWitt equations—quantum Dirac constraints
of the canonical quantization of gravity in physical
Lorentzian spacetime [10]. The periodicity of the relevant
saddle-point histories directly follows from the tracing
procedure for the normalization of the density matrix
(see Fig. 1), and their Euclideanization is the corollary
of the fact that periodic solutions exist only in the
imaginary (Euclidean) time, which is equivalent to the
integration over the complex contour of the lapse ADM
function [10].
Thus, our approach differs from the methods of [11,49]

and [55–57] in two major points—first, the microcanonical

15This extra integration requires the selection of saddle points
in the complex plane via the technique similar to that of [55–57]
which can unpredictably alter the results of this work.
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density matrix prescription for the initial state of the
Universe rather than the pure state wave function and,
secondly, the calculation of the physical quantity—
partition function—rather than the wave function or the
density matrix. Conceptual rigidity of this construction
avoids ambiguities of the approach of [11,49,55–57]
and unambiguously leads to S1-compatification of the
Euclidean time bearing the holonomy of the gauge
field—the corner stone of the strongly coupled nonpertur-
bative QCD-like theory and its effect of generating the
vacuum energy.
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APPENDIX A: THE NATURE OF THE
NONDISPERSIVE VACUUM ENERGY

The main goal of this Appendix is to review a number of
crucial elements relevant for our studies of the nondisper-
sive vacuum energy and its cosmological significance.
First, we start in Sec. A 1 with explanation of a highly
nontrivial nature of this type of the vacuum energy in the
Euclidean spacetime.
This type of the vacuum energy is well known to the

QCD practitioners, while it is much less known in the
general relativity and cosmology communities. We think
this ignorance can be explained by the fact that this unusual
type of the vacuum energy cannot be formulated in terms of
conventional local propagating d.o.f. Precisely such a local
formulation is a conventional framework for the cosmology
community when the inflation or the dark energy is
described in terms of a scalar field, such as inflaton
ΦðxÞ with specifically adjusted local potential V½Φ�. On
the other hand, this unusual type of energy has been known
to the QCD community for quite some time. Furthermore,
this unusual nondispersive nature of the vacuum energy has
been supported by numerous lattice simulations; see A 1
with references and details.
We continue in Sec. A 2 by clarifying the crucial role

of the holonomy (A6) in generating such a type of energy.
We review a few known analytical calculations of this
type of energy by emphasizing the role of the nonlocal
holonomy (computed along S1) which generates this

unusual energy. The S1 in these computations represents
an important portion of a larger Euclidean four-dimensional
manifold S3 × S1, which has been extensively employed in
the main text of this work; see Secs. IV and V.
In Sec. A 3 we make a few historical remarks on

fractionally charged topological objects as they are inti-
mately related to nontrivial holonomy defined on S1.

1. The topological susceptibility and contact
term in flat spacetime

We start our short overview on the nondispersive nature
of the vacuum energy by reviewing a naively unrelated
topic—the formulation and resolution of the so-called
Uð1ÞA problem in strongly coupled QCD [58–60]. We
introduce the topological susceptibility χ which is ulti-
mately related to the vacuum energy Evacðθ ¼ 0Þ as
follows,16

χ ¼ ∂2EvacðθÞ
∂θ2

����
θ¼0

¼ lim
k→0

Z
d4xeikxhTfqðxÞ; qð0Þgi;

ðA1Þ
where θ parameter enters the Lagrangian along with
topological density operator qðxÞ ¼ 1

16π2
tr½FμνF̃μν� and

EvacðθÞ is the vacuum energy density computed for the
Euclidean infinitely large flat spacetime. This θ-dependent
portion of the vacuum energy (computed at θ ¼ 0) has a
number of unusual properties as we review below. The
corresponding properties are easier to explain in terms of
the correlation function (A1), rather than in terms of the
vacuum energy Evacðθ ¼ 0Þ itself. The relation between the
two is given by Eq. (A1).
A few comments are in order. First of all, the topological

susceptibility χ does not vanish in spite of the fact that
qðxÞ ¼ ∂μKμðxÞ is total derivative. This feature is very
different from any conventional correlation functions
which normally must vanish at zero momentum limk→0

if the corresponding operator can be represented as total
divergence.
Secondly, any physical jni state gives a negative con-

tribution to this diagonal correlation function,

χdispersive ∼ lim
k→0

Z
d4xeikxhTfqðxÞ; qð0Þgi

∼ lim
k→0

X
n

h0jqjnihnjqj0i
−k2 −m2

n
≃ −

X
n

jcnj2
m2

n
≤ 0; ðA2Þ

where mn is the mass of a physical jni state, k → 0 is its
momentum, and h0jqjni ¼ cn is its coupling to topological
density operator qðxÞ. At the same time the resolution of the
Uð1ÞA problem requires a positive sign for the topological

16We use the Euclidean notations where path integral compu-
tations are normally performed.
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susceptibility (A1); see the original reference [60] for a
thorough discussion,

χnondispersive ¼ lim
k→0

Z
d4xeikxhTfqðxÞ; qð0Þgi > 0. ðA3Þ

Therefore, there must be a contact contribution to χ, which
is not related to any propagating physical d.o.f., and it must
have the wrong sign. The wrong sign in this paper implies a
sign which is opposite to any contributions related to the
physical propagating d.o.f. (A2). The corresponding vac-
uum energy associated with nondispersive contribution to
the topological susceptibility χ as defined by (A1) can be
coined as nondispersive vacuum energy Evacðθ ¼ 0Þ. It is
quite obvious that the nature of this energy is drastically
different from any types of conventional energy because it
cannot be formulated in terms of any conventional propa-
gating d.o.f. according to (A2) and (A3). In the cosmo-
logical context relevant for the present work this type of
energy in Refs. [5–7] was dubbed as the strange energy,
while a scientific name would be the nondispersive vacuum
energy Evacðθ ¼ 0Þ generated by the contact term in the
correlation function (A3). It should be contrasted with the
“dispersive” energy which, by definition, is associated with
some propagating d.o.f. and can be always restored from
the absorptive portion of the correlation function through
the dispersion relations according to (A2).
In the framework [58] the contact term with wrong

sign has been simply postulated, while in Refs. [59,60]
the Veneziano ghost (with a wrong kinetic term) had
been introduced into the theory to saturate the required
property (A3).
Our next comment is the observation that the contact

term (A3) has the structure χ ∼
R
d4xδ4ðxÞ. The signifi-

cance of this structure is that the gauge variant correlation
function in momentum space

lim
k→0

Z
d4xeikxhKμðxÞ; Kνð0Þi ∼

kμkν
k4

ðA4Þ

develops a topologically protected “unphysical” pole which
does not correspond to any propagating massless d.o.f., but
nevertheless must be present in the system. Furthermore,
the residue of this pole has the wrong sign which saturates
the nondispersive term in gauge invariant correlation
function (A3),

hqðxÞqð0Þi ∼ h∂μKμðxÞ; ∂νKνð0Þi ∼ δ4ðxÞ: ðA5Þ

We conclude this review-type subsection with the following
remark. The entire framework, including the singular
behavior of hqðxÞqð0Þi with the wrong sign, has been
well confirmed by numerous lattice simulations in strong
coupling regime, and it is accepted by the community as a
standard resolution of the Uð1ÞA problem. Furthermore, it
has been argued long ago in Ref. [61] that the gauge

theories may exhibit the “secret long range forces”
expressed in terms of the correlation function (A4) with
topologically protected pole at k ¼ 0.
Finally, in a weakly coupled gauge theory (the so-called

“deformed QCD” model [62]) where all computations can
be performed in a theoretically controllable way, one can
explicitly test every single element of this entire frame-
work, including the topologically protected pole (A4), the
contact term with wrong sign, etc.; see Refs. [63–65] for
the details. In particular, one can explicitly see that the
Veneziano ghost is in fact an auxiliary topological field
which saturates the vacuum energy and the topological
susceptibility χ. It does not violate unitarity, causality and
any other fundamental principles of a quantum field theory.
What is more important for the present studies is that one
can explicitly see that the holonomy (A6) plays a crucial
role in generating the strange vacuum energy defined in
terms of the correlation function (A1).
While all these unusual features of the vacuum energy

are well known and well supported by numerous lattice
simulations in strongly coupled regime (see e.g., [63] for a
large number of references on original lattice results),
a precise quantitative understanding of these properties
(on a level of analytical computational scheme) is still
lacking. In the next subsection we review some known
results on this matter specifically emphasizing on role
of the holonomy (A6) in the analytical computations.
Precisely a nontrivial holonomy (A6) plays a crucial role
in generating the strange vacuum energy as we argue in
next Sec. A 2. This is the key technical element which
pinpoints the source of this novel type of energy not
expressible in terms of any local operators as the holonomy
is obviously a nonlocal object.

2. The holonomy (A6) and generation of the
nondispersive vacuum energy

Our goal here is to argue that the holonomy plays a key
role in generation of the nondispersive vacuum energy in
the system. We also compare the vacuum energy computed
on different manifolds such as S1 × R3 versus S1 × H3 and
S1 × S3. Such studies play the crucial role in our analysis in
the main text in Sec. II devoted to construction of the
gravitation instanton formulated on S1 × S3.
We start our analysis with S1 ×R3 geometry. The key

role in the discussions is played by the behavior of
holonomy UðxÞ≡ P exp ði R T0 dx4A4ðx4;xÞÞ at spatial
infinity, the Polyakov line,

L ¼ P exp

�
i
Z

T

0

dx4A4ðx4; jxj → ∞Þ
�
: ðA6Þ

The operator TrL classifies the self-dual solutions which
may contribute to the path integral at finite temperature
T ≡ T −1, including the low temperature limit T → 0.
There is a well-known generalization of the standard
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self-dual instantons to nonzero temperature, which corre-
sponds to the description on R3 × S1 geometry. These are
so-called periodic instantons, or calorons [66], studied in
detail in [67]. These calorons have trivial holonomy, which
implies that the TrL assumes values belonging to the group
center ZN for the SUðNÞ gauge group.
A more general class of the self-dual solutions with

nontrivial holonomy (A6), the so-called KvBLL calorons,
was constructed much later in Refs. [68,69]. In this case the
holonomy (A6) in general is not reduced to the group center
TrL ∉ ZN . The fascinating feature of the KvBLL calorons
is that they can be viewed as a set of N monopoles of N
different types. Normally, one expects that monopoles
come in N − 1 different varieties carrying a unit magnetic
charge from each of the Uð1Þ factors of the Uð1ÞN−1 gauge
group left unbroken by vacuum expectation value due to
nontrivial holonomy (A6). There is an additional, so-called
Kaluza- Klein monopole which carries magnetic charges
and instanton charge. All monopole’s charges are such that
when a complete set of different types of monopoles is
present, the magnetic charges exactly cancel, and the
configuration of N different monopoles carries a unit
instanton charge. In particular, for SUð2Þ gauge group
the holonomy

1

2
TrL ¼ cosðπνÞ ðA7Þ

belongs to the group center 1
2
TrL ¼ �1 when ν assumes

the integer values (trivial holonomy). The so-called “con-
fining” value for the holonomy corresponds to ν ¼ 1=2
when TrL ¼ 0 vanishes.
It has been known since [67] that the gauge configura-

tions with nontrivial holonomy are strongly suppressed in
the partition function. Therefore, naively KvBLL calorons
cannot produce a finite contribution to the partition
function. However, this naive argument is based on con-
sideration of the individual KvBLL caloron, or a finite
number of them. If one considers a grand canonical
assemble of these objects than their density is determined
by the dynamics, and the old argument of Ref. [67] does not
hold anymore. The corresponding objects in this case may
in fact produce a finite contribution to the partition
function. A self-consistent computation in a weak coupling
regime supporting this picture has been carried out in the
so-called deformed QCD model [62]. One can explicitly
see how N different types of monopoles with nontrivial
holonomy (A6) which carry fractional topological charge
�1=N produce confinement, generate the strange vacuum
energy (A1) and associated with this energy the topological
susceptibility (A5) with known, but highly unusual proper-
ties reviewed above in previous Sec. A 1; see [63–65] for
the technical details on these computations.
In the strong coupling regime we are interested in, the

corresponding analytical computations have never been

completed. There is a limited number of partial analytical
and numerical results [70–72] on computations of moduli
space and one loop determinant, controlling the dynamics
and interaction properties of the constituents in a large
ensemble of KvBLL calorons.
While complete analytical solution in strong coupling

regime is still lacking, nevertheless there are a number of
hints supporting the basic picture that the KvBLL con-
figurations with nontrivial holonomy (A6) and representing
N different types of monopoles with fractional topological
charges�1=N saturate the strange vacuum energy (A1) and
associated with this energy the topological susceptibility
(A5) in very much the same way as it happens in the
deformed QCD model where all computations are per-
formed in a theoretically controllable regime [62–64]. It is
assumed in what follows that the topological susceptibility
(A1) and associated with it the nondispersive vacuum
energy EvacðθÞ is indeed saturated by fractionally charged
monopoles with Q ¼ �1=N which are constituents of
KvBLL caloron with nontrivial holonomy (A6) and (A7).
The corresponding computations of the partition func-

tion and the free energy for the vacuum ground state for
S1 ×R3 geometry lead to the following result [70–72]:

Z ≃ exp ½4πfV�; f ¼
4πΛ4

QCD

g4T

Fvac ¼ −T lnZ ¼ −
32π2

g4
Λ4

QCD
V; ðA8Þ

where V is the 3-volume of the system, g is the coupling
constant of a non-Abelian gauge field, and the ΛQCD is a
single dimensional parameter of the system generated as a
result of dimensional transmutation in classically con-
formal gauge theory, similar to conventional ΛQCD ≃
170 MeV in QCD physics. Parameter f in (A8) can be
interpreted as the monopole’s fugacity of the system, while
the combination T Fvac ≡ EvacVð4Þ ≡ EvacT V shows the
extensive property when lnZ is proportional to the
Euclidean 4-volume at large Vð4Þ → ∞. In this framework
Evac has dimension 4 and represents the vacuum energy
density of the system entering the fundamental
formula (A1) and defining the nondispersive portion of
the vacuum energy.
One can show that free energy (A8) as well as the

topological susceptibility χ demonstrate all the features of
the strange energy briefly described in Sec. A 1 in a model-
independent generic way, including the wrong sign for χ
which cannot be associated with any physical propagating
d.o.f. The specific mechanism based on the KvBLL
configurations reviewed above and describing the tunneling
processes between the distinct topological sectors precisely
generates all these required properties. In what follows
we assume that the very same mechanism generates the
nondispersive vacuum energy density Evac for different
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geometries, including S3 × S1 and H3
κ × S1

κ−1
exactly in the

same way as computed above for R3 × S1.
With this assumption in hand the question we address

below is as follows. How does the strange energy density
Evac vary if the geometry is slightly modified at large
distances? The main motivation for this question is origi-
nated from our fundamental conjecture formulated in
Sec. IV that the energy density which enters the
Friedman equation represents in fact the difference ΔE
between the energy density computed in a nontrivial
background by subtracting the “trivial” portion computed
in the flat background similar to the Casimir-type
computations.
Specifically, we want to know how the vacuum energy

density depends on the geometry S3 × S1. Precisely this
information is required in our computations in Secs. IVand
V. Unfortunately, there are a number of technical obstacles
to carry out the computations similar to (A8) for S3 × S1

manifold. In particular, even the monopole solution (which
is the crucial ingredient in this type of semiclassical
computation) satisfying the appropriate boundary condi-
tions on S3 × S1 is not exactly known. As a result of this
deficiency, a semiclassical computation which would
account for zero and nonzero mode contributions to the
partition function [similar to formula (A8) derived for
R3 × S1] is also not known.
Fortunately, the exact semiclassical computations are

available for the hyperbolic space H3
κ × S1

κ−1
. While this

manifold is not exactly what we need for our analysis in
Secs. IV and V, nevertheless, the corresponding computa-
tions give us a hint on possible corrections to the vacuum
energy density Evac due to a small dimensional parameter
∼κ which emerges in the H3

κ × S1
κ−1

in comparison with
computations (A8) corresponding to R3 × S1 geometry.
The main reason why the semiclassical computations can

be carried out in hyperbolic space H3
κ with the constant

negative curvature −κ2 is as follows. There is a conformal
equivalence between (R4 − R2) and H3

κ × S1
κ−1

where S1
κ−1

denotes the circle of radius κ−1. As a result of this exact
equivalence, the monopole’s solutions can be explicitly
constructed in this case. The holonomy (A6) is computed
along a closed loop S1

κ−1
and assumes a nontrivial value.

The key observation of this computation, see
formula (A9) below, is that the topological configura-
tions with nontrivial holonomy produce a finite contri-
bution to the vacuum energy density with a small
correction being linearly proportional to κ → 0. This
effect cannot be expressed in terms of any local operators
such as curvature as jRj ∼ κ2. Rather, the leading correc-
tion ∼κ is generated due to topological vacuum configu-
rations with nontrivial holonomy, not expressible in terms
of any local observables. This is precisely the reason why
the generic arguments [28–30] based on locality simply do
not apply here.

Now we are ready to formulate the main result of the
computations [7] relating the vacuum energy density Evac

computed on the original R3 × S1 manifold and on the
hyperbolic space H3

κ × S1
κ−1

. In formula (A9) presented
below we assume that the sizes of S1 from two different
manifolds are identically the same; i.e., we identify
T ¼ κ−1. After this identification the only difference
between two manifolds is the curvature of the hyperbolic
space R½H3

κ � ∼ κ2 at κ → 0. Formula (A9) below suggests a
linear dependence on κ at small κ which we interpret as a
strong argument supporting our conjecture on linear
dependence of nondispersive vacuum energy as a function
of external parameter. Such linear scaling obviously implies
that this background-dependent correction is not related to
any local operators such as curvature, but rather is
generated by nonlocal operator (A6) which is sensitive
to the global characteristics of the background.
The relevant formula can be represented as follows [7]:

Evac½H3
κ × S1

κ−1
�

Evac½R3 × S1� ≃
�
1 −

νð1 − νÞ
2

·
κ

ΛQCD

�
: ðA9Þ

Using formula (A8) the same result can be written as
follows:

Evac½H3
κ × S1

κ−1
� ≃ −

32π2

g4
Λ4

QCD

�
1 −

νð1 − νÞ
2

·
κ

ΛQCD

�

≃ −
32π2

g4
Λ4

QCD
þ 32π2

g4
Λ3

QCD
·
νð1 − νÞ

2
· κ:

ðA10Þ

The key observation is that a small correction here is linear,
rather than naively expected quadratic function at small
κ → 0. Furthermore, the correction ∼κ vanishes for con-
figurations with trivial holonomy, ν ¼ 0, ν ¼ 1.
This observation unambiguously implies that the

relevant Euclidean configurations which are capable of
producing the linear correction (A10) must carry a non-
trivial holonomy (A6); and therefore, they are nonlocal
in nature. The computations [65] in weakly coupled
deformed QCD model (where a configuration with non-
trivial holonomy produces a linear correction) also support
this claim.

3. Generation of the Holonomy in a strongly
coupled gauge theory

The question we address in this Appendix can be
formulated as follows. If we consider the thermodynamical
limit in Eq. (A8) one can explicitly see that the combination
T Fvac ≡ EvacVð4Þ ≡ EvacT V shows the extensive property
when lnZ is proportional to the Euclidean 4-volume at
large Vð4Þ → ∞. In this framework Evac has dimension 4
and represents the vacuum energy density of the system
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entering the fundamental formula (A1). This formula
defines the nondispersive θ-dependent portion of the
vacuum energy which plays the crucial role in our analysis.
The key question we address now is as follows: if we

start from description of the system on R4 from the very
beginning such that the semiclassical solutions (calorons
with nontrivial holonomy) cannot be constructed on R4.
How do we know anything about the holonomy defined on
S1 (and its direct consequence in form of the objects with
fractional topological charges) if it was not a part of our
construction to begin with? We should emphasize here that
the configurations with fractional topological charges are a
very strong signal that there is a nontrivial holonomy in the
system as the only semiclassical solutions which can be
defined on R4 are integer value instantons.
We obviously do not know the answer on the hard

question formulated above in strongly coupled four-
dimensional QCD. However, there is a well-known exam-
ple of the two-dimensional CPN−1 model which hints that
such a kind of holonomy (and its manifestation in the form
of the configurations with fractional topological charges)
might be generated dynamically by strong quantum fluc-
tuations such that the “effective calorons” with nontrivial
holonomy do appear in the system, but they are strongly
coupled quantum objects, rather than the semiclassical
configurations defined on S1.
Historically, the configurations with fractional topological

charges emerged in the two-dimensional CPN−1 model.
These fractional objects have been coined as instanton
quarks, also known as “fractional instantons” or “instanton
partons.” Namely, using an exact accounting and resumma-
tion of the n-instanton solutions in two-dimensional CPN−1

models, the original statistical problem of a grand canonical
instanton ensemble (with exclusively integer topological
charges defined on R2) was mapped onto a two-dimensional
Coulomb gas system of pseudoparticles with fractional
topological charges ∼1=N [73,74]. This picture leads to
the elegant explanation of the confinement phase and other
important properties of the two-dimensional CPN−1 models
[73,74]. The term instanton quarks was introduced to
emphasize that there are precisely N constituents making
an integer instanton, similar to N quarks making a baryon.
These objects do not appear individually in path integral;
instead, they appear as configurations consisting of N
different objects with fractional charge 1=N such that the
total topological charge of each configuration is always
integer. In this case 2Nk zero modes for the k instanton
solution are interpreted as 2 translation zero modes accom-
panied by every single instanton quark. While the instanton
quarks emerge in the path integral coherently, these objects
are highly delocalized: they may emerge on opposite sides of
the spacetime or be close to each other with alike proba-
bilities. A similar attempt in four-dimensional QCD was
unfortunately unsuccessful due to a number of technical
problems, which remain to be solved [75].

There is deep analogy with the deformed QCD model
[62–64] where the size of S1 is fixed for the semiclassical
approximation to be justified. However, it is a common
view in the QCD community that the physics in strongly
coupled QCD is qualitatively the same as in the weakly
coupled deformed QCD model with enforced semiclassi-
cality by specifically chosen S1 in which case the con-
figurations with nontrivial holonomy (and fractionally
charged monopoles) can be explicitly constructed on the
semiclassical level. Furthermore, it is expected that even in
a case when the corresponding θ̄ parameter in strongly
coupled QCD does not vanish, the physics remains the
same and the confinement in QCD occurs as a result of
condensation of the same fractionally charged monopoles
as argued in [76].
The main lesson to be learned in the context of the

present work is as follows. The configurations with frac-
tional topological charges can serve as a trigger for a
nontrivial holonomy because conventional semiclassical
solutions defined on R4 can carry only integer topological
charges. The lesson from two-dimensional CPN−1 is as
follows. The fractional topological charges are not present
in the system when it is defined on R2. However, such
objects do appear dynamically as a result of strong quantum
fluctuations. In terms of effective semiclassical configura-
tions these objects obviously require a nontrivial holonomy
(and therefore, nontrivial S1 where the holonomy is
defined). However, this effective S1 is not the original
circle, but rather the effective one which emerges as a result
of strong quantum fluctuations. This is precisely the
motivation for our model 2 in Sec. V where we unlink
the size of S1 from matter context of the theory by relaxing
the bootstrap equation. Unfortunately, we can only specu-
late on this matter at the present time without making any
precise and solid claims.

APPENDIX B: TOPOLOGICAL AUXILIARY
FIELD AS A NONPROPAGATING AND

NONDYNAMICAL INFLATON

The goal of this Appendix is to introduce the auxiliary
field technique and demonstrate that the corresponding
alternative computations reproduce the crucial elements of
the vacuum energy and its unusual features listed in Sec. III
C. Furthermore, this technique plays a crucial role in our
studies on anomalous coupling with the SM fields
described in Sec. VI B. Precisely this coupling is respon-
sible for the successful reheating phase as advocated in
Secs. VI C and VI D.
As we argue below we can identify (on an intuitive level)

the corresponding auxiliary nondynamical, nonpropagating
field with the inflaton, which is an emergent field in our
framework: it only appears in the confined QCD phase,
while in the deconfined phase it did not exist in the system.
It should be contrasted with conventional description in
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terms of local dynamical field ΦðxÞ which is always a part
of the system, long before and long after the inflation.
We should emphasize that the reformulation of the

same physics in terms of an auxiliary quantum field rather
than in terms of explicit computation of the partition
function by summing over all topological sectors is not
a mandatory procedure, but a matter of convenience.
Similarly, the description of a topologically ordered phase
in condensed matter physics in terms of Chern-Simons
effective Lagrangian is a matter of convenience rather than
a necessity as emphasized in Sec. VI B.
We demonstrate how this technique works in a simplified

version of QCD, the so-called weakly coupled deformed
QCD model [62] which preserves all relevant features of
the strongly coupled QCD such as confinement, nontrivial
θ dependence, generation of the nondispersive vacuum
energy, etc. At the same time, all computations can be
performed under complete theoretical control. The compu-
tations of the nondispersive term by explicit summation
over positions and orientations of the monopoles-instantons
describing the tunneling transitions have been performed in
[64]. The corresponding results have been reproduced in
[63] using the technique of the auxiliary topological fields.
One should also mention that the computations are

performed in effectively three-dimensional weakly coupled
gauge theory, rather than in strongly coupled four-
dimensional QCD. Nevertheless, the emergent auxiliary
field to be introduced below and identified with inflaton
behaves, in all respects, as the four-dimensional Veneziano
ghost [59,60] which was postulated long ago precisely with
the purpose to describe these unusual features of the
vacuum energy as reviewed in Appendix A 1.
The basic idea to describe the relevant IR physics in

terms of an auxiliary field is to insert the corresponding
δ-function into the path integral with a Lagrange multiplier
and integrate out the fast d.o.f. while keeping the slow d.o.f.
which are precisely the auxiliary fields. Here and in what
follows we use notations from [63] where this technique
was originally implemented to demonstrate that the famous
Veneziano ghost is nothing but an auxiliary topological
field. The δ-function to be inserted into the path integral is
defined as follows,

δ

�
qðxÞ þ 1

4πNL
½∇⃗2aðxÞ�

�

∼
Z

D½b�ei
R

d4xbðxÞ·ðqðxÞþ 1
4πNL½∇⃗2aðxÞ�Þ; ðB1Þ

where qðxÞ ∼ tr½FμνF̃μν� in this formula is treated as the
original expression for the topological density operator
including the fast non-Abelian gluon d.o.f., while bðxÞ, aðxÞ
are treated as slow-varying external sources describing the
large distance physics for a given monopole configuration.
One can proceed now with conventional semiclassical
computations by summation over all monopoles, their

positions and orientations to arrive to the following dual
form for the effective action. The new additional topological

term ∼bðxÞ∇⃗2aðxÞ can be immediately recovered from
(B1), while interaction of the bðxÞ field (playing the role of
the Lagrange multiplier) coupled to topological density
operator qðxÞ can be easily recovered as it has precisely
the structure of the θ term. This observation unambiguously
implies that bðxÞ field enters the effective description in
unique combination with θ as follows, ½θ − bðxÞ�, as long as
bðxÞ field can be treated as a slow d.o.f. In all respects it is
similar to construction of the effective Lagrangian for the η0
field which enters the action in unique combination with θ as
follows, ½θ − η0�. The difference is, of course, that η0 meson
has a kinetic term as well, in contrast with bðxÞ field.
Therefore, the final expression for the dual effective action
which includes new auxiliary bðxÞ, aðxÞ fields assumes the
form [63]

Z½σ; b; a� ∼
Z

D½b�D½σ�D½a�e−Stop½b;a�−Sdual½σ;b�;

Stop½b; a� ¼
−i
4πN

Z
R3

d3xbðxÞ∇⃗2aðxÞ;

Sdual½σ; b� ¼
Z
R3

d3x
1

2L

�
g
2π

�
2

ð∇σÞ2

− ζ

Z
R3

d3x
XN
a¼1

cos

�
αa · σ þ θ − bðxÞ

N

�
:

ðB2Þ
In this formula parameter ζ plays the role of the monopole’s
density in the system, such that the vacuum energy is
explicitly proportional to ζ; see (B3) below. The dynamical
σ fields effectively describe the monopole’s ensemble. The
most important element for our studies is the Lagrange
multiplier bðxÞ field and topological aðxÞ field which are
interpreted as the inflaton in what follows. Both fields are not
dynamical, and not propagating d.o.f., by construction. We
obviously do not introduce any new dynamical d.o.f. by
inserting the δ function (B1) and introducing the auxiliary
topological fields bðxÞ, aðxÞ. This is obviously an important
remark when one tries to identify bðxÞ, aðxÞ with inflaton.
One next step is to compute the vacuum energy and

topological susceptibility within this framework to dem-
onstrate that it satisfies all the features listed in Sec. III C.
The corresponding computations explicitly show that the
physical meaning of the vacuum energy is the number of
the tunneling events per unit volume per unit time. The
corresponding formula can be represented in terms of the
correlation function as follows,

Evac ¼ −N2lim
k→0

Z
d4xeikxhqðxÞ; qð0Þi

¼ −
Nζ

L

Z
d3xδ3ðxÞ ¼ −

Nζ

L
; ðB3Þ
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where we represented qðxÞ in terms of the auxiliary field

− 1
4πNL ½∇⃗2aðxÞ� and performed the Gaussian path integral

over D½b�D½σ�D½a� fields entering (B2).
We obviously reproduce our previous result based on

explicit computations of the monopoles [64]. Now it is
formulated in terms of the long ranged auxiliary topological
fields. The fluctuating bðxÞ, aðxÞ fields simply reflect the
long distance dynamics of the degenerate topological
sectors which exist independently from our description
in terms of bðxÞ, aðxÞ fields. However, in previous
computations [64] we had to sum over all monopoles,
their positions, interactions and orientations. Now this
problem is simplified as it is reduced to the computation
of the correlation function constructed from the auxiliary
fields governed by the action (B2).
We identify (intuitively) the corresponding auxiliary

½aðxÞ; bðxÞ� fields which saturate this energy (B3) with
inflaton in this model in a sense that both objects eventually
lead to the de Sitter behavior. We emphasize again that the
corresponding dynamics cannot be formulated in terms of a
canonical scalar field Φ with any local potential VðΦÞ as it
is known that the dynamics governed by CS-like action is
truly nonlocal. There are a large number of CM systems
(realized in nature) where CS action plays a key role with
explicit manifestation of the nonlocality in the system. It
has been also argued that the deformed QCD model which
is explored in this section also belongs to a topologically
ordered phase with many features which normally accom-
pany the topological phases [63].
What is the physical meaning of the auxiliary ½aðxÞ; bðxÞ�

fields which we identify with inflaton?What is the best way
to visualize it on an intuitive level? From our construction
one can easily see that both fields ½aðxÞ; bðxÞ� do not carry a
color index. However, aðxÞ field has nontrivial transforma-
tion properties under large gauge transformation. In fact our
field ∇iaðxÞ transforms as the KiðxÞ in the Veneziano
construction (A4). One can support this identification by
computing a gauge variant correlation function,

lim
k→0

Z
d4xeikxh∇iaðxÞ;∇jað0Þi ∼

kikj
k4

: ðB4Þ

The massless pole (B4) has precisely the same nature as the
pole in the Veneziano construction (A4).
What is the physical meaning of bðxÞ field? This field

can be thought of as an external axion θðxÞ field, without
kinetic term, though.
Our comment here is that in spite of the gap ∼ζ in the

system, some correlation functions constructed from the
topological auxiliary fields aðxÞ, bðxÞ fields are still highly
sensitive to the IR physics. Furthermore, while the behavior
(B4) at small k can be considered to be very dangerous as it
includes k4 in denominator (which is normally attributed to
the negative norm states in QFT), the physics described
here is perfectly unitary and causal as aðxÞ, bðxÞ are in fact

auxiliary rather than propagating dynamical fields as all
questions can be formulated and answered even without
mentioning the auxiliary topological fields.
One should comment here that the results presented

above are based on computations in a weakly coupled,
effectively three-dimensional, gauge theory (where the
system is under complete theoretical control), while we
are interested in four-dimensional strongly coupled QCD to
study the inflationary phase. Nevertheless, the relation
between the aðxÞ auxiliary field and four-dimensional
Kμ field still holds and assumes the form

Kμ ∼ ∂μaðxÞ; qðxÞ ∼ ∂μKμ ∼□aðxÞ ðB5Þ

while bðxÞ field always enters the effective Lagrangian
precisely in combination with the θ term according to (B2).
This observation allows us to exactly reconstruct the
interaction with SM particles from the knowledge on their
coupling to the θ parameter as Eq. (49) states.
What are the typical fluctuation scales of the auxiliary

quantum aðxÞ and bðxÞ fields? The answer is quite obvious:
the typical fluctuations are of order ΛQCD as the UV
fluctuations of order MP are present in the original gluon
fields, but not in the auxiliary aðxÞ and bðxÞ fields which
effectively describe the long distance physics in Eq. (B2)
where fast d.o.f. are integrated out.
What happens when the same system is defined on a

nontrivial manifold characterized by some dimensional
parameters such as T −1 ≪ ΛQCD ? In this case the fields
aðx;HÞ and bðx;HÞ continue to fluctuate with typical
frequencies ΛQCD. However, the relevant correlation func-
tions should demonstrate the emergence of the linear
corrections with respect to these small parameters ∼T −1.
In particular, the correlation functions such as (B3) com-
puted in terms of the auxiliary fields are of the order of
Λ4

QCD
with corrections of order ðΛQCDT Þ−1 in agreement

with expression (20) in Sec. III C.
We also want to make a few comments on a typical scale

of the expectation value of the field itself hbðx;HÞi
because, e.g., h _bðx;HÞi enters the estimate (51) for the
e-folds. As we discussed in the previous paragraph, the
typical expectation values for the auxiliary fields must be
expressed in terms of ΛQCD according to their dimension-
ality because it reflects the typical topological density
distribution in strongly coupled QCD. According to our
general prescription formulated in Secs. III B and III C we
must subtract all the expectation values computed on R4

corresponding to H ¼ 0. This procedure unambiguously
implies17 that h _bðx;HÞi ∼H as it must vanish at H ¼ 0.

17For this specific case the particle production obviously does
not occur when H ¼ 0 as all topological transitions simply select
a specific θ sector, but do not generate the particle production.
Therefore, the subtraction in this case is trivial.
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One should comment here that bðx;HÞ is not a classical
field which satisfies some equations, similar to conven-
tional studies on inflation when the potential V½Φ�
completely determines the dynamics of the system. In
our case one has to compute the relevant correlation
functions and the expectation values to answer the
questions about observables. We make a few additional
comments in relation to the conventional approach in
Sec. VI F.
We want to present one additional argument supporting

the same claim on linear correction ∼T −1 or ∼H. The
behavior (B4) hints to the possibility of nonlocal effects
(which indeed are known to be present in this system [63]).
Such IR sensitivity suggests that the physics must be highly

sensitive to the properties of the manifolds and external
background configurations. Precisely this sensitivity to
large distances supports our analysis of Sec. III C where
we argued that the corrections to the vacuum energy due to
the finite manifold should be linear T −1 rather than
exponential as a conventional gapped theory would naively
suggest.
Now we can infer the physical meaning of the auxiliary

fields: aðx;HÞ describes the longitudinal portion of Kμ

field generating the topologically protected pole (B4); the
□aðx;HÞ describes the distribution of the topological
density in the system; finally, bðx;HÞ acts as the axion
field (without kinetic term) being the source of the
topological density distribution.
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