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Ensembles of magnetic defects represent quantum variables that have been detected and extensively
explored in lattice SUðNÞ pure Yang-Mills theory. They successfully explain many properties of
confinement and are strongly believed to capture the (infrared) path-integral measure. In this work, we
initially motivate the presence of magnetic non-Abelian degrees of freedom in these ensembles. Next, we
consider a simple Gaussian model to account for fluctuations. In this case, both center vortices and
monopoles become relevant degrees in Wilson loop averages. These physical inputs are then implemented
in an ensemble of percolating center vortices in four dimensions by proposing a measure to compute center-
element averages. The introduction of phenomenological information such as monopole tension, stiffness,
and fusion leads to an effective YMHmodel with adjoint Higgs fields. If monopoles also condense, then the
gauge group undergoes SUðNÞ → ZðNÞ SSB. This pattern has been proposed as a strong candidate to
describe confinement. In the presence of external quarks, these models are known to be dominated by
classical solutions, formed by flux tubes with N-ality as well as by confined dual monopoles (gluons).
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I. INTRODUCTION

Lattice simulations have consistently established that a
confining linear potential between a fundamental quark and
antiquark is generated in the infrared regime of pure SUðNÞ
Yang-Mills theory [1]. For other quark representations, the
asymptotic potential depends solely on how the center of
SUðNÞ is realized [2]. This is one of the properties that favors
a quark confinement mechanism based on an ensemble of
center vortices [3–6]. When the quark Wilson loop is linked
by a center vortex, it gains a center element. Thus, in the
percolating phase, the area law obtained naturally displays
N-ality. This idea has gained momentum over the last many
years, settling these degrees as essential infrared quantum
variables to capture the path-integralmeasure [7–17]. On the
other hand, Monte Carlo simulations also show subleading
contributions that coincide with universal Lüscher correc-
tions due to the transverse (quantum) fluctuations of a string
[18]. Moreover, the action and field distributions measured
around the confining string are nontrivial, revealing a
chromoelectric flux tube [19–24]. While center vortices
are essential to describe an area law with N-ality, Lüscher
terms and flux tubes have not yet been observed in these
ensembles.

In contrast, dual superconductivity [25–30] is suitable to
accomodate stringlike behavior. The idea of Abelian
projection [25] and associated ensembles of monopole
defects were analyzed in the lattice [31–33]. The under-
standing of confinement in compact QED, as well as the
manner through which the proliferation of monopoles
induce observable surfaces attached to a quark loop, was
obtained in Refs. [34,35]. In addition, the profile of the
confining Yang-Mills flux tube has been fitted using vortex
solutions in effective Abelian Higgs models [19–24].
However, Abelian scenarios cannot describe N-ality. For
example, when applied to double Wilson loops in SUð2Þ,
they lead to the sum of areas, instead of the difference-in-
areas law observed in the lattice and accommodated by
center vortices [36].
Based on the complementary properties of center vor-

tices and monopole defects, it is natural to infer that an
appropriate combination of both could capture the whole
physical picture. Indeed, in lattice calculations of pure
SUðNÞ Yang-Mills (YM) theory based on center gauges,
both center vortices and attached monopoles were detected,
forming chains. In fact, they account for 97% of the cases
[12]. In the continuum, the description and topological
aspects of these arrays, in which the Lie algebra flux
orientation changes at the monopoles, were worked out in
Ref. [16]. In Abelian gauges, the possibility that integrating
off-diagonal fluctuations could lead to collimated chains
was suggested in Ref. [37], and references therein.
Another scenario to accommodate N-ality has been

proposed at the level of possible dual descriptions. The
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properties of SUðNÞ YM confining strings have been
sought in classical topological solutions by exploring a
variety of models. Flux tubes with N-ality and confined
dual monopoles are known to exist in SUðNÞ Yang-Mills-
Higgs (YMH) models when the gauge group is sponta-
neously broken to ZðNÞ [38–45]. Another possibility to
accommodate these states is provided by nonsupersym-
metric models with N fundamental Higgs fields [46],
SUðNÞ × Uð1Þ gauge group, and a color-flavor locking
phase that equips flux tubes and dual monopoles with a
non-Abelian moduli space [47–49]. The connection of
color-flavor locking with monopole condensates that fit
into the Goddard-Nyuts-Olive classification scheme [50]
was extensively analyzed, mainly in a supersymmetric
context. The present status can be found in Ref. [51]. A
color-flavor locking phase could also be present in SUðNÞ
YMH models with N2 − 1 (real) adjoint Higgs fields
[52–54]. Confined dual monopoles were interpreted as
gluons in Refs. [46,55,56] (see also [52,53]).
The aim of this work is to combine the different ideas

into a possible unified mechanism. Chains were visualized
as magnetic defects of a local color frame in Ref. [57].
Their relation to the observability of surfaces attached to
the quark loop was discussed in Ref. [58]. In Ref. [59], the
derivation of a three-dimensional effective field model for
chains made it possible to relate the monopole (instanton)
component with the ZðNÞ-symmetric terms in the ’t Hooft
model [3]. Therefore, when center vortices condense,
monopoles are essential to drive magnetic ZðNÞ SSB
and generate an observable domain wall with N-ality,
attached to the quark loop. A generalized non-Abelian
model to describe phases with different vortex pairings was
introduced in Ref. [60]. The relation between four-dimen-
sional ensembles of monopoles that carry adjoint charges
and models based on a set of adjoint Higgs fields was
suggested in Ref. [52]. This idea was further elaborated in
Ref. [61], where we applied polymer techniques to an
ensemble of worldlines with non-Abelian degrees of free-
dom (d.o.f.)
In four dimensions, while monopoles are naturally

described by effective field models [62–65], the consid-
eration of center vortices would be related to string field
theories, which poses important difficulties. We suggest
that when center vortices percolate, the effect of linking
numbers could be captured in an effective field theory. This
is motivated by the low-energy effective description of
higher dimensional defect condensates [66–69], the results
of a recent study about ensembles of center vortices in three
dimensions [70], and a simple model based on a smoothed
Gaussian Wilson loop.
In Secs. II and III, based on a gauge fixing in the

continuum [71] that is motivated by lattice center gauges
[72–77], we show the presence of non-Abelian d.o.f. in
configurations with center vortices and monopole defects.
In Sec. IV, relying on the Petrov-Diakonov representation,

we present a simple example in which center vortices and
monopoles with non-Abelian d.o.f. have a combined effect
on Wilson loop averages. An ensemble measure that mixes
percolating center vortices and chains is then proposed in
Sec. V. In Secs. VI and VII, fusion rules between monopole
adjoint lines are associated with effective Feynman dia-
grams, and the ensemble partition function is rewritten in
terms of a dual SUðNÞ YMH model. Finally, in Sec. VIII,
we present our conclusions.
Throughout this work, we shall use the internal product

between a pair of Lie algebra elements X; Y ∈ suðNÞ

ðX; YÞ ¼ trðAdðXÞAdðYÞÞ; ð1Þ

where Adð·Þ refers to the adjoint representation, and shall
denote ðX;XÞ≡ ðXÞ2. The main properties of this product
are the cyclic and group invariances, which are a conse-
quence of the defining property of a representation,

ðX;½Y;Z�Þ¼ðZ;½X;Y�Þ; ðUXU−1;UYU−1Þ¼ðX;YÞ; ð2Þ

Adð½X; Y�Þ ¼ ½AdðXÞ;AdðYÞ�;
AdðUXU−1Þ ¼ RðUÞAdðXÞR−1ðUÞ: ð3Þ

RðUÞ ¼ AdðUÞ is the DAd ×DAd matrix that represents U
in the adjoint (DAd ¼ N2 − 1). We shall also adopt an
orthonormal Lie basis TA, A ¼ 1;…; N2 − 1,

ðTA; TBÞ ¼ δAB; ½TA; TB� ¼ ifABCTC; ð4Þ

AdðTAÞjBC ¼ −ifABC; fABCfDBC ¼ δAD: ð5Þ

Matrices such as U, with no explicit reference to the irrep,
are understood to be in the fundamental representation
of SUðNÞ.

II. DETECTING MAGNETIC DEFECTS
IN THE CONTINUUM

In the lattice, gauge fixings designed to avoid the Gribov
problem and detect center vortices were proposed in
Refs. [72–77] (for a review, see Ref. [78]). They are based
on the lowest eigenfunctions ðf1; f2;…Þ of the adjoint
covariant Laplacian,

DμDμðAÞfI ¼ λIfI; DμðAÞ ¼ ∂μ − i½Aμ; �; ð6Þ

using them to fix a prescribed orientation in color space.
For example, in the direct Laplacian center gauge [76,77], a
map AdðSÞ is constructed in a covariant way, that is, under
a chromoelectric gauge transformation AUe

μ , the associated
map is AdðUeSÞ. For N ¼ 2, this is obtained from the polar
decomposition of the real 3 × 3 matrix formed by the color
entries of ðf1; f2; f3Þ. Since this procedure is based on the
lowest eigenfunctions, it cannot be directly implemented in
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the continuum. However, in Ref. [71], we introduced a
modified version where the assignment

Aμ → fI → AdðSÞ ð7Þ

is based on the adjoint fields fI ∈ suðNÞ that solve a set of
coupled differential equations

δSaux
δfI

¼ DμDμðAÞfI þ � � � ¼ 0: ð8Þ

In order for ðf1; f2;…Þ to be strongly correlated with
AdðSÞ, the auxiliary action Saux possesses SUðNÞ → ZðNÞ
SSB. Considering N2 − 1 fields, I ¼ 1;…; N2 − 1, the
desired map was extracted from a polar decomposition
of the tuple ðf1; f2;…Þ in terms of “modulus” ðq1; q2;…Þ
and “phase” S-variables,

fI ¼ SqIS−1;
X
I

½qI; TI� ¼ 0: ð9Þ

The last condition amounts to looking for the rotated fI’s
that form the tuple which minimizes

X
I

ðqI − vTIÞ2;

where ðvT1; vT2;…Þ is a prescribed point in the vacuum
manifold of Saux. For SUð2Þ, this makes contact with the
polar decomposition of a real 3 × 3 matrix. Again, because
of covariance, for the gauge transformed field

AUe
μ ¼ UeAμU−1

e þ iUe∂μU−1
e ;

the extracted phase is UeS,

AUe
μ → UefIU−1

e → AdðUeSÞ ¼ AdðUeÞAdðSÞ: ð10Þ

Although Aμ is a well-defined variable, S could contain
defects. Therefore, the equivalence relation given by

S ∼ S0 if S0 ¼ UeS; regular Ue; ð11Þ

induces a nontrivial partition of mappings into classes [S],
and of configurations into sectors VðSÞ: two variables Aμ,
A0

μ are in the same sector if they are mapped to S, S0 that are
equivalent in the sense given by Eq. (11). This should not
be confused with the equivalence relation

Aμ ∼A0
μ if A0

μ ¼ AUe
μ ; regular Ue: ð12Þ

In each sector VðSÞ, there are infinitely many physically
inequivalent configurations. For example, there is a per-
turbative sector formed by those Pμ mapped to a regular S.
Other sectors will be related to mappings with different

numbers, types, and locations of defects. Equivalence
classes of mappings will be denoted by ½S0�, where the
label S0 refers to a choice of representative. The gauge-
fixed variables in ½S0� satisfy

Aμ → AdðS0Þ:

In the perturbative sector, S0 can be chosen as the identity
map, and the gauge-fixed perturbative variables satisfy,
Pμ → I. The total partition function for the YM theory

SYM ¼
Z

d4x
1

4g2e
ðFμνðAÞÞ2;

FμνðAÞ ¼ ∂μAν − ∂νAμ − i½Aμ;Aν�; ð13Þ

is a sum over sectors ZYM ¼ P
S0Z

ðS0Þ
YM , where ZðS0Þ

YM are the
gauge-fixed partial contributions. They are obtained from
the path integral over VðSÞ, S ¼ UeS0, by using an identity
to introduce the equations of motion (8),

1 ¼
Z

½DfI� δ
�
δSaux
δfI

�
det

�
δ2Saux
δfIδfJ

�
; ð14Þ

then changing to polar variables qI, and finally factorizing
the regular part Ue by means of a gauge transformation. On
each sector, there is a BRST symmetry that transforms Aμ,
qI , auxiliary fields, and ghosts. The latter can be grouped as
bI , cI, needed to exponentiate the constraint and determi-
nant in Eq. (14), and b, c, originated from the pure modulus
condition in Eq. (9). The BRST symmetry has a sector-
independent algebraic structure that cannot be extended
globally, due to specific regularity conditions in each sector
[71]. This is a welcome property as each BRST can be used
to show that partial contributions to observables do not
depend on gauge parameters, but not to conclude that the
asymptotic space of states is formed by gluons.

III. MAGNETIC DEFECTS AND NON-ABELIAN
DEGREES OF FREEDOM

Configurations Aμ ∈ VðSÞ are created on top of pertur-
bative (topologically) trivial ones, Pμ ∈ VðIÞ, by means of
a singular transformation [3]

AdðAμÞ ¼ RðSÞAdðPμÞRðSÞ−1 þ iRðSÞ∂μRðSÞ−1
¼ RðSÞAdðPμ − ZμÞRðSÞ−1; ð15Þ

RðSÞ ¼ AdðSÞ; AdðZμÞ ¼ iRðSÞ−1∂μRðSÞ: ð16Þ

The use of the adjoint representation AdðSÞ eliminates
unphysical terms, localized on three-volumes, that would
be present when computing

SPμS−1 þ iS∂μS−1: ð17Þ
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An equivalent procedure to get rid of these terms was
introduced in Ref. [14]. Besides the usual covariant field
strength FμνðAÞ, it will be useful to define achromoelectric
gauge-invariant object,

GμνðAÞ ¼ S−1FμνðAÞS;
ðGμνðAÞ; TAÞ ¼ ðFμνðAÞ; nAÞ; nA ¼ STAS−1: ð18Þ

Magnetic defects are manifested in field strengths through
the commutators of ordinary derivatives ½∂μ; ∂ν�, which are
nontrivial when applied on singular mappings,

FμνðAÞ ¼ SðFμνðPÞ − FμνðZÞÞS−1;
GμνðAÞ ¼ FμνðPÞ − FμνðZÞ; ð19Þ

AdðFμνðZÞÞ ¼ iRðSÞ−1½∂μ; ∂ν�RðSÞ: ð20Þ

A. Chains

Let us briefly review some examples. A center vortex
world sheet Σ can be created by

S̄ ¼ eiχβ⃗·T⃗ ; β⃗ · T⃗ ≡ β⃗jqTq; β⃗ ¼ 2Nw⃗; ð21Þ

where χ, ∂2χ ¼ 0, is a multivalued phase that changes
by 2π when going around a path linking Σ, and Tq,
q ¼ 1;…; N − 1, are the Cartan generators. The magnetic
weight β⃗ is 2N times a weight w⃗ of suðNÞ, see Eq. (A12).
The simplest case corresponds to the fundamental repre-
sentation w⃗ ¼ w⃗i, i ¼ 1;…; N [44], which will be consid-
ered from now on. In chains, pairs of center vortex branches
are matched by monopoles [16,52,57]. In this case, we can
write

S̄ ¼ eiχβ⃗·T⃗W; ð22Þ

where the single-valued W creates a closed monopole
worldline Cm on Σ. For example, a pair of semi-infinite
center vortices is created by using χ ¼ φ, W ¼ eiθ

ffiffiffi
N

p
Tα ,

where φ, θ are polar angles centered at the monopole, and
Tα, labeled by the adjoint weight (root) α⃗ ¼ w⃗ − w⃗0, is a
combination of root vectors [cf. Eq. (A14)]. Since the map
WðπÞ is a Weyl transformation,

WðπÞ−1β⃗ · T⃗WðπÞ ¼ β⃗0 · T⃗; ð23Þ

it interpolates between two different behaviors, S̄ ∼ eiφβ⃗·T⃗

and S̄ ∼ eiπ
ffiffiffi
N

p
Tαeiφβ⃗

0·T⃗ , around θ ¼ 0 and θ ¼ π, respec-
tively. The factor eiπ

ffiffiffi
N

p
Tα has no effect on gauge-invariant

quantities, so that the branches are along β⃗ · T⃗ and β⃗0 · T⃗.
Indeed, the contribution to Gμν is [14,16]

−F μνðZ̄Þ ¼ 2πβ⃗ · T⃗
Z

d2σμν δð4Þðx − yðσ1; σ2ÞÞ

þ 2πβ⃗0 · T⃗
Z

d2σμν δð4Þðx − y0ðσ1; σ2ÞÞ

F μνðZ̄Þ ¼
1

2
ϵμνρσFρσðZ̄Þ;

d2σμν ¼ dσ1dσ2

�∂yμ
∂σ1

∂yν
∂σ2 −

∂yμ
∂σ2

∂yν
∂σ1

�
; ð24Þ

where the integrals are done over branches with common
border at Cm and whose union is Σ.

B. Chains with monopole fusion

In order to discuss possible monopole matchings, let us
consider a simple example forN ≥ 3. At a given time t, on a
sectionR3 of the four-dimensional Euclidean spacetime, let
three points be placed on a line at positions xA, xB, xC (in
that order). The map

S̄ ¼ eiφβ⃗1·T⃗Wðγ; γ0Þ; Wðγ; γ0Þ ¼ W12ðγÞW13ðγ0Þ;
WijðθÞ ¼ eiθ

ffiffiffi
N

p
Tαij ; ð25Þ

where γ (resp. γ0) is the angle that xA, xB (resp. xB, xC)
subtend from the observation point x, describes three
monopoles joined by center vortices. In effect, close to
the line, to the left of xA and to the right of xC, γ and γ0 tend
to zero, i.e., S̄ ∼ eiφβ⃗1·T⃗ . The same behavior is verified away
from the three points. When the segments between xA, xB
(γ → π, γ0 → 0) and between xB, xC (γ → 0, γ0 → π) are
approached, we obtain

S̄ ∼ eiφβ⃗1·T⃗W12ðπÞ ¼ W12ðπÞeiφβ⃗2·T⃗ and

S̄ ∼ eiφβ⃗1·T⃗W13ðπÞ ¼ W13ðπÞeiφβ⃗3·T⃗ :
Hence, S̄ describes center vortex world surfaces meeting at
three worldlines xAðtÞ, xBðtÞ, xCðtÞ, with common end-
points, that carry adjoint weights

δ⃗1 ¼ w⃗1− w⃗2; δ⃗2 ¼ w⃗2− w⃗3; δ⃗3 ¼ w⃗3− w⃗1: ð26Þ
This array describes a creation-annihilation process with
the fusion rule δ⃗1 þ δ⃗2 þ δ⃗3 ¼ 0. Four monopole world-
lines can be fused in a similar way. In the general case, the
field tensor is a sum over open-surface contributions

−F μνðZ̄Þ ¼ 2π
X
j

β⃗j · T⃗
Z

d2σjμν δð4Þðx − yjðσ1; σ2ÞÞ:

C. Non-Abelian d.o.f.

Consider a label S0 in the gauge-fixed partial contribu-

tion ZðS0Þ
YM . The left action S0 → UeS0 simply corresponds to

a chromoelectric gauge transformation. On the other hand,
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the right action S0 → S0Ũ−1 generally leads to a new class
½S0Ũ−1� ≠ ½S0�. Of course, starting with perturbative con-
figurations (S0 ¼ I) no new class is generated, ½Ũ−1� ¼ ½I�.
In the other cases, the transformed labels represent a
continuum of different sectors VðS0Ũ−1Þ modulo the
equivalence relation in Eq. (11). Now, as Ũ is regular, it
cannot change the number nor the location of magnetic
defects. Then, for each possible distribution of defects,
there is a continuum of partial contributions. This leads to
an important observation: defects possess physical non-
Abelian d.o.f. Their relevance can be attributed to the fact
that FμνðZÞ, the second term in the chromoelectric gauge-
invariant tensor Gμν, is generally modified. For the above-
mentioned examples, we have

FμνðZÞ ¼ ŨFμνðZ̄ÞŨ−1; S ¼ S̄Ũ−1: ð27Þ

DμðL̃Þ ¼ ∂μ − i½L̃μ; �; L̃μ ¼ iŨ∂μŨ−1: ð28Þ

Thus, for a chain and the example with fusion, the
monopole currents are, respectively,

−DνðL̃ÞF μνðZÞ¼2π2NŨ α⃗ ·T⃗Ũ−1
I
Cm

dyμ δð4Þðx−yÞ; ð29Þ

−DνðL̃ÞF μνðZÞ¼ 2π2N
X
j

Ũ δ⃗j · T⃗Ũ−1
Z
γj

dyjμ δð4Þðx−yjÞ;
X
j

δ⃗j¼ 0; ð30Þ

which are covariantly conserved. Note also that the second
term in the usual field strength continues to be along the
Cartan sector, SFμνðZÞS−1 ¼ F μνðZ̄Þ [cf. Eqs. (19), (20)].

IV. GAUSSIAN GAUGE-INVARIANT SMOOTHING

The Wilson loop for quarks in an irreducible D-
dimensional representation D is

We½A� ¼ 1

D
tr DðPfei

H
Ce

dxμAμðxÞgÞ: ð31Þ

When thin configurations are considered, i.e., Pμ ¼ 0 in
Eqs. (15), (17), the result for a chain coincides with that for
a center vortex placed at the same location. The non-
Abelian d.o.f. do not play a role either. Indeed, the Wilson
loop is given by

zðCeÞ ¼
1

D
tr DðSfS−1i Þ; ð32Þ

S¼ eiχβ⃗·T⃗WŨ−1; SfS−1i ¼ eiðχf−χiÞβ⃗·T⃗ ¼ ei2πβ⃗·T⃗LðCe;ΣÞ:

ð33Þ

This only depends on the linking number LðCe;ΣÞ between
Ce andΣ. However, the ensemblemeasurewould in principle
begenerated by path-integrating general field fluctuationsPμ

around magnetic defects, which might differentiate between
center vortices and chains. Answering if this is the case in the
YMcontext is a difficult task. Instead, in this sectionwe shall
discuss a simple example to get some insight about the
possible effects.

A. Simple Gaussian model

For general configurations in VðSÞ [cf. Eqs. (15), (17)],
we have

We½A� ¼ We½P�zðCeÞ: ð34Þ
The linking number can be equated to the intersection
number IðSðCeÞ;ΣÞ between SðCeÞ (a surface whose border
is Ce) and Σ,

IðSðCeÞ;ΣÞ ¼
1

2

Z
d2σ̃μν

Z
d2σμν δð4Þðwðs; τÞ − yðσ1; σ2ÞÞ;

ð35Þ

d2σ̃μν ¼
1

2
ϵμναβdτds

�∂wα

∂τ
∂wβ

∂s −
∂wα

∂s
∂wβ

∂τ
�
; ð36Þ

where wðs; τÞ is a parametrization of SðCeÞ [14]. Since both
vortex orientations will be taken into account, the anti-
fundamental weights can be disregarded. The topological
contribution may be written in terms of F μνðZÞ as follows:
(i) consider a general configuration S̄ with defects such that
F μνðZ̄Þ is along the Cartan sector; (ii) note that if a chain
links Ce then one of the associated vortex branches crosses
SðCeÞ; and (iii) use that any magnetic weight β⃗i satisfies

Dðei2πβ⃗i·T⃗Þ ¼ Dðe−ii2πN IÞ ¼ ei2πβ⃗i·w⃗eID;

zðCeÞ ¼ ðei2πβ⃗i·w⃗eÞIðSðCeÞ;ΣÞ; ð37Þ

where the tuple w⃗e is any weight of the quark representation
(we can choose the highest) and ID is the D ×D identity
matrix. Therefore, we can write

zðCeÞ ¼ e−
i
2

R
d4x ðsμνŨw⃗e·T⃗Ũ−1;F μνðZÞÞ;

sμνðxÞ ¼
Z
SðCeÞ

d2σ̃μν δð4Þðx − wðs; τÞÞ; ð38Þ

where ŨðxÞ is any regular single-valued configuration
definedonR4. FromEq. (27), this quantity is Ũ-independent,
and using (i)–(iii), we recover Eq. (37) as long as the
monopoles do not touch SðCeÞ. In addition, the Petrov-
Diakonov representationof theWilson loop [79]maybeused
to rewrite the effect of fluctuations as an integral over
periodic paths,
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We½P� ∝
Z

½dg� Pei
H

dxμ ðg−1Pμgþig−1∂μg;w⃗ejqTqÞ: ð39Þ

For completeness, and to settle notation and conventions,
group-coherent states and the path-integral representation of
holonomies are briefly reviewed in Appendix A. After
extending the paths to ŨðxÞjgðsÞ ¼ ŨðxðsÞÞ, we can apply
Stokes’ theorem and join We½P� with the center element in
Eq. (38), thus obtaining

We½A� ∝
Z

½DŨ� ei
2

R
d4x ðYμνðP;ŨÞ−F μνðZÞ;sμνŨw⃗e·T⃗Ũ†Þ; ð40Þ

Yμν ¼
1

2
ϵμνρσYρσ;

YμνðP; ŨÞ ¼ DμðL̃ÞðPν − L̃νÞ −DνðL̃ÞðPμ − L̃μÞ; ð41Þ

where L̃μ was defined in Eq. (28), and

∂μPŨ†
ν − ∂νPŨ†

μ ¼ Ũ†YμνðP; ŨÞŨ: ð42Þ

Now, let us replace the observable in Eq. (40) by the
smoothed variable

W½P; Z̄� ¼
Z

½DŨ� e−
R

d4x 1
4ge

ðYμνðP;ŨÞ−F μνðZÞÞ2−
R

d4xη
2

2
ðPμ−L̃μÞ2

× e
i
2

R
d4x ðYμνðP;ŨÞ−F μνðZÞ;sμνŨw⃗e·T⃗Ũ†Þ; ð43Þ

where we have included a gauge-invariant mass term.

B. Dual representation

In order to obtain a single valued Aμ in Eq. (15), the
components of Pμ rotated by S should vanish at the defects.
Accordingly, the path-integral over Pμ has to be performed
imposing these regularity conditions. Still, it is possible to
integrate W½P; Z̄� in Eq. (43) without them, and relate both
results by means of a factor R½Z̄�,

Z
½DPμ� r:c:W½P; Z̄� ¼ R½Z̄�

Z
½DPμ�W½P; Z̄�:

The ratio R½Z̄� contains information about the distribution
of center vortices, providing their intrinsic properties.
Introducing a Lie algebra-valued tensor Λμν, we can rewrite

Z
½DPμ�W½P; Z̄�

¼
Z

½DΛμν�½DŨ� e− 1

8η2
1

ð4πNÞ2
R

d4x ðΦμ;ΦμÞ

× e
−
R

d4x 1

4g2
ðΛμν−2πsμνŨβ⃗e·T⃗Ũ†Þ2

e−
i
2

1
4πN

R
d4x ðΛμν;F μνðZÞÞ;

g ¼ 4πN=ge;

where Φμ ¼ ϵμνρσDνðL̃ÞΛρσ and β⃗e ¼ 2Nw⃗e. Then, using a
gauged version of the usual Hodge decomposition,

Λμν ¼ Yμν þ Bμν;

YμνðΛ; ŨÞ ¼ DμðL̃ÞðΛν − L̃νÞ −DνðL̃ÞðΛμ − L̃μÞ; ð44Þ

DνðL̃ÞBμν ¼ 0, we see that Bμν couples with the curl of sμν,
which is localized on Ce. Also note that the limit η → 0
enforces the constraint Φμ ¼ 0, whose solution is

Λμν ¼ YμνðΛ; ŨÞ: ð45Þ

In this respect, L̃μ defined in Eq. (28) has the form of a pure
gauge, so that [80]

ϵσρμνDρðL̃ÞDμðL̃ÞXν ¼ ð1=2Þϵσρμν½DρðL̃Þ; DμðL̃Þ�Xν ¼ 0:

Thus, for small η, the Gaussian smoothing leads to

Z
½DPμ� r:c:W½P; Z̄� ≈ R½Z̄�

Z
½DΛμ�V½Λ; Z̄�; ð46Þ

V½Λ; Z̄� ¼
Z

½DŨ� e−
R

d4x 1

4g2
ðYμνðΛ;ŨÞ−2πsμνŨβ⃗e·T⃗Ũ†Þ2

× e−
i

4πN

R
d4x ðΛμ−L̃μ;DνðL̃ÞF μνðZÞÞ: ð47Þ

In particular, for a given distribution of monopole loops,
using Eqs. (29) and

ðΛμ − L̃μ; Ũðα⃗ · T⃗ÞŨ−1Þ ¼ ðŨ−1ΛμŨ þ iŨ−1∂μŨ; α⃗ · T⃗Þ;
ð48Þ

we obtain

V½Λ; Z̄� ¼
Z

½DŨ� e−
R

d4x 1

4g2
ðYμνðΛ;ŨÞ−2πsμνŨβ⃗e·T⃗Ũ†Þ2

× e
i
P

k

H
Ck

dxðkÞμ ðŨ−1ΛμŨþiŨ−1∂μŨ;α⃗·T⃗Þk : ð49Þ

The index k in the parenthesis means that ŨðxÞ is to be
taken as ŨðxðkÞðskÞÞ. Likewise, monopole fusion
[cf. Eq. (30)] implies additional factors involving

e
i
P

n
j¼1

R
γj
dxμ ðŨ−1ΛμŨþiŨ−1∂μŨ;δ⃗·T⃗Þj ;

X
j

δ⃗j ¼ 0: ð50Þ

Under non-Abelian magnetic gauge transformations

Λμ → UmΛμU−1
m þ iUm∂μU−1

m ; ð51Þ

V½Λ; Z̄� is in principle invariant, as this change can be
absorbed by Ũ → UmŨ. Note that in Eq. (49), the non-
Abelian d.o.f. Ũ are coupled to Λμ on the whole spacetime,
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which hinders the integration over the group. Yet we can
get some insights from the formal expressions. In the dual
representation of the Wilson loop average, the effect of
linking numbers is encoded as a frustration 2πsμνβ⃗e · T⃗ in
the action for the dual gauge field Λμ. Moreover, monop-
oles with non-Abelian d.o.f. Ũ and fusion rules have a
nontrivial indirect effect through the coupling to a dual non-
Abelian gauge field Λμ.

V. PERCOLATING CENTER VORTICES
AND CHAINS

In this section, we shall propose a possible measure to
compute center-element averages in four-dimensional
ensembles of percolating center vortices and chains. For
this aim, let us recall the situation in three-dimensional
Euclidean spacetime, where the confining and deconfining
phases can be described by an effective complex vortex
field V.

A. Percolating center vortices in three dimensions

In three dimensions, the average of the fundamental
Wilson loop over an ensemble of center vortices, with small
(positive) stiffness 1

κ and repulsive contact interactions, is
represented by [70]

Zð3Þ
v ½sμ�
Zð3Þ
v ½0�

; Zð3Þ
v ½sμ�¼

Z
½DV�½DV̄�e−

R
d3x½ 1

3κDμVDμVþ 1
2ζðV̄V−v2Þ2�;

ð52Þ

Dμ ¼ ∂μ − i
2π

N
sμ; sμ ¼

Z
SðCeÞ

dσ̃μ δð3Þðx − wðs; τÞÞ:

ð53Þ

In the normal phase (v2 < 0), as the vacuum is at V ¼ 0, we
have to deal with the complete complex field V. In the
percolating phase (v2 > 0), the computation of the Wilson
loop is a hard problem due to the large quantum fluctua-
tions of the Goldstone modes γðxÞ, VðxÞ ¼ ρðxÞeiγðxÞ. In
order to discuss this case, we kept the soft d.o.f. V ¼ veiγ ,

Zð3Þ
v ½sμ� ≈

Z
½Dγ� e−

R
d3xv

2

3κDμðe−iγÞDμðeiγÞ; ð54Þ

and switched to the lattice, where the finite spacing takes
care of possible phase singularities in γ. This amounts to
considering the frustrated three-dimensional XY model

β
X
x;μ

Re½1 − eiγðxþμ̂Þe−iγðxÞe−iαμðxÞ�; ð55Þ

where the frustration αμðxÞ takes the value 2π
N , if the surface

SðCeÞ is crossed by the link (in the direction of the normal

to SðCeÞ), and is zero otherwise. For a discussion in the
context of superfluids, see Ref. [82]. As is well known, the
continuum limit is attained at βc ≈ 0.454, where a Wilson
loop area law with N-ality is obtained as an extensive
property of the ensemble [70]. Summarizing, while closed
worldlines are naturally described by a complex field V, in
a condensate their description can be approximated by a
different object, namely, a compact real field γ representing
the Goldstone modes.

B. Percolating center vortices in four dimensions

In four dimensions, the effective description for a general
ensemble of world surfaces would be in terms of a second
quantized string field, however, percolating world surfaces
may also be approximated by a simpler object. Indeed, in
Ref. [66], a condensate was described by an action func-
tional for a complex string Higgs field with frozen
modulus. The Goldstone modes can be read in the phase
γ of this field, but this time it is defined on strings rather
than at spacetime points. In that work, the different
possibilities were parametrized in terms of an Abelian
gauge field Λμ such that the phase γΛ is the line integral of
Λμ along the string. Moreover, the lattice partition function
of the string field model was approximated by a field model

β
X
x;μ<ν

Re½1 − VμðxÞVνðxþ μ̂ÞV−1
μ ðxþ ν̂ÞV−1

ν ðxÞeia2BμνðxÞ�;

VμðxÞ ¼ eiaΛμðxÞ; ð56Þ

where Bμν is an external smooth Kalb-Ramond field
coupled to the world surfaces [83]. In other words, the
Goldstone modes for Abelian condensates of closed sur-
faces are represented by Abelian gauge fields (for related
ideas, see Refs. [67–69]). This observation, together with:

(i) the previous discussion about three-dimensional
center vortex condensates with frustration

(ii) the presence of non-Abelian d.o.f. on center vortices
(see Sec. III C)

(iii) the natural generation of dual non-Abelian gauge
fields Λμ with frustration when representing some
Wilson loop averages (see Sec. IV B)

lead us to replace the link variables in Eq. (55) by non-
Abelian ones Vμ ∈ SUðNÞ and propose

Zlatt
v ½αμν�
Zlatt
v ½0� ;

Zlatt
v ½αμν�¼

Z
½DVμ�

×e−β
P

x;μ<ν
Re tr½I−VμðxÞVνðxþμ̂ÞV†

μðxþν̂ÞV†
νðxÞe−iαμνðxÞ�;

ð57Þ
as a measure to average center elements over a four-
dimensional ensemble of percolating center vortices. The
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frustration αμν is only nontrivial on plaquettes x, μ, ν that

intersect SðCeÞ, where it satisfies e−iαμν ¼ e−i2πβ⃗e·T⃗ . Now, let
us discuss the meaning of the definition (57) on its own.
Note that the usual properties of ordinary integrals over the
group imply that, for an arbitrary order in powers of β, the

contribution to Zð4Þ
latt½αμν� is originated from plaquettes that

form closed surfaces [84]. Surfaces that link Ce will

intersect SðCeÞ a number of times, gaining a factor e∓iαμν ¼
e�i2πβ⃗·w⃗eI for every intersection point. In effect, acting with
e∓iαμν on a basis of the fundamental representation formed
by weight vectors jϕwi

i, i ¼ 1;…; N, we get i-independent

quantities e−i2πβ⃗e·w⃗i ¼ e−i2πw⃗e·β⃗i , that is, the eigenvalues of
Dðe�ii2πN IÞ [cf. Eq. (37)]. Then, the fingerprints of center
vortices are present in Eq. (57) as it involves the same
center elements zðCeÞ that are generated when a quark
Wilson loop in representation D is linked by a center
vortex, averaged over an ensemble of plaquettes distributed
on closed surfaces. For larger β values, larger and multiple
closed world sheets become more important and, as such,

performing the average is a hard problem. Note that in the
partition function for the frustrated three-dimensional XY
model, we can also conclude that the nontrivial contribu-
tions to

Q
x

R
π
−π dγðxÞ are originated from links distributed

along closed loops accompanied by a center element. In
that case, the difference is that the effective description
(52), which includes the normal phase, can be derived from
the microscopic one [70].

C. Percolating chains in four dimensions

Relying on the Gaussian smoothing of the Wilson loop,
we showed that general fluctuations induce a combined
effect of center vortices and monopoles with non-Abelian
d.o.f. [cf. Eqs. (46), (49)]. Here, we shall consider an effect
on center-element averages that distinguish between per-
colating center vortices and chains, which will be included
as a phenomenological property that YM ensembles might
have. Center vortex branches attached in pairs to fixed
closed worldlines Clattk (k ¼ 1;…; n) on the hypercubic
lattice can be included by means of the partial contribution

Zlatt
mix½sμν�jp ∝

Z
½DVμ� e−β

P
x;μ<ν

Re tr½I−VμðxÞVνðxþμ̂ÞV†
μðxþν̂ÞV†

νðxÞe−iαμνðxÞ�Wð1Þ
Ad…WðnÞ

Ad ; ð58Þ

WðkÞ
Ad ¼

1

N2 − 1
tr

� Y
ðx;μÞ∈Clattk

AdðVμðxÞÞ
�
: ð59Þ

While the group integral of AdðVμÞjAB is trivial
(see Appendix B), the integral of the combination
AdðVμÞjABVμjijV†

μjkl is nontrivial, since N ⊗ N̄ contains
an adjoint irrep that can form a singlet with the first factor.
Then, the relevant configurations in Eq. (58) occur when the
link along the adjoint loops combine with fundamental-
antifundamental pairs of variables generated by the Wilson
action. In other words, the contribution toZlatt

mix½sμν�jp derives
from plaquettes distributed on open surfaces that meet in
pairs at the adjoint loops, forming closed two-dimensional
arrays, and including disconnected closed parts. Whenever
the surface SðCeÞ is intersected, the configuration will be
accompanied by a center element. That is, the closed
surfaces and arrays can be identified with center vortices
and chains, respectively. At small β, the leading contribution
is given by plaquettes distributed on the faces of elementary
cubes with edge at Clattk (see Ref. [84], p. 62). On the other
hand, as β is increased, percolating branches with fixed
boundaries Clattk are expected to occur.

D. Ensemble integration of monopole Wilson loops

In Sec. VI, wewill include monopole fusion; for now, the
average of center elements over the ensemble mixture
should sum the partial contributions considering all

possible numbers and configurations of monopole loops.
However, in the lattice, the calculation of the partition
function could only be accessed by computer simulations.
Hence, let us switch to the continuum description of the
ensemble where Eqs. (58) and (59) become

Zmix½sμν�jp ∝
Z

½DΛμ� e−
R

d4x 1

4g2
ðFμνðΛÞ−2πsμνβ⃗e·T⃗Þ2

×Wð1Þ
Ad ½Λ�…WðnÞ

Ad ½Λ�; ð60Þ

WðkÞ
Ad½Λ� ¼

1

N2 − 1
tr AdðPfei

H
Ck

dxμΛμðxÞgÞ: ð61Þ

FμνðΛÞ is the usual field strength (13), computed for a non-
Abelian gauge field Λμ, and g is a dual coupling (β ∼ 1

g2).

Accordingly, the complete average of center elements turns
out to be

Zmix½sμν�
Zmix½0�

;

Zmix½sμν� ¼
Z

½DΛμ�e−
R
d4x 1

4g2
ðFμνðΛÞ−2πsμνβ⃗e·T⃗Þ2Zloops½Λ�;

ð62Þ

Zloops½Λ� ¼ 1þ Z1 þ Z2 þ � � �, where Zn represents a gas
of n closed worldlines,
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Zn½Λ� ¼
Z

½Dm�n
Yn
k¼1

e−
R

Lk
0

dsk ½ 12κ _uðkÞμ _uðkÞμ þμ�WðkÞ
Ad½Λ�; ð63Þ

uμðsÞ ¼
dxμ
ds

∈ S3; _uμðsÞ ¼
duμ
ds

: ð64Þ

The phenomenological dimensional parameters μ and 1=κ
are associated with tension and stiffness, respectively.
These are the simplest properties a monopole loop might
have, that is, a weight depending on the loop size and
curvature. In the lattice, stiffness represents possible
correlations between the link orientations along the loop.
In what follows, the parameter 1=κ will be important to
obtain a well-defined continuum limit when the loops are
discretized as polymers and thought of as a growing
monomer process. At the end, the partition function will
assume a simplified form in the region of small but nonzero
values of stiffness, where the growth almost behaves as a
random walk only weighted by the total size of the loop.
The measure ½Dm�n implements the integral over paths

starting and ending at xk, with tangent vector uk. Therefore,

Zloops½Λ�¼
X
n

1

n!

Yn
k¼1

Z
∞

0

dLk

Lk

Z
dvk

×
Z

½dxðkÞ�Lk
vk;vke

−
R

Lk
0

dsk½ 12κ _uðkÞμ _uðkÞμ þμ�WðkÞ
Ad½Λ�; ð65Þ

where v stands for the pair of variables x, u and ½dx�Lv;v path-
integrates over a closed worldline xðsÞ with fixed length L,
starting and ending at v. Then, the partition function adds
up to

Zloops½Λ� ¼ e
R

∞
0

dL
L

R
dv trQðv;v;LÞ; ð66Þ

Qðx; u; x0; u0; LÞ ¼
Z

½dxðsÞ�Lv;v0 e
−
R

L

0
ds ½ 1

2κ _uμ _uμþμ�AdðΓ½Λ�Þ;

ð67Þ

Γ½Λ� ¼ Pfei
R

dxμΛμðxÞg; ð68Þ

where Γ½Λ� is the holonomy for an open path xðsÞ with
initial and final conditions v0, v. In order to go further, we
can follow Refs. [61,85]. Let us summarize the main steps
adapted to the present scenario. As usual, AdðΓÞ can be
associated with an “evolution” operator

Pfe−
R

L

0
dsHðsÞg; HðsÞ ¼ HðxðsÞ; uðsÞÞ;

Hðx; uÞ ¼ −iuμAdðΛμðxÞÞ: ð69Þ

The path ordering is obtained from the discretized
expression

Pfe−
R

L

0
dsHðsÞgjd ¼ e−HðxM;uMÞΔL…e−Hðx2;u2ÞΔLe−Hðx1;u1ÞΔL;

ð70Þ

by taking the ΔL → 0, M → ∞ limit, with L ¼ MΔL.
Accordingly, Qðv; v0; LÞ is obtained from

Qðx; u; x0; u0; LÞjd ¼ QMðx; u; x0; u0Þ;
x ¼ xM; u ¼ uM;

QMðxM; uM; x0; u0Þ

¼
Z YM−1

k¼1

d3xk duk
YM
n¼1

ψðun − un−1Þδðxn − xn−1 − unΔLÞ

× e−
P

M
n¼1

ðμþϕðxnÞÞΔLe−HðxM;uMÞΔL…

× e−Hðx2;u2ÞΔLe−Hðx1;u1ÞΔL; ð71Þ

where the differential du integrates over S3 and

ψðu − u0Þ ¼ N e−
1
2κΔLðu−u

0
ΔL Þ2 : ð72Þ

QM can be obtained by iterating a Chapman-Kolmogorov
recurrence relation that relates polymers with j and j − 1
monomers, starting from an initial condition

Q0ðx; u; x0; u0Þ ¼ δðx − x0Þδðu − u0ÞIDAd
: ð73Þ

As a result, when j ¼ M, it is obtained

QMðx; u; x0; u0Þ ¼
Z

du0 ψðu − u0Þe−μΔLe−Hðx;uÞΔL

×QM−1ðx − uΔL; x0; u0; u0Þ: ð74Þ

Expanding to first order in ΔL with finite κ, and taking the
continuum limit, we arrive at the Fokker-Plank equation

∂LQ ¼ −
�
μ −

κ

π
L̂2
u þ uμ∂μ þHðx; uÞ

�
Q;

where uμ∂μ gets combined withHðx; uÞ in Eq. (69) to form
the non-Abelian covariant derivative,

½∂L−ðκ=πÞL̂2
uþμþuμð∂μ−iAdðΛμÞÞ�Qðx;u;x0;u0;LÞ¼0;

ð75Þ

Qðx; u; x0; u0; 0Þ ¼ δðx − x0Þδðu − u0ÞIDAd
: ð76Þ

In the flexible limit (small stiffness), there is almost no
correlation between the initial and final tangent vectors.
The weak dependence on these directions allows us to
consistently solve the equations by keeping the smaller
angular momenta (see Refs. [61,86]). In the present case,
we get
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Qðx; u; x0; u0; LÞ ≈Q0ðx; x0; LÞ;
∂LQ0ðx; x0; LÞ ¼ −OQ0ðx; x0; LÞ; ð77Þ

O ¼ −cð∂μ − iAdðΛμÞÞ2 þ μ;

Q0ðx; x0; 0Þ ¼
1

Ω3

δðx − x0ÞId; ð78Þ

where c ¼ π
12κ and Ω3 is the solid angle on S3. Using this

information in Eq. (66) yields,

Z
d4x du trQðx; x; u; u; LÞ ≈ Trðe−LOÞ:

In the second member, the trace is over the adjoint matrix
indices and the spacetime coordinate x. Therefore, the loop
sector is approximated by

Zloops½Λ� ¼ e
R

∞
0

dL
L

R
dv trQðv;v;LÞ ≈ e−Tr lnO¼ðDetOÞ−1; ð79Þ

which can be represented by an effective complex field in
the adjoint (see Sec. VII). This is in contrast to the situation
in Ref. [61] where an ensemble formed by loops carrying
internal degrees in a linear space parametrized by any set of
complex numbers zC, C ¼ 1;…; N2 − 1 was analyzed.
These variables label coherent states in an infinite dimen-
sional space of color states [87]. As a consequence, the
effective representation of that ensemble required an
infinite tower of fields carrying tensor products of adjoint
irreps. It is interesting to note that the adjoint Wilson loop
can also be related with internal degrees zC [cf. Eq. (A8)]
with the difference that they live in a nonlinear space given
by the components of group-coherent states in the finite
dimensional adjoint irrep.

VI. MONOPOLE FUSION AND EFFECTIVE
FEYNMAN DIAGRAMS

In Ref. [61], excluded volume effects and other inter-
actions among monopoles were introduced as usual,
namely by coupling them to external fields integrated with
appropriate Gaussian weights. The same steps could be
done in Eq. (83), but cubic terms would be missing in this
formulation (see the discussion in Ref. [53]). They will be
relevant to drive SUðNÞ → ZðNÞ and to describe the
observed first-order confining/deconfining phase transition
when N ≥ 3. In this section, they will be generated as a
consequence of monopole fusion rules.
Initially, we shall replace Zloops½Λ� in Eq. (62) by a

general monopole sector Zm½Λ� ¼ Zloops½Λ�Zlines½Λ�. The
first factor involves adjoint Wilson loops WAd½Λ�, giving
rise to a power of the functional determinant in Eq. (79),
originated from loop copies needed to accommodate the
matching rules (see Sec. VII). The second factor is
constructed in terms of holonomies AdðΓ½Λ�Þ computed

along open lines, forming (connected and disconnected)
closed one-dimensional arrays. For a correct matching, they
must be combined in a gauge-invariant way. In this manner,
when integrated over link variables, the lattice formulation
of Zmix½sμν� will receive contributions from plaquettes
distributed on: (i) closed center vortex world surfaces
generated by the dual YM term; (ii) center vortices attached
to loops; and (iii) center vortices attached to one-dimen-
sional arrays. In the ensemble, the lines γ between given
initial and final points x0, xwill be weighted and integrated,
as we did with the Wilson loops in Eq. (65),

Z
dLdudu0

Z
½Dx�Lv0v e

−
R

L

0
ds ½ 1

2κ _uμ _uμþμ�AdðΓ½Λ�ÞjAA0 :

The path-integral over shapes with fixed length L gives the
factor Qðx; u; x0; u0; LÞ treated in Sec. V [cf. Eq. (67)]. In
the flexible limit, using Eqs. (75)–(78), we obtain

Z
∞

0

dLdudu0Qðx; u; x0; u0; LÞ ∼Gðx; x0Þ;

OGðx; x0Þ ¼ δðx − x0ÞIDAd
; ð80Þ

that is, a (Λ-dependent) Green’s functionGðx; x0Þ for every
adjoint line. As a result, each array yields an effective
Feynman diagram. By including coupling constants to
measure the arrays’ relative importance, the effective
diagrams can be associated with a perturbative expansion
of Zlines½Λ� ¼ 1þ Clines½Λ�. In four dimensions, the rel-
evant possibilities correspond to three and four fused lines.
Therefore, we are interested in modeling contributions to
Clines½Λ� that involve blocks of the form

Cn ∝
Z

d4x d4x0
Yn
j¼1

Z
dLj dujdu

j
0

×
Z

½DxðjÞ�Lj

vj
0
vj
e−

R
Lj
0

dsj ½ 12κ _uðjÞμ _uðjÞμ þμ�Dn; ð81Þ

originated from all shapes and lengths of n lines γj (n¼3, 4)
with common endpoints x0, x.

A. Modeling n-line arrays

For n ¼ 3, the gauge invariant D3 could be given by

D3 ¼ fABCfA0B0C0AdðΓ1½Λ�ÞjAA0

× AdðΓ2½Λ�ÞjBB0AdðΓ3½Λ�ÞjCC0 ;

or with a combination of symmetric and antisymmetric
structure constants in the place of fABC. In order to gain
some insight about the possibilities, we note that the factors

WðkÞ
Ad½Λ� in Eq. (60) can be interpreted as monopole world-

lines with non-Abelian d.o.f. Using the Petrov-Diakonov
representation of the adjoint loop (Appendix A), we have
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WAd½Λ� ¼
Z

½dg�P ei
R
C
dxμ ðg−1Λμgþig−1∂μg;α⃗·T⃗Þ; ð82Þ

where α⃗ is a root. This leads to

Zn½Λ� ≈
Z

½Dm�n
Y
k

Z
½dgðkÞ�P e−

P
k

R
Lk
0

dsk ½ 12κ _uðkÞμ _uðkÞμ þμ�

× ei
P

k

R
L

0
dsk u

ðkÞ
μ ðskÞðg−1ΛμðxðsÞÞgþig−1∂μg;α⃗·T⃗Þk : ð83Þ

The last factor can be thought of as a decoupled version of
the group integrals originated from the monopole current
Kμ ¼ DνðL̃ÞF μνðZÞ in configurations with chain defects,
after using the identification gðkÞðskÞ ¼ ŨðxðkÞðskÞÞ
[cf. Eqs. (29), (47) and (49)]. This motivates the adoption
of the gauge-invariant object

Dn ¼
Z

dμ ðgÞdμðg0Þhg; ε1jAdðΓ1½Λ�Þjg0; ε01i…

× hg; εnjAdðΓn½Λ�Þjg0; ε0ni; ð84Þ
where jεji, jε0ji denote coherent reference states chosen as
rotated root vectors (see Appendix A), as this choice allows
us to make contact with the monopole worldline interpre-
tation. In this regard, when jε0ji ¼ jεji, we can write
[cf. Eq. (A19)]

Dn ¼
Z

dμðgÞdμðg0Þ
Z Y

j

½dgðjÞðsjÞ�

×ei
P

j

R
dsj ðg†jΛgjþig†j _gj;XjÞ; Xj¼ ½Ej;E

†
j �: ð85Þ

This is related to a monopole current

Kμ¼2π2N
X
j

ŨXjŨ−1
Z
γj

dyμ δð4Þðx−yÞ;
X
j

Xj¼0;

ð86Þ

with the identification gðjÞðsjÞ ¼ ŨðxðjÞðsjÞÞ, and g0, g
given by the value of Ũ at the line endpoints. The last
condition is a requirement for the covariant conservation of
Kμ that we shall impose at each fusion point, thus general-

izing thematching rule in the Cartan subalgebraXj ¼ δ⃗j · T⃗,P
jδ⃗j ¼ 0, discussed in Eq. (30). In the flexible limit, path-

integrating Eq. (81) over γj, we obtain

Cn∝
Z

d4xd4x0F̄
ε1…εn
A1…An

F
ε0
1
…ε0n

A0
1
…A0

n
Gðx;x0ÞjA1A0

1
…Gðx;x0ÞjAnA0

n
;

ð87Þ

Fε1…εn
A1…An

¼
Z

dμðgÞ jg; ε1ijA1
…jg; εnijAn

: ð88Þ

B. Fusion of three monopoles

For three open worldlines, we have to compute

Fε1ε2ε3
ABC ¼

Z
dμðgÞ jg; ε1ijAjg; ε2ijBjg; ε3ijC;

jg0; εi ¼ Rðg0Þjεi; ð89Þ

PABC;A0B0C0 ¼
Z

dμðgÞRðgÞjAA0RðgÞjBB0RðgÞjCC0 ;

RðgÞ ¼ AdðgÞ: ð90Þ

The factor RðgÞjAA0RðgÞjBB0 acts on a tensor product space
carrying a reducible representation. Its decomposition into
irreps, complemented with the orthogonality relations (B1),
leads to the desired integral. For N ≥ 3, there are seven
irreps projected by PJ [88–90],
X
J

PAB;A0B0
½J� ¼ δAA0δBB0 ; PAB;CD

½J� PCD;A0B0
½K� ¼ δJKP

AB;A0B0
½J� :

ð91Þ

They include a singlet P½1�, and two projectors onto the
adjoint P½a�, P½s�, with components

1

N2 − 1
δABδA0B0 ; fABCfA0B0C;

N2

N2 − 4
dABCdA0B0C;

ð92Þ

respectively. Note that in our conventions

fTA;TBg¼
1

N2
δABIþdABCTC; dABCdDBC¼

N2−4

N2
δAD:

ð93Þ

Hence, we can write

RðgÞjAA0RðgÞjBB0

¼RðgÞjAĀRðgÞjBB̄δĀA0δB̄B0

¼ 1

N2−1
δABδA0B0 þRðgÞjAĀRðgÞjBB̄PĀB̄;A0B0 þ…; ð94Þ

PĀ B̄;A0B0 ¼ fĀ B̄CfA0B0C þ N2

N2 − 4
dĀ B̄CdA0B0C; ð95Þ

where the dots involve other irreps. Finally, the group
invariance of the structure constants fABC and dABC yields

PABC;A0B0C0 ¼ fABCfA0B0C0 þ N2

N2 − 4
dABCdA0B0C0 ;

Fε1ε2ε3
ABC ¼ fABCð−i½E1; E2�; E3Þ

þ N2

N2 − 4
dABCðfE1; E2g; E3Þ; ð96Þ
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where E ¼ EjATA is the Lie algebra element associated
with jεi. When this is replaced in Eq. (87), the cross terms
with mixed symmetric and antisymmetric constants do not
contribute, due to the symmetry of the product of Green’s
functions under the interchange A ↔ B, A0 ↔ B0.
Furthermore, if jε0ji is an even (þ) or an odd (−)
permutation of jεji, we get

C�
3 ∝

Z
d4x d4x0Gðx; x0ÞjAA0Gðx; x0ÞjBB0Gðx; x0ÞjCC0

×

�
�fABCfA0B0C0 ð−i½E1; E2�; E3Þ2

þ N4

ðN2 − 4Þ2 dABCdA0B0C0 ðfE1; E2g; E3Þ2
�
: ð97Þ

The three-line Cartan matching only exists for N ≥ 3,
with

Xj ¼ δ⃗j · T⃗; j¼ 1;2;3; δ⃗1þ δ⃗2þ δ⃗3¼ 0: ð98Þ

In this case, Ej ¼ Eδj thus implying

ð½Eδ1 ; Eδ2 �; Eδ3Þ2 ¼ N2
δ1δ2

ðEδ1þδ2 ; Eδ3Þ2 ¼ N2
δ1δ2

;

and ðfEδ1 ; Eδ2g; Eδ3Þ2 ¼ N2
δ1δ2

. Now, the Weyl group
for suðNÞ acts as SN , permuting the weights of the
fundamental irrep [91]. This produces even but not odd
permutations of three different roots. This is the property
underlying the two different contributions C�

3 . In Eq. (84),
it is not possible to change variables in the group
integral over g0 to undone odd permutations. In general,
there are two independent combinations: the antisymmetric
(Cþ

3 − C−
3 )

C½a�
3−Cartan ∝

Z
d4x d4x0Gðx; x0ÞjAA0Gðx; x0ÞjBB0

×Gðx; x0ÞjCC0N2
δ1δ2

fABCfA0B0C0 ð99Þ

and the symmetric one, with −ifABC → dABC.
Another natural matching type can be proposed for

N≥2 in the suð2Þ subalgebras generated by α⃗·T⃗
α2
, Tαffiffiffiffi

α2
p , T ᾱffiffiffiffi

α2
p .

As the directions Xj have the same length, the solutions to

X1
α þ X2

α þ X3
α ¼ 0; ð100Þ

must be on the same plane and at angles of 2π=3. Note that
there is no common adjoint group action that can transform
Xj
α into δ⃗j · T⃗, for j ¼ 1, 2, 3. Then, the former rule is

physically inequivalent to the Cartan fusion type. The

elements Xj
α ¼ X

θj
α ,

Xθ
α ¼ α⃗ · T⃗ cosθþ

ffiffiffiffiffi
α2

p
Tα sinθ¼ gðθÞα⃗ · T⃗gðθÞ−1; ð101Þ

associated with θ1 ¼ 0, θ2 ¼ 2π
3

and θ3 ¼ − 2π
3
, satisfy

Eq. (100). In this case, the rotated root vectors are given

by Ej ¼ E
θj
α ,

½Eθ
α;Eθ

−α� ¼Xθ
α; Eθ

�α ¼ gðθÞE�αgðθÞ−1;

ð−i½Eθ1
α ;E

θ2
α �;Eθ3

α Þ¼ 3
ffiffiffi
3

p
i

4
ffiffiffi
2

p
ffiffiffiffiffi
α2

p
; ðfEθ1

α ;E
θ2
α g;Eθ3

α Þ¼ 0:

ð102Þ

This only leaves the antisymmetric part in Eqs. (96)

and (97), leading to Fθ1θ2θ3
ABC ¼ 3

ffiffi
3

p
4
ffiffi
2

p i
ffiffiffiffiffi
α2

p
fABC and the

corresponding contribution

C3−suð2Þ ∝
Z

d4x d4x0Gðx; x0ÞjAA0Gðx; x0ÞjBB0

×Gðx; x0ÞjCC0α2fABCfA0B0C0 : ð103Þ

C. Fusion of four monopoles

For n ¼ 4, we obtain

Fε1…ε4
A…D ¼ 1

N2−1
δABδCDðE1;E2ÞðE3;E4Þ

þð−ifABEÞð−ifCDEÞð½E1;E2�; ½E3;E4�Þþ � � � ;
ð104Þ

where the dots involve dABEfE1; E2g, dCDEfE3; E4g,
and contributions due to other irreps. Using references
jεji ¼ jεδji associated with the matching rules in the Cartan
sector [cf. Eq. (30)], for the antisymmetric combination, we
obtain the following terms

C½a�
4−Cartan ∝

Z
d4x d4x0Gðx; x0ÞjAA0Gðx; x0ÞjBB0

×Gðx; x0ÞjCC0Gðx; x0ÞjDD0

× V2
δ1δ2;δ3δ4

fABC̄fCDC̄fA0B0D̄fC0D0D̄;

Vδ1δ2;δ3δ4 ¼
�
Nδ1δ2Nδ3δ4 ; δ⃗1 þ δ⃗2 ≠ 0

δ⃗1 · δ⃗3; δ⃗1 þ δ⃗2 ¼ 0:
ð105Þ

VII. EFFECTIVE MODELS

Now, we would like to combine the different results in an
effective field description. Let us initially consider the
ensemble of monopole loops in Eq. (65) approximated by
Eq. (79). Introducing a Lie algebra-valued complex field
ζ ¼ ζjATA with mass dimension one, i.e., a vector field jζi
with components ζjA, A ¼ 1;…; N2 − 1, we have
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ðDetOÞ−1 ¼
Z

½Dζ�½Dζ̄� e−
R

d4xhζjc−1Ojζi: ð106Þ

Then, in this case, Eq. (62) becomes

Zmix½sμν� ¼
Z

½DΛμ�½Dζ�½Dζ†�e−
R
d4x 1

4g2
ðFμνðΛÞ−2πsμνβ⃗e·T⃗Þ2

×e−
R
d4xððDμζ

†;DμζÞþm2ðζ†;ζÞÞ;

m2¼ð12=πÞμκ; DμðΛÞζ¼ ∂μζ− i½Λμ;ζ�: ð107Þ

When monopole fusion is included, the partition function
has the general form

Zmix½sμν� ¼
Z

½DΛμ� e−
R

d4x 1

4g2
ðFμνðΛÞ−2πsμνβ⃗e·T⃗Þ2Zm½Λ�;

Zm½Λ� ¼ Zloops½Λ�Zlines½Λ�: ð108Þ

Relying on a single complex field ζ, although we can write

Gðx;x0ÞAA0

∝
Z

½Dζ�½Dζ†�ζ†ðxÞjAζðx0ÞjA0e−
R
d4xððDμζ

†;DμζÞþm2ðζ†;ζÞÞ;

ð109Þ

the correlator in Eq. (99) cannot be reproduced. In fact, as
there is no common group element that can orient δ⃗j · T⃗,
j ¼ 1, 2, 3 along the same Cartan direction, each monopole
line entering a fusion point must be associated with
different internal degrees δj. Accordingly, the loop types
must also be expanded, which in turn allows capturing the
desired one-dimensional arrays by using

Zm½Λ� ¼
Z

½Dζ�½Dζ̄� e−
R

d4x½ðDμζ
†
α;DμζαÞþVHðζÞ�; ð110Þ

VHðζÞ¼m2ðζ†α;ζαÞþ γcNδ1δ2ðζδ3 ;ζδ1 ∧ ζδ2Þþ c:c:þ…;

X∧Y≡−i½X;Y�; ð111Þ

with the fields summed over positive roots α⃗ and over
roots δ⃗j (δ⃗1 þ δ⃗2 þ δ⃗3 ¼ 0). For negative root indices −α⃗,
the notation ζ−α ≡ ζ†α is understood. The dots involve the
symmetric product fX; Yg and constants dABC. If only
fusion types with jε0ji ¼ jεji were considered in Eq. (84),
then the precise combination of vertices would be fixed
by Eq. (96).
Expanding in γc, we get a factor Zloops½Λ� ¼

Q
αZα½Λ� ¼

ðDetOÞ−NðN−1Þ=2 times effective Feynman diagrams asso-
ciated with three-line fusion. For instance, Eq. (99) is
obtained from the average of the second order term

Z
d4x d4x0γ2cN2

δ1δ2
ðζ†δ3ðxÞ; ζ†δ1ðxÞ ∧ ζ†δ2ðxÞÞ

× ðζδ3ðx0Þ; ζδ1ðx0Þ ∧ ζδ2ðx0ÞÞ:

Now, let us include three-line fusion in the suð2Þ sub-
algebras. To accomodate the matching condition (100),
which involves generalized directions Xθ

α, one possibility is
to further expand the loop types, labeling them with the
different global orientations Xξ ¼ ξα⃗ · T⃗ξ−1. The loop
contribution is then replaced by

Zloops½Λ� ¼ e
P

α
lnZα → e

R
dμðξÞ lnZξ : ð112Þ

To avoid overcounting, the integral over the coset must be
restricted. For every ξ, there is a ξ0 such that Xξ0 ¼ −Xξ.
On the other hand, opposite points are already included in
the loop orientations, so the integral is in fact over half the
coset,

Zloops½Λ� ¼ eDAd=2 lnZα ¼ ðDetOÞ−DAd
2 ; ð113Þ

thus leading toDAd real adjoint fields ψA ∈ suðNÞ. Like in
the Cartan decomposition of a Lie basis [cf. (A14)], the
N2 − 1 fields may be also organized as ψα, ψᾱ, labeled by
the positive roots α⃗, plus a sector ψq, q ¼ 1;…; N − 1. In
this manner, both fusion types are accommodated by the
kinetic and potential terms

1

2
ðDμψA;DμψAÞ¼ ðDμζ

†
α;DμζαÞþ

1

2
ðDμψq;DμψqÞ

VHðψÞ¼VHðζÞþ
m2

2
ðψq;ψqÞ

þ γsuð2Þα⃗jqðψq;ζα ∧ ζ†αÞþ �� � ; ð114Þ

where the complex fields are understood as ζ�α ≡
ðψα�iψᾱÞ=

ffiffiffi
2

p
. When γc ¼ γsuð2Þ, the AdðSUðNÞÞ-flavor

symmetry of the loop sector is extended to the interactions,
in which case,

VHðψÞ¼
m2

2
ðψA;ψAÞþ γfABCðψA;ψB ∧ψCÞþ �� � ð115Þ

The remaining four-line fusion rules in Eq. (105) are
obtained from

Nδ1δ2Nδ3δ4ðζδ1 ∧ ζδ2 ;ζδ3 ∧ ζδ4Þþ c:c:;

α⃗ · σ⃗ðζα ∧ ζ†α;ζσ ∧ ζ†σÞ;
α⃗jqα⃗jpðψq ∧ ζα;ζ

†
α ∧ψpÞ: ð116Þ

The first (second) term contributes to the case δ⃗1 þ δ⃗2 ≠ 0

(δ⃗1 þ δ⃗2 ¼ 0), δ⃗1 þ � � � þ δ⃗4 ¼ 0, while the contribution of
the third term is similar to that of the second with α⃗ ¼ σ⃗.
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As discussed throughout this work, the lattice version of

Zmix½sμν� ¼
Z

½DΛμ�½Dψ �

× e
−
R

d4x½ 1

4g2
ðFμνðΛÞ−2πsμνβ⃗e·T⃗Þ2þ1

2
ðDμψA;DμψAÞþVHðψÞ�;

ð117Þ

normalized by Zmix½0�, is an average of center elements over
percolating surfaces generated by the dual gauge sector Λμ,
that may be attached to loops and one-dimensional arrays
generated by the ψ-sector. The various couplings measure
the abundance of each fusion type. A reduced model
without the Cartan matching rules that involve different
roots may have the form

VHðψÞ ¼ ðζα ∧ ζ†α −mα⃗ · ψ⃗Þ2
þ ðα⃗ · ψ⃗ ∧ ζα −mζα; ζ

†
α ∧ α⃗ · ψ⃗ −mζ†αÞ: ð118Þ

More generally, we could expand the squares and assign
different couplings to the interaction terms. The Higgs
potential may also involve the symmetric product fX; Yg
and terms originated from other irreps, such as the singlet
ðζ†α; ζαÞðζ†σ; ζσÞ [cf. Eqs. (96), (104)]. Among the alterna-
tives, there is a natural AdðSUðNÞÞ flavor-symmetric
one that encompasses all the couplings in Eqs. (111),
(114), (116),

VHðψÞ ¼
m2

2
ðψA;ψAÞ þ

γ

3
fABCðψA;ψB ∧ ψCÞ

þ λ

4
fABCfADEðψB ∧ ψC;ψD ∧ ψEÞ: ð119Þ

This model is analogous to that introduced in Ref. [52],
with the difference that the quartic term in that work was
taken as λ

4
ðψA ∧ ψBÞ2. On fields of the formψA ¼ ψTA both

potentials coincide. Hence, we know that in the region
m2 < ð2=9Þγ2=λ there is SSB, which corresponds to
μ < ðπ=54Þγ2=λκ [cf. Eq. (107)]. As our derivation is valid
for positive stiffness 1=κ, a negative μ certainly corresponds
to a monopole condensate. This represents an ensemble
where larger (precolating) monopole worldlines are
favored. Nonetheless, because of the cubic terms, there is
still the possibility of a monopole condensate with
positive m2. In this respect, for a given parameter choice,
VHðψÞ can be written as a perfect square VHðψÞ ¼
1
2
ðmψA − fABCψB ∧ ψCÞ2. In this case, as well as in

Eq. (118), the structure is similar to that present in
N ¼ 1� supersymmetric theories based on three complex
adjoint Higgs fields [45].
The obtained models have several common features that

can be highlighted. The parameters can be chosen in order
for the vacua manifolds to be given by

ζα ∧ ζ†α ¼ vα⃗ · ψ⃗ α⃗ · ψ⃗ ∧ ζα ¼ vζα and

fABCψB ∧ ψC ¼ vψA; ð120Þ

respectively. The nontrivial solutions contain tuples
ðψ1;…;ψN2−1Þ, ψA ¼ vSTAS−1, identified with points in
AdðSUðNÞÞ. When VHðψÞ is a perfect square (v ¼ m), the
nontrivial vacua are degenerate with the trivial point
ψA ¼ 0. However, for appropriate parameters, the degen-
eracy can be lifted. This triggers a phase where the dual
gauge group SUðNÞ is broken to ZðNÞ, which allows us to
compute Zmix½sμν� by means of a saddle point and collective

modes. Therefore, in the presence of the source 2πsμνβ⃗e · T⃗,
a flux tube with N-ality is induced. These models are also
well known to possess flux tube solutions with confined
dual monopoles [41–56]. In particular, as the distance
between a pair of adjoint quarks is increased, the saddle
point will eventually favor string-breaking by screening the
external sources with induced dual monopoles, which get
identified with valence gluons. Hence, gluon confinement
follows from the fact that the second homotopy group of
AdðSUðNÞÞ (a compact group) is trivial. The difference-in-
areas law for doubled pairs of SUð2Þ fundamental quarks can
be similarly understood [53]. Furthermore, we could con-
sider an observable formed by one adjoint and two funda-
mental holonomies with common endpoints, combined in a
(chromoelectric) gauge-invariant way. This object could be
used to calculate the hybrid potential for a quark-gluon-
antiquark state in pure YM theory. The associated source in
Zmix½sμν� contains a pair of surfaces carrying two different
fundamental weights. They are spanned between the adjoint
and the fundamental lines. In accordance with the gluon
interpretation, the induced saddle point will be a flux tube,
running between the fundamental sources, with an induced
dual monopole localized at the adjoint line.
With respect to the Lüscher corrections, the soft modes in

a flavor nonsymmetric model will be given by the transverse
fluctuations. This is welcomed, since the presence of addi-
tional gapless modes would modify the correction observed
in lattice simulations up toN ¼ 6 [92,93]. YMHmodels that
support flux tubes with N-ality and non-Abelian internal
collective modes were constructed in Refs. [45,46]. They
display SOð3ÞC−F and SUðNÞC−F color-flavor locking,
respectively. The phenomenological effective models we
derived may display a tensor product of SOð3ÞC−F sym-
metries, one for each root, or AdðSUðNÞÞC−F symmetry.
Nevertheless, in a YM context, the parameters would be
related with a single scale, implying that possible non-
Abelian degrees on the flux tube world sheet are in fact
frozen [92]. For this reason, these phases would also be
compatible with the observed universal corrections.

VIII. CONCLUSIONS

In this work, we initially considered a recently proposed
gauge fixing in the continuum based on lattice center
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gauges, which induces a partition of the SUðNÞ YM path-
integral into sectors with center vortex world surfaces and
monopole worldlines. In this framework, we observed that
physically inequivalent sectors are not only labeled by the
location of defects but also by non-Abelian magnetic d.o.f.
The average of an observable involves two steps: a path-
integral over general fluctuations in each sector, followed
by an ensemble integration.
In the continuum, thin configurations amount to gauge

fields Aμ such that the field strength is localized on closed
surfaces. In this case, neither monopoles nor non-Abelian
degrees affect the quark Wilson loop We½A�. However,
there are many possibilities for the ensemble measure,
which dictates how to weight configurations when comput-
ing center-element averages. This measure should be
obtained by taking the first step with the YM action, which
is a difficult task. Instead, we suggested possible effects by
considering a simple example based on a smoothed
Gaussian version of the Wilson loop. In doing so, we
observed that monopoles with non-Abelian d.o.f. get
coupled to a dual non-Abelian gauge field Λμ, in much
the same way as in compact QEDð4Þ. In addition, the
linking numbers of magnetic defects are encoded as a
frustration in the action for Λμ.
Motivated by the above example, we proposed a measure

to compute center-element averages in four-dimensional
ensembles of percolating center vortices and chains. In four
dimensions, as center vortices are two-dimensional, the
effective description would be related to a string field.
However, in the condensed phase, it is known that a lattice
string Higgs field model can be approximated by an
Abelian gauge field representing the Goldstone modes
[66]. As a synthesis of the above physical inputs, and also
guided by the three-dimensional case, we associated a
center vortex condensate in four dimensions with a Wilson
action for a non-Abelian gauge field Λμ with frustration.
This was implemented in a manner such that the lattice
path-integral receives contributions from plaquettes dis-
tributed on closed surfaces. Moreover, they are accompa-
nied by the center element that would be generated in the
Wilson loop for quarks in representation D. For weaker
dual coupling, larger and multiple surfaces are favored. In
the next stage, monopoles were introduced by products of
adjoint magnetic Wilson loop variables that single out
plaquette configurations distributed on surfaces attached in
pairs to these loops. Using the Petrov-Diakonov represen-
tation, they were interpreted as monopole worldlines with
non-Abelian d.o.f. Likewise, monopole fusion rules were
introduced by means of gauge-invariant combinations of
magnetic holonomies, involving three and four fused
monopole lines.
Finally, we integrated the monopole sector and showed

that the large distance behavior is given by a dual SUðNÞ
YMH model with emergent adjoint Higgs fields. The field
content depends on the physically inequivalent monopole

loop types. Fusion rules in the Cartan and suð2Þ sub-
algebras can be accomodated in models with N2 − 1 real
fields. When monopoles condense, the gauge group under-
goes dual SUðNÞ → ZðNÞ SSB, which makes it possible to
capture the ensemble by means of a saddle point formed by
flux tubes with N-ality and confined dual monopoles. If the
parameters correspond to a flavor nonsymmetric model, the
soft modes are only given by flux tube transverse fluctua-
tions. In fact, this also occurs in the color-flavor locking
phase, as the phenomenological parameters are expected to
be originated from a single scale, leaving no window for
gapless non-Abelian modes [92]. From this point of view,
both possible scenarios are equally interesting, as they lead
to the correct Lüscher term observed up to N ¼ 6 in lattice
simulations. In order to narrow down the possibilities, the
various implied observables will be compared with lattice
calculations in a future contribution.
Thus, following the path proposed, we showed a possible

mechanism to explain confining flux tubes and confined
gluons as emergent objects in mixed ensembles of perco-
lating center vortices and chains.
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APPENDIX A: GROUP-COHERENT STATES
AND HOLONOMIES

1. Group-coherent states

Consider an irreducible D-dimensional unitary repre-
sentation over a vector space fjψig. The Lie algebra and
group act according to

jψi¼

0
B@

ψ1

..

.

ψD

1
CA; jψi→DðYÞjψi; jψi→DðUÞjψi: ðA1Þ

Given a reference jϕi, hϕjϕi ¼ 1, the invariance subgroup
Hϕ ⊂ G is defined by

DðhÞjϕi ¼ eiaðhÞjϕi; h ∈ Hϕ: ðA2Þ

Coherent states of type fD; jϕig are defined by jξ;ϕi ¼
DðξÞjϕi [94,95], after choosing a representative ξ in the
quotient G=Hϕ, Then, as for every group element there is a
unique decomposition g ¼ ξh, the action of g becomes
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DðgÞjϕi ¼ eiaðhÞjξ;ϕi: ðA3Þ

Due to unitarity, the group invariance of the measure dμðξÞ
induced by the Haar measure dμðgÞ, and Schur’s Lemma
[91], the operator O ¼ R

dμðξÞjξ;ϕihξ;ϕj is proportional
to the D ×D identity matrix ID,

Z
dμðhÞ ¼ 1;

Z
dμðξÞ ¼ D;

hϕjϕi ¼ 1;
Z

dμðξÞjξ;ϕihξ;ϕj ¼ ID: ðA4Þ

That is, coherent states are overcomplete.

2. Holonomies

The overcompleteness property does not depend on the
reference jϕi. However, in path-integral applications, some
requirements must be considered. A reference state jϕi
such that the “dynamical” operator has a diagonal repre-
sentation seems to be important to give meaning to the
formal expressions [94,96]. Some irreps have weight
vectors that enable a classical description, that is, a
symplectic structure on the coset space. In particular, the
highest weight vectors are among the favorable states [94–
97]. The coherent state representation of the holonomy,

Γ½A� ¼ Pfei
R
γ
dxμAμðxÞg; ðA5Þ

is obtained by using the composition property with infini-
tesimal steps [98,99],

DðΓ½A�Þ ¼ ðID þ iϵDðAðsM−1ÞÞ…ðID þ iϵDðAðs0ÞÞ;

AðsÞ ¼ dxμ
ds

AμðxðsÞÞ;

and then taking the continuum limit. As usual, various
completeness relations can be introduced. The reference
jϕi is chosen such that the order ϵ contribution is nonzero
[96], with the second order providing a regularization [98].
In this case, the factors can approximated by

1þ iϵhϕjDðXnÞjϕi ≈ eiϵhϕjDðXnÞjϕi;

Xn ¼ ξ†nAðsnÞξn þ iξ†n _ξn; ðA6Þ

which leads to the representation

hξ;ϕjDðΓ½A�Þjξ0;ϕi ¼
Z

½dξðsÞ�ei
R

dshϕjDðξ†Aξþiξ† _ξÞjϕi;

ðA7Þ

½dξ�ξMξ0 ¼ dμðξ1Þdμðξ2Þ…, and the boundary conditions
ξð0Þ ¼ ξ0, ξðLÞ ¼ ξ. Note also that

hϕjDðξ†Aξþ iξ† _ξÞjϕi ¼ DðAÞjcdzdz̄c þ
i
2
ðz̄c _zc − _̄zczcÞ;

ðA8Þ

where a ranges from 1 to D and zaðsÞ are the components
of the coherent state jzðsÞi ¼ jξðsÞ;ϕi. Following similar
steps, using an identity based on the group, we obtain

hg;ϕjDðΓ½A�Þjg0;ϕi ¼
Z

½dgðsÞ�ei
R

dshϕjDðg†Agþig† _gÞjϕi;

ðA9Þ
with gð0Þ ¼ g0, gðLÞ ¼ g. The path gðsÞ can be uniquely
decomposed in the form gðsÞ ¼ ξðsÞhðsÞ. Then, from
Eq. (A2), in the left-hand side of Eq. (A9), we can replace
g → ξ, g0 → ξ0, and include a factor eiðað0Þ−aðLÞÞ. Of course,
this can be checked on the right-hand side by using

g†Agþ ig† _g ¼ h†ðξ†Aξþ iξ† _ξÞhþþih† _h;

hϕjDðh†ðsÞ _hðsÞÞjϕi ¼ i _a: ðA10Þ
In particular, as the Wilson loop is related to periodic
boundary conditions, the coset and the group path-integrals
have no relative factor,

WD½A� ¼ tr DðΓ½A�Þ ¼
Z

½dg�Pei
R

dshϕjDðg†Agþig† _gÞjϕi:

ðA11Þ

3. Maximal reference state

A general weight vector jϕλi (hϕλjϕλi ¼ 1) satisfies

DðTqÞjϕλi ¼ λ⃗jqjϕλi; ðA12Þ

where Tq, q ¼ 1;…; N − 1, ½Tq; Tp� ¼ 0, are independent
elements generating the Cartan subalgebra. To compute
hϕλjDðXÞjϕλi for a general Lie algebra elementX ∈ suðNÞ,
we can expand it in the Cartan basis Tq, Eα, E−α,

½Tq; Eα� ¼ α⃗jqEα: ðA13Þ
The step operators Eα are labelled by the positive roots α⃗,
which gives NðN − 1Þ=2 possibilities [100], while the
hermitian generators can be identified with

fTAg ¼ fTq; Tα; T ᾱg; Tα ¼
1ffiffiffi
2

p ðEα þ E−αÞ;

T ᾱ ¼
1ffiffiffi
2

p
i
ðEα − E−αÞ: ðA14Þ

The remaining commutators are

½Eα; E−α� ¼ α⃗jqTq; ½Eα; Eγ� ¼ NαγEαþγ; α⃗þ γ⃗ ≠ 0;

ðA15Þ
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where Nαγ ¼ 0, if α⃗þ γ⃗ is not a root. If λ⃗ is the highest
weight, then jϕλi satisfies Eαjϕλi ¼ 0, hϕλjE−α ¼ 0. In this
case, in terms of the Killing form, we have

hϕλjDðXÞjϕλi ¼ Xqλ⃗jq ¼ ðX; λ⃗jqTqÞ; ðA16Þ
hϕλjDðg†Agþ ig† _gÞjϕλi ¼ ðg†Agþ ig† _g; λ⃗jqTqÞ; ðA17Þ
which leads to the Petrov-Diakonov representation of the
Wilson loop in Eq. (A11) [79].

4. Adjoint representation

For the adjoint representation, we have

AdðYÞjABζjBTA¼ ½Y;ζ�; AdðUÞjABζjBTA ¼UζU−1:

ðA18Þ
As the roots are formed by eigenvalues of the adjoint action
of Tq [cf. Eq. (A13)], they are weights of the adjoint
representation. In addition, the invariance subgroup,

hEαh−1 ¼ eiaðhÞEα, is the Cartan subgroup h ¼ eic⃗·T⃗ ,
which gives aðhÞ ¼ c⃗ · α⃗. Using the scalar product in
Eq. (1), we get hζjYi ¼ ζ̄jAYjA ¼ ðζ†; YÞ. Thus, for any
reference jεi ¼ RðξÞjεαi (i.e.,E ¼ ξEαξ

−1), the cyclicity of
the Killing product yields

hεjAdðYÞjεi ¼ ðE†; ½Y; E�Þ ¼ ðY; ½E;E†�Þ ¼ ðY; XÞ;
X ¼ ½E;E†� ¼ ξα⃗ · T⃗ξ†:

In terms of the rotated reference, Eq. (A9) can bewritten in
the form

hg;εjAdðΓ½Λ�Þjg0;εi¼
Z

½dgðsÞ�ei
R
dsðg†Λgþig† _g;XÞ: ðA19Þ

On the other hand, a coherent state reference Z given by a
combination of Cartan generators, ½Tq; Z� ¼ 0, cannot be
used to derive a path-integral since

hzjAdðYÞjzi ¼ ðZ†; ½Y; Z�Þ ¼ ðY; ½Z; Z†�Þ ¼ 0:

APPENDIX B: ORTHOGONALITY RELATIONS

If DðiÞ and DðjÞ are unitary irreps (i ≠ j label inequivalent
irreps), then [101]

Z
dμðgÞDðiÞðgÞjabDðjÞðg−1Þjβα ¼ δijδaαδbβ:

In particular, for the adjoint,

Z
dμðgÞRðgÞjABRðg−1ÞjB0A0 ¼ δAA0δBB0 : ðB1Þ
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