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We demonstrate the extension to parity-time (PT )-symmetric field theories of the Goldstone theorem,
confirming that the spontaneous appearance of a field vacuum expectation value via minimization of the
effective potential in a non-Hermitian model is accompanied by a massless scalar boson. Laying a basis for
our analysis, we first show how the conventional quantization of the path-integral formulation of quantum
field theory can be extended consistently to a non-Hermitian model by considering PT conjugation instead
of Hermitian conjugation. The extension of the Goldstone theorem to a PT -symmetric field theory is made
possible by the existence of a conserved current that does not, however, correspond to a symmetry of the
non-Hermitian Lagrangian. In addition to extending the proof of the Goldstone theorem to aPT -symmetric
theory, we exhibit a specific example in which we verify the existence of a massless boson at the tree and
one-loop levels.
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I. INTRODUCTION

The conventional formulations of quantum mechanics
and quantum field theory (QFT) have generally been based
on Hermitian Hamiltonians and Lagrangians, respectively.
However, in recent years it has been established that one
can also consistently formulate non-Hermitian, parity-time
(PT )-symmetric quantum-mechanical models [1], and the
possibility of a smooth transition between Hermitian and
PT -symmetric phases in quantum mechanics is described
in Ref. [2]. Non-Hermitian QFTs have also been studied in
various contexts. For example, a model with an iϕ3 scalar
interaction was studied in Refs. [3–6], and it was shown
that a meaningful unbounded effective potential can be
obtained in the framework of PT -symmetric QFT [7].
A PT -symmetric QFT involving a non-Hermitian

fermion mass term μψ̄γ5ψ was introduced in Ref. [8].
This model was studied further in Ref. [9], where the
existence of a conserved current was demonstrated and

shown to ensure the consistency of PT symmetry with
unitarity. This non-Hermitian mass term has been used for
alternative descriptions of neutrino masses [10,11] (see also
Ref. [12] for a summary) or dark matter [13]. Non-
Hermitian extensions of conventional QFT have also been
applied to neutrino oscillations [14] and to decays of the
Higgs boson [15]. Interesting studies have been done in
Ref. [16] of a non-Hermitian fermionic model on the lattice,
which allows for a different number of left-handed and
right-handed excitations, consistent with the fermionic
current density derived in Ref. [9]. We also note that the
confinement phase transition in QCD has been related to
PT -symmetry properties of ghost fields in Ref. [17].
An intriguing feature of Ref. [9] was the discovery that

the existence of a conserved current in a PT -symmetric
QFT does not correspond to a symmetry of the Lagrangian
L, but rather to a specific transformation of L that is related
to the non-Hermitian part of the action. PT -symmetric
QFTs evade Noether’s theorem [18] in the sense that
symmetries of the Lagrangian do not give rise to conserved
currents. Revisiting Noether’s derivation, one finds that
there exist conserved currents for non-Hermitiam theories,
but these correspond to transformations that must effect a
particular nontrivial variation of the Lagrangian, which
vanishes only in the Hermitian limit. This observation
raises the interesting question of whether there is an
analogue in PT -symmetric QFT of spontaneous symmetry
breaking and, if so, whether the breaking of a global
symmetry is accompanied by a massless Goldstone mode,
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as in Hermitian QFT [19–21]. The answers provided in this
paper are that the existence of a massless Goldstone mode
can be shown from current conservation and does not
require the Lagrangian to be invariant under the corre-
sponding field transformation. Nevertheless, there is a
symmetry of the Lagrangian, which is spontaneously
broken by the choice of a specific vacuum.
However, before addressing these questions, we first

discuss some basic issues in the formulation of a non-
Hermitian QFT, which require a consistent procedure for
quantization of the path integral. This is based on the
existence of a complete set of real energy eigenstates,
which allow the introduction of a saddle point about
which the integration of quantum fluctuations is well
defined. To this end, we show how this conventional
quantization of the path integral can be extended consis-
tently to a non-Hermitian scalar QFT by considering PT
conjugation instead of Hermitian conjugation. We perform
the calculation of the one-loop effective action explicitly for
a generic case and, assuming that the only source of non-
Hermiticity is a mass term, we show that the theory is
asymptotically Hermitian.
We then prove an extension of the Goldstone theorem for

this non-Hermitian QFT, showing that the spontaneous
appearance of a field vacuum expectation value via min-
imization of the effective potential is accompanied by the
appearance of a massless scalar mode, whose existence
is linked to the presence of a conserved current in this
PT -symmetric QFT. We confirm the existence of the
massless Goldstone mode by explicit calculations at both
the tree and one-loop levels.
The layout of this paper is as follows. In Sec. II, we

review the variational procedure (originally described in
Ref. [22] and summarized in Ref. [23]) for the complex
scalar model that forms the focus of this work. We also
recall how the existence of a conserved current does not
correspond to a symmetry of the Lagrangian L [9]. As we
explain, a detailed study of the PT -symmetry properties of
the model is required in order to understand its consistency.
We then introduce in Sec. III a procedure for path-integral
quantization, which is based on the existence of a complete
set of eigenstates with real energies in the PT -symmetric
phase of the model. We then introduce an extension of
the concept of a saddle point and show that the integration
of quantum fluctuations about this configuration is well
defined. Finally, in Sec. IV, we discuss the extension of
the Goldstone theorem to the PT -symmetric case, which
follows the same steps as in an Hermitian theory, provided
one considers PT -conjugate instead of Hermitian-
conjugate states. A summary and discussion of outstanding
issues are given in Sec. V.

II. COMPLEX SCALAR MODEL

We consider a theory containing two complex scalar
fields with the Lagrangian density

L ¼ ∂νϕ
⋆
1∂νϕ1 þ ∂νϕ

⋆
2∂νϕ2 −m2

1jϕ1j2 −m2
2jϕ2j2

− μ2ðϕ⋆
1ϕ2 − ϕ⋆

2ϕ1Þ −Uint; ð1Þ

in which the interaction potential Uint is PT symmetric.
The free part of this Lagrangian describes the sim-
plest scalar model that contains a non-Hermitian but
PT -symmetric mass term [22]. The corresponding
Hamiltonian is invariant under the combined action of
the following P and T transformations:

P∶ ϕ1ðt;xÞ → ϕ1
0 ðt;−xÞ ¼ þϕ1ðt;xÞ; ð2aÞ

ϕ2ðt;xÞ → ϕ2
0 ðt;−xÞ ¼ −ϕ2ðt;xÞ; ð2bÞ

T ∶ ϕ1ðt;xÞ → ϕ1
0 ð−t;xÞ ¼ ϕ⋆

1ðt;xÞ; ð2cÞ

ϕ2ðt;xÞ → ϕ2
0 ð−t;xÞ ¼ ϕ⋆

2ðt;xÞ: ð2dÞ

Restricting our attention to the free part of the Lagrangian,
it is convenient to introduce the doublet

ΦðxÞ≡
�
ϕ1ðxÞ
ϕ2ðxÞ

�
: ð3Þ

The P and T transformations can then be written in the
condensed forms

P∶ Φðt;xÞ → Φ0ðt;−xÞ ¼ PΦðt;xÞ; ð4aÞ

T ∶ Φðt;xÞ → Φ0ð−t;xÞ ¼ TΦ⋆ðt;xÞ; ð4bÞ

where T ≡ diagð1; 1Þ and P≡ diagð1;−1Þ. We note that ϕ1

transforms as a scalar and ϕ2 transforms as a pseudoscalar.
We can introduce the PT adjoint [22] of ΦðxÞ: Φ‡ðxÞ≡

½ΦPT ðxÞ�T, where the superscript T indicates the matrix
transpose. Neglecting total derivatives (see below), the
Lagrangian density can then be written as

L ¼ Φ‡
�−□ −m2

1 −μ2

−μ2 □þm2
2

�
Φ − Uint: ð5Þ

The variation of the action due to variations in Φ and Φ‡ is

δS ¼
Z

d4x

��∂L
∂Φ − ∂ν

∂L
∂ð∂νΦÞ

�
δΦ

þ δΦ‡
� ∂L
∂Φ‡ − ∂ν

∂L
∂ð∂νΦ‡Þ

�

þ ∂ν

� ∂L
∂ð∂νΦÞ δΦþ δΦ‡ ∂L

∂ð∂νΦ‡Þ
��

; ð6Þ

and we can quickly convince ourselves that the standard
Euler-Lagrange equations
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∂L
∂Φ−∂ν

∂L
∂ð∂νΦÞ¼ 0 and

∂L
∂Φ‡−∂ν

∂L
∂ð∂νΦ‡Þ¼ 0 ð7Þ

are inconsistent as a result of the non-Hermiticity. Thus,
if we require δS ¼ 0, the support of nontrivial solutions
Φ ≠ 0 would require the surface terms in the second line of
Eq. (6) to be nonvanishing. Alternatively, we can introduce
an external source [22]. Whichever course is taken, we can
choose to fix the variational procedure with respect to either
Φ or Φ‡, i.e., we can take

δS
δΦ

≡ ∂L
∂Φ − ∂ν

∂L
∂ð∂νΦÞ ¼ 0 or

δS
δΦ‡ ≡

∂L
∂Φ‡ − ∂ν

∂L
∂ð∂νΦ‡Þ ¼ 0: ð8Þ

Choosing the latter, the equations of motion are

□ϕ1 þm2
1ϕ1 þ μ2ϕ2 þ

∂Uint

∂ϕ⋆
1

¼ 0; ð9aÞ

□ϕ2 þm2
2ϕ2 − μ2ϕ1 þ

∂Uint

∂ϕ⋆
2

¼ 0: ð9bÞ

The squared mass eigenvalues

M2
� ¼ 1

2
ðm2

1 þm2
2Þ �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1 −m2
2Þ2 − 4μ4

q
ð10Þ

are real so long as we remain in the region of unbroken PT
symmetry, requiring

η≡ 2μ2

jm2
1 −m2

2j
≤ 1: ð11Þ

An additional consequence of the above subtlety in the
variational procedure is the way in which conserved
currents arise. Having chosen to define the variational
procedure with respect to Φ‡, a careful treatment of
Noether’s theorem (see Ref. [22]) shows that there exists
a conserved current for any transformation that satisfies

δL ¼
�∂L
∂Φ − ∂ν

∂L
∂ð∂νΦÞ

�
δΦ

¼ 2μ2ðϕ⋆
2δϕ1 − ϕ⋆

1δϕ2Þ − 2i

� ∂
∂Φ ImUint

�
δΦ. ð12Þ

Notice that δL ¼ 0 in the Hermitian limit, and we recover
the usual statement of Noether’s theorem [18]: for every
continuous symmetry of the Lagrangian, there exists a
corresponding conserved current. This is not the case for
our non-Hermitian theory. The two Uð1Þ currents

jν1 ¼ iðϕ⋆
1∂νϕ1 − ϕ1∂νϕ⋆

1Þ and

jν2 ¼ iðϕ⋆
2∂νϕ2 − ϕ2∂νϕ⋆

2Þ ð13Þ

are not conserved in the free theory for μ ≠ 0; specifically,

∂νjν1 ¼ ∂νjν2 ¼ iμ2ðϕ⋆
2ϕ1 − ϕ⋆

1ϕ2Þ: ð14Þ

Their difference jν ≡ jν1 − jν2, however, is conserved, and
this current corresponds to the Uð1Þ transformations

ϕ1ðxÞ → ϕ1
0ðxÞ ¼ eþiϵϕ1ðxÞ; ð15aÞ

ϕ2ðxÞ → ϕ2
0ðxÞ ¼ e−iϵϕ2ðxÞ; ð15bÞ

which satisfy Eq. (12) but do not leave the Lagrangian
invariant. In fact, these transformations yield a one-
parameter family of equivalent non-Hermitian theories
whose free Lagrangians have the form

Lϵ ¼ ∂νϕ
⋆
1∂νϕ1 þ ∂νϕ

⋆
2∂νϕ2 −m2

1jϕ1j2 −m2
2jϕ2j2

− μ2e−2iϵϕ⋆
1ϕ2 þ μ2eþ2iϵϕ⋆

2ϕ1 ð16Þ

and whose mass spectra are identical. That is to say, while
the Lagrangian is not invariant under the transformations
associated with the conserved current, physical quantities,
such as the masses, are.1

Finally, we note that the definition of the vacuum is not
trivial in a non-Hermitian theory, since the potential has
an imaginary part. In this context, the vacuum should be
defined as a solution of the equations of motion, in
which case fluctuations around the vacuum have positive
eigenenergies. In this section, the vacuum solution
ðϕ1;ϕ2Þ ¼ ð0; 0Þ is symmetric, and the dispersion relations
obtained above describe fluctuations above this trivial
vacuum. When formulating path-integral quantization
(see Sec. III), this vacuum constitutes a saddle point of
the integral, around which quantum fluctuations are
defined. The case of a nontrivial asymmetric solution of
the equations of motion is considered in Sec. IV.

III. PATH-INTEGRAL FORMULATION

We now turn our attention to the formulation of the path-
integral representation of the non-Hermitian field theory.

A. New conjugate field variables

The Lagrangian in Eq. (1) would naively appear to have
a finite imaginary part for μ ≠ 0, and one might be
concerned that this could modify the convergence of the
path integral. However, the spectrum of this theory is real

1Comments on the nontrivial relation between symmetries and
conservation laws in non-Hermitian quantum mechanics can be
found in Ref. [24].
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and positive definite in the region of unbroken PT
symmetry, enabling us to formulate consistently the path
integral and its quantization.
We can rotate to the mass eigenbasis via the trans-

formation

Ξ≡ RΦ ¼
�
ξ1

ξ2

�
; Ξ̄≡Φ†R−1 ¼

�
ξ̄1

ξ̄2

�
; ð17Þ

where

R ¼ N

 
η 1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
η

!
; ð18Þ

with

N −1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2η2 − 2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

qr
: ð19Þ

The matrix R satisfies the following properties:

R† ¼ R; R−1 ¼ PRP−1 ¼ PRP; ð20Þ
such that

Ξ̄ ¼ Ξ‡C0; with Ξ‡ ¼ Ξ†P; C0 ¼ RPR−1: ð21Þ

The variables Ξ and Ξ̄ are C0PT -conjugate fields in the
sense of Ref. [1]. We note that the C0 transformation here,
which we identify with a prime, is not the canonical C
transformation in Fock space, which would involve com-
plex conjugation. Instead, it is the transformation by which
one constructs the positive-definite inner product in
PT -symmetric quantum mechanics [25] (see also Ref. [1]).
The free Lagrangian becomes

L0 ¼ Ξ̄Δ−1Ξ; where Δ−1 ¼
�
−□ −M2þ 0

0 −□ −M2
−

�
;

ð22Þ
and it appears to be that of an Hermitian theory.
However, introducing interactions leads to the nontrivial
feature mentioned above: varying the full action with
respect to (ξ1, ξ2) or (ξ̄1, ξ̄2) does not yield the same
equations of motion. This can be seen, for example, with

the interaction jϕ1ϕ
⋆
1 j2, which can be expressed using either

Φ ¼ R−1Ξ:

jϕ1ϕ
⋆
1 j2 ¼ jϕ1j4 ¼ N 4jηξ1 þ

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
− 1
�
ξ2j4; ð23Þ

or Φ† ¼ Ξ̄R:

jϕ1ϕ
⋆
1 j2 ¼ jϕ⋆

1 j4 ¼ N 4jηξ̄1 −
� ffiffiffiffiffiffiffiffiffiffiffiffi

1 − η2
q

− 1
�
ξ̄2j4: ð24Þ

B. Partition function

The partition function is obtained from the vacuum
persistence amplitude in the presence of external sources

J ¼
�
j1
j2

�
and J̄ ¼ J‡C0: ð25Þ

For the non-Hermitian theory, this vacuum persistence
amplitude is

Z½J; J̄� ¼ h0̄ðþ∞Þj0ð−∞ÞiJ;J̄; ð26Þ

where the state h0̄j is the C0PT conjugate of the vacuum
state. The path integral is developed in the usual way,
except that one must insert complete sets of eigenstates
of the Heisenberg-picture field operator Ξ and its C0PT
conjugate Ξ̄ (rather than its Hermitian conjugate) at all
intermediate times. In this way, one arrives at the following
result for the Euclidean path integral:

Z½J; J̄� ¼
Z

D½Ξ; Ξ̄� exp
�
−SE½Ξ; Ξ̄� þ

Z
x
ðJ̄Ξþ Ξ̄JÞ

�
;

ð27Þ

where SE is the Euclidean action and we use the shorthand
notation

R
x ≡
R
d4x. Of course, having established the

correct form for the partition function, one could rewrite
it in terms of the original PT -conjugate variablesΦ andΦ‡

by making the change of variables and accounting
for the functional Jacobian, which is nontrivial but field
independent.
The partition function (27) can be expanded around the

free part

Z½J; J̄� ¼
Z

D½Ξ; Ξ̄� exp
�
−
Z
x
Ξ̄Δ−1Ξþ

Z
x
ðJ̄Ξþ Ξ̄JÞ −

Z
x
Uint

�

¼ exp

�Z
x
J̄ΔJ

� Z
D½Π; Π̄� exp

�
−
Z
x
Π̄Δ−1Π −

Z
x
Uint

�

¼ exp

�Z
x
J̄ΔJ

�X∞
n¼0

1

n!

Z
D½Π; Π̄� exp

�
−
Z
x
Π̄Δ−1Π

��
−
Z

x
Uint

�
n
; ð28Þ
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where Δ−1 ¼ diagð−∂2 þM2þ;−∂2 þM2
−Þ in Euclidean

signature and Π≡ Ξ − ΔJ ¼ ðπ1; π2ÞT. One can see that
the perturbative structure is the usual one, comprising well-
defined Gaussian integrals at each order.

C. One-loop 1PI effective action

There is an unambiguous definition of the classical saddle
point (Ξ0, Ξ̄0) for the path integral (27), which satisfies

�
−
δSE
δΞ

þ J̄

�
0

¼ 0 ¼
�
−
δSE
δΞ̄

þ J

�
0

; ð29Þ

where the index 0 indicates evaluation at the configuration
(Ξ0, Ξ̄0). Expanding the partition function up to quadratic
order around the saddle point, we obtain for the one-loop
partition function

Zð1Þ½J; J̄� ¼ exp

�
−SE½Ξ0; Ξ̄0� þ

Z
x
ðJ̄Ξ0 þ Ξ̄0JÞ

�

×
Z

D½Ξ; Ξ̄� exp
�
−
1

2

Z
xy

�
2ðΞ̄ − Ξ̄0Þx

δ2SE
δΞ̄xδΞy

				
0

ðΞ − Ξ0Þy

þ ðΞ̄ − Ξ̄0Þx
δ2SE

δΞ̄xδΞ̄y

				
0

ðΞ̄ − Ξ̄0Þy þ ðΞ − Ξ0Þx
δ2SE

δΞxδΞy

				
0

ðΞ − Ξ0Þy
��

¼ exp

�
−SE½Ξ0; Ξ̄0� þ

Z
x
ðJ̄Ξ0 þ Ξ̄0JÞ −

1

2
STr ln Sð2ÞE j0

�
; ð30Þ

where Sð2ÞE is the functional Hessian matrix (in field space)
of the Euclidean action and STr indicates the trace over
both coordinate and field spaces. In order to define the
one-particle irreducible (1PI) effective action Γð1Þ, one
introduces the background field Ξc:

Ξc ¼
1

Zð1Þ
δZð1Þ

δJ̄
; ð31Þ

which, from Eq. (30), is

Ξc ¼ Ξ0 þ
Z
x

�
−
δSE
δΞ0

þ J̄
�
δΞ0

δJ̄
−
1

2

δ

δJ̄
STr ln Sð2ÞE j0

¼ Ξ0 þ quantum corrections: ð32Þ

Γð1Þ is then defined after inverting the relation (31) to
express J̄ as a functional of Ξc:

Γð1Þ½Ξc; Ξ̄c� ¼ − lnZð1Þ þ
Z
x
ðJ̄Ξc þ Ξ̄cJÞ

¼ SE½Ξc; Ξ̄c� þ
1

2
STr ln Sð2ÞE jc; ð33Þ

were the index c indicates evaluation in the background
field configuration. The one-loop 1PI effective potential

is obtained for a constant configuration Ξc and is then
given by

Uð1ÞðΞc; Ξ̄cÞ ¼ UðΞc; Ξ̄cÞ þ
1

2Vð4Þ STr ln S
ð2Þ
E jc; ð34Þ

where Vð4Þ is the spacetime volume. After a rotation to the
original basis, which does not affect the trace, we finally
obtain

Uð1ÞðΦc;Φ†
cÞ ¼ UðΦc;Φ†

cÞ þ 1

2Vð4Þ STr ln S
ð2Þ
E jc: ð35Þ

D. Running couplings

We consider here a bare interaction potential of the form

Uð0Þ
int ¼

g1
4
jϕ1j4 þ

g2
4
jϕ2j4 þ λjϕ1ϕ2j2

þ α

4
ððϕ⋆

1ϕ2Þ2 þ ðϕ⋆
2ϕ1Þ2Þ

þ 1

2
ðβ1jϕ1j2 þ β2jϕ2j2Þðϕ⋆

1ϕ2 − ϕ⋆
2ϕ1Þ: ð36Þ

Substituting this potential into Eq. (35) leads to the
following one-loop running of the coupling constants
(details can be found in the Appendix):

ðm2
i Þð1Þ ¼ m2

i þ
gi þ λ

16π2
Λ2 þO

�
ln

�
Λ
m

��
; ð37aÞ

ðμ2Þð1Þ ¼ μ2 þ β1 þ β2
16π2

Λ2 −
1

8π2
ðμ2ðλ − αÞ þ β1m2

1 þ β2m2
2Þ ln

�
Λ
m

�
; ð37bÞ
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gð1Þi ¼ gi −
1

16π2
ð5g2i þ α2 þ 4λ2 − 10β2i Þ ln

�
Λ
m

�
; ð37cÞ

λð1Þ ¼ λ −
1

16π2
ð4λ2 þ 2α2 þ 2λðg1 þ g2Þ − 3ðβ21 þ β22Þ − 4β1β2Þ ln

�
Λ
m

�
; ð37dÞ

αð1Þ ¼ α −
1

16π2
ð4ðβ21 þ β22Þ þ αðg1 þ g2Þ þ 2β1β2 þ 8λαÞ ln

�
Λ
m

�
; ð37eÞ

βð1Þi ¼ βi −
1

16π2
ð5giβi þ 4βjλ − αβj þ 6λβi − 4αβiÞ ln

�
Λ
m

�
; ð37fÞ

where m is a typical mass scale of the system, i ≠ j, and finite terms are omitted.

E. Hermitian fixed point

We assume here that the non-Hermitian interactions are
switched off (βi ¼ 0) and the only source of non-Hermiticity
is the mass parameter μ2. Quantum corrections modify
this mass parameter, and we need to check that the condition
(11), which delineates the phase of unbroken PT symmetry,
remains valid at one loop. For a fixed set of dressed
parameters, the one-loop running of the parameter η is

ηðΛÞ¼
				 2ðμ2Þð1Þ− ðαð1Þ−λð1ÞÞμ2=ð4π2Þ lnðΛ=mÞÞ
ðm2

1Þð1Þ− ðm2
2Þð1Þ− ðgð1Þ1 −gð1Þ2 ÞΛ2=ð16π2Þ

				: ð38Þ

We recall that, for the PT symmetry to be unbroken, the fol-
lowing requirement needs to be satisfied for all values of Λ:

ηðΛÞ < 1: ð39Þ

If gð1Þ1 ≠ gð1Þ2 , we can see that ηðΛÞ → 0 when Λ → ∞, such
that the theory converges to a Hermitian limit, which thus
appears as an UV fixed point.

IV. GOLDSTONE MODES

Having established a consistent formulation of the non-
Hermitian path integral and its quantization, we show, in
this section, that the usual proof for the presence of
Goldstone modes is still valid in the PT -symmetric case,
and we explicitly derive these modes at one-loop order. As
explained below, the existence of a Goldstone mode relies
on a conserved current and not on the invariance of the
Lagrangian. We note, however, that both are related: in the
model (1), current conservation arises from the field

transformation Φ → expðiϵPÞΦ, whereas the Lagrangian
is invariant under the transformation Φ → expðiϵÞΦ. The
Goldstone mode is a consequence of the former trans-
formation, but the choice of a specific vacuum sponta-
neously breaks the latter symmetry.

A. Proof of the Goldstone theorem

Before considering our specific example, we first revisit
the derivation of the Goldstone theorem [19–21] in the
context of a non-Hermitian theory. We assume that there
exists an infinitesimal transformation, which takes the
generic form

Φ → Φþ iϵTΦ; ð40Þ

where T is the generator of the transformation. We also
assume that this transformation corresponds to a conserved
current jν with conserved charge Q ¼ R d3xj0ðxÞ. Most
importantly, for the non-Hermitian theory, this transforma-
tion does not leave the Lagrangian invariant.
We are interested in the vacuum expectation of the

commutator ½Q;ΦðxÞ�:
h0̄j½Q;ΦðxÞ�j0i ¼ iThΦi; ð41Þ

where hΦi≡ h0̄jΦðxÞj0i. We note that the inner product is
defined with respect to C0PT , as is necessary for a non-
Hermitian theory. With this exception, the proof of the
Goldstone theorem proceeds in the same manner as for
Hermitian theories (and we closely follow Ref. [26]). By
inserting complete sets of intermediate states, we can write

h0̄j½jνðyÞ;ΦðxÞ�j0i ¼
X
N

½h0̄jjνðyÞjNihN̄jΦðxÞj0i − h0̄jΦðxÞjNihN̄jjνðyÞj0i�

¼
Z

d4p
ð2πÞ4 e

−ip·ðy−xÞX
N

½ð2πÞ4δ4ðpN − pÞh0̄jjνð0ÞjNihN̄jΦð0Þj0i

− ð2πÞ4δ4ðpN þ pÞh0̄jΦð0ÞjNihN̄jjνð0Þj0i�; ð42Þ
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and, by virtue of Lorentz invariance, we have thatX
N

ð2πÞ4δ4ðpN − pÞh0̄jjνð0ÞjNihN̄jΦð0Þj0i ¼ 2πiθðþp0Þpνρðp2Þ; ð43aÞ

X
N

ð2πÞ4δ4ðpN þ pÞh0̄jΦð0ÞjNihN̄jjνð0Þj0i ¼ 2πiθð−p0Þpνρ̄ðp2Þ: ð43bÞ

Moreover, causality requires that the commutator vanish for spacelike separations, and it follows that ρðp2Þ ¼ ρ̄ðp2Þ. We
then arrive at the (Källén-Lehmann) spectral representation

h0̄j½jνðyÞ;ΦðxÞ�j0i ¼ i
Z

d4p
ð2πÞ4 e

−ip·ðy−xÞ2πsgnðp0Þpνρðp2Þ

¼ −
∂
∂yν

Z
dσ2ρðσ2ÞΔðy; x; σ2Þ; ð44Þ

where

Δðy;x;σ2Þ¼
Z

d4p
ð2πÞ4e

−ip·ðy−xÞ2πsgnðp0Þδðp2−σ2Þ; ð45Þ

is the Pauli-Jordan function with the mass of the field
replaced by σ.
Since the current is conserved, it follows that

−□y

Z
dσ2ρðσ2ÞΔðy; x; σ2Þ

¼
Z

dσ2σ2ρðσ2ÞΔðy; x; σ2Þ ¼ 0; ð46Þ

in which case ρðσ2Þ must be zero for σ2 ≠ 0, i.e.,
ρðσ2Þ ¼ ρ0δðσ2Þ. Thus, for x0 ¼ y0, we have

h0̄j½j0ðyÞ;ΦðxÞ�j0i ¼ iρ0δ3ðy − xÞ; ð47Þ

and it follows that

h0̄j½Q;ΦðxÞ�j0i ¼ iThΦi ¼ iρ0: ð48Þ

If there exists a nontrivial vacuum hΦi, which is not
invariant under the transformation generated by T, then
ρ0 ≠ 0. We remark that, for a non-Hermitian theory, hΦi0 ¼
ThΦi is a vacuum state of the transformed Lagrangian, e.g.,
for the transformations in Eq. (15), hΦi0 is the vacuum state
of the Lagrangian in Eq. (16). The latter fact does not,
however, affect the derivation of the Goldstone theorem.
Returning to the expressions in Eq. (43), we haveX

N

ð2πÞ4δ4ðpN − pÞh0̄jjνð0ÞjNihN̄jΦð0Þj0i

¼ 2πiθðþp0Þpνρ0δðp2Þ: ð49Þ

The right-hand side is nonvanishing when p2 ¼ 0, pro-
vided pν ≠ 0ν. It follows that there must exist a state jNi

with pN ¼ p, such that p2
N ¼ 0, i.e., there must exist a

massless state.
We emphasize that this proof of the existence of a

massless Goldstone mode relies on the existence of a
conserved current and not on invariance of the Lagrangian.
Hence, the Goldstone theorem persists for the non-
Hermitian theory, and we give further details for our
specific model in what follows.

B. Spontaneous symmetry breaking

In order to study spontaneous symmetry breaking, we
consider the Lagrangian (1) with Uint ¼ gjϕ1j4=4 and
change the sign of the m2

1 mass term, i.e.,

L ¼ ∂νϕ
⋆
1∂νϕ1 þ ∂νϕ

⋆
2∂νϕ2 þm2

1jϕ1j2 −m2
2jϕ2j2

− μ2ðϕ⋆
1ϕ2 − ϕ⋆

2ϕ1Þ −
g
4
jϕ1j4; ð50Þ

which allows for a nontrivial vacuum structure: the vacuum
expectation values are the solutions of the equations

δU
δϕ⋆

1

¼ g
2
jϕ1j2ϕ1 −m2

1ϕ1 þ μ2ϕ2 ¼ 0; ð51aÞ

δU
δϕ⋆

2

¼ m2
2ϕ2 − μ2ϕ1 ¼ 0; ð51bÞ

conditions similar to the equations of motion. These
equations are invariant under a phase transformation acting
identically on both the fields. The nontrivial solutions to
these equations are given by

�
v1
v2

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m2

1m
2
2 − μ4

gm2
2

s  
1
μ2

m2
2

!
eiϵ: ð52Þ

For a fixed phase ϵ, we can express the fields as fluctuations
around these vacua,
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ϕ1 ¼ v1 þ ϕ̂1 and ϕ2 ¼ v2 þ ϕ̂2: ð53Þ

Expressing the equations of motion (9) in terms of the field
fluctuations ϕ̂1;2 gives

□

0
BBBBB@

ϕ̂1

ϕ̂⋆
1

ϕ̂2

ϕ̂⋆
2

1
CCCCCA ¼

0
BBBBB@

ðm2
1
m2

2
−2μ4Þ

m2
2

ðm2
1
m2

2
−μ4Þ

m2
2

μ2 0

ðm2
1
m2

2
−μ4Þ

m2
2

ðm2
1
m2

2
−2μ4Þ

m2
2

0 μ2

−μ2 0 m2
2 0

0 −μ2 0 m2
2

1
CCCCCA

0
BBBBB@

ϕ̂1

ϕ̂⋆
1

ϕ̂2

ϕ̂⋆
2

1
CCCCCA

þ � � � ; ð54Þ

where the dots represent terms of higher order in ϕ̂1 and ϕ̂
⋆
1 .

It is easy to check that the determinant of this mass
matrix is zero, and we therefore have the anticipated
Goldstone mode. We remark that, while the explicit forms
of the eigenmodes depend on the choice of the equations of
motion, the eigenspectrum is unique.
The mass matrix has a single zero eigenvalue, and the

corresponding (Goldstone) mode is

G1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m4

2

m4
2 þ μ4

s �
Imϕ̂1 −

μ2

m2
2

Imϕ̂2

�
: ð55Þ

For completeness, we list the other eigenvalues and their
corresponding eigenmodes:

λ2 ¼ m2
2 −

μ4

m2
2

; ð56aÞ

λ3 ¼
1

2m2
2

�
2m2

1m
2
2 − 3μ4 þm4

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m2

1m
2
2 − 3μ4 −m4

2Þ2 − 4μ4m4
2

q �
; ð56bÞ

λ4 ¼
1

2m2
2

�
2m2

1m
2
2 − 3μ4 þm4

2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m2

1m
2
2 − 3μ4 −m4

2Þ2 − 4μ4m4
2

q �
; ð56cÞ

with

G2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m4

2

m4
2 þ μ4

s �
Imϕ̂2 −

μ2

m2
2

Imϕ̂1

�
; ð57aÞ

G3 ¼
ffiffiffi
2

p �
1þ

�
μ2

λ3 −m2
2

�
2
�
−1=2

�
Reϕ̂1 þ

�
μ2

λ3 −m2
2

�
Reϕ̂2

�
; ð57bÞ

G4 ¼
ffiffiffi
2

p �
1þ

�
λ4 −m2

2

μ2

�
2
�
−1=2

�
Reϕ̂2 þ

�
λ4 −m2

2

μ2

�
Reϕ̂1

�
: ð57cÞ

The form of the Goldstone mode could also have been
anticipated from the conserved current itself. The conser-
vation equation yields

∂νjν ¼ i∂ν½ðϕ⋆
1∂νϕ1 −ϕ1∂νϕ⋆

1Þ− ðϕ⋆
2∂νϕ2 −ϕ2∂νϕ⋆

2Þ� ¼ 0:

ð58Þ
Expanding this to first order in the fluctuations [setting the
constant phase in the vacuum expectation values (vev’s) v1
and v2 to zero] gives

∂νjν ≃ −2ðv1□Imϕ̂1 − v2□Imϕ̂2Þ; ð59Þ
and we see that the Goldstone mode is

G1 ∝ Imϕ̂1 −
μ2

m2
2

Imϕ̂2: ð60Þ

Finally, we note that for our choice of equations of
motion, the Goldstone mode is in fact the left eigen-
vector of the mass matrix (as dictated by the conserved
current). Choosing the alternative definition of the
variational procedure, the Goldstone mode would
instead correspond to the right eigenvector of the mass
matrix in Eq. (54), which is distinct and related to the
previous one by PT conjugation. Note that this is
consistent with PT transformation superseding
Hermitian conjugation for non-Hermitian theories and
that the alternative definitions are equivalent.

C. The Goldstone mode to one-loop order

The full tree-level potential is given in terms of the fields
ϕ̂1 and ϕ̂2 as
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Uð0Þ ¼ M2
1jϕ̂1j2 þm2

2ϕ̂2ðϕ̂⋆
2 þMcÞ

þ μ2ðϕ̂2ϕ̂
⋆
1 − ϕ̂1ðϕ̂⋆

2 þMcÞÞ

þM2
a

2
ðϕ̂2

1 þ ðϕ̂⋆
1Þ2Þ þ

Mb

2
jϕ̂1j2ðϕ̂⋆

1 þ ϕ̂1Þ þ
g
4
jϕ̂1j4;
ð61Þ

where we use the notation

M2
1 ¼

m2
1m

2
2 − 2μ4

m2
2

; ð62aÞ

M2
a ¼

m2
1m

2
2 − μ4

m2
2

¼ M2
1 þ

μ4

m2
2

; ð62bÞ

Mb ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m2

1m
2
2 − μ4

gm2
2

s
; ð62cÞ

Mc ¼
2μ2

m2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m2

1m
2
2 − μ4

gm2
2

s
: ð62dÞ

The linear terms in the potential are a consequence of the
non-Hermitian nature of the system. At one-loop level,

these couplings are obtained by substituting this potential
into Eq. (35) and are given by

gð1Þ ¼ g −
5g2

16π2
ln

�
Λ
m

�
; ð63aÞ

m2ð1Þ
2 ¼ m2

2; ð63bÞ

μ2ð1Þ ¼ μ2; ð63cÞ

M2ð1Þ
1 ¼ M2

1 þ
gΛ2

16π2
þOðln ðΛ=mÞÞ; ð63dÞ

M2ð1Þ
a ¼ M2

a −
1

16π2
ð2M2

b þ gM2
aÞ ln

�
Λ
m

�
; ð63eÞ

Mð1Þ
b ¼ Mb −

5gMb

16π2
ln

�
Λ
m

�
; ð63fÞ

where finite terms are again omitted. A linear term is also
generated, which is given by

Mb
Λ2

16π2
ðϕ̂⋆

1 þ ϕ̂1Þ; ð64Þ

so that the one-loop potential in terms of ϕ̂1, ϕ̂2 becomes

Uð1Þ ¼ Mb
Λ2

16π2
ðϕ̂1 þ ϕ̂⋆

1Þ þm2
2Mcϕ̂2 − μ2Mcϕ̂1 þ

�
M2

1 þ
gΛ2

16π2

�
jϕ̂1j2 þm2

2jϕ̂2j2

þ μ2ðϕ̂2ϕ̂
⋆
1 − ϕ̂1ϕ̂

⋆
2Þ þ

�
M2

a

2
−
�
M2

b þ
gM2

a

2

�
lnðΛmÞ
16π2

�
ðϕ̂2

1 þ ðϕ̂⋆
1Þ2Þ

þMb

2

�
1 −

5g lnðΛmÞ
16π2

�
jϕ̂1j2ðϕ̂⋆

1 þ ϕ̂1Þ þ
g
4

�
1 −

5g lnðΛmÞ
16π2

�
jϕ̂1j4: ð65Þ

To show the existence of the Goldstone mode to one-loop order, we should express the fields in terms of fluctuations around
the new shifted vacuum. From this, we can find the one-loop-corrected vev’s

 
vð1Þ1

vð1Þ2

!
¼
�
1 −

g
2M2

a

Λ2

16π2

��
v1
v2

�
: ð66Þ

Expressing the one-loop potential in terms of the fields fluctuating around this minimum

ϕ1 ¼ vð1Þ1 þ ϕ̂ð1Þ
1 and ϕ2 ¼ vð1Þ2 þ ϕ̂ð1Þ

2 ð67Þ

gives equations of motion of the form

□

0
BBBBBB@

ϕ̂ð1Þ
1

ðϕ̂ð1Þ
1 Þ⋆

ϕ̂ð1Þ
2

ðϕ̂ð1Þ
2 Þ⋆

1
CCCCCCA

¼

0
BBBBB@

M2
1 −

gΛ2

16π2
M2

a −
gΛ2

16π2
μ2 0

M2
a −

gΛ2

16π2
M2

1 −
gΛ2

16π2
0 μ2

−μ2 0 m2
2 0

0 −μ2 0 m2
2

1
CCCCCA

0
BBBBBB@

ϕ̂ð1Þ
1

ðϕ̂ð1Þ
1 Þ⋆

ϕ̂ð1Þ
2

ðϕ̂ð1Þ
2 Þ⋆

1
CCCCCCA

þ � � � : ð68Þ
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The mass matrix again has determinant zero, showing that
we still have a Goldstone mode at one-loop order, which is
given by

Gð1Þ
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m4

2

m4
2 þ μ4

s �
Imϕ̂ð1Þ

1 −
μ2

m2
2

Imϕ̂ð1Þ
2

�
: ð69Þ

We see that the one-loop Goldstone mode is related to the
Goldstone mode at tree level; the one-loop mode is
obtained from the tree-level one simply by making the
replacement ϕ̂1, ϕ̂2 → ϕ̂ð1Þ

1 , ϕ̂ð1Þ
2 .

V. SUMMARY AND OPEN QUESTIONS

The nature of spontaneous symmetry breaking is a
fascinating and deep issue in quantum field theory. In
conventional Hermitian QFT, it is well understood how the
spontaneous breaking of a global symmetry is accompanied
by the appearance of amassless scalar Goldstone boson. The
counterpart of the Goldstone theorem in PT -symmetric
QFT presented certain puzzles and has not been known until
now. The central issue was that, although PT -symmetric
theories may contain conserved currents, there are no
corresponding symmetries of the Lagrangian: Noether’s
theorem does not apply [9] in the familiar sense. One could
then wonder whether or not the existence of a conserved
current would be sufficient to guarantee the appearance of a
Goldstone boson.
We have shown in this paper that the answer is yes:

current conservation still guarantees the existence of a
massless boson. We have demonstrated this formally
and also at the tree and one-loop levels in a simple
PT -symmetric QFT with two complex scalar fields.
In order to investigate the Goldstone theorem in a

PT -symmetric theory, we studied the formulation of the
path integral and its quantization in non-Hermitian field
QFT. Since aPT -symmetric theory possesses a complete set
of real energy eigenstates, its path integral contains saddle
points about which the path integration of quantum fluctua-
tions is well defined, as long as one considers PT -conjugate
pairs of fields instead of Hermitian-conjugate pairs.
The analysis in this paper can be regarded as the first step

in an exploration of whether there exists a consistent PT -
symmetric generalization of the Standard Model and other
gauge theories. In this connection, the absence of a
generalization to non-Hermitian theories of Noether’s
theorem is a key issue. We emphasize again that, in these
theories, the existence of a conserved current does not

imply the existence of a corresponding symmetry. How do
gauge theories react to this situation and, in particular, do
they possess a “Higgs phase”? We plan to address these
issues in future work.
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APPENDIX: RUNNING COUPLINGS

The full bare potential is

Uð0Þ ¼ m2
1jϕ1j2 þm2

2jϕ2j2 þ μ2ðϕ⋆
1ϕ2 − ϕ⋆

2ϕ1Þ
þ g1

4
jϕ1j4 þ

g2
4
jϕ2j4 þ λjϕ1ϕ2j2

þ α

4
ððϕ⋆

1ϕ2Þ2 þ ðϕ⋆
2ϕ1Þ2Þ

þ 1

2
ðβ1jϕ1j2 þ β2jϕ2j2Þðϕ⋆

1ϕ2 − ϕ⋆
2ϕ1Þ; ðA1Þ

and the one-loop 1PI potential is given by

Uð1Þ ¼ Uð0Þ þ 1

2Vð4Þ STr ln S
ð2Þ
E ; ðA2Þ

where

Sð2ÞE ¼

0
BBBBBB@

p2 þUð0Þ
11⋆ Uð0Þ

11 Uð0Þ
12⋆ Uð0Þ

12

Uð0Þ
1⋆1⋆ p2 þUð0Þ

1⋆1 Uð0Þ
1⋆2⋆ Uð0Þ

1⋆2

Uð0Þ
21⋆ Uð0Þ

21 p2 þUð0Þ
22⋆ Uð0Þ

22

Uð0Þ
2⋆1⋆ Uð0Þ

2⋆1 Uð0Þ
2⋆2⋆ p2 þUð0Þ

2⋆2

1
CCCCCCA
;

ðA3Þ

with

Uið⋆Þj½⋆� ¼
δ2U

δϕð⋆Þ
i δϕ½⋆�

j

: ðA4Þ

We have then that

1

p8
det Sð2ÞE ¼ 1þ 2

p2
ðUð0Þ

11⋆ þ Uð0Þ
22⋆Þ þ

1

p4
ððUð0Þ

11⋆Þ2 þ ðUð0Þ
22⋆Þ2 þ 4Uð0Þ

11⋆U
ð0Þ
22⋆ − Uð0Þ

11 U
ð0Þ
1⋆1⋆ −Uð0Þ

22 U
ð0Þ
2⋆2⋆ − 2Uð0Þ

12 U
ð0Þ
1⋆2⋆

− 2Uð0Þ
12⋆U

ð0Þ
1⋆2Þ þO

�
1

p6

�
; ðA5Þ
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such that, up to finite terms,

1

2Vð4Þ STr ln S
ð2Þ
E ¼ 1

8π2

Z
dppðUð0Þ

11⋆ þ Uð0Þ
22⋆Þ

−
Z

dp
16π2p

ððUð0Þ
11⋆Þ2 þ ðUð0Þ

22⋆Þ2 þUð0Þ
11 U

ð0Þ
1⋆1⋆ þ Uð0Þ

22 U
ð0Þ
2⋆2⋆ þ 2Uð0Þ

12 U
ð0Þ
1⋆2⋆ þ 2Uð0Þ

12⋆U
ð0Þ
1⋆2Þ; ðA6Þ

and substituting the potential (A1) into this expression gives the one-loop corrections (37).
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