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We study the one-loop gluon polarization tensor at zero and finite temperature in the presence of a
magnetic field, to extract the thermomagnetic evolution of the strong coupling αs. We analyze four distinct
regimes, to wit, the small and large field cases, both at zero and at high temperature. From a renormalization
group analysis, we show that at zero temperature, either for small or large magnetic fields, and for a fixed
transferred momentum Q2, αs grows with the field strength with respect to its vacuum value. However, at
high temperature and also for a fixed value of Q2, we find two different cases. When the magnetic field is
even larger than the squared temperature, αs also grows with the field strength. On the contrary, when the
squared temperature is larger than the magnetic field, a turnover behavior occurs, and αs decreases with the
field strength. This thermomagnetic behavior of αs can help explain the inverse magnetic catalysis
phenomenon found by lattice QCD calculations.
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Strongly interacting matter exhibits unusual properties
when subject to magnetic fields. It has been shown by
lattice QCD (LQCD) that both the pseudocritical temper-
ature for the chiral or deconfinement phase transition and
the quark condensate for temperatures above the pseu-
docritical temperature decrease with the field strength.
This phenomenon has been named “inverse magnetic
catalysis” (IMC). The name implies the unexpected and
opposite behavior to the zero temperature case, whereby
the quark condensate increases monotonically with the
field strength [1]. Within a framework born out from
LQCD simulations, this phenomenon can be attributed
to the competition between the so-called sea and valence
contributions to the quark condensate, around the tran-
sition temperature. Indeed, when the condensate is com-
puted from the QCD partition function, there are two
distinct magnetic field-dependent factors: the determinant
of the Dirac operator appearing when integrating out the

fermion fields and the trace of the Dirac operator. The sea
and valence contributions refer to the case where the
magnetic field effect is only considered either in the
determinant or in the trace of the Dirac operator, respec-
tively. Although this separation seems artificial, it could
apparently be placed on firmer grounds by resorting to
LQCD techniques [2].
Another scenario to explain the origin of IMC is that the

strong coupling receives thermomagnetic corrections
which make it increase or decrease depending on the
competition between thermal and magnetic effects. The
growth or decrease of the quark condensate would in turn
be linked to the corresponding behavior of the coupling at
zero or at high temperature, respectively. This scenario has
been studied within effective QCD models [3–9], from the
Schwinger-Dyson approach [10], and from the thermo-
magnetic behavior of the quark-gluon vertex in QCD
[11,12]. In the latter, it has been shown that the growth
or decrease of the effective QCD coupling, at finite
temperature and magnetic field strength, comes from a
subtle competition between the color charges of gluons
and quarks in such a way that at zero temperature the
former is larger than the latter, whereas at high temperature,
the coupling receives contributions only from the color
charge associated to quarks.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 98, 031501(R) (2018)
Rapid Communications

2470-0010=2018=98(3)=031501(6) 031501-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.031501&domain=pdf&date_stamp=2018-08-24
https://doi.org/10.1103/PhysRevD.98.031501
https://doi.org/10.1103/PhysRevD.98.031501
https://doi.org/10.1103/PhysRevD.98.031501
https://doi.org/10.1103/PhysRevD.98.031501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In this work, we study the thermomagnetic behavior
of the strong coupling αs. We resort to using the renorm-
alization group equation (RGE), applied to the one-loop
gluon vacuum polarization, computed in the presence of a
magnetic field at zero and finite temperature. To understand
the thermomagnetic evolution of αs, we study the limiting
regimes where the magnetic field is considered either in
the weak or in the strong field case, both at zero and at high
temperature. A renormalization group flow analysis for
large ratios of the magnetic field to the temperature
squared, applied to the relevant two fermion operator,
has been recently carried out using the gauge-gravity
correspondence in Ref. [13]. Also, a RGE analysis of
the strong coupling running with temperature at zero
magnetic field, based on the use of temperature-dependent
renormalization constants, has been carried out in Ref. [14].
Let Pðq2;T; jeBj; αsÞ be the unrenormalized coefficient

of a given tensor structure upon which the gluon polari-
zation can be decomposed at finite temperature T and in the
presence of a constant magnetic field jeBj. Since the
thermomagnetic medium breaks Lorentz invariance, P
can depend separately on the square of the components
of the four-momentum qμ. However, for notational sim-
plicity and latter convenience, we write q2 for the momen-
tum dependence. We scale the energy variables appearing
in P by the renormalization ultraviolet energy scale μ,
writing

jeBj ¼ μ2ðjeBj=μ2Þ; T2 ¼ μ2ðT2=μ2Þ;
q2 ¼ μ2ðq2=μ2Þ: ð1Þ

Therefore, we have

Pðq2;T; jeBj; αsÞ ¼ μDPðq2=μ2;T2=μ2; jeBj=μ2; αsÞ; ð2Þ

where D ¼ 2 is the energy dimension of P. Since μ is
arbitrary, the statement that P should be independent of
this scale is provided by the RGE [15], namely,�

μ
∂
∂μþ αsβðαsÞ

∂
∂αs − γ

�
Pðq2;T; eB; αsÞ ¼ 0; ð3Þ

where βðαsÞ is the QCD beta function defined by

αsβðαsÞ ¼ μ
∂αs
∂μ ; ð4Þ

and

γ ¼ μ
∂
∂μ lnZ

−1; ð5Þ

with Z being the gluon vacuum polarization wave function
renormalization. The beta function encodes the dependence
of the strong coupling on the renormalization scale and

thus the ultraviolet properties of the theory. It is well known
that the QCD beta function is negative and that to one-loop
level it is given by

βðαsÞ ¼ −b1αs; b1 ¼
1

12π
ð11Nc − 2NfÞ; ð6Þ

with Nc the number of colors and Nf the number of active
flavors.
To set up the stage for the analysis, let us first recall

how the usual evolution of the strong coupling with the
momentum scale is established. Starting from Eq. (3) and
considering that the only energy scale in the function P is
q2, we have�

μ
∂
∂μþ αsβðαsÞ

∂
∂αs − γ

�
Pðq2; αsÞ ¼ 0: ð7Þ

We now introduce the variable

t ¼ lnðQ2=μ2Þ; ð8Þ

where Q2 is the momentum transferred in a given process.
Notice that the reference scale μ2 is usually large enough,
so as to make sure that the calculation is well within the
perturbative domain, therefore Q2 < μ2. After this change
of variable, the RGE becomes�

−
∂
∂tþ αsβðαsÞ

∂
∂αs − γ

�
Pðq2; αsÞ ¼ 0: ð9Þ

Using the method of the characteristics [16], one obtains
the relation between the coupling values evaluated at Q2

and the reference scale μ2 asZ
tðQ2Þ

tðQ2¼μ2Þ
dt ¼ −

1

b1

Z
αsðQ2Þ

αsðQ2¼μ2Þ

dαs
α2s

: ð10Þ

Solving for αsðQ2Þ, we obtain

αsðQ2Þ ¼ αsðμ2Þ
1þ b1αsðμ2Þ lnðQ2=μ2Þ ; ð11Þ

from where it is seen that as Q2 increases the coupling
decreases.
In the presence of a magnetized medium and/or a heat

bath, there appear extra energy scales in the analysis. The
question we set up to answer is how the coupling evolves as
a function of the magnetic field and/or temperature scales
when we take as the reference scale the momentum
transferred in the given processes, Q2 and the smallest
of either T2 and jeBj. The strategy we follow is to use the
explicit dependence of a certain P on the corresponding
energy variables to study the relationship that changes on
these scales bare with changes on the coupling constant, by
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means of the RGE. We now proceed to the analysis for the
case when the corresponding function P is computed in
the four limiting cases: the weak and strong magnetic fields
both at zero and high temperatures.
In the weak field limit, namely, jeBj < Q2 and at T ¼ 0,

the gluon vacuum polarization (omitting the diagonal color
structure) can be expressed as [17,18] (see also Ref. [19])

Πμν
weak ¼ Pk

weakΠ
μν
k þ P⊥

weakΠ
μν
⊥ þ P0

weakΠ
μν
0 ; ð12Þ

with Πμν
k ¼ gμνk −

qμkq
ν
k

q2k
, Πμν

⊥ ¼ gμν⊥ þ qμ⊥qν⊥
q2⊥

, and Πμν
0 ¼ gμν−

qμqν

q2 − Πμν
k − Πμν

⊥ , where, when taking the magnetic field

along the ẑ axis, we have gμνk ¼ ð1; 0; 0;−1Þ, gμν⊥ ¼
ð0;−1;−1; 0Þ, gμν ¼ gμνk þ gμν⊥ , qμk ¼ gμνk qν, qμ⊥ ¼ gμν⊥ qν,

q2k¼ðq0Þ2−ðq3Þ2, q2⊥¼ðq1Þ2þðq2Þ2, and q2 ¼ q2k − q2⊥.
Let us look at the coefficient Pk

weak. In Ref. [18], it has been
shown that with Nf ¼ 3 active flavors its explicit expres-
sion is

Pk
weak ¼ −

2αs
9π

jeBj2
� q2k
ðq2Þ3 ð2q

2
k þ q2⊥Þ

�
;

¼ −μ2
2αs
9π

ðjeBj2=μ4Þ

×
� q2k=μ

2

ðq2=μ2Þ3 ð2q
2
k=μ

2 þ q2⊥=μ2Þ
�
;

¼ −μ2
λ4B
λ2q

2αs
9π

ðjeBj2=μ4Þ

×
� q2k=μ

2

ðq2=μ2Þ3 ð2q
2
k=μ

2 þ q2⊥=μ2Þ
�
; ð13Þ

where in the second line we have scaled the momentum
components and the square root of the magnetic field
intensity by μ and in the third line we have introduced
the dimensionless scale factors λB and λq, one for each of

the magnetic
ffiffiffiffiffiffiffiffiffijeBjp

=μ and momentum q=μ powers of the
dimensionless ratios, respectively. Notice that Eq. (13)
satisfies

�
μ
∂
∂μþ λq

∂
∂λq þ λB

∂
∂λB −D

�
Pk
weak ¼ 0: ð14Þ

Using the RGE, Eq. (7), we get

�
−λq

∂
∂λq − λB

∂
∂λB þ αsβðαsÞ

∂
∂αs − γ̃

�
Pk
weak ¼ 0; ð15Þ

where γ̃ ¼ γ −D. Using the method of the characteristics,
we can write

dt ¼ −
dλq
λq

; dt ¼ −
dλB
λB

; ð16Þ

the solutions of which are

λq ¼ Cqe−t; λB ¼ CBe−t; ð17Þ

where Cq and CB are integration constants to be determined
from the initial condition for the evolution. Upon combin-
ing Eq. (17), we can write

λq þ λB ¼ ðCq þ CBÞe−t ¼ e−t; ð18Þ

where we have chosen that at t ¼ 0, for the initial condition
of the evolution, λq ¼ 1 and λB ¼ 0. Therefore,
Cq þ CB ¼ 1. Also, for the subsequent evolution, we take
Q2 fixed, and thus we refer the evolution of jeBj to the
reference scale Q2; namely, we take λB ¼ jeBj=Q2.
Therefore, we can write

t ¼ ln

�
Q2

Q2 þ jeBj
�
: ð19Þ

Notice that in this case, as opposed to Eq. (8), the evolution
energy scale appears in the denominator of the logarithmic
function in Eq. (19). Therefore, Eq. (15) becomes

� ∂
∂tþ αsβðαsÞ

∂
∂αs − γ̃

�
Pk
weak ¼ 0; ð20Þ

from where the relation between the coupling values
evaluated at jeBj and the reference scale Q2 can be
expressed as

Z
tðλB¼jeBj=Q2Þ

tðλB¼0Þ
dt ¼ −

1

b1

Z
αsðQ2þjeBjÞ

αsðQ2Þ

dαs
α2s

: ð21Þ

Solving for αsðjeBjÞ≡ αsðQ2 þ jeBjÞ, we obtain

αsðjeBjÞ ¼
αsðQ2Þ

1þ b1αsðQ2Þ lnð Q2

Q2þjeBjÞ
: ð22Þ

From Eq. (22), we see that as the magnetic field intensity
increases the coupling increases with respect to its corre-
sponding value at the reference scale Q2.
Next, let us consider the strong field limit jeBj > Q2 still

for T ¼ 0. Working in the lowest Landau level (LLL)
approximation, the only nonvanishing coefficient is that
of the structure Πμν

k , which for three active flavors and a

vanishing quark mass (m) is given by [18,20,21]
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Pk
strong ¼ −

4

3

αs
π
jeBje−q2⊥=2jeBj

¼ −μ2λ2B
4

3

αs
π

�jeBj
μ2

�
e
−ðλ

2
q

λ2
B
Þðq2⊥=2jeBjÞ; ð23Þ

where once again, in the second line, we have scaled the
momentum components and the square root of the mag-
netic field intensity by μ and have introduced the dimen-
sionless scale factors λB and λq, one for each of the

magnetic
ffiffiffiffiffiffiffiffiffijeBjp

=μ and momentum q=μ powers of the
dimensionless ratios, respectively. It is easy to check that
Eq. (23) satisfies Eq. (14), and thus, upon using the RGE,
Eq. (7), we obtain�
−λq

∂
∂λq − λB

∂
∂λB þ αsβðαsÞ

∂
∂αs − γ̃

�
Pk
strong ¼ 0: ð24Þ

Using the same arguments as for the weak field case, which
implies starting the evolution from the fixed scale
Q2 < jeBj, we once again obtain for the relation between
the coupling evaluated at jeBj and the reference scale Q2

αsðjeBjÞ ¼
αsðQ2Þ

1þ b1αsðQ2Þ ln
�

Q2

Q2þjeBj
� : ð25Þ

The results in Eqs. (22) and (25) show that for T ¼ 0, αs
is an increasing function of jeBj, when referred to the scale
Q2. This result, although not necessarily evident, is in
retrospect almost trivial: Since the reference scale is taken
as the square of the transferred momentum in a given
process, the magnetic field scale jeBj does not compete
with any other energy scale and is thus the only one that
drives the evolution. The reference scale Q2, although
large, is always smaller than either the combined scale
Q2 þ jeBj or jeBj, which in turn determines the sign of the
logarithmic function appearing either in Eq. (22) or (25).
We now turn to study the finite temperature case. Given

that there is no need to assume a given hierarchy between
T2 and jeBj, the calculation is more straightforwardly
performed when working in the LLL approximation.
This is a suitable approximation when one or the other
scale is considered as being the largest one. As is shown in
Ref. [18], in this approximation, the coefficient for the
parallel unrenormalized gluon polarization tensor structure
is given by

Pk
T-B ¼ μ2λ2B

4

3

αs
π

�jeBj
μ2

�
e
−ðλ

2
q

λ2
B
Þðq2⊥=2jeBjÞ

× ln

�
λ2mm2=μ2

π2λ2TT
2=μ2

��ðq23=μ2Þ þ ðq20=μ2Þ
ðq2k=μ2Þ

�
; ð26Þ

where we have again scaled the momentum components,
the square root of the magnetic field, the quark mass, and

the temperature by μ and have introduced the dimension-
less scale factors λB, λq, λm, and λT , one for each of the

magnetic
ffiffiffiffiffiffiffiffiffijeBjp

=μ, momentum q=μ, mass m=μ, and
temperature T=μ powers of the dimensionless ratios,
respectively. It is easy to check that Eq. (26) satisfies�

μ
∂
∂μþ

X
i¼q;B;m;T

λi
∂
∂λi −D

�
Pk
T-B ¼ 0 ð27Þ

and that upon using the RGE Eq. (3) one obtains�
−

X
i¼q;B;m;T

λi
∂
∂λi þ αsβðαsÞ

∂
∂αs − γ̃

�
Pk
T-B ¼ 0: ð28Þ

As before, we can write

dt ¼ −
dλq
λq

; dt ¼ −
dλB
λB

;

dt ¼ −
dλm
λm

; dt ¼ −
dλT
λT

; ð29Þ

the solutions of which are

λq ¼ Cqe−t; λB ¼ CBe−t;

λm ¼ Cme−t; λT ¼ CTe−t; ð30Þ

where Cq, CB, Cm, and CT are integration constants to be
determined from the initial condition for the evolution. We
can again combine Eq. (30) and write

λq þ λB þ λm þ λT ¼ ðCq þ CB þ Cm þ CTÞe−t: ð31Þ

Let us first consider the case where jeBj is the largest of the
energy (squared) scales. The lesson we learned from the
analysis at T ¼ 0 is that one should choose the reference
scale as the sum of the rest of the energies (squared) other
than the one that is evolving. Since for the case of three
active quark flavors the quark mass is small with respect to
the rest of the energy scales involved, we neglect the quark
mass and use as the reference scale the combination
Q2 þ T2. Therefore, in a fashion similar to the analysis
of the T ¼ 0 case, we obtain

αsðjeBjÞ ¼
αsðQ2 þ T̃2Þ

1þ b1αsðQ2 þ T̃2Þ ln
�

Q2þT2

Q2þT2þjeBj
� ; ð32Þ

where, since the analysis is only valid at leading order, we
have taken T̃ as a representative fixed value of T in the
energy domain of interest to compute the value of the
coupling at the reference scale. From Eq. (32), we see that
the coupling grows with the field intensity.
We now consider the case where T2 is the largest of the

energy (squared) scales. In this case, the analysis yields
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αsðjeBjÞ ¼
αsðQ2 þ gjeBjÞ

1þ b1αsðQ2 þ gjeBjÞ ln� Q2þjeBj
Q2þjeBjþT2

� ; ð33Þ

where we have also used a representative fixed value of

the field strength gjeBj to evaluate the coupling at the
reference scale, to account for the fact that the analysis is
only valid at leading order. From Eq. (33), we see that the
coupling decreases with the field intensity. We note that,
contrary to the T ¼ 0 case, now the magnetic field has an
extra scale to compete with. When the field intensity is
the largest of these scales, the result is as for the T ¼ 0
case, where jeBj is the only relevant reference scale
and this in turn implies that the coupling increases.
Conversely, when the temperature is the largest scale,
the field strength appears both in the numerator and in the
denominator of the argument of the logarithmic function,
which in turn makes the coupling to decrease with the
field strength.
Figure 1 shows the dependence of the strong coupling

as a function of the magnetic field strength. We have
chosen a fixed large value of Q2 ¼ 1 GeV2. The black
solid and red dash-dot lines show the cases for T ¼ 0 and
jeBj > T2, with T ¼ 1.1 GeV, respectively, correspond-
ing to jeBj being the largest of the energy scales. For
both cases, we observe that the coupling increases with
the field strength. The blue dash line shows the case
for jeBj < T2 with T ¼ 1.5 GeV. We observe that in this
case, when the temperature is the largest of the energy
scales, the coupling decreases as a function of the field
strength. We also find the solution of the evolution equation
forPk in the four studied regimes. This is obtained in general
as [22]

PðαsÞ ¼ Pðα0sÞ exp
�
−
Z

αs

α0s

dα0
γ̃ðα0Þ
βðα0Þ

�
; ð34Þ

where, as before, γ̃ ¼ γ −D, with γ the one-loop gluon
field anomalous dimension [23], given explicitly by

γ ¼
��

a −
13

3

�
CA þ 8

3
TFNf

�
αs
4π

≡ Aαs: ð35Þ

We consider Nf ¼ 3 active flavors, work in the Landau
gauge a ¼ 0, and remember that TF ¼ 1=2 and CA ¼ Nc,
with Nc ¼ 3 the number of colors. From Eq. (34), we
obtain that in each of the studied regimes the parallel
component of the gluon polarization tensor is given by

Pk
weak;strongðαsÞ

Pk
weak;strongðα0sÞ

¼
�
Q2 þ jeBj

Q2

�
2
�

αsðQ2Þ
αsðQ2 þ jeBjÞ

� A
b1 ;

Pk
T<jeBjðαsÞ

Pk
T<jeBjðα0sÞ

¼
�
Q2 þ T2 þ jeBj

Q2 þfT2

�
2

×

�
αsðQ2 þfT2Þ

αsðQ2 þ T2 þ jeBjÞ
� A

b1 ;

Pk
T>jeBjðαsÞ

Pk
T>jeBjðα0sÞ

¼
�
Q2 þ T2 þ jeBj

Q2 þ gjeBj
�

2

×

�
αsðQ2 þ gjeBjÞ

αsðQ2 þ T2 þ jeBjÞ
� A

b1 : ð36Þ

We notice that the Pk’s grow with the field strength. The
growth is tamed by the temperature such that for the case
with T2 > jeBj the growth is less pronounced.
In conclusion, from an analysis of the RGE for the gluon

polarization tensor in the presence of a magnetic field and
at finite temperature, we have shown that when the
magnetic field is the largest of the energy scales the strong
coupling increases with the field strength. Conversely,
when the temperature is the largest of the scales, there is
a turnover behavior, and the strong coupling decreases as a
function of the field strength. We emphasize that the
renormalization program is performed integrating out the
degrees of freedom above the ultraviolet scale μ. Therefore,
the running of the strong coupling accounts for the
competition of magnetic and thermal energy scales much
below μ. This is in contrast to other schemes adopted for
instance in Refs. [14,24], where an attempt is made to
integrate out degrees of freedom down to the thermal scale.
Since the strength of the quark condensate is a measure of
the quark-antiquark binding and this in turn depends on the
strength of the QCD coupling, these results can help one
understand the IMC phenomenon observed by LQCD.

FIG. 1. Strong coupling running as a function of the
magnetic field strength. The curves are computed using a fixed
transferred momentum Q2 ¼ 1 GeV2. The black solid line
shows the case for T ¼ 0. The blue dash line shows the case
when jeBj < T2 computed with T ¼ T̃ ¼ 1.5 GeV. The red
dash-dot line is the case for jeBj > T2 computed with T ¼
1.1 GeV and jẽBj ¼ 1.2 GeV2.
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