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A new form time crystal has been proposed, and some of its consequences have been studied. The
model is a generalization of the Friedmann-Robertson-Walker (FRW) cosmology endowed with
noncommutative geometry corrections. In the minisuperspace approach, the scale factor undergoes
the time periodic behavior, or Sisyphus dynamics, which allows us to interpret this cosmological time
crystal as a physically motivated toy model to simulate the cyclic universe. Analyzing our model purely
from the time crystal perspective reveals many novelties such as a complex singularity structure (more
complicated than the previously encountered swallowtail catastrophe) and a richer form of Sisyphus
dynamics. In the context of cosmology, the system can serve as a toy model in which, apart from
inducing a form of the cyclic universe feature, it is possible to generate an arbitrarily small positive
effective cosmological constant. We stress that the model is purely geometrical without introduction of
matter degrees of freedom (d.o.f.).
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I. INTRODUCTION

In this paper, we aim to apply the fascinating concept of
classical time crystal (CTC), proposed by Shapere and
Wilczek [1,2] (see [3] for a recent review), in an extended
model of Friedmann-Robertson-Walker (FRW) cosmology.
Specifically, the extension is induced by a noncommutative
(NC) gravity contribution with an underlying quantum
gravity perspective. It was derived by Fabi, Harmes, and
Stern [4]. In a nutshell, two of our principal results are the
following:

(i) The scale factor borrows the Sisyphus-like periodic
behavior that characterizes the CTC, but more
importantly for our present interest, it can naturally
serve as a physically motivated toy model for a

cyclic universe, conceived by Steinhardt and
Turok [5].1

(ii) Once again, borrowing a CTC feature, the minimum
energy state (or ground state) consists of a con-
densate, leading to an arbitrarily small positive
cosmological constant Λ.

Furthermore, it needs to be stressed that our model is
purely geometric in the sense that no matter d.o.f. are added
from the outside. This should be contrasted with recent
works in cosmological CTC [6], where a scalar field model
with eternal oscillations in an expanding FRW spacetime
was discussed (see also [7] for further developments on the
model). From a TC perspective as well, there is some
novelty as recent works [8] concerning the physical
realization of TC are all in the quantum domain,2 whereas
our framework is purely classical. The only classical
example studied so far is in [1,2] that is not very realistic.
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1We note that the perspective of cyclic cosmology [5] and that
in the present model is somewhat different although, in the
former, quantum gravity effects are not considered to be
significant, whereas in the latter, the cyclic cosmological features
emerge due to the noncommutative contributions which in turn
are generally thought to be induced by quantum gravity effects.
We consider a closed universe.

2The quantum TC was proposed by Wilczek [9] with exper-
imental models for quantum TC in [10].
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It is worthwhile to mention a remarkable coincidence
concerning the present work with two earlier observations:
from the time-symmetric nature of the NC metric, in [4]
itself, the authors had suggested that the NC FRW metric
might describe a bouncing universe from a restricted study
of geodesics. This is not connected to the idea of TC
because the latter appeared much later. On the other hand,
in a recent article on TC [11], Zakrzewski conjectured that
cyclic evolution of cosmology may emerge as a form of TC,
resulting from a spontaneous breaking of time translation
invariance but did not mention any specific scenario. Our
work provides a successful union of these two ideas
in [4,11].
We have introduced three concepts, time crystal, cyclic

universe, and noncommutative geometry-corrected general
relativity or gravity. Let us elaborate on these briefly.

A. Classical time crystal

Within a few years of the theoretical conjecture, TC has
created an enormous amount of interest, both in theoretical
[8] and experimental [10] contexts (see [3] for a recent
review).
Symmetry of a system is spontaneously broken when the

ground state (or classically, the lowest energy state) of a
system is less symmetrical than the equations of motion
that control the system. Prominent examples from the
quantum world are the Higgs boson, ferromagnets and
antiferromagnets, liquid crystals, and superconductors.
Examples in classical systems are rare.
The name time crystal is borrowed from the familiar

(space) crystal that has a spatially ordered structure in its
ground state. It is a manifestation of breaking of continuous
translation symmetry, leaving behind a ground state with
discrete translation symmetry.3 The question posed by
Shapere and Wilczek [1,2] is the following: can a system
with time-periodic ground states that break continuous time
translational invariance exist? The resulting system with
discrete time translation symmetry was referred to as time
crystal. A mathematical model for a classical TC was
provided in [1], and later in [2], a more “physical” model
was constructed in which the relevant d.o.f. undergoes
periodic Sisyphus dynamics in its lowest energy state. The
latter model in a certain limit reduces to the strictly CTC
model. Indeed, the strict CTC inherently has singular
behavior, whereas the physical realization is throughout
well behaved. These will be discussed in more detail later,
but essentially CTC has a noncanonical form of kinetic
energy that minimizes (not for zero velocity as in conven-
tional systems) at a nonzero velocity, much in analogy to
spontaneous symmetry breaking (SSB) where a potential

function minimizes at a nonzero (but constant) value of the
field variable that constitutes the ground state condensate.
A subtle but essential point is that for time crystal behavior
the condensates must show spatial or temporal nonuniform
(but periodic) behavior.
Even though it will not concern us here, the quantum

TC proposed by Wilczek [9] had certain drawbacks, as
pointed out in [13], and improved versions of the quantum
TC appeared later [8], and TC characteristics have been
observed in laboratory experiments [10] (for a recent
review, see [3]).
It is reassuring to emphasize that TCs do not break any of

the sacred thermodynamic principles, such as, for example,
the second law of thermodynamics, even though TCs may
appear to simulate a perpetual motion machine. The key
point is to note that the movement in the ground state does
not involve any external work, and no usable energy can be
extracted from the motion in the ground state. In fact, TCs
can have interesting applications, such as precise time-
keeping, simulation of ground states in quantum computing
schemes [11], and, finally, in cyclic cosmology, as pro-
posed in the present work.

B. Cyclic universe

Cosmological models with a classical nonsingular
bounce were proposed in [5,14] as an alternative to
inflation [15]. A few important and generic positive
features of the bouncing cosmology model are the follow-
ing [14]: it avoids the cosmic singularity problem; resolves
the horizon problem; explains the smoothness and flatness
of the universe as well as the small entropy at the starting of
expanding phase of the universe. The Big Bang singularity
is substituted by a bounce wherein the scale factor contracts
to a finite size that is well above the Planck length and
rebounds to the expanding phase. This provides the
geodesic completeness (that is absent in the Big Bang
scenario) as every comoving particle has a worldline that
can be traced backwards through the bounce arbitrarily far
back in time. This makes the energy density below the
Planck density at all times so that quantum gravity effects
are expected not to play a major role. Hence, the need to
explain quantum-to-classical transition does not arise.
Causal connectedness, a generic feature of bouncing
scenario, is achieved in the contracting phase backwards
in time by passing through the bounce. The flatness of the
universe is explained by noting that the cosmic curvature
factor is exponentially suppressed at the time the universe
reaches the bounce, generating an extremely small spatial
curvature that agrees with the flatness observed at present.
Lastly, bouncing models satisfy the second law of thermo-
dynamics. It has a small entropy density, tiny in comparison
to the maximum entropy possible, meaning that it was still
less at the beginning of the expansion phase. This is
possible because the present observable universe was just

3It was shown by one of us in [12] that spatial higher derivative
terms in a field theory can induce breaking of spatial translation
invariance (as an alternative to Shapere-Wilczek scheme), and it
can be extended to break time translation invariance, as well.
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an infinitesimal fraction of the horizon size long before the
bounce possessing a small amount of entropy available.
The cyclic model has turned out to be a popular and well-

studiedmodel of our universe [16]where the universe passes
through an infinite sequence of expanding and contracting
phases without having a beginning or ending of time. This is
also in agreement with the astronomical data [17].
However, the challenge remains in establishing the

mechanism that accounts for the bounce explicitly in a
cosmological model. It is here that our cosmological time
crystal model (or NC-corrected FRW model) can throw
some light because the dynamics of periodic expansion and
contraction (∼Sisyphus dynamics) of the scale factor are
demonstrated explicitly in our work.

C. General relativity in noncommutative spacetime

NC geometry or equivalently a generalized form of
canonical (Heisenberg) phase space algebra was introduced
long ago by Snyder [18] to ameliorate short distance
divergence, but that idea was not successful. The seminal
work of Seiberg and Witten [19] (see review works [20])
put NC geometry in the limelight by showing that string
theory in certain low-energy limits can be identified with
quantum field theory extended to NC spacetime of the form

½xμ; xν� ¼ iΘμν; ð1Þ
with the constant antisymmetric NC parameterΘμν ¼ −Θνμ.
However, due to a subtle effect, known technically
as ultraviolet-infrared mixing, the short distance scale
ΔxμΔxν ≈

ffiffiffiffiffiffi
θμν

p
induced from (1) does not improve the

ultraviolet behavior of quantum field theory. The systematic
procedure of extending a field theoretic model living in
conventional spacetime to NC spacetime is to replace local
products of fields by the Groenewold-Moyal star product
given by

⋆ ¼ exp
�
i
2
Θμν∂⃖μ∂⃗ν

�
; ð2Þ

where ∂⃖μ and ∂⃗μ are left and right derivatives, respectively,
with respect to some generic coordinate xμ. To be explicit,
products of local fields like AðxÞBðxÞ are replaced by

AðxÞ⋆BðxÞ ¼ AðxÞ exp
�
i
2
Θμν∂⃖μ∂⃗ν

�
BðxÞ

in the action and construct NC-extended equations of
motion. The NC contributions will appear as a power series
in θμν obtained from expanding the ⋆ product formally as a
power series in θμν. Furthermore, conventional gauge
theories require a special treatment: the Seiberg-Witten
map connects NC d.o.f. to conventional d.o.f. [19]. Let us
now discuss the motivation for NC gravity.
At present, there is no universally accepted theory

(backed by experiments) that can describe physics at or

below Planck length. It is argued that in this regime
quantum effects cannot be ignored. Various attempts to
formulate such a theory is generically referred to as
examples of quantum gravity theories. It has been estab-
lished that classical general relativity in conjunction with
quantum mechanics demands the existence of a fundamen-
tal length scale [21]. Examples of a class of such theories
are NC field theories mentioned earlier. Thus, it is only
natural that NC extension of general relativity is sure to
serve as a strongly motivated toy model to simulate
quantum gravity. However, as noted in the text, further
and more elaborate analysis is needed before the NC
gravity can pose as a candidate for quantum gravity.
The above discussion puts our paper in its proper per-

spective. We have studied a physically motivated toy model,
NCFRW[4], in light ofCTC, in a closeduniverse.The results
are indeed striking: in the minisuperspace toy model
approach, we find that the NC effects induce a SSB in time
translation invariance that results in a cyclic type of cosmol-
ogy. Furthermore, we provide a natural way of generating a
small positive cosmological constant. We emphasize that,
contrary to the existing cyclic models that require a potential
term, our model is geometric and does not require any matter
from outside. To the best of our knowledge, our work
provides the first instance of a realistic and physically
motivated classical time crystal model that is a generalization
of the simplest forms of the CTC model of [1,2].
The paper is organized as follows: In Sec. II, a brief and

self-contained discussion on generic classical time crystal is
provided. At the same time, the model studied has direct
relevance with our work concerning the cosmological time
crystal, the latter being richer in structure. In Sec. III, the
noncommutative gravity is introduced, and the noncommu-
tative metric structure is derived. Section IV deals with
the noncommutative minisuperspace action. This consti-
tutes the major part where the explicit cosmological
time crystal models are derived. In Sec. V, the cosmological
time crystal is analyzed in detail. Section VII discusses
the interesting result that the cosmological time crystal can
yield an effective small positive cosmological constant. In
Sec. VII, a noncommutative generalization of Friedman
equation is derived. We conclude with a discussion and
future directions of work in Sec. VIII.

II. GENERIC MODEL OF CLASSICAL
TIME CRYSTAL (CTC)

Let us start by observing a generic CTC in more detail.
From the Hamiltonian dynamics point of view, it seems that
CTC cannot exist. Consider a Hamiltonian Hðp;ϕÞ with
coordinate ϕ and conjugate momentum p. The Hamiltonian
Hðp;ϕÞ minimizes at ∂H∂p ¼ ∂H

∂ϕ ¼ 0. On the other hand, the

Hamilton’s equations of motion state that _ϕ ¼ ∂H
∂p. Putting

this together, we get the minimum energy state _ϕ ¼ ∂H
∂p ¼ 0,
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indicating that ϕ should be a constant. Thus, classical
ground state should be static contrary to a CTC ground state.
However, the problem is more subtle because in CTC the

canonical momentum p leads to a multivalued Hamiltonian
as a function of _ϕ with cusps at ∂p

∂ _ϕ ¼ 0, where the

Hamiltonian equations of motion are not valid. Thus, it
might be possible for CTC to avoid the negative conclusion
mentioned above. We discuss an explicit example [1,2] that
will show how the systemground state can adjust itself to the
contrasting demands of a time invariant (constant position)
and simultaneously time varying (constant velocity) state.
The idea is analogous to the phenomenon of SSB, albeit

in velocity (or momentum) space. In conventional SSB, the
energy minimizes at zero velocity, but the potential energy
VðϕÞ has its minimum at a nonzero but constant ϕ ¼ ϕ0.
However, in [1,2], the authors introduced a simple dynami-
cal model where the minimum value of kinetic energy is
obtained at a time-dependent ϕðtÞ (but constant _ϕðtÞ ¼ _ϕ0)
so that even classically the ground state condensate has
a motion. In conventional SSB, for the Lagrangian
L ¼ 1

2
_ϕ2 − VðϕÞ, if the potential VðϕÞ ¼ − A

2
ϕ2 þ B

4
ϕ4

has a minimum at ϕ0 ¼ �
ffiffiffi
A
B

q
, the energy E ¼ 1

2
_ϕ2 þ

VðϕÞ also minimizes at constant ϕ0.
Let us now return to CTC. Consider a generic

Lagrangian,4

L ¼ −
A
2
_ϕ2 þ B

4
_ϕ4 − VðϕÞ; ð3Þ

that leads to the energy

E ¼ −
A
2
_ϕ2 þ 3

4
B _ϕ4 þ VðϕÞ: ð4Þ

Rewriting the energy as

E ¼ 3B
4

�
_ϕ2 −

A
3B

�
2

−
A2

12B
þ VðϕÞ; ð5Þ

it is clear that this energy minimizes at

_ϕ0 ¼ �
ffiffiffiffiffiffi
A
3B

r
; ϕ ¼ ϕ0: ð6Þ

This is CTC ground state with mutually opposing require-
ments of simultaneous constant (nonzero) velocity and
constant position (for an alternative approach, see [12]).
To further elucidate the situation, we note that the

Lagrangian equation of motion,

ϕ̈ ¼ −
∂V
∂ϕ

3Bð _ϕ2 − A
3BÞ

; ð7Þ

diverges at the energy minima. Furthermore, energy
becomes a multivalued function of p,

p ¼ ∂L
∂ _ϕ ¼ −A _ϕþ B _ϕ3; ð8Þ

with cusps at the energy minima,

∂p
∂ _ϕ ¼ −Aþ 3B _ϕ2 ¼ 0 → _ϕ0 ¼ �

ffiffiffiffiffiffi
A
3B

r
: ð9Þ

Later, we will show explicitly that the cusp structure leads
to catastrophe for our cosmological TC.
Hence, at exactly ground state, the system becomes

singular, but interesting behavior is recovered for the
system being arbitrarily close to the ground state with
energy E slightly above the minimum energy, E ¼ Eminþ
Δ ¼ − A2

12
þ Δ, with Δ being small. Assuming this energy

occurs at ϕt, one can approximately solve for _ϕ [1] to
obtain

_ϕ ¼ �
ffiffiffiffiffiffi
A
3B

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

A

�∂V
∂ϕ

�
ϕt

ðϕt − ϕÞ
s

: ð10Þ

The above Eq. (10) has four independent solutions. To
interpret the behavior of the system close to the ground state,

we note that _ϕ tends to remain close to either �
ffiffiffiffi
A
3B

q
, but it

gets altered by the second term. The latter, however, cannot
go beyond a certain value because ϕ cannot exceed ϕt.
Altogether, the position changes (due to one of the nonzero

velocities �
ffiffiffiffi
A
3B

q
), but when it reaches near the value that

minimizes the potential, the velocity abruptly falls back and
this cycle is repeated—in short the Sisyphus dynamics. Thus
the system is forced to undergo “Sisyphus dynamics” [2],
where on an average ϕ stays close to the constant ϕ0 but
periodically goes through a phase of nonzero _ϕ ¼ _ϕ0

(constant).
In order to visualize the Sisyphus dynamics of the

ground state in [2], the authors have provided an alternative
mechanism. Physically this model can be interpreted as a
charge moving in the plane in the presence of an electric
field. A new parameter with an auxiliary variable is
introduced that results in a well-behaved system. The
singularity reappears in the vanishing limit of the new
parameter. In principle, this parameter can be arbitrarily
small, and numerically, it does not alter the system proper-
ties significantly. One can see the Sisyphus dynamics in the
ground state motion in this enlarged (regularized) setup. We
will discuss this scheme for our cosmological TC.

III. GRAVITY IN NONCOMMUTATIVE SPACE
AND NONCOMMUTATIVE FRW

Although NC non-abelian gauge theories have been
successfully constructed using the Seiberg-Witten map,

4In our cosmological TC model, the Lagrangian is more
involved but has similar features.
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NC generalization of general relativity poses problems
mainly because it is difficult to impose invariances such as
general coordinate covariance and local Lorentz symmetry
in NC spaces. Furthermore, torsion-free derivatives that
satisfy the metricity condition are difficult to define on NC
spaces.
Out of several inequivalent approaches, we will utilize

the proposal of Fabi et al. [4], who exploit an earlier work
[22] that follows the approach in [23], where the Seiberg-
Witten map is utilized to construct the NC analogue of
SOð4; 1Þ gauge theory and subsequently impose Wigner-
Inonu contraction to make contact with general relativity.
A further simplification is considered [24]: instead of
deriving the NC dynamical equations for the metric and
solving them, one uses the existing solutions of Einstein
equation in normal spacetime and appropriately extends
them to NC spacetime in the above framework. Possible
limitations of this scheme are mentioned in [4]. The NC
FRW construction has been achieved in this way in [4],
which we now briefly outline.
General relativity, as a gauge theory, is expressed in

terms of spin connection and vierbein one-forms, ωab ¼
−ωba and ea, respectively. Here, the Lorentz indices are
a; b;… ¼ 0, 1, 2, 3 that act in the flat metric space
η ¼ diagð−1; 1; 1; 1Þ. On the other hand, the spacetime
metric is given by

gμν ¼ eaμebνηab: ð11Þ

Infinitesimal local ISOð3; 1Þ transformations of ωab and ea

appear as

δωab ¼ dλab þ ½ω; λ�ab;
δea ¼ dρa þ ωa

cρ
c − λacec; ð12Þ

for infinitesimal parameters λab ¼ −λba and ρa and where
½ω; λ�ab ¼ ωa

cλ
cb − λacω

cb. The spin curvature and torsion
two-forms, Rab ¼ −Rba and Ta, respectively, are obtained
from ωab and ea in the conventional way:

Rab ¼ dωab þ ωa
c ∧ ωcb;

Ta ¼ dea þ ωa
b ∧ eb: ð13Þ

The complete details are provided in [4]. The above
ISOð3; 1Þ gauge theory is the Wigner-Inonu contraction
of SOð4; 1Þ gauge theory consisting of potential one-form
AAB and curvature two-form FAB ¼ −FBA:

FAB ¼ dAAB þ AA
C ∧ ACB; ð14Þ

where A;B; :: ¼ 0, 1, 2, 3, 4 living in a space with metric
tensor diagð−1; 1; 1; 1; 1Þ. The contraction is performed by
imposing

Λab ¼ λab Λa4 ¼ κρa

Aab ¼ ωab Aa4 ¼ κea

Fab ¼ Rab Fa4 ¼ κTa; ð15Þ

in the limit κ → 0.
The NC version of the SOð4; 1Þ curvature two-form is

F̂AB ¼ dÂAB þ ÂA
C∧� ÂCB: ð16Þ

Here,∧� denotes an exterior product where the local product
terms are replaced by ⋆ product. The NC analogues of spin
connection, vierbein, curvature, and torsion forms,
denoted, respectively, by ω̂ab, êa, R̂ab, and T̂a, follow
from ÂAB as before,

Âab ¼ ω̂ab Âa4 ¼ κêa

F̂ab ¼ R̂ab F̂a4 ¼ κT̂a; as κ → 0: ð17Þ
Seiberg-Witten map comes into play when ÂABðx;ΘÞ,

F̂ABðx;ΘÞ, and Λ̂ABðx;ΘÞ are expanded as a series in
powers of Θμν:

ÂAB
μ ðx;ΘÞ ¼ AAB

μ ðxÞ þ AAB
μ
ð1Þ

ðx;ΘÞ þ AAB
μ
ð2Þ

ðx;ΘÞ þ � � �

F̂AB
μν ðx;ΘÞ ¼ FAB

μν ðxÞ þ FAB
μν
ð1Þ

ðx;ΘÞ þ FAB
μν
ð2Þ

ðx;ΘÞ þ � � �

Λ̂ABðx;ΘÞ ¼ ΛABðxÞ þ ΛAB

ð1Þ
ðx;ΘÞ þ ΛAB

ð2Þ
ðx;ΘÞ þ � � � :

ð18Þ
The numerics (1), (2),.. on the right-hand side denotes the
order of Θ. In a similar fashion, NC generalizations of
vierbeins and spin connections are expressed as the power
series expansion in θ:

êaμðx;ΘÞ ¼ eaμðxÞ þ eaμ
ð1Þ
ðx;ΘÞ þ eaμ

ð2Þ
ðx;ΘÞ þ � � �

ω̂ab
μ ðx;ΘÞ ¼ ωab

μ ðxÞ þ ωab
μ

ð1Þ
ðx;ΘÞ þ ωab

μ
ð2Þ

ðx;ΘÞ þ � � � : ð19Þ

A. Noncommutative FRW

As stated earlier, the above scheme allows us to compute
NC extensions of known metrics in a consistent way that
respects the gauge invariances of general relativity as the
power series constructions are obtained from the Seiberg-
Witten map. This finally brings us to the NC FRW metric.
The conventional Friedmann-Robertson-Walker metric

reads

ds2 ¼ −dt2 þ aðtÞ2
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
;

ð20Þ
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where aðtÞ is the scale factor. Vierbein one-forms are
identified as

e0 ¼ dt; e1 ¼ aðtÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p ;

e2 ¼ aðtÞrdθ; e3 ¼ aðtÞr sin θdϕ: ð21Þ
In order to make torsion zero, the following choice of spin
connection one-forms are required:

ω01 ¼ χdr; ω02 ¼ _ardθ; ω03 ¼ _ar sin θdϕ

ω12 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
dθ ω31 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
sin θdϕ

ω23 ¼ − cos θdϕ; ð22Þ
where the dot denotes the time derivative. Constructing the
curvature scalar R ¼ Rμν

μν and matching with the
Robertson-Walker results in

R ¼ 6

�
ä
a
þ
�
_a
a

�
2

þ k
a2

�
; ð23Þ

where χ is fixed as

χ ¼ _affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p : ð24Þ

For simplicity, we set all components of Θμν equal to
zero except for

Θtr ¼ −Θrt ≡ θ: ð25Þ
Once again, we are skipping the expressions of the NC

extensions of vierbein [4] and only reproduce the NC-
corrected FRW metric [4],

gtt ¼ −1þ θ2

16c4
ð6ä2 þ 5_aa

…Þ þOðθ4Þ

grr ¼
a2

1 − kr2
−

θ2

16c4
ð _a4 þ 13aä _a2 þ 12a2 _a a

…þ16a2ä2Þ
þOðθ4Þ

gθθ ¼ r2a2 þ θ2

16c2

�
5_a2 þ 4aä −

a
c2

ð8aä2 þ 9_a2ä

þ 4a _a a
…Þr2

�
þOðθ4Þ

gϕϕ ¼ sin2θgθθ; ð26Þ
where c is the velocity of light. Notice the well-known fact
[24] that all NC corrections start from Oðθ2Þ, which is a
characteristic feature of NC gravity. We end this section
with a cautionary note regarding the limitations of this NC
extension framework, as mentioned by the authors of [4]. In
particular, the scale factor might receive additional NC
corrections arising from NC matter couplings to Einstein
gravity.

IV. NONCOMMUTATIVE
MINISUPERSPACE ACTION

It is plausible to argue that quantum effects dominated in
the early universe, but without a fundamental theory of
quantum gravity, one has to contend with the Wheeler-de
Witt form of quantum mechanics of the universe that works
with a highly reduced system of finite number of d.o.f.: the
minisuperspace. It was shown in [25] that under certain
criteria, fortunately satisfied by FRWmetric, it is allowed to
drastically reduce the d.o.f. count at the action level, thus
treating the universe itself as a mechanical system even-
tually leading to the Wheeler-de Witt version of
Schrödinger equation for the universe. However, we will
stick to the classical scenario as the NC generalization of
the FRW model, derived in [4], that we work with can have
some quantization ambiguities [26]. Importance of non-
commutativity in high-energy physics was emphasized by
Seiberg and Witten [19], who showed that in certain low-
energy limits, open string dynamics, ending onD-branes in
the presence of external two-form gauge fields, were
equivalent to a NC quantum field theory. Various aspects
of NC space (time) effects on quantum systems as well
effects on analogous noncanonical (Poisson) algebra on
classical systems have been investigated (for reviews,
see [20]).
In the present paper, we show that a natural example of

SSB in velocity space leading to an extended form of CTC
is the FRW standard model of cosmology endowed with
NC correction [4]. The TC structure induces an interesting
(but well-studied) cosmological behavior such as bouncing
or cyclic cosmology, without any extra matter d.o.f.

A. NC-corrected minisuperspace action

The NC-corrected FRW metric is given by [4], where
only Θrt ¼ −Θtr ¼ θ component of fxμ; xνg ¼ Θμν is
nonzero, and we keep c, velocity of light, explicit. The
generic form of the Einstein-Hilbert actionA ¼ c4

16πG

R ðR −
2ΛÞ ffiffiffiffiffiffi−gp

d4x in the minisuperspace reduction reads

A ¼ σ

Z
dt

��
−a _a2 þ κa −

Λ
3
a3
�
− β1

_a2

a
þ β2

_a4

a

− β3
_a6

a
þ α1a _a2 þ α2a _a4

�
; ð27Þ

where NC corrections are introduced via θ in the numerical
parameters,

σ¼c2L3

2G
; β1¼

�
5θ2

16L4ρ

�
; β2¼

�
θ2

4L2c2

�
; ð28Þ

β3¼
θ2

96c4
; α1¼

�
3Λθ2

16L2c2

�
; α2¼

317

96c4
Λθ2: ð29Þ
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In our model, the dimensions of the physical quantities and
parameters in mass (m), length (l), and time (t) units are as
follows:

½A� ¼ ml2

t
; ½G� ¼ l3

mt2
; ½a� ¼ 0;

½θ� ¼ l2; ½Λ� ¼ ½κ� ¼ 1

t2
:

The parameter ½L� ¼ l denotes the size of the comoving
spatial coordinates, and L3 arises from their integration
when the field theory is reduced to a quantum mechanical
system. Conventionally, one sets L ¼ 1 by normalizing the
scale factor a. However, the situation is more subtle here
because the NC correction terms generate inhomogeneity
and does not allow L3 to be uniformly factored out. This
forces us to keep L explicit for the time being.
Some comments about the action in (27) are in order. We

have considered a closed (κ ¼ 1) universe in the canonical
sector of the action but have not considered κ-dependent
terms in the NC Oðθ2Þ contributions, primarily for con-
venience. (We also believe that κ-dependent NC corrections
in the metric [4] will not change our major conclusions
significantly.) Secondly, we have followed an approxima-
tion scheme suggested in [4] that drops äðtÞ and higher
time derivatives, again from NC correction terms only.
Finally, surface terms are dropped, making the action a
functional of a; _a to allow a Lagrangian description. We
note that ρ ≪ 1 is a numerical parameter (to be fixed later)
that appears only in β1 as a regularization that introduces a
NC-induced fuzziness (∼Planck length) in the minisuper-
space volume. It is immediately clear that the action (27)
possesses TC behavior but with novel features compared to
those of the models in [1,2] primarily due to the _a6 term and
overall for more complicated a dependence.
Let us identify L ¼ c=Λ (to be justified presently) and

rewrite (27) in a compact form,

A ¼ σ

Z
dt

�
−A _a2 þ B _a4 − C _a6 þ κa −

Λ
3
a3
�
; ð30Þ

where A ¼ aþ ν
16
ð 5
ρa − 3aÞ; B ¼ ν

4Λ ð1a þ 317a
24

Þ; C ¼ ν
96Λ2a.

We have introduced a dimensionless universal parameter
ν ¼ θ2Λ2

c4 . Defining the canonical momentum,

p ¼ ð∂LÞ=ð∂ _aÞ ¼ σð−2A _aþ 4B _a3 − 6C _a5Þ; ð31Þ
our cherished Hamiltonian yields

H ¼ p _a − L ¼ σ

�
−A _a2 þ 3B _a4 − 5C _a6 − κaþ Λ

3
a3
�
:

ð32Þ
This Hamiltonian constitutes our primary result, which we
now study from the CTC perspective. First of all, note that
a being the scale factor is positive. This makes B, C

positive, and A will be positive provided the small
parameter ρ is less that 5Λ=3.

V. COSMOLOGICAL TIME CRYSTAL

Let us now study the novelties of our proposed TC
model, where for the time being, we treat ν and Λ simply as
arbitrary parameters. Later we will deal with the cosmo-
logical scenarios.
Cusp structure: A richer cusp structure is revealed from

the p vsH diagram in Fig. 1. Following [2], the plot of p vs
H shows that, because of the _a6 term, ∂p=∂ _a ¼ 0 is a
fourth-order equation in _a having four solutions as seen
from Fig. 1: the dotted blue line resembles the profile of [2],
where _a6 contribution is negligible, whereas the solid deep-
green line shows the new structure with significant _a6

contribution. We name this new structure the batwing
catastrophe that reduces to the swallowtail catastrophe
(obtained in [2]) if the contribution of the _a6 term becomes
negligible. On the other hand, the cusp structure completely
washes out if the _a6 term dominates even slightly, leaving
an inverted symmetric V-shaped diagram with the vertex
at H ¼ 0.
Effective planar model without the _a6 term: Let us start

by dropping the _a6 term (which we will justify later in the
cosmological context). A naive plot of aðtÞ and _aðtÞ from
the Lagrangian equation of motion, with A0 ¼ ∂A=∂a;…;

2äð _a2 − AÞ þ _a2ð3B0 _a2 − A0Þ − 1þ Λa2 ¼ 0; ð33Þ

is given in Fig. 2, where aðtÞ, _aðtÞ, and H are plotted
against the cosmic time t. From this profile, we find a single
hump before it hits a singularity.5 However, quite

FIG. 1. Diagram of p vs H, where solid and dotted lines show
batwing and swallowtail features, respectively.

5In Fig. 2, the singular nature of aðtÞ is shown where in the left
panel aðtÞ hits a singularity around t ∼ 0.8. This can be
interpreted as a big rip type of singularity (a future type of
singularity often appearing in the cosmological models) [27] in
the cosmological context.
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interestingly, we have discovered a particular set of
parameter values and initial conditions that give rise to a
stable oscillating a that hits a singularity after a very long
time (see Fig. 3). Thus, one may infer that the cosmological
model framed by TC may allow a cyclic nature of the
universe. We believe that further investigations toward this
direction are necessary, possibly to understand the nature of
entropy transfer from one cycle to another as during the
evolution of the universe. This effectively may reveal
whether the model is geodesically past incomplete or not.
Regularized CTC: In the generic case, we follow the

elegant route of [2] that shows a way of removing the
singularity by introducing a regulator in the form of μ in an
alternative Lagrangian,

L ¼ μ

2
_x2 þ fðxÞJðaÞ _a − gðxÞð1þ KðaÞÞ − VðaÞ; ð34Þ

with

fðxÞ ¼ x3

3
− x; gðxÞ ¼ x4

4
−
x2

2
ð35Þ

as prescribed in [2], and in addition, the quantities K, J in
(34) are

1þ KðaÞ ¼ A2

3B
; JðaÞ ¼

ffiffiffiffiffiffiffiffi
2A3

3B

r
: ð36Þ

The Lagrangian (34) mimics a planar charged particle in an
external potential. The equations of motion from (34) are

μẍ − f0ðxÞJðaÞ _aþ ðKðaÞ þ 1Þg0ðxÞ ¼ 0; ð37Þ

JðaÞf0ðxÞ_xþ gðxÞK0ðaÞ þ V 0ðaÞ ¼ 0: ð38Þ

Similar to [2], in the present case for μ ¼ 0, the coupled set
above reduces to (33). Figure 4 shows the behavior of the
scale factor a (blue solid line), x (brown dotted line), and
the total energy of the system H (green dashed line) with
the evolution of the cosmic time, t. Although the present
model is similar to that of [2] from the TC point of view
(both having only _a2 and _a4 terms), the a dependence is

0.0 0.2 0.4 0.6 0.8

0.90

0.92

0.94

0.96

0.98

t

a

0.0 0.2 0.4 0.6 0.8
–1.0

–0.5

0.0

0.5

1.0

1.5

t

FIG. 2. Dynamics of Eq. (33) for some particular choices of the model parameters have been presented. Left panel shows the evolution
of the scale factor, and the right panel shows the expansion rate _a (blue dotted curve) and the total energy H (brown dash-dot curve).

0 20 40 60 80 100

–1.0

–0.5

0.0

0.5

1.0

t

FIG. 3. Profile of the scale factor a (solid curve), its time
derivative _a (dotted curve), and the total energy H (dash-dot
curve) for the dynamical system in the presence of the _a4 term
only (33) have been displayed for some specific choices of the
parameters.

0 20 40 60 80 100
–2

–1

0

1

2

3

4

t

FIG. 4. Profiles of the scale factor a (solid curve), x (dotted
curve), and H (dashdot curve) are shown for the system of
Eqs. (37) and (38) for some specific choices of parameters.
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much more complicated in our case. This is reflected in our
x profile (Fig. 4) that contains both positive and negative
values (whereas [2] has either positive or negative
values) with the sharp edges separated by smooth curves.
Compared to [2], our model describes a doubled Sisyphus
dynamics.
Effective planar model with the _a6 term: We now present

our most important result where the full TC model is
studied. Generic solutions of the equation of motion,

2äðA − 6B _a2 þ 15C _a4Þ þ _a2ðA0 − 3B0 _a2 þ 5C0 _a4Þ
þ 1 − Λa2 ¼ 0; ð39Þ

with A0 ¼ dA
da, B

0 ¼ dB
da, and C0 ¼ dC

da, have singularities as
expected. A very surprising and interesting result is that we
have discovered a small parameter window in which the
scale factor aðtÞ oscillates smoothly without any singularity
(as far in time as we have checked) and with constant
energy indicating a cyclic universe. This is shown in Fig. 5.
However, we stress that further investigations are necessary
because the initial conditions on some parameters, as we

observed, play an essential role in determining the nature of
the scale factor.
In order to construct the μ-regularized model, we try with

a simple generalization. Keeping the same form of L as
in (34),

L ¼ μ

2
_x2 þ fðxÞJðaÞ _a − gðxÞð1þ KðaÞÞ − VðaÞ;

but with new forms of fðxÞ, gðxÞ as

gðxÞ ¼ x6

6
−
x4

4
þ x2

2
; fðxÞ ¼ x5

5
−
x3

3
þ x; ð40Þ

we find the same set of equations of motion as in (39) with
the identifications,

1þKðaÞ ¼ A2

3B
; JðaÞ ¼

ffiffiffiffiffiffiffiffi
2A3

3B

r
; 30C¼ J6

ð1þKÞ5 :

ð41Þ

The last identification shows that the regularized form for
the _a6 model is not entirely satisfactory as it fails to
generate the independent form of C given in (39). This
suggests that a more elaborate version of the μ-regularized
model is needed to faithfully represent the parent _a6 model.
This has not been pursued here. However, the model with
(40) is indeed an example of a TC with _a6 whose equations
of motion are

μẍ − f0ðxÞJðaÞ _aþ g0ðxÞð1þ KðaÞÞ ¼ 0;

f0ðxÞJðaÞ_xþ gðxÞK0ðaÞ þ V 0ðaÞ ¼ 0; ð42Þ

with solutions displayed in Fig. 6 with Sisyphus-like
behavior.

0 20 40 60 80 100

–1.0

–0.5

0.0

0.5

1.0

t

FIG. 5. Profiles of the scale factor a (solid), x (dotted), and H
(dashdot) for the Eq. (39) are presented for some specific choices
of parameters.
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FIG. 6. Dynamics of the regularized CTC in presence of the _a6 term. Left panel: Profile for the scale factor a that represents a sequence
of expansion of contraction of the universe. Right panel: Profile for x (dotted; Sisyphus behavior) and the total energy of the system H
(dashdot).
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VI. COSMOLOGICAL TIME CRYSTAL AND A
SMALL COSMOLOGICAL CONSTANT Λeff

Let us derive the condensate energy where we need the
condensate values for a0 and _a0 that minimize the
Hamiltonian. The Hamiltonian H for the action (30)
without the _a6 term can be written in the form,

H ¼ σ

�
3B

�
_a2 −

A
6B

�
2

þ Veff

�
; ð43Þ

Veff ¼
�
a −

Λ
3
a3 −

A2

12B

�
: ð44Þ

This approximation is justified in [4] as the _a6 term is
induced by higher-order derivatives. Because B is always
positive, H will be minimized for

_a0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aða0Þ
6Bða0Þ

s
¼ �

ffiffiffiffiffiffiffiffi
A0

6B0

s
; ð45Þ

with a0 obtained from
∂Veff∂a ja0 ¼ 0. The ground state energy

will be

Hcondensate ¼ −
A2
0

12B0

þ a0 −
Λ
3
a30;

A0 ¼ Aða0Þ; B0 ¼ Bða0Þ: ð46Þ

In Fig. 7, the solid line (∂Veff=∂a) cuts the a-axis at a0,
which incidentally is greater than a ¼ 1 (i.e., in future). We
define

Λeff ¼ Λ −
3

a20
þ A2

0

4B0a30
; ð47Þ

and the value of Λða0Þ ¼ Λeff can be arbitrarily small (as
seen from Fig. 7) even with a large value of Λ: the value of
the cosmological constant gets renormalized in a sense.
Furthermore, the interpretation of H as the energy of the
condensate is consistent within the range of a where H0 is
positive.

VII. NONCOMMUTATIVE FRIEDMANN
EQUATION (WITHOUT _a6 TERM)

Friedmann equations are derived from a generic minis-
uperspace model in a straightforward way: one equation is
the Lagrangian equation of motion for aðtÞ, and the other
equation comes from simply putting the Hamiltonian to
zero because the Hamiltonian, being one of the generators
of diffeomorphism symmetry, comes as a factor of the lapse
function. However, in the present case, due to two forms of
SSB (in velocity _aðtÞ and coordinate aðtÞ sectors), one has
to shift both aðtÞ, _aðtÞ by their respective condensate values
to get the action in terms of new variables where the
condensate does not appear any more with the d.o.f.
vanishing in the ground state. This amounts to using the
variable bðtÞ defined by the transformations,

bðtÞ ¼ aðtÞ − a0; _bðtÞ ¼ _aðtÞ − _a0; ð48Þ

in the action. The new action yields the following set of
equations:

_b2

b2
þ k̄
b2

¼ Λðbþ a0Þ3
3b2f

þ 1

b2
g
f
; ð49Þ

b̈ ¼ 1

h

�
b2f

bþ a0

�
g

b2f
þ Λðbþ a0Þ3

3b2f
−

_b2

b2

�
− Λðbþ a0Þ2 þ ð _b2 − _a20Þ

�
1 −

3ν

16
−

5ν

16ρðbþ a0Þ2
�

þ ν

Λ
ð _bþ _a0Þ3

�
_bþ _a0
4

− _b
��

317

24
−

1

ðbþ a0Þ2
��

; ð50Þ

where k̄ ¼ kðbþ a0Þ=f is the effective curvature scalar, and the functions f, g, respectively, have the forms,

FIG. 7. Qualitative evolutions for the variation of the effective
potential, i.e., ∂Veff=∂a (solid line); the effective cosmological
constantΛeff (dotted line) and the Hamiltonian having its ground
state energy Hcondensate (dashed line) have been shown with the
evolution of the universe in terms of the scale factor a.
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f ¼ ðbþ a0Þ
�
1 −

3ν

16
−
317ν _a2

16Λ

�
þ ν

bþ a0

�
5

16ρ
−
6_a2

4Λ

�
;

g ¼ _a2
��

1 −
3ν

16

�
ðbþ a0Þ þ

5ν

16ρðbþ a0Þ
�
þ ν

4Λ
ð3_b4 þ 8_b3 _a0 − _a40Þ

�
1

bþ a0
þ 317

24
ðbþ a0Þ

�
;

h ¼ 3ν

Λ
ð _bþ _a0Þ2

�
1

bþ a0
þ 317

24
ðbþ a0Þ

�
−
��

1 −
3ν

16

�
ðbþ a0Þ þ

5ν

16ðbþ a0Þ
�
: ð51Þ

Here, (49) is identified as the Hubble equation, and (50)
is the acceleration equation. One may note that the
effective curvature scalar k̄ becomes variable, and more-
over, from the right-hand side of (49), an effective
cosmological constant which now gains a time-dependent
character is also realized. In other words, the noncom-
mutative corrections in the FRW model with a time-
independent cosmological constant can produce an
effective scenario where the cosmological constant runs
with the evolution of the universe.

VIII. DISCUSSION

Let us summarize our results. We have considered an
existing model of generalized FRW metric endowed with
noncommutativity corrections. This extended FRW model
gives rise to a new form of time crystal behavior with a
specific form of singular behavior (batwing-catastrophe—
the name coined by us) that can be compared with the
simpler form of singularity—swallowtail catastrophe,
already encountered in [1,2]. In addition to that, our
model has a doubly Sisyphus dynamic, as a dynamical
model with generic parameter values, that can again be
contrasted with [2]. These qualitative differences arise
essentially because our model has a more involved
kinetic sector with the presence of exotic terms involving
quartic and sextet order velocity contributions and field-
dependent factors multiplying the velocity terms (whereas
previously studied models [1,2] had only quartic terms
involving velocity and constant factors multiplying the
velocity terms).
As our time crystal model is a form of the generalized

FRW model, it is natural to term it as a cosmological time
crystal and study the consequences in cosmology. In the
minisuperspace framework adapted here, the system
reduces to a mechanical one with the scale factor aðtÞ
emerging as the single dynamical variable. Because aðtÞ
is associated with motion periodic in time—Sisyphus
dynamics—the model can be interpreted as a form of
cyclic cosmology in a natural way. Apart from revealing
a new form of (cosmological) time crystal, this is one of
our major findings. This cyclic behavior is depicted in the
eternally bouncing solutions depicted in Fig. 3 (for the _a4

model) and Fig. 5 (for the _a6 model) that substantiate our
view that noncommutative gravity can represent cyclic
cosmologies. However, it should be stressed that our

model of cyclic cosmology is qualitatively distinct from
conventional cyclic cosmological models [5,16,17] as the
latter involved matter fields put in from outside, whereas
our model is purely geometrical in the sense that no
(matter) field is introduced from the outside. The other
difference in perspective is that, in the conventional
cyclic cosmological approach, it is generally believed
that quantum gravity contributions are not important. On
the other hand, in our scheme, even though the analysis of
the generalized FRWmodel is entirely classical, the model
itself can be thought of as an effective theory that contains
essential noncommutative contributions originating from
quantum gravity effects. So far, our analysis suggests that
the noncommutative gravity can provide an interesting
and physically motivated toy model. More work is needed
before it can be elevated to a viable quantum gravity
model.
The other major success of our toy model approach is

that it allows us to generate an arbitrarily small positive
cosmological constant in a natural way. We have also
derived a modified form of the Friedman equation that has
noncommutative contributions.
There are many open problems that can be studied in

the cosmological time crystal framework. (i) Detailed
analysis of the noncommutativity modified Friedman
equation needs to be studied. (ii) Inclusion of matter
d.o.f. is another area to be looked at as one can conjure
up more than one time crystal structure with time crystal
behavior coming from the matter sector as well as the
FRW (scale factor) sector. Also, the presence of matter
will bring these systems closer to realistic cosmological
models. (iii) Another very interesting avenue to explore
is to analyze other forms of time crystal that can appear
naturally in cosmology, in particular, in fðRÞ gravity
(that will contain quartic and still powers of velocity,
conducive for time crystals of the form studied in the
present work) and in higher derivative gravity (where
time crystals can form following the approach as des-
ribed in [12]). We plan to pursue these areas in the near
future.
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