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We study the spectral properties of a highly occupied non-Abelian nonequilibrium plasma appearing
ubiquitously in weak coupling descriptions of QCD matter. The spectral function of this far-from-
equilibrium plasma is measured by employing linear response theory in classical-statistical real-time lattice
Yang-Mills simulations. We establish the existence of transversely and longitudinally polarized quasi-
particles and obtain their dispersion relations, effective mass, plasmon frequency, damping rate and further
structures in the spectral and statistical functions. Our new method can be interpreted as a nonperturbative
generalization of hard thermal loop (HTL) effective theory. We see indications that our results approach
leading order HTL in the appropriate limit. The method can also be employed beyond the range of validity
of HTL.
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I. INTRODUCTION

Strong Yang-Mills fields are a ubiquitous feature of weak
coupling descriptions of quark-gluon plasma and heavy ion
collisions. They are created through different mechanisms
and affect a broad range of phenomena. For instance, in
thermal equilibrium, the infrared tail of thermal Bose
distribution f ∼ T=ω makes low-frequency modes highly
occupied, corresponding to strong, long-wavelength fields.
The interaction of these fields with hard modes at the scale
T becomes nonperturbative at the soft or asymptotic mass
scalem ∼ ðαs

R
d3pf=pÞ1=2 ∼ gT. The physics of these soft

modes affects the weak coupling expansion of the equation
of state starting from the Oðg3Þ level [1,2]. These same
modes contribute to the thermal photon and low-mass
dilepton production rates already at leading order (LO)
because of the infrared sensitivity of the t-channel
exchange [3]. Similarly, the effective kinetic theory descrip-
tion used to describe near-equilibrium transport in weakly
coupled QCD is sensitive to the physics of the soft modes
already at LO [4].
Strong classical Yang-Mills fields also appear in the

weak coupling description of the initial stages of heavy-ion
collisions. The initial condition of the postcollision debris

in the midrapidity region is dominated by nonperturbatively
strong gluon fields at the characteristic momentum scaleQs

with mode-occupancies f ∼ 1=g2 [5,6]. Once the dominant
modes of these fields have diluted because of the combined
effect of expansion and nonperturbative self-interactions,
the subsequent approach towards local thermal equilibrium
is described by the effective kinetic theory that is, again,
sensitive to strong infrared fields [7].
In most of the above-mentioned cases, there is a scale

separation between the highly occupied soft (p ∼m)
modes, and the hard (p ∼ Λ) modes with which they
interact nonperturbatively. In this case, the real-time
dynamics of the soft modes can be followed in the hard
(thermal) loop (HTL) effective theory [8,9] in which the
soft classical fields are coupled to hard ballistically propa-
gating pointlike color charges that interact with the soft
classical fields through colored Vlasov-Wong equations
[9]. The hard loop dynamics can then be solved perturba-
tively in the self-interactions of the soft modes (while still
treating the interaction with the hard particles nonpertur-
batively, i.e., performing the HTL resummation). The small
parameter in this expansion is given by the scale separation
m=Λ, which in thermal equilibrium is gT=T. This expan-
sion parameter can be significantly larger than that of the
hard sector (αs=4π), and the extent to which the weak
coupling expansions of the various quantities are reliable is
dependent on how well the soft sector is described by the
LO HTL expressions.
Computing complicated observables and higher order

corrections in HTL theory is technically involved and is a
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major limiting factor in the advancement of the program of
thermal weak coupling calculations [10,11]. For spacelike
correlation functions powerful Euclidean techniques exist
[12,13]. These techniques have made high order calcula-
tions of the equation of state at finite temperature possible
[14], and even allowed for a numerical evaluation of the full
contributions arising from the soft sector through the
simulation of an effective theory [15]. They have also
enabled several next-to-leading order (NLO) computations,
including the photon and small-mass dilepton production
rates [16,17] among other results.
Lattice formulations of HTL in real time (see e.g.,

[18–25]) rely on an explicitly separate description of the
soft modes as gauge fields and of the hard modes as
classical particles. There are two possible approaches used
in the literature. One is to initialize the fields with a
(classical) thermal distribution, where most of the field
energy resides in the modes close to the lattice UV cutoff
1=as. In this case, the inability to renormalize this system
prevents following the time evolution of the soft fields in a
controlled way and prohibits a numerical evaluation of
timelike correlation functions (see however [23]). The other
option used e.g., in studies of plasma instabilities [26–28] is
to initialize the classical field with a sufficiently UV safe
distribution. In this latter case, in order to correctly resolve
the soft physics free of cutoff artefacts, one needs
m ≪ 1=as. On the other hand one needs to simultaneously
have Λ ≫ 1=as in order for the hard modes to be
sufficiently localized to justify their description as classical
particles. These requirements make the simulations rather
expensive. More importantly they make it impossible to
study systems with a smaller scale separation, i.e., larger
values of m=Λ, and thus inherently difficult to extend the
HTL theory beyond strict leading order. We would like to
argue here that a formulation in terms of classical fields and
linearized fluctuations provides a method to describe a
similar physical system in a way which can also be used in
a regime where the scale separationm=Λ need not be small.
This enables one to go beyond the strict leading order in
m=Λ also in nonperturbative lattice calculations for time-
like correlation functions.
The aim of this paper is twofold. First, we study a

specific isotropic and over-occupied far-from-equilibrium
system that, starting from an overoccupied initial condition,
is undergoing a cascade of energy towards the UV in a self-
similar regime [29–35]. This system exhibits an increasing
separation of scales between a hard scale Λ that dominates
the energy density, and the softer scale ∼m where the
interaction with the hard scale becomes nonperturbative.
This system is similar to thermal equilibrium at weak
coupling in the sense that there is a scale separationm ≪ Λ
(or gT ≪ T). On the other hand, it differs from a
thermal system in the sense that this scale separation is
not given by the coupling, but rather increases with time as
m=Λ ∼ ðQtÞ−2=7, whereQ is a momentum scale constant in

time. In this system, also the hard sector is over-occupied
fðp ∼ ΛÞ ≫ 1 with Λ ≪ 1=as and hence, the time evolu-
tion can be followed numerically within a classical Yang-
Mills simulation [31,36–41]. We compare the expectations
of LO HTL theory to the full numerical time evolution.
Doing so, we confirm and quantify to what extent HTL at
LO is a good approximation to describe the physics of soft
modes of this system. Similar comparisons have been done
for scalar theory [42–46], while for gauge theory previous
studies of the quasiparticle dispersion relation [32,47–49]
have only used the behavior of the background field (i.e.,
the statistical function) at equal times.
Secondly, we turn the argument around and interpret the

classical simulation as a nonperturbative simulation of HTL.
As HTL theory is insensitive to the detailed form of the hard
sector, all isotropic equilibrium and nonequilibrium systems
exhibiting the large scale separation are related within HTL
theory. Therefore the results obtained from the controlled
classical simulation of classical fields can be directly applied
to thermal equilibrium where no other controlled non-
perturbativemethods exist.1 As an application we determine
the plasmon damping rate generalizing the classic result
from Braaten and Pisarski [55] to finite momentum.
We will start in Sec. II by introducing the considered

theory, relevant correlation functions, predictions from the
HTL theory and our numerical method. Our results are
shown in Sec. III. We will conclude in Sec. IV.

II. THEORY

A. Classical non-Abelian gauge theory

We consider an SUðNcÞ gauge theory2 with Nc ¼ 2 in
temporal A0 ¼ 0 gauge. The classical equations of motion
in continuum are given by

∂tAa
i ðt;xÞ ¼ Ei;aðt;xÞ

∂tEi;aðt;xÞ ¼ Dab
j ðt;xÞFb;jiðt;xÞ; ð1Þ

with the gauge field Ai and the (chromo-)electric field Ei,
(spatial) vector components i, j ¼ 1, 2, 3 and the adjoint
group indices a; b ¼ 1;…; N2

c − 1. The covariant deriva-
tive and the field strength tensor are given by Dab

j ¼
δab∂j − gfabcAc

j and Fa
ij ¼ ∂iAa

j − ∂jAa
i þ igfabcAb

i A
c
j ,

1Methods based on reconstruction of gauge-fixed gluonic
spectral functions from Euclidean lattice data (e.g., [50]) are
usually applied to low or moderate temperatures and typically
require further input like perturbative or analytical insight to
obtain a spectral function within reasonable error bars, where
recent advances have significantly improved the results (e.g.,
[51–54]). Our method on the other hand does not require prior
input or spectral reconstruction and corresponds to directly
probing the spectral function at high temperatures and weak
couplings, nonperturbatively extending the HTL formalism.

2Based on other related studies [56–58] we do not expect any
qualitative difference between Nc ¼ 2 and Nc ¼ 3.
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respectively. Here g is the coupling constant and the
structure constants fabc for SU(2) are given by the totally
antisymmetric Levi-Civita tensor fabc ¼ ϵabc.
The fields are discretized on a cubic lattice with Ns

lattice sites with lattice spacing as in each of the 3
dimensions. In order to preserve gauge invariance, one
uses link variables Ujðt;xÞ, that are related to the gauge
fields by Ujðt;xÞ ≈ exp ðigasAa

j ðt;xÞΓaÞ, where Γa are the
generators of the suðNcÞ algebra normalized in the standard
way, i.e., TrðΓaΓbÞ ¼ 1=2δab. With Ej ¼ Ej

aΓa, the time
evolution then follows from the discretized equations of
motion,

Ujðtþ dt=2;xÞ ¼ eidtasgE
jðt;xÞUjðt − dt=2;xÞ

gEiðtþ dt;xÞ ¼ gEiðt;xÞ

−
dt
a3s

X
j≠i

�
Uij

�
t −

dt
2
;x

�

þ Uið−jÞ

�
t −

dt
2
;x

��
ah
; ð2Þ

where the plaquette is given by UijðxÞ¼UiðxÞUjðxþ ı̂Þ
U†

i ðxþ ȷ̂ÞU†
jðxÞ while the plaquette in the negative j direc-

tion is Uið−jÞðxÞ¼UiðxÞU†
jðxþ ı̂− ȷ̂ÞU†

i ðx− ȷ̂ÞUjðx− ȷ̂Þ,
with ı̂ and ȷ̂ unit vectors in the i, j directions. The anti-
Hermitian traceless part of a matrix V is defined as

½V�ah ≡ −i
2

�
V − V† −

1

Nc
TrðV − V†Þ

�
: ð3Þ

The discretized equations of motion preserve the Gauss law
condition at every time step

Dab
j Eb;jðt;xÞ ¼ 0; ð4Þ

where the discretized covariant (backward) derivative is
(suppressing the time variable for brevity) given by
Dab

j VbðxÞ¼ ðVaðxÞ−U†;ab
j ðx− ȷ̂ÞVbðx− ȷ̂ÞÞ=as. The par-

allel transporting link field in adjoint representation
reads Uab

j ðxÞ≡ 2TrðΓaUjðxÞΓbU†
jðxÞÞ.

To work in Fourier space, we use the common definition
of the spatial Fourier transform of a field w as
wðxÞ ¼ 1

V

P
pe

ix·pwðpÞ, with the volume V ¼ a3sN3
s .

The discrete momenta are given by pj ¼ 2πj=ðasNsÞ.
On the other hand, the backward derivative is defined as
−i∂B

j wðxÞ ¼ −i=asðwðxÞ − wðx − ȷ̂ÞÞ. We define the
(complex-valued) backward momentum on the lattice as
its eigenvalue

pB
j ¼ −i

as
ð1 − e−iaspjÞ: ð5Þ

The forward derivative leads to the momentum pF
j ¼ ðpB

j Þ�
and the discretized second derivative −∂2

j ¼ −∂B
j ∂F

j ¼
−∂F

j ∂B
j has the real eigenvalues p2

j ¼ jpB
j j2 ¼

4=a2ssin2ðpjas=2Þ. The magnitude of a lattice momentum

will be denoted by p ¼ jpBj ¼ jpFj≡
ffiffiffiffiffiffiffiffiffiffiffiffiP

jp
2
j

q
in the

following. This allows us to define a basis of vectors
vðλÞðpÞ that will be referred to as polarization vectors
vðλÞðpÞ with polarization λ. The longitudinal polarization
λ ¼ 3 is vð3ÞðpÞ ¼ pF=p, while the remaining vectors with
λ ¼ 1, 2 are orthonormal to it and to each other and are
commonly referred to as transversely polarized. One
can now define transverse and longitudinal projection
operators3 as

PT
ijðpÞ ¼

1

2

X
λ¼1;2

vðλÞi ðpÞðvðλÞj ðpÞÞ�

PL
ijðpÞ ¼ vð3Þi ðpÞðvð3Þj ðpÞÞ� ð6Þ

while one has 2PT
ijðpÞ þ PL

ijðpÞ ¼ δij.
The gauge and electric fields are initialized in momen-

tum space with only transverse polarizations as

Aa
j ðt ¼ 0;pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðt ¼ 0; pÞ

p

s X
λ¼1;2

cðλÞa ðpÞvðλÞj ðpÞ

Ej
aðt ¼ 0;pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pfðt ¼ 0; pÞ

p X
λ¼1;2

c̃ðλÞa ðpÞvðλÞj ðpÞ; ð7Þ

with complex Gaussian random numbers that satisfy

hðcðλÞa ðpÞÞ�cðλ0Þa0 ðp0Þicl ¼ Vδp;p0δa;a0δλ;λ0 ; ð8Þ
and similarly for c̃, while hc̃�cicl ¼ 0, where h·icl denotes a
classical average over the distribution of these random
numbers.
We choose an isotropic initial single-particle distribution

fðt ¼ 0; pÞ ¼ n0
g2

p0

p
e
− p2

2p2
0 : ð9Þ

The fields constructed in this way are not guaranteed to
satisfy the Gauss law (4), which thus has to be separately
imposed by projecting back to the constraint surface using
the algorithm in [59]. The form (9) of the initial conditions,
with the initial amplitude n0 and momentum scale p0, is
expected to be close to the attractor distribution encoun-
tered in highly occupied plasmas [35]. Moreover, for weak
coupling g ≪ 1 this initial condition guarantees high
occupation numbers and we always compute g2f, whose
evolution is independent of the coupling constant in

3Strictly speaking, 2PT is a projection operator. The additional
factor 1=2 in the definition of PT corresponds to an average over
transverse polarizations.
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classical-statistical simulations since g drops out of the
classical equations of motion for these initial conditions.
For convenience, we also define a characteristic energy scale

Q ¼
ffiffiffiffiffiffiffi
5n0

4
p

p0 ∝
ffiffiffiffiffiffiffi
g2ϵ4

q
; ð10Þ

where ϵ is the energy density. Unless stated otherwise, all
dimensionful quantities will be expressed in terms of Q.
At output times t > 0, we define the distribution function

with transversely polarized fields as

fEEðt; pÞ ¼
1

dAV
PT
ijðpÞ

hEj
aðpÞðEi

aðpÞÞ�iclffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

HTL þ p2
p

fAAðt; pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

HTL þ p2
p

dAV
Pij
T ðpÞhAa

j ðpÞðAa
i ðpÞÞ�icl

f _E _Eðt; pÞ ¼
1

dAV
PT
ijðpÞ

h∂tE
j
aðpÞð∂tEi

aðpÞÞ�icl
ðm2

HTL þ p2Þ3=2 ð11Þ

and employ fðt; pÞ ¼ fEEðt; pÞ as our standard definition
of the distribution function. In all definitions, the distri-
bution function is averaged over transverse polarizations
and over adjoint gauge components, where dA ¼ N2

c − 1 is
the dimension of the adjoint representation. Since the
considered systems are isotropic, we additionally average
over momentum modes with the same magnitude p when
computing observables, which improves the statistical
accuracy of our results. The mass entering these expres-
sions is the (asymptotic) mass m, computed iteratively as

m2
HTL ¼ 2Nc

Z
d3p
ð2πÞ3

g2fðt; pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

HTL þ p2
p ; ð12Þ

where we refer to it asmHTL to indicate its connection to the
HTL formalism. While in the corresponding HTL expres-
sion at LO the mass does not occur on the right hand side,
Eq. (12) takes some NLO corrections into account.
The different distribution functions defined in (11) can

lead to slightly different results in HTL computations. This
is demonstrated at the example of the mass mHTL that is
shown in Fig. 1 as a function of the iteration step for
different definitions of the distribution function. In the first
iteration, we use mHTL ¼ 0, which corresponds to the LO
formula for the mass. Since

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

HTL þ p2
p

drops out of the
calculation of the mass when fAA is used, the correspond-
ing value does not change with the iterations, while mHTL
computed with other definitions jumps to a lower value.
One observes that the value for mHTL ranges between
0.145Q and 0.156Q, with fEE leading to a value in-between

mHTLðQt ¼ 1500Þ ¼ 0.149Q: ð13Þ

We use mHTL computed with the distribution function fEE
for all plots where mHTL is used in Sec. III because it

typically provides values for the mass located between the
ones from the other definitions. However, we emphasize
that this value is not precise and other definitions provide
values that differ by typically 5%. Similarly, we use the
spread in other HTL computed observables to estimate
its error.

B. Spectral and statistical correlation functions

We are mainly interested in properties of two-point
correlation functions, especially at unequal time, which
encode information about the quasiparticle character, the
excitation spectrum and the distribution of quasiparticles.
For this purpose, one can define the statistical correlation

function and its double time derivative, which are sym-
metric and real-valued functions, as anticommutators of
two field operators [41]

Fab
jk ðx; x0Þ ¼

1

2
hfÂa

j ðxÞ; Âb
kðx0Þgi

F̈jk
abðx; x0Þ ¼

1

2
hfÊj

aðxÞ; Êk
bðx0Þgi; ð14Þ

with x ¼ ðt;xÞ and where we used that ∂tÂ
b
i ðxÞ ¼ Êi

bðxÞ
(in the continuum). Since we consider spatially homo-
geneous systems, F does not depend on the central spatial
coordinates ðxþ x0Þ=2 but only on the relative coordinates
Δx ¼ x − x0 and one can perform a spatial Fourier
transform with respect to Δx, arriving at Fðt; t0;pÞ and
F̈ðt; t0;pÞ. Further employing the system’s isotropy, one
arrives at Fðt; t0; pÞ, F̈ðt; t0; pÞ.
In classical-statistical simulations, the anticommutator

of Heisenberg fields reduces to a product of classical
fields 1=2hfÂ; Â0gi ↦ hAA0icl. Hence, the definitions
(14) become

0
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FIG. 1. The mass (12) at Qt ¼ 1500 and n0 ¼ 0.2 for different
definitions of the distribution function in (11). In the inset, the
values for the mass can be better read off.
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Fðt; t0; pÞ ¼ 1

dAV
PkjðpÞhAb

j ðt;pÞðAb
kðt0;pÞÞ�icl

F̈ðt; t0; pÞ ¼ 1

dAV
PkjðpÞhEj

bðt;pÞðEk
bðt0;pÞÞ�icl; ð15Þ

where we employed the operators PT=L
jk from (6) to average

over transverse or longitudinal polarizations but to simplify
notation, we omitted the subscript T or L. Both F and F̈
also include averaging over the dA ¼ N2

c − 1 adjoint gauge
components. From Eq. (15) it becomes apparent that the
statistical correlation function is closely related to the
distribution function. Indeed, our definitions of the latter
in Eq. (11) can be expressed as fEEðt; pÞ ¼ F̈Tðt; t; pÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

HTL þ p2
p

and similarly for the others.
Another important correlation function is the spectral

function (and its time derivative) that can be defined as the
commutator of two field operators

ρabjk ðx; x0Þ ¼ ih½Âa
j ðxÞ; Âb

kðx0Þ�i
_ρabjk ðx; x0Þ ¼ ih½Êj

aðxÞ; Âb
kðx0Þ�i: ð16Þ

Following the same steps as provided below Eq. (14), one
arrives at

ρðt; t0; pÞ ¼ 1

dA
PkjðpÞρbbjk ðt; t0;pÞ

_ρðt; t0; pÞ ¼ 1

dA
PkjðpÞ_ρbbjk ðt; t0;pÞ: ð17Þ

The spectral function is antisymmetric and real valued. The
equal-time relations of the transverse component are fully
determined by the canonical commutation relations

lim
t→t0

ρTðt; t0; pÞ ¼ 0

lim
t→t0

_ρTðt; t0; pÞ ¼ 1: ð18Þ

While the first relation is also valid for the longitudinal
component limt→t0ρLðt; t0; pÞ ¼ 0, the equivalent of the
second relation will be discussed in Sec. II C. These
transverse and longitudinal equal-time relations for the
spectral function fully determine the initial conditions for
its evolution. Note that this is different from the statistical
correlation function whose initial conditions can be chosen
by specifying an initial distribution fðt ¼ 0; pÞ.
Since in a classical-statistical framework commutators

are mapped to Poisson-brackets (or Dirac-brackets in our
case), a direct computation of the spectral function as in the
case of the statistical correlator is more involved. Instead,
we will use linear response theory for its computation,
which will be discussed in Sec. II D. There it is described
how one can compute the retarded propagator GRðt; t0; pÞ,
which is closely related to the spectral function via

GRðt; t0; pÞ ¼ θðt − t0Þρðt; t0; pÞ: ð19Þ

Thus, having computed GR and exploiting the fact that for
positive time differences it coincides with ρ, we simulta-
neously get the spectral function.
To discuss quasiparticle excitations, it is useful to

transform the correlation functions to frequency space.
This is done by first transforming the time variables to t̄ ¼
ðtþ t0Þ=2 and Δt ¼ t − t0 and Fourier transforming the
correlation functions with respect to Δt while keeping t̄
fixed. Ideally, we would compute

Fðt̄;ω; pÞ ¼ 2

Z
∞

0

dΔt cosðωΔtÞFðt̄þ Δt=2; t̄ − Δt=2; pÞ

ρðt̄;ω; pÞ ¼ 2

Z
∞

0

dΔt sinðωΔtÞρðt̄þ Δt=2; t̄ − Δt=2; pÞ;

ð20Þ

but in the interest of practicality we approximate this by

Fðt̄;ω; pÞ ≈ 2

Z
Δtmax

0

dΔt cosðωΔtÞFðt̄þ Δt; t̄; pÞ

ρðt̄;ω; pÞ ≈ 2

Z
Δtmax

0

dΔt sinðωΔtÞρðt̄þ Δt; t̄; pÞ; ð21Þ

and always replace t̄ by t. This approximation is justified
when taking a sufficiently large time t such that Δtmax ≪ t
and t̄ ≈ t. Moreover, values at small Δt typically give the
dominant contributions to the integral because of the damp-
ing of oscillations in the correlation functions. Note that we
have defined a real-valued spectral function in frequency
space in Eqs. (20) and (21) by dropping a factor of i.
Because of the separation of (time) scales t̄−1 ≪ ω,

where ω is a typical frequency we are interested in, the
correlation functions change much faster as functions of
relative time Δt than of central time t̄. Thus, ωρ is
approximately _ρ and similarly, the statistical correlation
function ω2F becomes F̈.4

C. Predictions from HTL theory

Having introduced the relevant correlation functions, we
provide a short summary of expressions that are derived
within the HTL formalism at LO [8,60]. Although devel-
oped primarily for thermal equilibrium, the HTL formalism
can also be applied to systems out of equilibrium [4,61].
An important quantity is the polarization tensor whose

transverse and longitudinal components are functions of the
ratio x ¼ ω=p. For isotropic nonequilibrium systems with a
scale separation between m and the hard scale Λ, the
polarization tensors are given by

4Indeed, we checked that ωρ and _ρ, and similarly ω2F and F̈,
lie on top of each other in frequency space to high accuracy,
which will also be shown explicitly in Fig. 7.
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ΠTðxÞ ¼ m2xðxþ ð1 − x2ÞQ0ðxÞÞ
ΠLðxÞ ¼ −2m2ð1 − xQ0ðxÞÞ; ð22Þ

with the Legendre function of the second kind

Q0ðxÞ ¼
1

2
ln
xþ 1

x − 1
¼ 1

2
ln

���� xþ 1

x − 1

���� − iπ
2
θð1 − x2Þ: ð23Þ

At strict leading order, the mass m can be computed by the
LO version of the HTL expression (12). While the
polarization tensor is gauge invariant at LO, the exact
form of the retarded propagator GHTL

R depends on the
chosen gauge. For the temporal gauge A0 ¼ 0 as here
employed, its transverse and longitudinal components read

GHTL
T ðω; pÞ ¼ −1

ω2 − p2 − ΠTðω=pÞ

GHTL
L ðω; pÞ ¼ p2

ω2

−1
p2 − ΠLðω=pÞ

: ð24Þ

The components of the spectral function are obtained by

ρHTLðω; pÞ ¼ 2ImGHTLðω; pÞ; ð25Þ

which is consistent with our formerly stated relations in
(19) and (21). We note that in the literature the longitu-
dinally polarized spectral function is usually defined as

ρ̃HTLL ðω; pÞ ¼ ω2

p2
ρHTLL ðω; pÞ ð26Þ

to compensate for the gauge dependent prefactor p2=ω2

in (24). However, we will use ρHTLL instead of ρ̃HTLL in
comparisons with our data since ρL is what we obtain in
both time and frequency domains numerically.
Quasiparticles emerge as poles of the retarded propaga-

tor. Therefore, by finding the roots of the denominator in
(24) numerically, one obtains the transverse and longi-
tudinal dispersion relations ωHTL

T=L ðpÞ. Their low- and high-
momentum expansions read

ωHTL
T ≃

p≪m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωHTL

pl Þ2 þ 1.2p2
q

ωHTL
L ≃

p≪m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωHTL

pl Þ2 þ 0.6p2
q

ð27Þ

ωHTL
T ≃

p≫m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
ωHTL
L ≃

p≫m
p

�
1þ 2 exp

�
−
m2 þ p2

m2

��
: ð28Þ

Here the plasmon frequency in the HTL framework is
given by

ωHTL
pl ¼

ffiffiffiffiffiffiffiffi
2=3

p
m; ð29Þ

and is approached for both dispersion relations in the limit
of low momenta. At high momenta, the transverse
dispersion relation corresponds to a relativistic dispersion
with asymptotic mass m while for longitudinal momenta,
one essentially has an ultrarelativistic dispersion ωHTL

L ≈ p.
The quasipartice peak enters the spectral function as a

Delta function δðω − ωHTL
T=L Þ with a prefactor. Due to the

imaginary part of the Legendre function (23), the polari-
zation tensor obtains an imaginary part for low frequencies
ω2 ≤ p2, which also enters the spectral function and is
referred to as the Landau cut. Hence, we can write the
spectral function as a sum of the Landau cut region
βT;Lðω; pÞ and the quasiparticle peak

ρHTLT ðω; pÞ ¼ βTðω; pÞ þ q:p: peak

ρ̃HTLL ðω; pÞ ¼ βLðω; pÞ þ q:p: peak: ð30Þ

The Landau cut region with x ¼ ω=p is given by

βTðω; pÞ
¼ πm2xð1 − x2Þθð1 − x2Þ

×

��
p2ðx2 − 1Þ −m2

�
x2 þ 1

2
xð1 − x2Þ ln

���� 1þ x
1 − x

����
��

2

þ
�
π

2
m2xð1 − x2Þ

�
2
�
−1
; ð31Þ

for the transverse case and by

βLðω;pÞ¼2πm2xθð1−x2Þ

×

��
p2þ2m2

�
1−

x
2
ln

����1þx
1−x

����
��

2

þðπm2xÞ2
�
−1
;

ð32Þ

for the longitudinal polarization. The spectral function
satisfies the sum rules

_ρHTLT ðΔt ¼ 0; pÞ ¼ 2

Z
∞

0

dω
2π

_ρHTLT ðω; pÞ ¼ 1

_ρHTLL ðΔt ¼ 0; pÞ ¼ 2

Z
∞

0

dω
2π

_ρHTLL ðω; pÞ ¼ 2m2

2m2 þ p2
:

ð33Þ

The transverse sum rule is equivalent to (18) while
the longitudinal sum rule results from

R
∞
−∞dω=

ð2πÞρ̃HTLL ðω;pÞ=ω¼2m2=ðp2ð2m2þp2ÞÞ.
The HTL framework also predicts that the statistical

correlation function F is not independent of the spectral
function ρ. Instead, they are connected at soft momenta and
frequencies ω, p ≪ Λ via
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FHTLðt̄;ω; pÞ ¼ T�ðt̄Þ
ω

ρHTLðt̄;ω; pÞ; ð34Þ

with T� given by

T�ðtÞ ¼ IðtÞ=J ðtÞ ð35Þ
and the integrals

IðtÞ ¼ 1

2

Z
d3p
ð2πÞ3 fðt; pÞðfðt; pÞ þ 1Þ

J ðtÞ ¼
Z

d3p
ð2πÞ3

fðt; pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

HTL þ p2
p ; ð36Þ

where we generalized g2J ¼ m2
HTL=ð2NcÞ to include the

self-consistent resummation of the frequency denominator
f=p ↦ f=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

HTL þ p2
p

, as we did for the mass. Moreover,
for systems with large occupation numbers fðt;ΛÞ ≫ 1 one
can make the approximation fðf þ 1Þ ≈ f2. On the other
hand, if f is given by the thermal Bose-Einstein distribution
ðeω=T − 1Þ−1 with ω ≈ p, one obtains T ¼ T� and Eq. (34)
becomes the fluctuation-dissipation relation in thermal
equilibrium for ω ≪ Λ. The relation (34) can be turned
to an equal-time relation by multiplying the equation by ω2

and integrating over the frequency, which leads to

F̈HTLðt̄;Δt ¼ 0; pÞ ¼ T�ðt̄Þ_ρHTLðt̄;Δt ¼ 0; pÞ: ð37Þ

If the distribution function follows a 1=p power law at
momenta p ≪ Λ, then T� can be understood as the effective
temperature of low momenta where fðt; pÞ ≈ T�=p.
While in a thermal systemm and T are constants in time,

in a nonequilibrium system the distribution function
depends on time t̄, which for instance implies a slow time
dependence of the mass (12). Important assumptions for
this are an existing scale separation between the hard scale
Λ which dominates the energy density and the asymptotic
mass m as well as that relevant loop diagrams are
dominated by modes of the order of Λ. Although in general
this may pose constraints for the form of the distribution
function, for the case of a highly occupied non-Abelian
plasma close to its self-similar scaling solution that will be
studied in Sec. III these conditions are expected to be
satisfied up to higher order effects.

D. Linear response theory

To compute the retarded propagator GR numerically, we
study the response of the non-Abelian plasma to a small
perturbation with a source jkbðxÞ ¼ jkbðt;xÞ. Then the
plasma field can be split into two parts

Âb
k → Âb

k þ âbk; Êk
b → Êk

b þ êkb; ð38Þ

which are written as field operators in the Heisenberg
picture. If no source is applied, the response is zero
hâi ¼ hêi ¼ 0. Otherwise, it is given by5 [60]

hâbi ðxÞi ¼
Z

d4x0G bc
R;ik ðx; x0Þjkcðx0Þ; ð39Þ

with the retarded propagator

G bc
R;ik ðx; x0Þ ¼ iθðt − t0Þh½Âb

i ðxÞ; Âc
kðx0Þ�i: ð40Þ

Since we consider spatially homogeneous systems, GR
does not depend on the central spatial coordinates
ðxþ x0Þ=2 but only on the relative coordinates Δx ¼
x − x0. In Fourier space, Eq. (39) then reads

hâbi ðt;pÞi ¼
Z

dt0G bc
R;ik ðt; t0;pÞjkcðt0;pÞ: ð41Þ

Using for the source an instant perturbation of a mode p at
time tpert

jkcðt0;pÞ ¼ jk0;cðpÞδðt0 − tpertÞ; ð42Þ
one arrives at

hâbi ðt;pÞi ¼ G bc
R;ik ðt; tpert;pÞjk0;cðpÞ: ð43Þ

From this, we would like to compute the retarded propa-
gator GR. Because of the summation over indices, we
cannot simply divide this expression by the source term.
Moreover, since we consider a linear response to a
perturbation, we can set multiple momentum modes simul-
taneously for the source j0. To deduce the retarded
propagator, we choose the perturbation to satisfy6

hjk0;bðpÞðjk
0
0;b0 ðp0ÞÞ�i

j
¼ δb;b0Vδp;p0dλPkk0

T=LðpÞ; ð44Þ

where the number of polarizations is dλ ¼ 2 for the
transverse and dλ ¼ 1 for the longitudinal case and where
h·ij is a classical average over a set of sources. Indeed,
similar to the initial conditions in our simulations in Eq. (7),
the relations (44) can be achieved by choosing

jk0;bðpÞ ¼
X
λ

cðλÞb ðpÞvðλÞk ðpÞ; ð45Þ

with a random phase cðλÞb ðpÞ satisfying (8) with the
replacement h:icl → h:ij. The summation over polarizations
λ in the initialization of the source is chosen to involve
only transverse modes (λ ¼ 1, 2) when discussing the
transversely projected spectral and retarded correlation

5Note that we use a phase convention where GRðx; x0Þ is
real-valued.

6We are grateful to A. Piñeiro Orioli for sharing with us this
method in a private communication. This method has been
developed for nonrelativistic scalar field theories in Ref. [46].
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functions and only the longitudinal polarization (λ ¼ 3) in
the longitudinal case. As usual, we will occasionally omit
the subscripts T, L to simplify notation.
The retarded propagator, averaged over adjoint compo-

nents and polarizations, can then be computed as

GRðt; tpert;pÞ ¼
1

dAdλV
hhâbi ðt;pÞiðji0;bðpÞÞ�ij

¼ 1

dA
PkiðpÞG bb

R;ik ðt; tpert;pÞ: ð46Þ

Similarly, we define the time derivative of the retarded
propagator as

_GRðt; tpert;pÞ ¼
1

dAdλV
hhêkbðt;pÞiðjk0;bðpÞÞ�ij; ð47Þ

such that one has _GRðt; t0; pÞ ¼ θðt − t0Þ_ρðt; t0; pÞ.
Therefore, and due to the relation (19), the retarded pro-
pagator is fixed at t → tpert in the same way as the spectral
function, which serves as the initial condition for its
evolution.

E. Linearized fluctuations

To compute the linear response in the discretized
classical-statistical framework, the gauge and chromoelec-
tric fields are split according to

Ab
k → Ab

k þ abk; Ek
b → Ek

b þ ekb; ð48Þ

where Ab
k and Ek

b will from now on be referred to as
background fields and abk and ekb are the linearized
fluctuation fields. They transform under a gauge trans-
formation VðxÞ in the same way as the electric background
field, which is Ek

aðxÞ → VabðxÞEk
bðxÞ in the adjoint rep-

resentation. These fluctuations are the expectation values of
the fluctuation field operators of Sec. II D, where in the
classical approximation the expectation value is calculated
as an average of the classical distribution

hâbki → habkicl; hêkbi → hekbicl; ð49Þ

and the formulas for GR and _GR have to be changed
accordingly.
The equations of motion for the fluctuations are derived

in Ref. [62] by linearizing the lattice equations of
motion (2) and additionally demanding that the Gauss
law condition (4) is satisfied in the linearized framework.
For an SU(2) theory, the a-field update is given by

abj ðtþ dt=2;xÞ ¼ ak;bj þ dtejk;b þ Ubc
0j a

⊥;c
j

þ ϵbcd

asðgEjÞ2 gE
j
cðUda

0j e
j
⊥;a − ej⊥;dÞ; ð50Þ

where we defined the matrix U0jðt;xÞ ¼
expðidtasgEj

aðt;xÞΓaÞ. All electric fields on the right hand
side are evaluated at ðt;xÞ while the linearized gauge field
appears there at (t − dt=2, x). Moreover, we split the
linearized fields in parts parallel and transverse to the
electric background field in color space, ejb ¼ ejk;b þ ej⊥;b,

with
P

be
j
⊥;bE

j
b ¼ 0 for all j and ðEjÞ2 ¼ P

bE
j
bE

j
b.

Writing ajðt;xÞ ¼ abj ðt;xÞΓb, the e-field update reads

ejðtþdt;xÞ¼ejðxÞþdtjjðxÞ

−
dt
a2s

X
k≠j

i½ðajðxÞþakðxþ ȷ̂→xÞÞUjkðxÞ

−UjkðxÞðajðxþk̂→xÞþakðxÞÞ
þðajðxÞ−akðxþ ȷ̂−k̂→xþ ȷ̂→xÞÞUjð−kÞðxÞ
−Ujð−kÞðxÞðajðx−k̂→xÞ−akðx−k̂→xÞÞ�ah;

ð51Þ

where electric fields and the source j on the right hand side
are at time t while the gauge and link fields are taken at
tþ dt=2. For parallel transported fields we used the
notation akðxþ ȷ̂ → xÞ ¼ UjðxÞakðxþ ȷ̂ÞU†

jðxÞ.
We discuss now the initial conditions of the linearized

fields. Before the time of the perturbation tpert, the
linearized fields a and e are zero. Using a source term
according to (42)

jkbðt;pÞ ¼ jk0;bðpÞ
δt;tpert−dt

dt
; ð52Þ

the electric field at time tpert becomes

ekbðtpert;pÞ ¼ jk0;bðpÞ; ð53Þ

while the gauge field stays zero abkðtpert;pÞ ¼ 0. Therefore,
initializing just the linearized e field is equivalent to
perturbing the system with a source j at time tpert.
Moreover, it can be easily checked that these initial
conditions also satisfy the initial relations for the trans-
verse retarded propagator and thus, also of the spectral
function (18).7

To measure gauge-dependent observables such as
momentum space correlations, one needs to fix the gauge.

7The initial condition for _GT is satisfied exactly before the
Gauss law restoration algorithm is applied. After its application,
however, this is not the case any more, especially for longitu-
dinally polarized modes, and the initial conditions have to be set
by hand by rescaling the amplitude accordingly for each
momentum mode. This is possible for well separated excited
momentum modes because the equations are linear for the
fluctuations.

BOGUSLAVSKI, KURKELA, LAPPI, and PEURON PHYS. REV. D 98, 014006 (2018)

014006-8



The interpretation in terms of physical degrees of freedom
is the clearest in a Coulomb gauge

∂B
j Aj ¼ 0: ð54Þ

This implies that the gauge field is always transversely
polarized while the electric field may have longitudinal
contributions. For equal-time correlation functions the
gauge is fixed always at the time of measurement, as for
the distribution function fðt; pÞ. Here, however, we are
measuring unequal-time correlators of the fields and the
fluctuations. Fixing the gauge separately at each measure-
ment time would mean that the fields at the different times
would be taken from different gauge trajectories. As we
show in Appendix, this leads to gauge artefacts in the
spectral function outside of the quasiparticle peak. In order
to avoid this effect, we only fix the Coulomb gauge
condition at the time tpert when the fluctuation is intro-
duced, but not at later times. Thus the system gradually
shifts away from the gauge condition (54). However, the
timescale of this deviation (which is of order t̄) is expected
to be long compared to the relevant time separations Δt and
the effect should therefore not be large. A more thorough
investigation of the gauge dependence of our results is left
for a future study. The gauge fixing is efficiently done with
a Fourier-accelerated algorithm [63].
Because of (53), a sensible source j has to also satisfy the

Gauss law, whose violation in the linearized framework of
Ref. [62] is defined by

caðt;xÞ ¼ D̂ab
k ekbðt;xÞ −

X
k

U†;ab
k ðt;x − k̂Þ

× fbcdackðt;x − k̂ÞgEk
dðt;x − k̂Þ ð55Þ

and is preserved by the linearized equations of motion.
Therefore, to restore the Gauss law after the perturbation at
tpert, we employ the Gauss law restoration algorithm of
Ref. [59] for the Gauss violation ca only at time tpert. The
algorithm proceeds by iterating the transformation ekaðxÞ↦
ekaðxÞþγD̂F;ab

k cbðxÞ, with the corresponding forward
derivative D̂F;ab

k and the same parameter γ as in [59].
Our Gauss law violation is typically reduced to 10−9–10−12

in suitable units of Q, which is close to machine precision.
Our results are observed to be insensitive to the chosen
Gauss law precision.

F. Numerical setup

In the following sections, we show our numerical results.
Our standard choice of parameters is n0 ¼ 0.2 and
Qtpert ¼ 1500, while our time extent for the Fourier trans-
form is typically QΔtmax ¼ 200, see also Sec. II D. If not
stated otherwise, we employ a 2563 lattice with lattice
spacing Qas ¼ 0.7, averaged over 5 simulations. To show
that our results are insensitive to changes of volume and

lattice spacing, in some figures we compare to a smaller
1923 lattice with the finer spacing Qas ¼ 0.47, averaged
over 10 simulations. For the time step we use the ratio
dt=as ¼ 0.05, while we have checked that smaller ratios
down to dt=as ¼ 0.01 do not change the results. Unless
stated otherwise, we initialize only transverse modes.
Using the method described in Sec. II D, we initialize the

source at multiple momenta p. To gain more statistics, we
additionally bin our correlation functions linearly in
momentum p ¼ jpBj, with the bin size being 1=8 of the
smallest momentum on the lattice pmin ¼ 2=as sinðπ=NsÞ.
We also checked that smaller bin fractions do not change
the results.
We initialize all modes within a momentum bin, which

amounts in initializing a thin spherical shell with radius p
in momentum space. Moreover, we do not initialize all
momentum modes of a linearized fluctuation field. The
reason for this is that, especially for low-momentum
modes, the evolution of GR becomes more noisy when
neighboring momentum bins are also excited, since the
initialized modes typically disperse and interfere with noise
from dispersing neighboring modes if the latter were also
excited. Achieving accurate results would require more
statistics in that case. Therefore, we initialize single
momentum bins separated by at least 0.15Q, thus reducing
noise from neighboring points considerably. As noted
above, our simulation results are averaged over 5–10
realizations, where each realization has an independent
background and source. The error bars correspond to the
standard error of the mean. We will explicitly note where
data without further averages is taken.
Finally, to further reduce computational costs, we

initialize multiple linearized fluctuations independently,
exciting different modes, but with the same background
field. In this way, we can extract the entire spectrum from a
single simulation by initializing sufficiently many linear-
ized fluctuation fields that most momentum bins become
excited.

III. NUMERICAL RESULTS

A. Self-similar attractor in non-Abelian plasmas

We start the discussion of our numerical results by
presenting some properties of the well-studied attractor in
non-Abelian systems far from equilibrium. Starting the
(background) non-Abelian plasma at Qt ¼ 0 from the
initial conditions of Eq. (9), the system quickly approaches
a nonthermal fixed point, where the distribution function
follows a self-similar evolution

fðt; pÞ ¼ ðQtÞαfSððQtÞβpÞ; ð56Þ

with exponents α ¼ −4=7 and β ¼ −1=7. The self-similar
behavior is shown in Fig. 2. The occupation numbers
rescaled by t−αf are plotted as functions of the rescaled
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momentum tβp. Since these curves for different times fall
on top of each other, this shows that the system follows a
self-similar evolution, and the stationary curve corresponds
to the scaling function fSðpÞ.8 For the simulated time in
classical simulations, one observes fSðpÞ ∼ ðp=QÞ−κ with
an exponent κ ≈ 1.3 [29,31] while a comparison with
kinetic theory predicts that it should eventually approach
κ ¼ 1 at late times [35].
The physical interpretation of the self-similar evolu-

tion is a direct energy cascade, where energy density ϵ ∼R
d3pωðpÞfðt; pÞ ∼ Λ4fðΛÞ ¼ const is conserved and

transported to higher momenta as Λ=Q ∼ ðQtÞ1=7, with
Λ being the hard momentum scale that dominates the
energy density. Indeed, the evolution in this time regime
only depends on the energy density [35], while details of
the initial conditions are washed away by the transient
evolution to the nonthermal fixed point [31,64]. Since our
definition of Q relies on the energy density, all quantities
should become independent of the initial conditions at late
times Qt.
This is demonstrated at the example of the HTL

mass of (12). Because of the parametric relation m2
HTL∼R

d3pfðt; pÞ=p, the self-similar evolution of fðt; pÞ should
lead tomHTL=Q ∼ ðQtÞ−1=7. We show its evolution in Fig. 3
for different initial amplitudes n0. One observes that the
mass indeed becomes proportional to the expected power
law behavior for all amplitudes at sufficiently late times.
When expressed in units of Q, the masses for different n0
are seen to even collapse to a single curve at late times,
which signals that the dynamics becomes insensitive to the
initial conditions. This is already the case at Qtpert ¼ 1500

for n0 ¼ 0.2, which is the set of parameters wewill be using
in the following. For comparison, we show m2

HTL=p
2
0 as a

function of p0t in the inset, where the curves stay clearly
apart and do not coincide.
The different power laws of themass and hard scale lead to

an increasing scale separationwith timemHTL=Λ∼ ðQtÞ−2=7.
Since a scale separation is one of themain assumptions in the
HTL formalism that was discussed in Sec. II C, one expects
this formalism to be applicable to the considered highly
occupied system. In the following, we will show our results
and compare them to the respectiveHTL predictions at LO in
mHTL=Λ. In principle, we could also tune mHTL=Λ by
extending simulations to late times to measure subleading
effects. However, computational costs restrict such an
analysis since the required lattices would also need to
increase to prevent lattice artifacts.

B. Comparing spectral and statistical
correlation functions

We start our discussion of spectral and statistical
correlation functions by studying their equal-time correla-
tions F̈ðt;Δt ¼ 0; pÞ and _ρðt;Δt ¼ 0; pÞ, the latter of
which is fixed by (33). In Fig. 4, we show the transverse
and longitudinal correlation functions F̈T=Lðt;Δt ¼ 0; pÞ at
times Qt ¼ 250 and 1500. Gray areas show the HTL
prediction in (37) with error bands. Instead of following
a straight line, as predicted by HTL, the transverse
correlation depends on momentum, following an approxi-
mate power law T�ðp=QÞ−0.3 between mHTL and Λ and
surpassing the gray band denoting T� at low momenta. This
power law is connected to the f ∼ ðp=QÞ−κ behavior with
κ > 0 discussed in Sec. III A while κ ¼ 1 is predicted in
HTL for a perfect scale separation.
Similarly, the longitudinal correlation shows devia-

tions from the expected T� _ρLðt;Δt ¼ 0; pÞ evolution.
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FIG. 2. Rescaled distribution function as a function of rescaled
momentum for n0 ¼ 0.2 at different times with Qtref ¼ 1500.
The original distribution function before rescaling is shown in the
inset.
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8The self-similar evolution with the cited values for α, β has
been established in Refs. [29–35]. These values have also been
extracted there from gauge-invariant observables.
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At momenta below the mass p≲mHTL, both F̈T and F̈L are
enhanced and approximately coincide. At high momenta
p≳ Λ they decrease exponentially, which is beyond the
HTL prediction since the latter is only expected to hold for
p ≪ Λ. As time proceeds, the longitudinal correlation F̈L
is observed to approach the lower bound of the HTL
predicted gray band while the transverse correlation func-
tion F̈T typically comes closer to the upper bound of the
HTL prediction.
The HTL relation between the equal-time correlation

functions (37) that we were testing is based on the more
general fluctuation-dissipation relation (34) that predicts
the same connection T� between F̈ and _ρ as functions of
relative time Δt and of ω. Focusing here on the transverse
polarization, we will therefore study the relation between
F̈T and _ρT in the considered system. The normalization of
the spectral function is fixed by the sum rule (33).
Similarly, F̈Tðt̄;Δt; pÞ=F̈Tðt̄;Δt ¼ 0; pÞ satisfies the same
normalization relation. Their evolution is shown in Fig. 5 as
functions of relative time Δt at time Qtpert ¼ 1500. One
observes that they lie on top of each other to good
approximation and show damped oscillations. Their cor-
responding Fourier transforms are presented in Fig. 6. They
are seen to also coincide in frequency space, establishing
the relation

F̈Tðt̄;ω; pÞ ≈ F̈Tðt̄;Δt ¼ 0; pÞ_ρTðt̄;ω; pÞ; ð57Þ

and equivalently as functions of Δt. This relation corre-
sponds to a generalized fluctuation-dissipation relation for
our far-from-equilibrium situation by constraining the
connection between the correlation functions not to depend

on frequency or on the relative time. Compared to the HTL
relation (34) at LO, this translates to allowing T�ðt̄Þ ↦
F̈Tðt̄;Δt ¼ 0; pÞ to depend on time and momentum, which
is consistent with what we observed in Fig. 4.
These observations show that the correlation function

F̈Tðt̄;ω; pÞ in the considered highly occupied system
is similar to its LO HTL expectation by satisfying a
generalized fluctuation-dissipation relation but shows devi-
ations for its amplitude F̈Tðt̄;Δt ¼ 0; pÞ that becomes
momentum dependent instead of being equal to T�. One
of the reasons for this is that mHTL=Λ is not negligibly
small, which affects the form of fðt; pÞ and thus, the form
of F̈Tðt̄;Δt ¼ 0; pÞ and the values ofmHTL and T�. We also
observe deviations for momenta belowmHTL that cannot be
explained by the HTL expressions at hand even qualita-
tively and may be influenced by processes at the mag-
netic scale.
Moreover, the spectrum in Fig. 6 includes a narrow peak

for each momentum, which follows a Lorentzian form,9

gLorðωÞ ¼
A
π

γT
ðω − ωTÞ2 þ γ2T

: ð58Þ

Here A is a normalization constant and ωT and γT
are the transverse dispersion relation and damping rate,
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9The small deviations from this form at low momenta like
p ¼ 0.09Q can be attributed to the finite time window employed
and are expected to vanish with a larger time window for the
Fourier transform.
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respectively, all of which can in general depend on
momentum and time. This shape is demonstrated in
Fig. 7 at the example of p ¼ 0.7Q. To the correlation
functions shown in Fig. 6 we added ω2FT=F̈Tðt;Δt¼ 0;pÞ
and ωρT , which confirm that time derivatives become
frequency factors in frequency space despite the residual
central time dependence. Most importantly, their shape
indeed matches with (58), which establishes the existence
of quasiparticles in the considered system.10 Their dis-
persion relation and damping rate are discussed in the
following subsection.

C. Dispersion relation, damping rate and Landau cut

Proceeding with our discussion of correlation functions
at unequal time, we study the transverse dispersion relation
ωT of the observed quasiparticle peak and compare it to the
expected HTL curve at LO ωHTL

T discussed in Sec. II C.
While the latter involves the plasmon frequency ωHTL

pl and
asymptotic mass mHTL given by (29) and (12), in general,
the plasmon frequency is defined as the frequency of the
zero mode,

ωpl ¼ ωð0Þ ¼ lim
p→0

ωTðpÞ ¼ lim
p→0

ωLðpÞ; ð59Þ

whereωLðpÞ is the longitudinal dispersion relation that will
be discussed and studied in Sec. III D. Since at p ¼ 0 there

is no distinction between transverse and longitudinal polar-
izations, both dispersion relations have to coincide.
Similarly, the asymptotic mass is defined as the mass in
the relativistic dispersion relation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
that is

expected to be seen for high momenta p ≫ m. One way
of expressing this relation is

m ¼ lim
p→∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
T − p2

q
: ð60Þ

Both definitions are consistent with the Taylor expanded
LO HTL dispersion relation in (27). However, they also
enable us to measure ωpl and m independently and to
compare their values to the HTL predictions.
More generally, we can now compare our results to the

expected LO curves from HTL. We start with the transverse
dispersion relation ωTðpÞ in the upper panel of Fig. 8. It is
deduced from _ρTðtpert;ω; pÞ by finding the frequency of the
maximum of the quasiparticle peak for each momentum,
but we have also checked that the dispersion resulting from
the maxima of ρTðtpert;ω; pÞ is consistent within uncer-
tainties. One observes that the extracted dispersion relation
does not show sensitivity to the different discretization
parameters employed, which indicates that this observable
is close to its continuum limit. This can even be observed at
low momenta. For instance, the smallest momentum of the
Qas ¼ 0.47 system is located at p ≈ 0.48mHTL but it is
barely visible because the corresponding point of the
Qas ¼ 0.7 data lies almost on top of it.
For comparison, we included a relativistic dispersion

relation

ωrel
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

rel þ p2

q
; ð61Þ

with a fitted mass valuemrel ¼ 0.132Q into the upper panel
of Fig. 8. We also show there the numerically computed
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10Note that because of ωT ≫ γT , the spectral function ρT also
follows a Lorentzian form in frequency space with approximately
the same ωT and γT . We have checked this explicitly.
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transverse HTL dispersion relation ωHTL
T , where we use the

mass parameter mHTL ¼ 0.149Q of Eq. (13), which comes
from a computation within the HTL formalism with the
distribution function fEE while other definitions lead to
deviating values. Interestingly, both functional forms pro-
vide good overall descriptions of the data. For the HTL
curve, we get the same value formHTL when fitting ωHTL

T to
our data. This justifies a posteriori our choice of the mass
value formHTL in our previous and following figures where
data is compared to HTL predicted curves.
On the other hand, there are discrepancies at low

and high momenta. They are better visible in the lower
panel of Fig. 8 where we show

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
T − p2

p
as a function of

momentum for the curves of the upper panel. While the
data points from this combination are quite noisy, one
observes some systematic behavior. If the transverse
dispersion relation followed a simple relativistic form
ωrel
T , the data points would be constant and equal to mrel.

Instead, one observes that apart from the zero mode this
combination steadily grows overshooting this mass value at
high momenta and being smaller at low momenta. This is
qualitatively similar to the behavior of the HTL curve but
the data points are systematically lower at high momenta
and higher at low momenta. This systematics can be also
observed in the upper panel of Fig. 8 when compared to the
HTL curve, i.e., frequencies are shifted to slightly larger
values at low momenta. Moreover, we will see in Sec. III D
that the longitudinal dispersion has the same systematic
behavior when compared to the corresponding HTL curve.
After this qualitative discussion of the functional form of

the extracted transverse dispersion relation, we can deduce
the values for the plasmon frequency and the asymptotic
mass from our data. We measure the plasmon frequency
directly by finding the maximum in frequency space of the
spectral function at p ¼ 0

ωfit
plðQt ¼ 1500Þ=Q ¼ 0.132� 0.002: ð62Þ

The corresponding points at p ¼ 0 are depicted in the lower
panel of Fig. 8. They correspond to different discretiza-
tions, which lead to the same value within the given
uncertainty. This value is larger than the predicted value
ωHTL
pl ¼ 0.122Q but agrees with the value from the rela-

tivistic dispersion fit ωrel
pl ¼ mrel.

The asymptotic massm is deduced in our simulations by
fitting ωHTL

T ðpÞ to the observed dispersion relation ωTðpÞ
for high momenta pmin ≤ p ≤ 1Q ¼ 6.7mHTL. In practice,
we first compute the HTL dispersion relation at various
momenta p, interpolate the solution and fit the interpolation
function to the data. Varying the lower momentum between
pmin ¼ 2mHTL − 4mHTL and considering the maxima of
both ρT and _ρT provides an estimate for the systematic error
while the (fit) value is the typical error of the fit

mfit=Q ¼ 0.138� 0.002ðsysÞ � 0.0015ðfitÞ: ð63Þ

The fitted value for the asymptotic mass is smaller than the
value used for mHTL, which is consistent with the lower
panel of Fig. 8 because the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
T − p2

p
data points lie below

the corresponding HTL curve. According to (27), ωrel
T

approximates the HTL curve ωHTL
T at large momenta.

However, the value from the relativistic dispersion fit
mrel is lower than the extracted value mfit, which is also
consistent with the lower panel of Fig. 8.
With this, we can compute the relation between the

plasmon frequency and the mass. At LO in the HTL
framework one has ωHTL

pl =mHTL ¼ ffiffiffiffiffiffiffiffi
2=3

p
≈ 0.8165, while
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T
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For comparison, we also show the ultra-relativistic dispersion
relation ωT ¼ p as a gray dashed curve. Lower: The expressionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
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p
is shown for the same data in a linear plot. We also

included the zero mode frequency ωð0Þ from the Qas ¼ 0.7 and
Qas ¼ 0.47 discretizations of the longitudinally polarized sys-
tems in Fig. 12 by an orange triangle and purple circle,
respectively.
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for the relativistic dispersion one has ωrel
pl =mrel ¼ 1.

We find

ωfit
pl

mfit
ðQt ¼ 1500Þ ¼ 0.957� 0.028; ð64Þ

which is even closer to 1 than to the HTL expected
ffiffiffiffiffiffiffiffi
2=3

p
.

However, we emphasize that the extracted transverse
dispersion agrees well with both functional forms and
shows deviations from both forms as well. On the other
hand, as we will see, we will observe the HTL predictions
of a Landau cut region and a different dispersion relation
for longitudinally polarized modes. This, together with the
agreement with the transverse dispersion relation, shows
that the HTL formalism provides a good overall description
of our data, while systematic deviations can be taken as an
indication of effects beyond this formalism at LO.
Let us now proceed with the discussion of the damping

rate of transverse quasiparticles. Within the HTL frame-
work, poles of the transverse retarded propagator at leading
order (24) correspond to Delta functions δðω − ωHTL

T ðpÞÞ
in ρT . However, realistic quasiparticle peaks involve a finite
width, which corresponds to a nonvanishing damping rate
γTðpÞ, as was observed in Sec. III B. This is an effect of
subleading order in the HTL framework and may contain
nonperturbative contributions. So far, the damping rate
within HTL has only been calculated at p ¼ 0 [55]. Our
employed numerical framework provides a unique oppor-
tunity to access the momentum dependence of this quantity
out of equilibrium.
Instead of working in Fourier space, one can measure

γTðpÞ, as well as ωTðpÞ, also directly in the time domain
Δt. A Lorentzian peak Fourier transforms to a damped
oscillator, which reads

gd:osc:ðΔtÞ ¼ e−γTΔt cosðωTΔtÞ; ð65Þ

at the example of _ρT . Using this fitting curve directly in the
time domain, we have checked that the dispersion relation
ωTðpÞ extracted in this way coincides with the data
shown in Fig. 8. However, it turns out that this procedure
provides more accurate values for the damping rate than the
corresponding measurement in frequency space, where in
practice, the finite time window for the Fourier transform
leads to deviations from Lorentzian peaks especially at low
momenta, introducing additional uncertainties on the
damping rates.
The damping rate extracted using (65) is shown in Fig. 9

for different discretizations that lie on top of each other
within uncertainties. The data points are obtained by
averaging over the damping rate of different simulations
while the error bars are a sum of the error of the mean and
the average fitting error. For low momenta p≲ 0.15Q (i.e.,
p≲mHTL), the damping rate is observed to increase before
it eventually flattens at higher momenta. We have also

included the expected value at p ¼ 0 within the HTL
formalism that has been computed in Ref. [55]

γHTLð0Þ ¼ 6.63538
g2NcT�
24π

; ð66Þ

where we have replaced T ↦ T� in the original formula
and estimated the error bars by employing different
definitions of the distribution function in (11). Our data
is roughly consistent with the HTL predicted value. The
extracted damping rate γTðpÞ in Fig. 9 is one of the main
results of this work.
In our considerations, we have only talked about the

dominant quasiparticle peak so far. However, the transverse
spectral function has a much richer structure, also involving
the Landau cut as discussed in Sec. II C. Our results for the
spectral function ρT are shown in Fig. 10 for different
momenta, where we also included the expected HTL
curves. While the additional ω-factor suppressed the
Landau cut region in Fig. 6, the corresponding structure
at low frequencies for ω ≤ p is clearly visible in Fig. 10.
Moreover, it agrees well with the HTL curves at LO. Note
that the only parameter in these curves is the mass m, for
which we employ mHTL to be consistent with Fig. 8.
Therefore, no free parameter is left and the agreement with
the curves indicates that the HTL framework provides a
valid description for the Landau cut region even far from
equilibrium.
Small discrepancies at the lowest frequencies ω≲ 0.02Q

can be attributed to the finite resolution in frequency space
due to limitations of the time window for the Fourier
transform. On the other hand, the quasiparticle peak of low
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momenta like p ¼ 0.05Q is located at a slightly larger
frequency than expected at LO in HTL. This behavior is
consistent with our observation of the dispersion relation
in Fig. 8.

D. Longitudinal correlations

Apart from the transversely polarized correlation func-
tions, we can also study longitudinal correlation functions
at unequal time. Our data is shown for the spectral function
_ρL in Fig. 11 in relative time and frequency domains for
different momentum modes, where we choose it to satisfy
the sum rule (33). In the time domain, one observes damped
oscillations similar to what was observed for the transverse
case. For larger momenta p≳ 0.15Q the oscillations
decrease very quickly and oscillations are barely visible
at later times.
Their Fourier transforms are shown in the right panel of

Fig. 11 together with the longitudinal spectral function
computed within the HTL formalism at LO that was
discussed in Sec. II C. For small momenta p≲ 0.15Q,
one sees clear quasiparticle peaks and a small Landau cut
region, which is consistent with the HTL curve. At larger
momenta p≳ 0.15Q, the HTL Landau cut region becomes
more pronounced and starts to dominate the sum rule (33)
while the residue of the quasiparticle peak gets exponen-
tially suppressed as ∼ expð−p2=m2Þ. At the same time, the
longitudinal dispersion relation of the quasiparticle peak
gets exponentially close to the light cone ωL ≈ p, where the

Landau cut region starts. Therefore, it becomes difficult to
distinguish between the Landau cut region and the quasi-
particle peak numerically. Moreover, the Landau cut region
gets smeared a little around the light cone, such that one
sees practically only the Landau cut for p≳ 0.29Q.
We also show the normalized longitudinal statistical

correlation function F̈L=F̈Lðt;Δt ¼ 0; pÞ_ρHTLL ðt;Δt ¼
0; pÞ as orange curves in both relative time and frequency
domains. This quantity is noisy but one observes an overall
good agreement with the spectral function. Although it
seems as for p ¼ 0.12Q it does not capture the Landau cut
region correctly, at larger momenta where the Landau cut
region starts to dominate the spectrum, it agrees quite well
with the spectral function. This confirms the existence of
an approximate generalized fluctuation-dissipation rela-
tion similar to the transverse case in (57) also for the
longitudinal correlations. The connection between F̈L and
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_ρL is provided by F̈Lðt;Δt ¼ 0; pÞ that was depicted in
Fig. 4.
The longitudinal dispersion relation ωLðpÞ can be

extracted from the spectral function by, for instance, finding
its maximum after subtracting the Landau cut. Since
numerically, the Landau cut region appears as smeared
around the light cone, while the analytic function has a
steep increase there, the subtraction is not precise in the
region where the Landau cut starts dominating the spec-
trum. Therefore, the longitudinal dispersion extracted this
way is not more than an estimate for the true longitudinal
dispersion relation for momenta p≳m.
Our results for this are shown in the upper panel of

Fig. 12 for two different discretizations. The transverse

dispersion relation ωTðpÞ from Fig. 8 as well as the
longitudinal and transverse dispersion relations from the
HTL formalism at LO are added to the figure. One observes
that the longitudinal dispersion estimate is quite distinct
from the transverse one and exhibits very similar momen-
tum dependence as the corresponding HTL curve. As
expected, there are differences to the latter around
p ∼mHTL, which may have resulted from the subtraction
of the analytical Landau curve instead of the numerical one.
On the other hand, at low momenta one sees a similar
deviation from the HTL curve at LO as for the transverse
distribution in Fig. 8, where the extracted frequencies are
systematically larger. This behavior is seen for both
discretizations. Moreover, both dispersion relations come
close, smoothly approaching ωpl with the value (62), which
is larger than expected from LO HTL, as discussed in
Sec. III C. Hence, ωLðpÞ confirms the observations in that
section.
For momenta where the Landau cut does not dominate

the spectral function, one can extract the longitudinal
damping rate γLðpÞ by fitting to a damped oscillator
(65). We show the extracted data points in the lower panel
of Fig. 12, where we also include the transverse damping
rate from Fig. 9 for comparison. For larger momenta
p≳mHTL, the Landau cut becomes important, eventually
dominating the Δt evolution of _ρ, and the fitting procedure
provides information about the Landau cut rather than
providing γLðpÞ. Therefore, the lower panel of Fig. 12
describes only low momenta p≲mHTL correctly. For these,
one observes that the damping rate does not depend on the
polarization within uncertainties. A similar observation was
made for the equal-time correlation function F̈ðt;Δt¼ 0;pÞ
in Fig. 4.

E. Variation of parameters, approach to LO HTL

We finally check how our results depend on a variation
of the initial amplitude n0 and time tpert. Understanding
the dependence on time is especially important in our
approach. Within HTL, the coupling constant is g ∼m=Λ.
Since in our case this ratio decreases with time as
m=Λ ∼ ðQtÞ−2=7, a weak-coupling limit in HTL corre-
sponds to a late-time limit in our method. Hence, the
spectral function is expected to approach HTL at LO with
time. We will discuss our findings at the example of the
transverse dispersion relation and damping rate.
Our results on the dispersion relation are shown in

Fig. 13 for simulations with n0 ¼ 3.2 at three different
times Qtpert ¼ 400, 750 and 1500 and for our n0 ¼ 0.2
curve at time Qtpert ¼ 1500 from Fig. 8. All simulations
have been performed on 2563 lattices with Qas ¼ 0.7 and
the n0 ¼ 3.2 simulations have not been ensemble averaged.
The curves are plotted in units of mHTL that is computed as
in Sec. II A with fEEðt; pÞ. While the mass is time-
dependent as shown in Fig. 3, the dispersion relation is
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seen to hardly change with time. This is predicted by the
HTL formalism, where the mass is the only parameter of
the dispersion relation, and hence, expressing frequencies
and momenta in terms of the mass should lead to the
same form.
We note, however, that a residual time dependence is not

ruled out in our simulations. In particular, one would expect
that the ratio ωpl=m decreases with time, approaching
the LO value

ffiffiffiffiffiffiffiffi
2=3

p
of HTL. For our lowest momenta

p ≪ mHTL, the frequency seems to slightly decrease with
time for the n0 ¼ 3.2 dispersions and we have indeed seen a
decreasing ωpl=m ratio with time. However, we emphasize
that the curves have not been ensemble averaged and may
have a considerable uncertainty. Therefore, whether ωpl=m

indeed approaches
ffiffiffiffiffiffiffiffi
2=3

p
at late times cannot be answered

accurately with the present data and is left for future work.
The transverse damping rate γTðpÞ is shown in Fig. 14

for different times, rescaled by ðt=trefÞ3=7 with Qtref ¼
1500 as a function of rescaled momentum ðt=trefÞ1=7p. The
exponent 1=7 corresponds to the evolution of the mass
1=mHTL, while the exponent 3=7 in the damping rate
reflects the evolution of the effective temperature

g2T�ðtÞ=Q ∼
R
d3pðg2fÞ2R
d3pg2f=pQ

∼ ðQtÞ−3=7; ð67Þ

which follows from the self-similar evolution of the
distribution function. We checked explicitly that g2T�ðtÞ
follows this power law in our simulations. Since the
rescaled data coincide while the original one does not as
seen in the inset, this indicates that the damping rate is
proportional to γTðpÞ ∝ g2T� for all momenta and not only
for the zero mode as given by Eq. (66). This also implies
that the damping rate itself is of subleading order since

γTðpÞ=Λ ∼ ðm=ΛÞ2 ≪ m=Λ, which is of course expected
in HTL. Hence, the width of the quasiparticle peak
decreases in the late-time limit and the peak approaches
a Delta function, recovering the HTL prediction at LO.
However, note that all curves in Fig. 14 are single-run
simulations and therefore, more statistics is needed to
confirm this observation beyond doubt. A precision meas-
urement of the damping rate may also show possible
influence of the magnetic scale, which is of the same
subleading order g2Q but decreases with a different power
law than g2T� [58].

IV. CONCLUSION

In this work, we have studied the spectral and statistical
correlation functions ρ and F at unequal times of highly
occupied classical Yang-Mills theory at the self-similar
regime to get further insight into the dynamics. To compute
the spectral function, we have used linear response theory
with our recently developed formalism to simulate linear-
ized fluctuations on top of a classical background. With
these techniques, we were able to access information about
the highly populated system that had not been accessible
previously by only considering equal-time correlation
functions. Our results were compared to the HTL formal-
ism at LO.
We showed that the functional forms of the transverse

and longitudinal spectral functions ρT and ρL agree well
with the HTL-predicted curves, including the Landau cut
region of low frequencies ω2 ≤ p2. For larger frequencies,
both ρT and ρL involve a quasiparticle peak with a
dispersion relation and damping rate. The dispersion
relations agree well with the corresponding HTL curves
but also with a relativistic dispersion in the transverse case
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while the damping rate is observed to be proportional to an
effective temperature T� and to roughly agree with the
predicted value in [55] at p ¼ 0. While transverse and
longitudinal dispersion relations follow distinct functional
forms, the corresponding damping rates are observed to
agree within error bars for momenta below the mass.
For the dispersion relations, we found some deviations at

low and high momenta. Extracting the plasmon frequency
ωpl and asymptotic mass m from our data, we were able to
quantify some of these deviations. Instead of the HTL
prediction ωpl=m ¼ ffiffiffiffiffiffiffiffi

2=3
p

, we found a value close to 1 for
the ratio. Moreover, we observed that the spectral and
statistical correlation functions are not connected by the
effective temperature T� as predicted by the HTL formal-
ism but by a momentum dependent function that is of the
same order of magnitude for momenta m≲ p≲ Λ.
Many general properties of the HTL correlation func-

tions at LO in m=Λ have been observed in our simulations.
The deviations from the HTL expressions may have
resulted from higher order corrections since for the studied
times, we did not have a perfect scale separation between
the mass and the hard scale. In our approach, m=Λ
decreases with time and therefore, our late-time limit is
expected to correspond to the LO of the HTL framework.
We have not performed this limit systematically in this
work, but we have seen indications of this for instance in
the transverse damping rate, which indeed appears to be of
subleading order γTðpÞ=m ∼m=Λ. Therefore, the quasi-
particle peaks should approach Delta functions for
m=Λ → 0, as expected from HTL at LO. We have not
gone to large enough times with sufficient statistics to see
the approach to LO HTL also in the dispersion relation.
A more systematic study of the time evolution of the
spectral function is left for future work.
One of the achievements of the new method is that we

were able to measure the transverse and longitudinal
damping rates for the first time, extending the result from
[55] to finite momenta. In this sense, our simulations can
also be regarded as a nonperturbative way of measuring
observables that are hard to obtain analytically within the
HTL formalism. We plan to use this numerical method also
for similar cases, where HTL quantities are hard to access.
Moreover, in the future we aim to extend our studies to

the case of a background field with a very anisotropic
momentum distribution. Here the fluctuations are known to
be unstable; i.e., one has to map out both the real and
imaginary parts of the dispersion relation, and with differ-
ent angles of orientation between the momentum vector and
the anisotropy. The advantage of the formulation in terms
of linearized fluctuations is that this method does not rely
on a scale separation between the hard and soft modes,
although we have here operated in a regime where such a
separation exists. Thus, for the isotropic case, the calcu-
lation can be extended to small values of Qt before the
onset of the self-similar regime. More importantly for the

phenomenological context, the calculation can be per-
formed in a longitudinally expanding coordinate system
and extended all the way to τ ¼ 0. This will enable one to
follow the growth of the quantum fluctuations in a realistic
geometry corresponding to a relativistic heavy ion colli-
sion. We intend to pursue these avenues in future work.
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APPENDIX: CORRELATION FUNCTIONS
WITH SUBSEQUENT GAUGE FIXING

In this appendix. we discuss the correlation functions for
the case when after the introduction of the linearized
fluctuations, the background field is gauge fixed to
Coulomb gauge every time before correlation functions
are printed. They are shown for a 2563 lattice with Qas ¼
0.7 in Fig. 15 in both temporal and frequency domains,
where we averaged over two simulations. While the peak is
at the same position as the spectral function computed
as discussed in the main sections, one finds that the
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FIG. 15. Shown are the spectral and statistical correlation
functions with subsequent gauge fixing in both temporal and
frequency domain. For comparison, the spectral function from
Figs. 5 and 6 is shown, where no subsequent gauge fixing is
involved (abbreviated by “no g.f.”).
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temporal evolution introduces some spurious amplitude
modulations. These translate into side peaks in frequency
space. Interestingly, these artifacts are absent in the
statistical correlation function F̈, which therefore follows
a Lorentzian form and matches with our usual computation
of the spectral function. This implies that both the

dispersion relation as well as the damping rate of the peaks
in F̈ are close to those measured above. The amplitude
modulations and thus, the side peaks of the spectral
function are quite sensitive to the lattice spacing and the
volume, showing clearer side peaks and stronger modu-
lations with increasing volume.
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