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We present calculations of radiative transitions between vector and pseudoscalar quarkonia in the light-
front Hamiltonian approach. The valence sector light-front wave functions of heavy quarkonia are obtained
from the Basis Light-Front Quantization approach in a holographic basis. We study the transition form
factor with both the traditional “good current” Jþ and the transverse current J⃗⊥ (in particular,
JR ¼ Jx þ iJy). This allows us to investigate the role of rotational symmetry by considering vector
mesons with different magnetic projections (mj ¼ 0;�1). We use the mj ¼ 0 state of the vector meson to
obtain the transition form factor, since this procedure employs the dominant spin components of the light-
front wave functions and is more robust in practical calculations. While the mj ¼ �1 states are also
examined, transition form factors depend on subdominant components of the light-front wave functions
and are less robust. Transitions between states below the open-flavor thresholds are computed, including
those for excited states. Comparisons are made with the experimental measurements, as well as with lattice
QCD and quark model results. In addition, we apply the transverse current to calculate the decay constant
of vector mesons where we obtain consistent results using either mj ¼ 0 or mj ¼ 1 light-front wave
functions. This consistency provides evidence for features of rotational symmetry within the model.
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I. INTRODUCTION

Radiative transitions offer insights into the internal
structure of quark-antiquark bound states through electro-
magnetic probes. The radiative transition between 0−þ
(pseudoscalar) and 1−− (vector) mesons via the emission
of a photon is characterized as the magnetic dipole (M1)
transition. This transition mode is known to be sensitive to
relativistic effects [1], especially for those between different
spatial multiplets, such as ηcð2SÞ → J=ψð1SÞ þ γ.
Heavy quarkonium is often dubbed as the “hydrogen

atom” of QCD. It provides an ideal testing ground for
various investigations to understand QCD. States below the
open-flavor threshold (DD̄ for charmonium and BB̄ for
bottomonium) have very narrow widths since they cannot
decay via any Okubo-Zweig-Iizuka allowed strong decay

channels [2]. Electromagnetic transition rates are there-
fore important. Comparing the theoretical and experimen-
tal rates for radiative transitions then provides guidance to
improve our understanding of the internal structure of
heavy quarkonia. Recently, some of us proposed a model
based on the light-front holographic QCD and the one-
gluon exchange with a running coupling [3–5]. In this
model, charmonia and bottomonia are solved as relativ-
istic quark-antiquark bound states using Basis Light-Front
Quantization (BLFQ), a nonperturbative Hamiltonian
approach within light-front dynamics [6]. While a non-
relativistic approach with leading-order relativistic cor-
rections could also work well for the systems we address
here [7–9], we retain a fully relativistic light-front
Hamiltonian approach in anticipation of further applica-
tions to lighter mesons at a later stage. Our model
provides a reasonable description of the mass spectrum
and other properties that were studied. Observables
including decay constants, rms radii [10], distribution
amplitudes and parton distributions as well as diffractive
vector meson productions [11] have been directly calcu-
lated from the light-front wave functions (LFWFs) and
are in reasonable agreement with experiments and with
other approaches (see also Ref. [12]). Therefore, we are
motivated to investigate radiative transitions within this
model. On the one hand, we hope to further test the model
by comparing with the existing experimental results.
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On the other hand, results calculated for transitions that
have not yet been measured provide predictions for future
experiments.
In this work, we derive the formulas for radiative tran-

sitions between 0−þ and 1−− mesons on the light front, using
both the traditional “good current” Jþ ¼ J0 þ Jz and the
transverse current J⃗⊥ ¼ ðJx; JyÞ. Though, in principle, these
two choices should be equivalent due to Lorentz covariance,
adoption of certain approximations in the model may lead to
violation of the Lorentz symmetry that would be evident
through inequivalent results. In nonrelativistic quantum
mechanics, magnetic moments and transitions can only be
extracted from the current density J⃗ ¼ ðJx; Jy; JzÞ rather
than the chargedensityJ0. Therefore, onemayexpect that for
the M1 transitions in nonrelativistic systems such as heavy
quarkonia, the transverse current density J⃗⊥ could be better
than the charge density Jþ. Specifically, as we will see later,
the transverse current allows us to extract the transition form
factor through themj ¼ 0 state of the vector meson, which is
not accessiblewith Jþ. The calculationwith themj ¼ 0 state
provides a more robust result by employing the dominant
spin components of the twomesons (spin triplet for thevector
and spin singlet for the pseudoscalar) in the transition, while
that with mj ¼ �1 always requires subdominant compo-
nents of the LFWFswith relativistic origins. So, in this work,
weobtain the transition form factorswith themj ¼ 0 states of
the vector mesons through the transverse current. The results
from mj ¼ 1, though less robust, are also presented for
comparison. In addition, as a cross-check, we revisit the
decay constants by utilizing the transverse current to com-
pare with the previous calculation using Jþ in Ref. [4]. It
follows that different mj components of the vector mesons
are involved. This provides us with a different yet pertinent
perspective to understand the degree of Lorentz symmetry
manifestation in the current model.
The layout of the paper is as follows. In Sec. II, we

introduce the formalism and methods to calculate the M1
transition form factor on the light front. In Sec. III, we
apply the formalism to heavy quarkonia in the BLFQ
approach. Section IV presents the numerical results of
transition form factors. In Sec. V, we perform the calcu-
lations of vector meson decay constants with different
magnetic projections. We conclude the paper in Sec. VI.

II. TRANSITION FORM FACTORS
ON THE LIGHT FRONT

A. Transition form factor and decay width

The matrix element for the radiative transition between a
vector meson (V) with 4-momentum P and polarization mj
and a pseudoscalar (P) with 4-momentum P0 via emission
of a photon can be parametrized in terms of the transition
form factor VðQ2Þ as [13]

Iμmj ≡ hPðP0ÞjJμð0ÞjVðP;mjÞi

¼ 2VðQ2Þ
mP þmV

ϵμαβσP0
αPβeσðP;mjÞ; ð1Þ

where we define Q2 ≡ −q2, with qμ ¼ P0μ − Pμ represent-
ing the 4-momentum of the photon. mP and mV are the
masses of the pseudoscalar and the vector, respectively. eσ
is the polarization vector of the vector meson. JμðxÞ is the
current operator.
In the physical process of V → P þ γ, the photon is on

shell (Q2 ¼ 0). The transition amplitude is

Mmj;λ ¼ hPðP0ÞjJμð0ÞjVðP;mjÞiϵ�μ;λðqÞjQ2¼0; ð2Þ

where ϵμ;λ is the polarization vector of the final-state photon
with its spin projection λ ¼ �1. The decay width of V →
P þ γ follows by averaging over the initial polarization and
summing over the final polarization. In the rest frame of the
initial particle, it reads

ΓðV → P þ γÞ ¼
Z

dΩq
1

32π2
jq⃗j
m2

V

1

2JV þ 1

X
mj;λ

jMmj;λj2

¼ ðm2
V −m2

PÞ3
ð2mVÞ3ðmP þmVÞ2

jVð0Þj2
ð2JV þ 1Þπ : ð3Þ

The momentum of the final photon is determined by the
energy-momentum conservation, jq⃗j ¼ ðm2

V −m2
PÞ=2mV .

JV ¼ 1 is the spin of the initial vector meson. To calculate
the width of P → V þ γ, exchangemV andmP , and replace
JV with JP ¼ 0 for the initial pseudoscalar in Eq. (3).

B. Light-front dynamics

In principle, the Lorentz invariant function VðQ2Þ
defined in Eq. (1) can be extracted from any of the
four sets of hadron matrix elements, μ ¼ þ;−; x; y
(v� ¼ v0 � vz; see definitions of the light-front variables
in the Appendix). However, results from different current
components may be different due to violations of Lorentz
symmetry introduced by the Fock sector truncation as well
as by the modeling of systems. These approximations have
led to extensive discussions in the literature [14–18]. Theþ
component, known as the good current, is typically used,
together with the Drell-Yan frame (qþ ¼ 0), to avoid
contributions from pair production/annihilation in vacuum.
The transverse components have been shown to be con-
sistent with the þ component in the limit of zero momen-
tum transfer in certain theories, such as the ϕ3 theory [16]
and the spin-0 two-fermion systems [18]. Another option,
the—component, is known as the “bad current,” due to its
association with the zero-mode contributions.
Here, we present formulas for the transition form

factor, for both Jþ and J⃗⊥, along with different magnetic
projections (mj ¼ 0;�1) of the vector meson. Note that
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when the rotational symmetry on the transverse plane is
preserved, which is usually the case, using the Jx or Jy

component or even combinations of the two is equivalent.
In particular, we use JR ≡ Jx þ iJy to carry out the
calculation in the case of the transverse current. For any
transverse vector k⃗⊥, which is expressed as ðkx; kyÞ in the
Cartesian coordinate or ðk⊥; θÞ in the polar coordinate, we
will write its complex form as kR ≡ kx þ iky ¼ k⊥eiθ and
kL ≡ kx − iky ¼ k⊥e−iθ. From the vector decomposition
in Eq. (1),

Iþmj
¼ 2VðQ2Þ

mP þmV

8>><
>>:

0; mj ¼ 0

iffiffi
2

p PþΔR; mj ¼ 1

− iffiffi
2

p PþΔL; mj ¼ −1
ð4Þ

IRmj
¼ 2VðQ2Þ

mP þmV

8>><
>>:

−imVΔR; mj ¼ 0

iffiffi
2

p PRΔR; mj ¼ 1

iffiffi
2

p
z
ðz2m2

V −m2
P − P0RΔLÞ; mj ¼ −1

ð5Þ

where we have introduced two variables z≡ P0þ=Pþ and
Δ⃗⊥ ¼ P⃗0⊥ − zP⃗⊥, which are invariant under the transverse
Lorentz boost specified by the velocity vector β⃗⊥,

vþ → vþ; v⃗⊥ → v⃗⊥ þ vþβ⃗⊥: ð6Þ

This boost is kinematic and survives the Fock space
truncation, whereas the full Lorentz transformation does
not. The two sets of hadron matrix elements in Eqs. (4) and
(5) can be related through such a boost,

hPðP0þ; P⃗0⊥ þ P0þβ⃗⊥ÞjJ⃗⊥jVðPþ; P⃗⊥ þ Pþβ⃗⊥; mjÞi
¼ hPðP0þ; P⃗0⊥ÞjJ⃗⊥jVðPþ; P⃗⊥; mjÞi

þ β⃗⊥hPðP0þ; P⃗0⊥ÞjJþjVðPþ; P⃗⊥; mjÞi: ð7Þ

By applying the above relation to Eqs. (4) and (5), we find
that for mj ¼ �1, Jþ and JR should give the same VðQ2Þ.
For mj ¼ 0, on the other hand, VðQ2Þ cannot be extracted
from Jþ but can be extracted from transverse currents, such
as JR. In the latter case, the decay products have a non-
vanishing orbital angular momentum. From Eqs. (4) and (5),
we get:

Vþ
mj¼�1ðQ2Þ ¼ �i

mP þmVffiffiffi
2

p
PþΔR=L

Iþ�1; ð8Þ

VR
mj¼1ðQ2Þ ¼ i

mP þmVffiffiffi
2

p
PRΔR

IR1 ;

VR
mj¼−1ðQ2Þ ¼ i

ðmP þmVÞzffiffiffi
2

p ðz2m2
V −m2

P − P0RΔLÞ I
R
−1;

VR
mj¼0ðQ2Þ ¼ −i

mP þmV

2mVΔR IR0 : ð9Þ

Note that for the purpose of comparison, we label the
transition form factors with their corresponding current
components and themj values of the vector wave functions.
In practice, the different prescriptions of extracting the same
transition form factor could provide a test of violation of the
Lorentz symmetry in the calculation. In the covariant light-
front dynamics, the transition form factor is extracted from
combinations of several hadron matrix elements [14].

C. Impulse approximation

In the impulse approximation, the interaction of the
external current with the meson is the summation of its
coupling to the quark and to the antiquark, as illustrated
in Fig. 1. The vertex dressing as well as pair creation/
annihilation from higher-order diagrams are neglected.
The hadron matrix element can be written accordingly as

a sum of the quark term and the antiquark term:

hPðP0ÞjJμð0ÞjVðP;mjÞi ¼ eQfhPðP0ÞjJμqð0ÞjVðP;mjÞi
− eQfhPðP0ÞjJμq̄ð0ÞjVðP;mjÞi:

ð10Þ

FIG. 1. Radiative transition from vector to pseudoscalar meson in jqq̄i Fock space representation within the impulse approximation. In
these figures, light-front time xþ flows to the right. The double-lines represent the hadrons. The solid lines represent the quark or the
antiquark. The wavy lines represent the probing photon. The shaded areas represent the LFWFs.
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The current operator is defined as JμðxÞ ¼
e
P

fQfψ̄fðxÞγμψfðxÞ, where ψfðxÞ is the quark
field operator with flavor f (f ¼ u; d; s; c; b; t). Jq
and Jq̄ are the normal-ordered pure quark (b†b) and
antiquark (d†d) part of Jμ, respectively, where b (d)
is the quark (antiquark) annihilation operator. The
dimensionless fractional charge of the quark is Qf ¼
Qc ¼ þ2=3 for the charm quark and Qf ¼ Qb ¼ −1=3
for the bottom quark. The electric charge e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

4παEM
p

.
For the quarkonium, due to the charge conjugation
symmetry, the antiquark gives the same contribution

as the quark to the total hadronic current. So, for our
purpose, we calculate the hadron matrix element for the
quark part. As such, we compute V̂ðQ2Þ, which is
related to VðQ2Þ by

VðQ2Þ ¼ 2eQfV̂ðQ2Þ:

The hadron matrix element can be written explicitly
in terms of the convolution of LFWFs. To begin with,
the valence Fock space representation of quarkonium
reads

jψhðP; j;mjÞi ¼
X
s;s̄

Z
1

0

dx
2xð1 − xÞ

Z
d2k⃗⊥
ð2πÞ3 ψ

ðmjÞ
ss̄=hðk⃗⊥; xÞ

×
1ffiffiffiffiffiffi
Nc

p
XNc

c¼1

b†scðxPþ; k⃗⊥ þ xP⃗⊥Þd†s̄cðð1 − xÞPþ;−k⃗⊥ þ ð1 − xÞP⃗⊥Þj0i; ð11Þ

where the color index c ¼ 1; 2;…; Nc, and the number of quark colorsNc ¼ 3. ψ
ðmjÞ
ss̄=hðk⃗⊥; xÞ is the LFWF written in relative

coordinates. x≡ pþ=Pþ is the longitudinal light-front momentum fraction, and k⃗⊥ ¼ p⃗⊥ − xP⃗⊥ is the relative transverse
momentum, where p is the single-particle 4-momentum of the quark. s represents the fermion spin projection in the x−

direction.
The hadron matrix element in the Drell-Yan frame (qþ ¼ 0, i.e., z ¼ 1) follows:

hPðP0ÞjJμqð0ÞjVðP;mjÞi ¼
X
s;s̄;s0

Z
1

0

dx
2x2ð1 − xÞ

Z
d2k⃗⊥
ð2πÞ3 ψ

ðmjÞ
ss̄=Vðk⃗⊥; xÞψ�

s0 s̄=Pðk⃗⊥ þ ð1 − xÞq⃗⊥; xÞ

× ūs0 ðxPþ; k⃗⊥ þ xP⃗⊥ þ q⃗⊥ÞγμusðxPþ; k⃗⊥ þ xP⃗⊥Þ: ð12Þ

We could then obtain the transition form factor from
such hadron matrix elements according to Eqs. (8) and (9).
Ideally, V̂ðQ2Þ is independent of the spin projectionmj and
the current components. Nevertheless, one needs to care-
fully choose the proper matrix elements to evaluate certain
quantities, when approximations break the Lorentz sym-
metry [19]. For instance, there are different ways of
choosing matrix elements to calculate the spin-1 electro-
magnetic form factors when the angular condition is
violated [20]. Among those, some are preferred in the
sense that unphysical terms could be partially or entirely
suppressed [18,21].
In the case of the M1 transition form factor V̂ðQ2Þ,

using the combination of the transverse current JR

with themj ¼ 0 polarization of the vector meson, according
to the expression in Eq. (9), would give the LFWF
representation as

V̂mj¼0ðQ2Þ

¼ iðmP þmVÞ
mV

Z
1

0

dx
2x2ð1− xÞ

Z
d2k⃗⊥
ð2πÞ3

×

�
−
1

2
ψ
ðmj¼0Þ
↑↓þ↓↑=Vðk⃗⊥; xÞψ�

↑↓−↓↑=Pðk⃗⊥ þ ð1− xÞq⃗⊥; xÞ

þ ψ
ðmj¼0Þ
↓↓=V ðk⃗⊥; xÞψ�

↓↓Pðk⃗⊥ þ ð1− xÞq⃗⊥; xÞ
�
;

ð13Þ

where we define ψ↑↓�↓↑ ≡ ðψ↑↓ � ψ↓↑Þ=
ffiffiffi
2

p
. Note that in

deriving Eq. (13), we have taken advantage of symmetries in

LFWFs, ψ
ðmj¼0Þ
↑↓−↓↑=V ¼ 0 and ψ↑↓þ↓↑=P ¼ 0.

The traditionally used good current Jþ is also worth
looking at. As we have discussed, with this current
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component, the transition form factor can be extracted only
from the mj ¼ �1 polarizations of the vector meson. We
present the expression for mj ¼ 1 according to Eq. (8),
while the expression for mj ¼ −1 is similar. It is evident
from this expression that the overlapped spin components
of the two wave functions indicate no spin flip (between the
spin triplet and spin singlet), which may appear counter-
intuitive for the M1 transition. Indeed, this calculation
relies on subdominant terms and is less robust, as we will
discuss in the following section for heavy quarkonia,

V̂mj¼1ðQ2Þ

¼
ffiffiffi
2

p ðmP þmVÞ
iqR

X
s;s̄

Z
1

0

dx
2xð1 − xÞ

×
Z

d2k⃗⊥
ð2πÞ3 ψ

ðmj¼1Þ
ss̄=V ðk⃗⊥; xÞψ�

ss̄=Pðk⃗⊥ þ ð1 − xÞq⃗⊥; xÞ:

ð14Þ

D. Nonrelativistic limit

In the nonrelativistic limit, the M1 transition with
the same radial or angular quantum numbers (e.g.,
nS → nSþ γ), is often referred to as allowed, for which
the transition amplitude is large and V̂ð0Þ → 2 as a result of
the similarity between the spatial wave functions of the
vector and the pseudoscalar mesons with the same spatial
quantum numbers, whereas the transition between states
with different radial or angular excitations is referred to as
hindered, for which the transition amplitude is zero and
V̂ð0Þ → 0 at leading order due to the orthogonality of the
wave functions [1,22–24]. The deviations of experimen-
tally measured results from those nonrelativistic limits
indicate relativistic effects [25]. For a heavy quarkonium
system, which is close to the nonrelativistic domain, such
deviations are expected to be small but nonzero.
The wave functions of heavy quarkonia, treated as

relativistic bound states, are dominated by those components
that are nonvanishing and reduce to the nonrelativistic wave
function in the nonrelativistic limit. These wave function
components are therefore referred to as the dominant
components. It is necessary to emphasize that, despite the
correspondence between the dominant spin components and
the nonrelativistic wave functions, the former carries rela-
tivistic contributions when solved in a relativistic formalism.
There are also wave function components of purely relativ-
istic origin, which vanish in the nonrelativistic limit and are
therefore subdominant. In practice, the dominant compo-
nents tend to be better constrained, while the subdominant
ones are more sensitive to the model and numerical uncer-
tainties. For the pseudoscalar states resembling S-waves (in
particular ηcðnSÞ and ηbðnSÞ), their dominant components
are the spin singlets ψ↑↓−↓↑=P , while relativistic treatments
would also allow them to have subdominant components,

such asψ↑↑=P ¼ ψ�
↓↓=P . Analogously, for thevector states of

heavy quarkonia resembling S-waves (in particular ψðnSÞ
and ΥðnSÞ), their dominant components are the spin

triplets, ψ
mj¼0

↑↓þ↓↑=V , ψ
mj¼1

↑↑=V , and ψ
mj¼−1
↓↓=V . For those vector

states identified as D-waves, ψðn3D1Þ and ϒðn3D1Þ,
where orbital excitations occur, all the spin-triplet com-

ponents ψ
mj¼0;�1

↑↓þ↓↑=V , ψ
mj¼0;�1

↑↑=V , and ψ
mj¼0;�1

↓↓=V exist in the
nonrelativistic limit and are considered dominant, and

only the spin-singlet components ψ
mj¼0;�1

↑↓−↓↑=V are sub-
dominant. In detail, the spin components with larger
orbital angular momentum projection ml ¼ mj − s − s̄,

ψ
mj¼0

↑↑=V ¼ −ψ�mj¼0

↓↓=V ðml ¼ �1Þ, and ψ
mj¼1

↓↓=Vðml ¼ 2Þ have
the largest occupancy. The less occupied components,

ψ
mj¼0

↑↓þ↓↑=Vðml¼0Þ, ψmj¼1

↑↓þ↓↑=Vðml¼1Þ, and ψ
mj¼1

↑↑=Vðml¼0Þ,
could also exist in the nonrelativistic limit. Moreover, the
spin components with ml ¼ 0 admit the admixtures of
S-waves, though the actual amount of such admixtures is
small and sensitive to both the model parameters and the
truncation. For example, the ψð3770Þ [ψð1DÞ] state, though
primarily a 13D1 state, has contributions from n3S1 states
(notably 23S1) [26–29], and these S-wave admixtures are
responsible for the nD → n0Sþ γ transitions [24,30–32]. In
order to have a more intuitive view of the dominant and
subdominant spin components for those states, we take the
LFWFs from Ref. [4] to show in Fig. 2 the proportions of
those dominant and subdominant components of heavy
quarkonia. For all those pseudoscalar and vector states,
the dominant terms could each occupy 88% ∼ 100% of
the whole LFWF, suggesting that the heavy quarkonium
indeed resembles a nonrelativistic system. The comparison
between the same states of the charmonium and those of the
bottomonium also reveals that the dominant component is
more pronounced in the heavier, and less relativistic, system.
It follows that in calculating the transition form factors,

we can examine the two procedures, V̂mj¼0ðQ2Þ presented
in Eq. (13) and V̂mj¼1ðQ2Þ presented in Eq. (14), in terms of
their proximities to the nonrelativistic domain. The result of
V̂mj¼0ðQ2Þ mainly comes from the overlap of the dominant

components, ψ
ðmj¼0Þ
↑↓þ↓↑=Vψ

�
↑↓−↓↑=P , whereas even the major

part of V̂mj¼1ðQ2Þ involves the subdominant components,

such as ψ
ðmj¼1Þ
↑↑=V ψ�

↑↑=P and ψ
ðmj¼1Þ
↑↓−↓↑=Vψ

�
↑↓−↓↑=P . In the heavy

quarkonium, the dominant components tend to be better
constrained than the subdominant ones, which suggests that
V̂mj¼0ðQ2Þ is more robust than V̂mj¼1ðQ2Þ.
The nonrelativistic limit can be achieved for V̂mj¼0ðQ2Þ

by adopting nonrelativistic wave functions where only
the dominant spin components exist. However, with
V̂mj¼1ðQ2Þ, simply taking the nonrelativistic wave function
would always lead to zero since the expression in Eq. (14)
involves the vanishing subdominant terms. To be specific,
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we examine the transition form factors at Q2 ¼ 0, where
they can be interpreted as the overlaps of wave functions in

coordinate space [ψ̃
ðmjÞ
ss̄ ðr⃗⊥; xÞ], shown in Eqs. (15) and

(16). Though equivalent to Eqs. (13) and (14) at Q2 ¼ 0,
respectively, Eqs. (15) and (16) do not have the troubling
factor of 1=qR and are therefore more intuitive for the
purpose of illustration:

V̂mj¼0ð0Þ ¼
Z

∞

0

dr⊥
�
mP þmV

4πmV

Z
1

0

dx
Z

2π

0

dθ
r⊥
x

×

�
−
1

2
ψ̃
ðmj¼0Þ
↑↓þ↓↑=Vðr⊥; θ; xÞψ̃�

↑↓−↓↑=Pðr⊥; θ; xÞ

þ ψ̃
ðmj¼0Þ
↓↓=V ðr⊥; θ; xÞψ̃�

↓↓=Pðr⊥; θ; xÞ
��

; ð15Þ

V̂mj¼1ð0Þ ¼
Z

∞

0

dr⊥
� ffiffiffi

2
p ðmP þmVÞ

4π

Z
1

0

dx

×
Z

2π

0

dθð1 − xÞr2⊥ cos θ

×
X
s;s̄

ψ̃
ðmj¼1Þ
ss̄=V ðr⊥; θ; xÞψ̃�

ss̄=Pðr⊥; θ; xÞ
�
: ð16Þ

Note that in the nonrelativistic limit, the wave functions of
the respective pseudoscalar and vector states with the same
radial and angular numbers are identical in their spatial
dependence, and they only differ in their spin structures.
For the allowed transition, V̂mj¼0ðQ2 ¼ 0Þ → 2 due to the
normalization of the spatial wave functions, which can be
seen from Eq. (15) along with taking x → 1=2þ kz=ð2mqÞ
[4] and small hyperfine splittingmP ≈mV . For the hindered
transition, V̂mj¼0ðQ2 ¼ 0Þ → 0 due to the orthogonality of
the two wave functions. Such a nonrelativistic reduction
that takes advantage of the near orthonormality of wave
functions is reminiscent of the nonrelativistic quark model
(see Refs. [1,22,23]). However, for V̂mj¼1ðQ2Þ, the reali-
zation of the nonrelativistic limits depends strongly on the
details of the subdominant wave functions which are less
constrained in the parameter fitting. For the hindered
transition, where cancellation occurs, this leads to a strong
sensitivity to the truncations and to the model parameters.
Figure 3 presents the integrands (those inside f…g) of
V̂mj¼0ð0Þ and V̂mj¼1ð0Þ according to Eqs. (15) and (16) for
an allowed (1S → 1Sþ γ) as well as a hindered
(2S → 1Sþ γ) transition. In the left panel of Fig. 3, the

FIG. 2. Comparison of dominant and subdominant LFWF components for pseudoscalars and vectors in heavy quarkonia. The single
(double) apostrophe stands for the radial excited 2S (3S) state. LFWFs are taken from the Nmax ¼ Lmax ¼ 32 result of Ref. [4]. The
numbers in white suggest the occupancy of the dominant spin components for each state.
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integrands of the allowed transition have no nodes resulting
from the coherent overlaps of the two wave functions. On
the other hand, the right panel of Fig. 3 shows significant
cancellations of contributions from the integrands which
change sign due to nodes in the 2S wave functions.
Based on these lines of reasoning, we take V̂ðQ2Þ ¼

V̂mj¼0ðQ2Þ, using the transverse current, to evaluate the
transition form factors for heavy quarkonia. The less robust
V̂mj¼1ðQ2Þ, using the plus current, which has strong
sensitivity to the violation of rotational symmetry, will
also be presented for comparison.

III. CALCULATION IN BASIS
LIGHT-FRONT QUANTIZATION

We adopt wave functions of heavy quarkonia from recent
work [3,4] in the BLFQ approach [6]. The effective
Hamiltonian extends the holographic QCD [33] by intro-
ducing the one-gluon exchange interaction with a running
coupling [34]. The starting point for the model of
Refs. [3,4] is transverse light-front holography, inspired
by string theory, which approximates QCD at long dis-
tance. As a complementary part, the longitudinal confining
potential is introduced to allow a more consistent treatment
of the mass term and the longitudinal excitation. The one-
gluon exchange implements the short-distance physics and
determines the spin structure of the mesons. The mass
spectrum and LFWFs are the direct solutions of the
eigenvalue equation and are obtained by diagonalizing
the Hamiltonian in a basis representation. The spectrum
agrees with the particle data group (PDG) data with a rms
mass deviation of 30 to 40 MeV for states below the open-
flavor thresholds. The LFWFs have been used to produce
several observables and are in reasonable agreement with
experiments and other theoretical approaches [35]. We now

use these same LFWFs to calculate radiative transitions
with the formalism described in Sec. II.
The LFWFs are solved in the valence Fock sector using a

basis function representation:

ψ
ðmjÞ
ss̄=hðk⃗⊥; xÞ ¼

X
n;m;l

ψhðn;m; l; s; s̄Þ

× ϕnmðk⃗⊥=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
ÞχlðxÞ: ð17Þ

In the transverse direction, the two-dimensional harmonic
oscillator function ϕnm is adopted as the basis. In the
longitudinal direction, we use the modified Jacobi poly-
nomial χl as the basis. m is the orbital angular momentum
projection, related to the total angular momentum projec-
tion as mj ¼ mþ sþ s̄, which is conserved by the
Hamiltonian. The basis space is truncated by their reference
energies in dimensionless units:

2nþ jmj þ 1 ≤ Nmax; 0 ≤ l ≤ Lmax: ð18Þ

As such, the Nmax-truncation provides a natural pair of UV
and IR cutoffs: ΛUV ≃ κ

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
, λIR ≃ κ=

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
, where κ is

the oscillator basis energy scale parameter. Lmax represents
the resolution of the basis in the longitudinal direction. See
Ref. [4] for details on basis functions and parameter values.
The LFWFs are calculated atNmax ¼ Lmax ¼ 8, 16, 24, and
32. Transition form factors are computed at each of these
basis truncations. Figure 4 shows the convergence trends of
V̂ð0Þ as functions of 1=Nmax. The left panel compares three
different fitting functions to extrapolate our results obtained
at finite basis sizes to the complete basis by taking the limit
Nmax ¼ Lmax → ∞. The extrapolations using these three
functions agree to within 1% of each other. For the
remainder of this paper, we adopt the second-order

FIG. 3. Integrands of V̂ð0Þ according to Eqs. (15) (mj ¼ 0) and (16) (mj ¼ 1). As a representative of the allowed (nS → nSþ γ)
transitions, the integrand in (a) has the same sign in the entire r⊥ region. On the other hand, (b) involves a transition with radial
excitation, which is sensitive to small changes in the cancellations between positive and negative contributions.
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polynomial in 1=Nmax for our extrapolations, fitted to the
four basis sizes, with an extrapolation uncertainty given
by the difference between the result in the largest basis
(Nmax ¼ Lmax ¼ 32) and the extrapolated value. (Note that
this uncertainty does not include any systematic uncertainty
coming from the model for the interaction or from the Fock
space truncation.) In the right panel of Fig. 4, we show our
results for all allowed transitions at finite basis sizes,
together with our extrapolation to the complete basis,
including our extrapolation uncertainty estimate. Note that
they are all close to the nonrelativistic limit 2, which is
expected according to our discussion in Sec. II D. For the
hindered transitions, the uncertainties from such basis
extrapolations are comparatively larger, since their calcu-
lations are more sensitive to the details of wave functions.

IV. RESULTS

Here, we present our results for selected pseudoscalar-
vector transition form factors for charmonia and bottomo-
nia below their respective open-flavor thresholds. Figure 5
shows our numerical results of the transition form factors in
three groups, the allowed transition nS → nSþ γ, the radial
excited transition nS → n0Sþ γðn ≠ n0Þ, and the angular
excited transition nD → n0Sþ γ, through a progression
from upper to lower panels. As already discussed in the
previous section, for the allowed transitions, we find
V̂ð0Þ ≈ 2, whereas for the hindered transitions involving
either radial or angular excitations, we have V̂ð0Þ ≈ 0.
Transitions involving higher radial excited states feature
more wiggles in the curve, which is especially evident
in the nS → nSþ γ transitions as n increases. This is
because the radial excited states have transverse nodes. As a
result, the transition form factors, in the form of their
convolutions [see Eq. (13)], are not monotonic. The
comparison between charmonia and bottomonia is also
of interest. For comparable transition modes, the transition

form factors show similarity in their patterns as well as their
behavior as a function of Nmax. Furthermore, as illustrated
in the second row of panels in Fig. 5, one observes that the
PðnSÞ → Vðn0SÞ þ γ transition form factors are very sim-
ilar to the VðnSÞ → Pðn0SÞ þ γ form factors for n > n0.
Comparisons of V̂ð0Þ from this work, with experiments

(compiled by PDG [25]) and with other models (lattice
QCD [36–40] and the quark model [41–43]) are collected
in Table I and visualized in Fig. 6. Most calculations, as
well as available experimental data, give a value of the
order of 2 for the allowed transitions nS → nSþ γ: all such
data in Table I are between 1.5 and 2.5 with only one
exception, the relativistic quark model calculation of
J=ψ → ηc þ γ. This is in agreement with the vector
VðnSÞ and the pseudoscalar PðnSÞ mesons possessing
very similar spatial wave functions but different spin
structures. On the other hand, there is a significant spread
in the theoretical results of the hindered transitions. This is
expected because the hindered transitions involve changes
in radial quantum numbers and/or orbital angular motions
and are sensitive to delicate cancellations as discussed
above. Considering the fact that only two free parameters
are employed by the model for quarkonia in Ref. [4] and the
fact that we did not adjust any parameters in our calculation
for the transitions, the agreement to within an order of
magnitude is encouraging.
The results with the þ current, in combination with the

mj ¼ 1 vector meson wave functions, V̂mj¼1ð0Þ, are

presented as a ratio to V̂mj¼0ð0Þ in Fig. 7. As already
mentioned, we expect these calculations to be much less
robust. This is because the calculation of V̂mj¼1ðQ2Þ
according to Eq. (14) depends on subdominant components
of the wave functions, which are less constrained from the
model. Indeed, the dependence of these calculations on
the basis truncation is much larger, resulting in signifi-
cantly larger extrapolation uncertainties. Furthermore, the

FIG. 4. The Nmax convergence of V̂ð0Þ. Transition form factors are evaluated with LFWFs at Nmax ¼ Lmax ¼ 8, 16, 24, and 32
according to Eq. (13). The left panel shows the extrapolation of V̂ð0Þ to Nmax ¼ Lmax → ∞ for J=ψð1SÞ → ηcð1SÞγ, using three
different fitting functions. We adopt the first one, aþ b=Nmax þ c=N2

max, to obtain the results of V̂ð0Þ in this paper. The right panel
shows the Nmaxð¼LmaxÞ extrapolation for all allowed transitions. The error bars indicate the difference between the result in the largest
basis (Nmax ¼ Lmax ¼ 32) and the extrapolated value.
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hindered transitions have a much larger fluctuation than the
allowed transition, due to their sensitivity to the subdomi-
nant components in one of the two spatial wave functions
with different radial quantum numbers and/or different
orbital motions. Our results with the þ component of the
current V̂mj¼1ð0Þ differ by up to 2 orders of magnitude from
our more reliable results with the transverse component of
the current V̂mj¼0ð0Þ.

V. DECAY CONSTANTS

In the discussion of the transition form factors above, we
saw that differences could arise when different magnetic
projections of the vector mesons are used, in combination

with different components of the electromagnetic current
operator. These differences are linked with violations of
rotational symmetry in the model. We argue that the
violation of rotational symmetry is not a major factor by
checking two representative observables. The first one is
the meson masses. It has been shown in Ref. [4] that the
mass eigenvalues associated with different magnetic pro-
jections are in reasonable agreement, with a mean mass
spread of 17 MeV (8 MeV) for charmonia (bottomonia).
The second observable is the decay constant, which we
present in this section. The decay constant is defined
with the same current operator as the transition form factor.
For a vector meson, its value, too, could be extracted
from different magnetic projections. On the other hand, it

FIG. 5. Transition form factors for charmonia (left) and bottomonia (right) are calculated from LFWFs according to Eq. (13). The first
row shows the allowed transitions, the second row shows transitions between different radial excitations, and the third row presents those
involving angular excitations. The dashed and solid curves are calculated with LFWFs at Nmax ¼ Lmax ¼ 8 and Nmax ¼ Lmax ¼ 32,
respectively. The shaded areas in between indicate the numerical uncertainty from basis truncation. As a consequence of the UV cutoff
from the basis, the largest Q2ð≃Λ2

UVÞ at Nmax ¼ 32 truncation is 31 GeV2 (44 GeV2) for charmonia (bottomonia).
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FIG. 6. V̂ð0Þ of charmonia and bottomonia transitions, calculated from Eq. (13) and summarized in Table I. Extrapolations are made
from Nmax ¼ Lmax ¼ 8, 16, 24, 32 using second-order polynomials in N−1

max. We use the difference between the extrapolated and the
Nmax ¼ 32 results to quantify numerical uncertainty, which is indicated by the vertical error bars on the BLFQ results (sometimes
smaller than the symbols). We do not include any systematic uncertainty. Quarkonia in the initial and final states are labeled on the top
and bottom of the figure. The single (double) apostrophe stands for the radial excited 2S (3S) state. The D-wave states are identified as
n3D1. The heavy quark limit V̂ð0Þ ¼ 2 of the allowed (nS → nSþ γ) transition is shown in the dashed line. Results from PDG [25],
lattice QCD [36–39] and lattice NRQCD [40,44], the relativistic quark model (rQM) [41], and the Godfrey-Isgur (GI) model [42,43] are
also presented for comparison.

TABLE I. V̂ð0Þ for radiative decay between 0−þ and 1−− charmonia (bottomonia) below the DD̄ (BB̄) threshold. Values from PDG
[25] are converted from their decay widths according to Eq. (3). Note that the uncertainties of meson masses propagate into that of V̂ð0Þ.
The BLFQ results are from Eq. (13). For these results, all meson masses are taken from PDG [25], except that ϒð13D1Þ, ϒð23D1Þ, and
ηbð3SÞ masses are taken from Ref. [4]. Extrapolations for BLFQ are made from Nmax ¼ Lmax ¼ 8, 16, 24, 32 using second-order
polynomials inN−1

max. We use the difference between the extrapolated and theNmax ¼ 32 results to quantify numerical uncertainty, which
does not include any systematic uncertainty. Uncertainties are quoted in parentheses and apply to the least significant figures of the
result. Some lattice results are quoted with more than one source of uncertainty. The lattice nonrelativistic QCD (NRQCD) [44] results
are converted from their three-point matrix elements with meson masses from PDG [25]. Values from the relativistic quark model (rQM)
[41] and the Godfrey-Isgur (GI) model [42,43] are converted from their decay widths according to Eq. (3) with their suggested meson
masses. These results are plotted in Fig. 6.

BLFQ Lattice [36–40,44] Quark model

V̂ð0Þ PDG [25] (mj ¼ 0Þ Dudek et al. Bečirević et al. HPQCD NRQCD rQM [41] GI [42,43]

J=ψð1SÞ → ηcð1SÞ þ γ 1.56(19) 1.99(3) 1.89(3) 1.92(3)(2) 1.90(7)(1) � � � 1.21 1.82
ηcð2SÞ → J=ψð1SÞ þ γ � � � 0.056(38) � � � 0.32(6)(2) � � � � � � 0.099 0.20
ψð2SÞ → ηcð1SÞ þ γ 0.100(8) 0.360(74) 0.062(64) � � � � � � � � � 0.097 0.31
ψð2SÞ → ηcð2SÞ þ γ 2.52(91) 2.03(6) � � � � � � � � � � � � 2.01 2.18
ψð13D1Þ → ηcð1SÞ þ γ <0.377 0.035(2) 0.27(15) � � � � � � � � � � � � � � �
ψð13D1Þ → ηcð2SÞ þ γ <5.84 0.121(21) � � � � � � � � � � � � � � � � � �
ϒð1SÞ → ηbð1SÞ þ γ � � � 2.00(1) � � � � � � � � � � � � 1.48 1.87
ηbð2SÞ → ϒð1SÞ þ γ � � � 0.080(27) � � � � � � � � � 0.11(1) 0.050 0.12
ηbð3SÞ → ϒð1SÞ þ γ � � � 0.033(12) � � � � � � � � � 0.078(10) 0.036 0.061
ϒð2SÞ → ηbð1SÞ þ γ 0.070(14) 0.156(30) � � � � � � 0.081(13) 0.062(10) 0.050 0.17
ϒð2SÞ → ηbð2SÞ þ γ � � � 2.01(1) � � � � � � � � � � � � 2.17 1.99
ηbð3SÞ → ϒð2SÞ þ γ � � � 0.059(27) � � � � � � � � � � � � 0.057 0.099
ϒð13D1Þ → ηbð1SÞ þ γ � � � 0.0052(4) � � � � � � � � � � � � � � � � � �
ϒð13D1Þ → ηbð2SÞ þ γ � � � 0.0148(61) � � � � � � � � � � � � � � � � � �
ϒð13D1Þ → ηbð3SÞ þ γ � � � 0.021(4) � � � � � � � � � � � � � � � � � �
ϒð3SÞ → ηbð1SÞ þ γ 0.035(3) 0.079(10) � � � � � � � � � 0.025(13) 0.035 0.084
ϒð3SÞ → ηbð2SÞ þ γ <0.167 0.145(33) � � � � � � � � � � � � 0.056 0.65
ϒð3SÞ → ηbð3SÞ þ γ � � � 2.04(1) � � � � � � � � � � � � 1.99 2.06
ϒð23D1Þ → ηbð1SÞ þ γ � � � 0.010(1) � � � � � � � � � � � � � � � � � �
ϒð23D1Þ → ηbð2SÞ þ γ � � � 0.010(2) � � � � � � � � � � � � � � � � � �
ϒð23D1Þ → ηbð3SÞ þ γ � � � 0.018(3) � � � � � � � � � � � � � � � � � �
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features the simplicity of involving only one LFWF instead
of convoluting two LFWFs. Therefore, the decay constant
provides a pathway for examining the rotational symmetry
of LFWFs.
Decay constants for vector mesons are defined as the

local vacuum-to-hadron matrix elements:

h0jJμð0ÞjVðP;mjÞi ¼ mVeμðP;mjÞfV : ð19Þ

In Ref. [4], theþ current is used. Since eþðP;mj¼�1Þ¼0,
with the þ component of the current, the decay constant
can only be extracted from mj ¼ 0, using

fVðmj ¼ 0Þ ¼
ffiffiffiffiffiffiffiffi
2Nc

p Z
1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

×
Z

d2k⃗⊥
ð2πÞ3 ψ

ðmj¼0Þ
↑↓þ↓↑=Vðk⃗⊥; xÞ: ð20Þ

However, in analogy to the transition form factor, we can
also use the transverse current. In the case of mj ¼ 0, we
get exactly the same expression for the decay constant as
with the þ current, namely Eq. (20). This should not come
as a surprise. Recall that the þ and the transverse matrix
elements with the same mj can be related through a
transverse Lorentz boost [see Eq. (7)]. Furthermore, with
the transverse current, we can also calculate the decay
constant from the mj ¼ �1 components of the vector
meson. The expression for the decay constant with
mj ¼ 1 follows as

fVðmj ¼ 1Þ ¼
ffiffiffiffiffiffi
Nc

p
2mV

Z
1

0

dx

½xð1 − xÞ�3=2

×
Z

d2k⃗⊥
ð2πÞ3 ½k

Lð1 − 2xÞψ ðmj¼1Þ
↑↓þ↓↑=Vðk⃗⊥; xÞ

− kLψ
ðmj¼1Þ
↓↑−↓↑=Vðk⃗⊥; xÞ

þ
ffiffiffi
2

p
mqψ

ðmj¼1Þ
↑↑=V ðk⃗⊥; xÞ�: ð21Þ

Here, mq is the quark mass, which is one of the model
parameters determined in Ref. [4]. Note that using
mj ¼ −1 would lead to an equivalent expression consid-
ering the symmetry between the mj ¼ �1 LFWFs.
As is the transition form factor, the decay constant is also

Lorentz invariant, and thus it should be independent of the
polarization mj. Therefore, in practice, the difference
between fVðmj ¼ 0Þ and fVðmj ¼ 1Þ provides another
measure of the violation of rotational symmetry by our
model. For vector meson states identified as S-wave states,
both fVðmj ¼ 0Þ and fVðmj ¼ 1Þ arise primarily from the
dominant spin components of LFWFs, which relate to the
nonrelativistic wave functions. Moreover, the two expres-
sions reduce to the same form in the nonrelativistic limit,
where x → 1=2þ kz=ð2mqÞ [4] and mq → mV=2. That is,
fVðmj ¼ 0=1Þ → ð2 ffiffiffiffiffiffiffiffi

2Nc
p

=mVÞψ̃NRðr⃗ ¼ 0Þ for S-wave
states. For vector meson states identified as D-wave states,
both fVðmj ¼ 0Þ and fVðmj ¼ 1Þ are calculated mainly
from the dominant but less occupied spin components of
LFWFs (see Sec. II D for discussions of spin components
for D-wave states). The two resulting small values are
sensitive to model and numerical uncertainties and could
reveal differences. Nevertheless, for the S-wave states of
heavy quarkonia, we expect to find robust results when

FIG. 7. Ratio of V̂mj¼1ð0Þ to V̂mj¼0ð0Þ, calculated from Eqs. (14) and (13), respectively. BLFQ results are extrapolated to Nmax ¼ ∞
from Nmax ¼ Lmax ¼ 8, 16, 24, 32 using second-order polynomials in N−1

max. We use the difference between the extrapolated and the
Nmax ¼ 32 results to quantify the numerical uncertainty (indicated by vertical error bars), which is dominated by the uncertainty in
the mj ¼ 1 result obtained with the þ component of the current. The nS → nSþ γ transitions are shown as filled triangles, whereas the
hindered transitions, involving radial/angular excitations, are shown as open diamonds.
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either mj ¼ 0 or mj ¼ 1 is used to calculate fV . The
parametersmV andmq involved in fVðmj ¼ 1Þmight result
in additional uncertainty, but the resulting fluctuation
should be small for heavy systems.
We use both Eqs. (20) and (21) to calculate the decay

constants for the lowest three charmonium and five
bottomonium vector states below their open-flavor thresh-
olds. The results are presented in Fig. 8, where basis
truncations are chosen to match the UV cutoffs ΛUV ≃
κ

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
≈ 1.7mq [4]. The two sets of results, fVðmj ¼ 0Þ

and fVðmj ¼ 1Þ, are both within each others’ extrapolation
uncertainties for the five S-wave states in Fig. 8. Such
consistency implies that the rotational symmetry is rea-
sonably preserved in LFWFs. For the D-wave states, the
decay constants are small, but differences between
fVðmj ¼ 0Þ and fVðmj ¼ 1Þ can be noticed since each
result depends on different small components. By impli-
cation, the transition form factor V̂ðQ2Þmj¼0 calculated
using the transverse current, with its overlapping dominant
components of both the initial and the final LFWFs, is
further supported as a robust result.

VI. SUMMARY AND DISCUSSIONS

We have derived formulas for the radiative transitions
between vector meson and pseudoscalar mesons (M1
transitions) in light-front dynamics. We then calculated
the transition form factors for heavy quarkonia obtained
in the BLFQ approach. The majority of the predictions
from the BLFQ approach is in reasonable agreement with
experimental data and other model calculations when the
mj ¼ 0 state of the vector meson and the transverse
current JR ¼ Jx þ iJy are employed. We have also shown
that, at least in the context of heavy quarkonium, this
choice is preferred to the traditional good current Jþ

(cf. Ref. [14]). The latter lacks the access to the mj ¼ 0

state of the vector mesons and generates a less robust
result. Moreover, in extracting the decay constants of
vector mesons, Jþ gives the same result as JR when the
mj ¼ 0 state is used but cannot be used when the mj ¼ 1

state is taken.
The comparison of results extracted from different mj

states of the vector mesons also allowed us to investigate
the rotational symmetry of the model. The consistency of
decay constants, fVðmj ¼ 0Þ and fVðmj ¼ 1Þ, suggests
that the rotational symmetry is achieved at a reasonable
level with the adopted LFWFs for states identified as
S-waves. By contrast, the M1 transition form factors,
V̂ðQ2Þmj¼0 and V̂ðQ2Þmj¼1, as convolutions of the initial
and final states LFWFs, reveal details of the violation of
symmetry between mj ¼ 0 and mj ¼ 1 LFWFs, even
between S-wave states. In such circumstances,
V̂ðQ2Þmj¼0 is found to be more robust due to overlapping
dominant parts of LFWFs, and it became our suggested
approach in heavy systems. However, for states identified
as D-waves, our results for both the transition form factors
and for the decay constants show large difference between
calculations using mj ¼ 0 and calculations with mj ¼ 1.
This suggests that our mj ¼ 0 and mj ¼ 1 LFWF for these
states have noticeably different contributions beyond the
D-waves, such as those from the S-waves (which can be
present even in the nonrelativistic calculations) and those
with purely relativistic origin. In addition, they could also
have different components that vanish when rotational
symmetry is restored. The breaking of rotational symmetry
in the wave function mainly results from the Fock sector
truncation and basis truncation. We expect to improve
rotational symmetry by including higher Fock sectors, as
shown in some simpler theories [45].

FIG. 8. Decay constants of vector heavy quarkonia, calculated from Eqs. (20) and (21). The single (double) apostrophe stands for the
radial excited 2S (3S) state. The D-wave states are identified as n3D1. The results are obtained with Nmax ¼ Lmax ¼ 8 with error bars
Δfcc̄ ¼ jfcc̄ðNmax ¼ 8Þ − fcc̄ðNmax ¼ 16Þj for the charmonium and Nmax ¼ Lmax ¼ 32 with error bars Δfbb̄ ¼ 2jfbb̄ðNmax ¼ 32Þ −
fbb̄ðNmax ¼ 24Þj for the bottomonium. Results from PDG [25] are provided for comparison. The right panel shows the ratio of
fVðmj ¼ 1Þ to fVðmj ¼ 0Þ, where the S-wave states are shown in filled triangles and the D-wave states are shown in open diamonds.
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In future work, we will also extend the current formalism
to electric dipole transitions (E1 transitions) and higher
multipole contributions such as M2. With a variety of
transition modes, we hope to establish a more compre-
hensive understanding on the internal structure of quark-
antiquark bound states and to further address the role of
Lorentz symmetry. Radiative transitions within other
meson sectors, such as the light meson system and the
mixed flavor systems, are also of great interest.
Furthermore, besides the currently used Drell-Yan frame,
we could also adopt various other frames where the
transition form factor in the timelike region may be
accessible. The frame dependence study could also serve
as a metric for the violation of the Lorentz symmetry, as
shown for the elastic form factors [19].
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APPENDIX: CONVENTIONS

We adopt the conventions of Ref. [4]. Here, we provide
some additional identities useful for this work.

1. Light-front coordinates

The metric

gþ− ¼ g−þ ¼ 2; gþ− ¼ g−þ ¼ 1

2
; gxx ¼ gyy ¼ −1:

ðA1Þ
So,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p ¼ 1
2
. The Levi-Cività tensor should be

defined as

ϵμνρσ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p

8>><
>>:

þ1; if μ; ν; ρ; σis an even permutation of−;þ; x; y

−1; if μ; ν; ρ; σis an odd permutation of−;þ; x; y

0; other cases

: ðA2Þ

2. Spinor matrix elements

ūs0 ðp2Þγþusðp1Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
pþ
1 p

þ
2

q
δs0;s

ūs0 ðp2Þγ−usðp1Þ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffi
pþ
1 p

þ
2

p
8>>><
>>>:

m2
q þ pR

1p
L
2 ; s ¼ þ; s0 ¼ þ

mqðpL
2 − pL

1 Þ; s ¼ −; s0 ¼ þ
mqðpR

1 − pR
2 Þ; s ¼ þ; s0 ¼ −

m2
q þ pL

1p
R
2 ; s ¼ −; s0 ¼ −

ūs0 ðp2ÞγRusðp1Þ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffi
pþ
1 p

þ
2

p
8>>><
>>>:

pþ
2 p

R
1 ; s ¼ þ; s0 ¼ þ

mqðpþ
2 − pþ

1 Þ; s ¼ −; s0 ¼ þ
0; s ¼ þ; s0 ¼ −
pþ
1 p

R
2 ; s ¼ −; s0 ¼ −

ūs0 ðp2ÞγLusðp1Þ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffi
pþ
1 p

þ
2

p
8>>><
>>>:

pþ
1 p

L
2 ; s ¼ þ; s0 ¼ þ

0; s ¼ −; s0 ¼ þ
mqðpþ

1 − pþ
2 Þ; s ¼ þ; s0 ¼ −

pþ
2 p

L
1 ; s ¼ −; s0 ¼ −

ðA3Þ

v̄sðp1Þγμvs0 ðp2Þ ¼ ūs0 ðp2Þγμusðp1Þ: ðA4Þ
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