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We study the deconfinement phase transition in (2þ 1)-dimensional holographic SUðNÞ gauge theories
in the presence of an external magnetic field from the holographic hard and soft wall models. We obtain
exact solutions for the critical temperature of the deconfinement transition for any range of magnetic field.
As a consequence, we find a critical magnetic field ðBcÞ, in which the critical temperature ðTcÞ vanishes;
for B < Bc we have an inverse magnetic catalysis and for B > Bc we have a magnetic catalysis.
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I. INTRODUCTION

The understanding of nonperturbative physics of
Yang-Mills theory, especially QCD, remains an outstand-
ing problem in modern theoretical physics. In particular,
the effect of an external magnetic field in QCD has been the
subject of many works [1–19] over the years. Recently it
has been observed in lattice QCD, in the context of chiral
phase transition, an inverse magnetic catalysis (IMC), i.e.,
the decreasing of the critical temperature ðTcÞwith increas-
ing magnetic field (B) for eB ∼ 1 GeV2 [20] and more
recently for eB ∼ 3 GeV2 [21]. This is in contrast with
what would be expected: a magnetic catalysis (MC),
meaning the increasing of the critical temperature with
increasing magnetic field [22]. This behavior is also found
in deconfinement phase transition.
In this work, we study the deconfinement phase tran-

sition in (2þ 1)-dimensional holographic pure SUðNÞ
gauge theories, with N ¼ 2, 3 and N → ∞ in the presence
of an external magnetic field. We restrict ourselves to
(2þ 1) dimensions in order to simplify the analysis, guided
by the fact that gauge theories in (2þ 1) dimensions are
similar to the gauge theories in (3þ 1) dimensions [23,24].
For instance, if we take a closer look (for a detailed account
see [23]), one can find that the perturbative sectors of these
theories become free at high energies, the coupling sets the

dynamical mass scale and becomes strong at small ener-
gies. Furthermore, they are linearly confining, just like in
QCD in (3þ 1) dimensions for example. In addition, the
lightest glueball state, 0þþ, has mass m=

ffiffiffi
σ

p
≈ 4 in both

(2þ 1)- and (3þ 1)-dimensional lattice gauge theories for
any gauge group SUðNÞ. For these reasons, we think that
our work in (2þ 1) dimensions has significant theoretical
interest for both lattice and gauge theories in general. Note,
however, that in this work we are not dealing with the
perturbative formulation of gauge theories but the non-
perturbative approach based on the AdS/CFT correspon-
dence or duality.
A promising and fruitful approach to study IMC and MC

is based on the AdS/CFT correspondence. Such formu-
lation has a large use within strongly coupled gauge
theories, including the nonperturbative IR physics of
QCD [25–30]. However, in order to reproduce QCD
physics in the IR region, one has to break the conformal
invariance in the original AdS/CFT duality. The two most
used models which realize this symmetry breaking are
known as the hard and soft wall models, also known as
AdS/QCD models [31–40]. In particular, some studies
dealing with this framework discussed the IMC for small
range of the magnetic field [15–18]. However, these works
could not predict what would happen for eB > 1 GeV2

because their approach is perturbative in the magnetic field
B and can only be trusted for weak fields eB < 1 GeV2.
As a result of working in (2þ 1) dimensions, here we

obtain exact solutions for the critical temperature of the
deconfinement transition for all range of the magnetic field.
Surprisingly, and unexpectedly, we find a critical magnetic
field ðBcÞ, in which the critical temperature ðTcÞ vanishes,
and for B < Bc we find IMC and for B > Bc we find MC.
Note that the choice to work in 2þ 1 dimensions implies
that the unit of the magnetic field B is given in terms of the
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string tension, throughout this text, instead the usual GeV
scale.
This work is organized as follows. In Sec. II, after a brief

reminder of the AdS4=CFT3 correspondence, we describe
the geometric set up, equations of motion and its solutions
for the models that we are going to consider in the
remaining sections. In Sec. III, we discuss the hard wall
model, compute its on-shell Euclidean action (free energy)
for thermal AdS and AdS-Black hole solutions and the free
energy difference, which plays an important role in the
deconfinement phase transition. In Sec. IV, we do the same
analysis for the soft wall model. In Sec. V, we study and
present the results for the deconfinement phase transition
for both hard and soft wall models. Finally, in Sec. VI, we
present our conclusions and final comments. We also
include Appendices A and B showing in detail how to
set the parameters used in each model.

II. EINSTEIN-MAXWELL THEORY IN
(3 + 1) DIMENSIONS

In this section, we review the Einstein-Maxwell theory in
(3þ 1) dimensions together with the appropriate counter-
terms, which will be used to compute the finite on-shell
actions in the next section.
Before presenting the Einstein-Maxwell theory in four

dimensions, let us begin with a brief reminder of the basics
concerning the AdS4=CFT3 Correspondence. The full
gravitational background is the 11-dimensional supergrav-
ity on AdS4 × S7. The dual field theory is the low-energy
theory living on N M2-branes on R1;2, more specifically
the N ¼ 8 SUðNÞ Super-Yang-Mills theory in the large N
limit [29]. This theory has 8 supersymmetries and a global
SOð8Þ R-symmetry group (the symmetry of the 7-sphere in
the supergravity description). In the large N limit, we have,
on the gravity side, a classical supergravity on AdS4 × S7

while on the field theory side we have a strongly coupled
(2þ 1)-dimensional gauge theory.
Via Kaluza-Klein dimensional reduction, the supergrav-

ity theory on AdS4 × S7 may be consistently truncated to
Einstein-Maxwell Theory on AdS4 [41]. The action for this
theory, in Euclidean signature [42], is given by:

S ¼ −
1

2κ24

Z
d4x

ffiffiffi
g

p ðR − 2Λ − L2FμνFμνÞ; ð1Þ

where κ24 is the four-dimensional coupling constant, which
is proportional to the four-dimensional Newton’s constant
ðκ24 ≡ 8πG4Þ, d4x≡ dτdx1dx2dz. The Ricci scalar R and
the negative cosmological constant Λ for AdS4 are given,
respectively, by

R ¼ −
12

L2
; ð2Þ

Λ ¼ −
3

L2
; ð3Þ

where L is the radius of AdS4. Fμν is the Maxwell field
whose normalization comes from the reduction of the
eleven-dimensional supergravity with coupling constant
κ2. Furthermore, the coupling constants κ24, for the large N
field theory, and κ2 are related by

2L2

κ24
¼

ffiffiffi
2

p
N3=2

6π
; ð4Þ

1

2κ24
¼ ð2LÞ7VolðS7Þ

2κ2
: ð5Þ

According to the holographic renormalization [43], the
action (1) must be regularized by adding a boundary
counterterm. For our particular case, the boundary action
is given by

SBndy ¼ −
1

κ24

Z
d3x

ffiffiffi
γ

p �
K þ 4

L

�
; ð6Þ

where γ is the determinant of the induced metric γμν on the
boundary, K ¼ γμνKμν is the trace of the extrinsic curvature
Kμν ¼ − 1

2
ð∇μnν þ∇νnμÞ with n an outward-pointing

normal vector to the boundary. The first term is just the
Gibbons-Hawking surface term [44] in order to give a
well-defined variational principle and the second one is a
counterterm needed to cancel the UV divergences (z → 0)
of the bulk action (1). For the Maxwell field, no new
counterterms are needed since the action falls off suffi-
ciently quickly near the boundary. Therefore, the renor-
malized action is given by subtracting a boundary term
from the bulk action

SRen ¼ −
1

2κ24

Z
d4x

ffiffiffi
g

p ðR − 2Λ − L2FμνFμνÞ

−
1

κ24

Z
d3x

ffiffiffi
γ

p �
K þ 4

L

�
: ð7Þ

The field equations coming from the bulk action (1)
together with the Bianchi identity are [41]

RMN ¼ 2L2

�
FP
MFNP −

1

4
gMNF2

�
−

3

L2
gMN; ð8Þ

∇MFMN ¼ 0: ð9Þ

Our Ansatz for the metric and the background magnetic
field to solve (8) are given by

ds2 ¼ L2

z2

�
fðzÞdτ2 þ dz2

fðzÞ þ dx21 þ dx22

�
; ð10Þ

F ¼ Bdx1 ∧ dx2: ð11Þ
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The background magnetic field B that we introduce in this
work belongs to a Uð1Þ subgroup of SOð8Þ R-symmetry
group of the full theory. The behavior under a magnetic
field is a classical probe of interacting (2þ 1)-dimensional
systems [45]. In order to understand the consequences of
the bulk Maxwell field, let’s consider the vector potential,
which is a 1-form A such that F ¼ dA. So,

A ¼ B
2
ðx1dx2 − x2dx1Þ: ð12Þ

Therefore, one can note that the magnetic term remains
finite at the AdS4 boundary (z → 0). Thus, we can treat it as
an external background magnetic field.
Using the Ansätze, (10) and (11), the field equations (8)

are simplified and one has

z2f00ðzÞ − 4zf0ðzÞ þ 6fðzÞ − 2B2z4 − 6 ¼ 0; ð13Þ

zf0ðzÞ − 3fðzÞ − B2z4 þ 3 ¼ 0; ð14Þ

with F2 given by

F2 ¼ 2B2z4

L4
: ð15Þ

Note that the Maxwell field F in (1) and the magnetic field
B have the same conformal dimension of ðmassÞ2 in four
dimensions.
The two solutions of (13) and (14) which we are going to

be interested are

fThðzÞ ¼ 1þ B2z4 ð16Þ

fBHðzÞ ¼ 1þ B2z3ðz − zHÞ −
z3

z3H
ð17Þ

From the point of view of supergravity, the first solution,
fThðzÞ, corresponds to the thermal AdS4, whereas the
second solution, fBHðzÞ, corresponds to a black hole in
AdS4 where zH is the horizon position, such that
fBHðz ¼ zHÞ ¼ 0. Both solutions are in the presence of
an external background magnetic field B and indeed satisfy
the differential equations (13) and (14). From the point of
view of the boundary gauge theory, according to the
holographic dictionary [27,28], the above solutions corre-
spond to the gauge theory at zero and finite-temperature,
respectively, both in the presence of an external magnetic
field, and have been found by the present authors recently
in [46]. It is important to mention that these solutions are
exact in the magnetic field B while in other references the
corresponding solutions are perturbative in B, as one can
see in [15–17].

III. ON-SHELL EUCLIDEAN ACTIONS FOR THE
HARD WALL MODEL

In this section, we compute the free energies from the
on-shell Euclidean actions for the hard wall model using
(7). In order to make it clear, we compute the action
(1) and the boundary action (6) separately for both thermal
AdS4 and AdS4 black hole. Then we put those results
together and calculate the free energy difference, ΔS,
which will enable us to study the deconfinement phase
transition in Sec. V.
The hard wall model [31–36] consists in introducing an

IR hard cutoff zmax in the background geometry in order to
break conformal invariance. The metric Ansatz we use in
this work is (10) in Euclidean signature with a compact
time direction, 0 ≤ τ ≤ β, with β ¼ 1

T. The function fðzÞ is
given by (16) for the thermal AdS4 and (17) for the AdS4
black hole. The introduction of a cutoff in this model means
that

0 ≤ z ≤ zmax; ð18Þ
where zmax is the maximum value of the radial coordinate z,
and can be related to the mass scale of the boundary theory.
For instance, in (3þ 1) dimensions, zmax is usually related
with energy scale of QCD [36,39,40] by,

zmax ∼
1

ΛQCD
: ð19Þ

Moreover we have to impose boundary conditions in
z ¼ zmax. In this work, we use Neumann boundary con-
ditions in order to fix zmax (for details see Appendix A,
where we also discuss the use of the Dirichlet boundary
condition).
In the next two subsections, we compute the on-shell

Euclidean actions for the thermal AdS4 and the AdS4 black
hole, respectively.

A. Thermal AdS4

Using the definitions of the Ricci scalar, the cosmologi-
cal constant and the field strength given by (2), (3), and
(15), respectively, we can rewrite the action (1) as

S ¼ −
1

2κ24

Z
d4x

ffiffiffi
g

p �
6

L2
þ 2B2z4

L2

�
; ð20Þ

with
ffiffiffi
g

p ¼ L4

z4 . Therefore, the explicit on-shell Euclidean
action for the thermal AdS4 is computed as

S ¼ −
1

2κ24

Z
β0

0

dτV2

Z
zmax

ϵ
dz

L4

z4

�
6

L2
þ 2B2z4

L2

�
; ð21Þ

which gives

S ¼ β0V2L2

κ24

�
1

ϵ3
−

1

z3max
þ B2zmax þOðϵÞ

�
;
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where V2 ≡ ∬ dx1dx2, ϵ is an UV cutoff which will be
removed (ϵ → 0) at that end of calculations and β0 is the
arbitrary period of the Euclidian time τ for the Thermal
AdS4 solution.
For the boundary action (6), we have

SBndy ¼
β0V2L2

κ24

�
−

1

ϵ3
þOðϵÞ

�
: ð22Þ

Thus, the free energy for the thermal AdS4,
STh ¼ Sþ SBndy, is given by

STh ¼
β0V2L2

κ24

�
−

1

z3max
þ B2zmax þOðϵÞ

�
: ð23Þ

B. AdS4 black hole

For the black hole case, we have

S0 ¼ −
1

2κ24

Z
β

0

dτV2

Z
zH

ϵ
dz

L4

z4

�
6

L2
þ 2B2z4

L2

�
; ð24Þ

which gives

S0 ¼ βV2L2

κ24

�
1

ϵ3
−

1

z3H
þ B2zH þOðϵÞ

�
; ð25Þ

and for the boundary action (6), we have

S0Bndy ¼
βV2L2

κ24

�
−

1

ϵ3
þ 1

2z3H
þ B2zH

2
þOðϵÞ

�
: ð26Þ

Thus, the free energy for the AdS4 black hole, SBH ¼
S0 þ S0Bndy, is given by

SBH ¼ βV2L2

κ24

�
−

1

2z3H
þ 3B2zH

2
þOðϵÞ

�
: ð27Þ

C. Hard wall free energy difference

Now we define the general the free energy difference,
ΔS, given by

ΔS ¼ lim
ϵ→0

ðSBH − SThÞ: ð28Þ

Since we are comparing the two geometries at the same
position z ¼ ϵ → 0 we can choose β0 such that β0 ¼
β

ffiffiffiffiffiffiffiffiffi
fðϵÞp ¼ β [28,47], since fðϵÞ ¼ 1þOðϵ3Þ when

ϵ → 0, with fðzÞ given by (17). Therefore, with this choice,
we have that the free energy difference for the hard wall
model is given by

ΔS ¼ βV2L2

κ24

�
1

z3max
−

1

2z3H
þ B2

�
3zH
2

− zmax

��
: ð29Þ

Finally, it is important to mention that in the computations
above we have assumed that zH < zmax. Otherwise we
would have no transition at all, because the free energy
difference would be a constant that never vanishes, given by

ΔS ¼ βV2L2

κ24

�
1

2zH3
þ B2zH

2

�
ðzH > zmaxÞ; ð30Þ

which, in the limit B ¼ 0, gives

ΔS ¼ βV2L2

κ24

�
1

2zH3

�
; ð31Þ

consistent with the higher-dimensional version of [47].

IV. ON-SHELL EUCLIDEAN ACTIONS FOR THE
SOFT WALL MODEL

In this section, we compute the free energies for the soft
wall model [37,38]. The calculation is similar to the one
described in the previous section. However, in this case we
will have to introduce one more counterterm in the holo-
graphic renormalization scheme due to the introduction of a
dilatonlike field.
For the soft wall model, we consider the following four-

dimensional action

S ¼ −
1

2κ24

Z
d4x

ffiffiffi
g

p
e−ΦðzÞðR − 2Λ − L2FμνFμνÞ; ð32Þ

where ΦðzÞ ¼ kz2 is the dilatonlike field, which has
nontrivial expectation value and the constant k is related
to the QCD scale by k ∼ Λ2

QCD. In this work, we are
assuming that the dilaton field does not backreact on the
background geometry. Moreover, as in [37], we assume that
our metric Ansatz (10) satisfies the equations of motion for
the full theory with fðzÞ given by (16) for the thermal AdS4
and (17) for the black hole in AdS4. In [47], it is argued that
this should be the case because it conforms with the large N
field theory expectations, at least qualitatively.
In addition to the boundary action (6), we will have to

include one more boundary action, SΦBndy, due to the
dilatonlike field in this soft wall model, which will serve
as a counterterm to cancel the bulk divergences. The simplest
form for the boundary action which cancels this additional
UV divergence in the soft wall model (32) is the following

SΦBndy ¼
3

κ24

Z
d3x

ffiffiffi
γ

p Φ
L
: ð33Þ

Therefore, the total boundary action for our four-dimen-
sional soft wall model (32), STotalBndy, is given by

STotalBndy ¼ −
1

κ24

Z
d3x

ffiffiffi
γ

p �
K þ 4

L
−
3Φ
L

�
: ð34Þ
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A. Thermal AdS4

In this subsection, we compute the free energy for the
thermal AdS4 for the soft wall model.
The calculation is similar to the one done in the previous

section for the hard wall model, but in place of the action
(1) with a hard cutoff zmax, we use (32). Thus,

S¼−
1

2κ24

Z
β0

0

dτV2

Z
∞

ϵ
dz

L4

z4
e−kz

2

�
6

L2
þ2B2z4

L2

�
; ð35Þ

which gives

S ¼ β0V2L2

κ24

�
1

ϵ3
−
3k
ϵ
þ

ffiffiffi
π

p ðB2 þ 4k2Þ
2

ffiffiffi
k

p þOðϵÞ
�
: ð36Þ

For the boundary action (34), we have

STotalBndy ¼
β0V2L2

κ24

�
−

1

ϵ3
þ 3k

ϵ
þOðϵÞ

�
: ð37Þ

Thus, the free energy for the thermal AdS4, STh ¼ Sþ
STotalBndy, in the soft wall model is given by

STh ¼
β0V2L2

κ24

� ffiffiffi
π

p ðB2 þ 4k2Þ
2

ffiffiffi
k

p þOðϵÞ
�
: ð38Þ

B. AdS4 black hole

In this subsection, we compute the free energy for the
AdS4 black hole for the soft wall model.
Proceeding as was done in the previous section for the

hard wall model we have

S0 ¼−
1

2κ24

Z
β

0

dτV2

Z
zH

ϵ
dz

L4

z4
e−kz

2

�
6

L2
þ2B2z4

L2

�
; ð39Þ

which gives

S0 ¼ βV2L2

κ24

�
1

ϵ3
−
3k
ϵ
þ e−kz

2
Hð2kz2H − 1Þ

z3H

þ
ffiffiffi
π

p ðB2 þ 4k2Þerfð ffiffiffi
k

p
zHÞ

2
ffiffiffi
k

p
�
; ð40Þ

where erfðzÞ is the error function, defined as erfðzÞ ¼
2ffiffi
π

p
R
z
0 e

−t2dt.

For the boundary action (34), we have

S0TotalBndy ¼ βV2L2

κ24

�
−

1

ϵ3
þ 3k

ϵ
þ 1

2z3H
þ B2zH

2

�
: ð41Þ

Thus, the free energy for the AdS4 black hole,
SBH ¼ S0 þ S0TotalBndy , in the soft wall model will be given by

SBH ¼ βV2L2

κ24

�
1

2z3H
þ e−kz

2
Hð2kz2H − 1Þ

z3H
þ B2zH

2

þ
ffiffiffi
π

p ðB2 þ 4k2Þerfð ffiffiffi
k

p
zHÞ

2
ffiffiffi
k

p þOðϵÞ
�
: ð42Þ

C. Soft wall free energy difference

Here, we are going to compute the soft wall free energy
difference ΔS. Taking into account the same argument
which led to β0 ¼ β

ffiffiffiffiffiffiffiffiffi
fðϵÞp ¼ β in the hard wall model, the

free energy difference, ΔS ¼ limϵ→0ðSBH − SThÞ, for the
soft wall model is given by

ΔS ¼ βV2L2

κ24

�
1

2z3H
þ e−kz

2
Hð2kz2H − 1Þ

z3H
þ B2zH

2

−
ffiffiffi
π

p ðB2 þ 4k2Þerfcð ffiffiffi
k

p
zHÞ

2
ffiffiffi
k

p
�
; ð43Þ

where erfc(z) is the complementary error function, defined
as erfcðzÞ ¼ 1 − erfðzÞ.

V. DECONFINEMENT PHASE TRANSITION

In this section, we study the deconfinement phase
transition of (2þ 1)-dimensional gauge theories in the
presence of a magnetic field for the hard and soft wall
models. This transition is a first order Hawking-Page phase
transition [28,47,48]. To do so, we use the results we have
found in the previous sections concerning the free energy
differences imposing that this difference vanishes.

A. Hard wall model

In this subsection, we study the behavior of the critical
temperature of deconfinement phase transition under an
applied magnetic in (2þ 1)-dimensional gauge theories for
the hard wall model. In addition, we show the behavior of
the critical horizon as a function of the applied mag-
netic field.
From the free energy difference for the hard wall model

(29) we have that

ΔSðzH;B;zmaxÞ¼
βV2L2

κ24

�
1

z3max
−

1

2z3H
þB2

�
3zH
2

− zmax

��
:

ð44Þ

One can note that for B ¼ 0, we obtain the three-
dimensional version of [47]

ΔSðzH; B ¼ 0; zmaxÞ ¼
βV2L2

κ24

�
1

z3max
−

1

2z3H

�
: ð45Þ

We study the deconfinement phase transition by requiring

ΔSðzH ¼ zHC
; B; zmaxÞ ¼ 0; ð46Þ

where zHC
is the critical horizon, fromwhichwe calculate the

critical temperature through the formula
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Tc ¼
jf0ðz ¼ zHC

Þj
4π

; ð47Þ

where fðzÞ is the horizon function given by (17).
In the absence of magnetic field, we find, from (46), the

following constraint equation for the critical horizon, zHC
,

1

z3max
−

1

2z3HC

¼ 0: ð48Þ

Thus, a phase transition occurs when z3max ¼ 2z3HC
which,

according to (47), gives the critical temperature

TcðB ¼ 0; zmaxÞ ¼
3

25=3πzmax
≈

0.3
zmax

; ð49Þ

which is the analogue of [47,49] in (2þ 1) dimensions.
Using the values of zmax obtained in the Appendix A we
find that the critical temperature, Tc, in units of the string
tension, is given by

TcðB ¼ 0Þffiffiffi
σ

p ¼
8<
:

0.45 SUð2Þ;
0.42 SUð3Þ;
0.39 SUðN → ∞Þ:

ð50Þ

Therefore, for B ¼ 0, one can clearly see that the critical
temperature of the deconfinement phase transition of
SUð2Þ and SUð3Þ gauge theories in (2þ 1) dimensions
is already close to the critical temperature of the large N
limit SUðN → ∞Þ gauge theory, in agreement with the
argument [23,24,50] that the physics of SUðNÞ gauge
theories are close to N ¼ ∞ for N ≥ 2.
For B ≠ 0, we have the following constraint equation for

the critical horizon

1

z3max
−

1

2z3HC

þ B2

�
3zHC

2
− zmax

�
¼ 0; ð51Þ

which can be solved numerically for zHC
≡ zHC

ðB; zmaxÞ.
The numerical result for zHC

as a function of the magnetic
field is shown in Fig. 1 for different values of zmax, each one
corresponding to a different gauge theory in (2þ 1)
dimensions. One can see that the critical horizon decreases
as we increase de magnetic field for the hard wall model. In
the next subsection, for the soft wall model, it will be
shown that zHC

as a function of the magnetic field has the
opposite behavior, it increases as we increase the magnetic
field up to a certain value and then it saturates for higher
magnetic fields.
Now, by using the black hole solution (17) and critical

temperature Tc given by (47), one finds Tc as a function of
magnetic field B:

TcðB; zmaxÞ ¼
1

4π

���� − 3

zHC
ðB; zmaxÞ

þ B2z3HC
ðB; zmaxÞ

����:
ð52Þ

The corresponding numerical result for TcðB; zmaxÞ is
shown in Fig. 2 for different values of the cutoff zmax.
One can note that our numerical results are consistent with
our analytical results (50) for Tcð0Þ. These numerical
results are the exact solutions in the sense that they
represent the behavior of the critical temperature as a
function of the magnetic field. Note that this happens for
any range of magnetic field. We chose this particular range
in Fig. 2 to enhance the two phenomena we have found in
this work. Concerning these two phenomena, one can see
from Fig. 2 that we have a phase in which the critical
temperature, TcðBÞ, decreases with increasing magnetic
field B, indicating an inverse magnetic catalysis (IMC).
This phenomenon has been observed in lattice QCD for
eB≲ 1 GeV2 [20] and more recently for eB ∼ 3 GeV2

[21]. Since then many holographic approaches have studied
this behavior in (3þ 1) dimensions in both deconfinement

zmax = 0.66

zmax = 0.72

zmax = 0.76

0 2 4 6 8 10 12

0.45

0.50

0.55

0.60

eB

z H
C

FIG. 1. Critical horizon, zHC
ðBÞ, as a function of the magnetic

field, B, for different values of the cutoff zmax, corresponding to
the SUð2Þ, SUð3Þ and SUðN → ∞Þ gauge theories in (2þ 1)
dimensions, respectively, from the hard wall model. Here, we
fixed the values of zmax using Neumann boundary conditions and
lattice data [50].

zmax 0.66
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zmax 0.76

0 2 4 6 8 10 12
0.0
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0.5

0.6
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FIG. 2. Critical temperature, TcðBÞ, as a function of the
magnetic field, B, for different values of the cutoff zmax,
corresponding to the SUð2Þ, SUð3Þ and SUðN → ∞Þ gauge
theories in (2þ 1) dimensions, respectively, from the hard wall
model. Here, we fixed the values of zmax using Neumann
boundary conditions and lattice data [50].
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and chiral phase transition contexts, see for instance
[15–18]. However, in many of these approaches just cited
the problem could only be solved perturbatively in B, while
in our results there is no restriction for the values or range of
the magnetic field. Furthermore, we also predict a phase in
which the critical temperature, TcðBÞ, increases with
increasing magnetic field B, indicating a magnetic catalysis
(MC). This behavior was not found in these previous works
cited above because, as was mentioned, the solution was
valid only in a small range of magnetic field. Of course,
these works tried to reproduce QCD in (3þ 1) dimensions,
which is much more difficult than these QCD-like theories
we are dealing with in one lower dimension.
The magnetic and inverse magnetic catalysis that we

have found here for the hard wall model are separated by a
critical magnetic field, Bc. Note that the values of Bc
depend on the gauge theory we are considering, which in
turn depend on the cutoff zmax. The values of the critical
magnetic field found in this model, in units of the string
tension squared, are the following

Bc

σ
¼

8>><
>>:

8.29 SUð2Þ;
6.97 SUð3Þ;
6.25 SUðN → ∞Þ:

ð53Þ

Finally, in Fig. 3, we show the plot of the normalized
critical temperature, Tc=Tc0 , as a function of B=Bc, where
Tc0 ≡ TcðB ¼ 0Þ and Bc is the critical magnetic field. Note
that the values of the critical magnetic field are given by
(53) for the SUðNÞ gauge theories in (2þ 1) dimensions
with N ¼ 2, 3, ∞ from the hard wall model.

B. Soft wall model

In this subsection, we study the behavior of the critical
temperature of deconfinement phase transition under an

applied magnetic in (2þ 1)-dimensional gauge theories
from the soft wall model. In addition, we also show the
behavior of the critical horizon as a function of the applied
magnetic field.
The free energy difference for the soft wall model, (43),

explicitly reads

ΔSðzH;B;zmaxÞ¼
βV2L2

κ24

�
1

2z3H
þe−kz

2
Hð2kz2H−1Þ

z3H
þB2zH

2

−
ffiffiffi
π

p ðB2þ4k2Þerfcð ffiffiffi
k

p
zHÞ

2
ffiffiffi
k

p
�
: ð54Þ

For B ¼ 0, the condition for a phase transition requires

1

z3HC

þ e−kz
2
HC ð4kz2HC

− 2Þ
z3HC

− 4
ffiffiffi
π

p
k3=2erfcð

ffiffiffi
k

p
zHC

Þ ¼ 0:

ð55Þ

Thus, numerically there is a phase transition whenffiffiffi
k

p
zHC

¼ 0.598671 which, after using (47), gives the
critical temperature

TcðB ¼ 0; kÞ ¼ 0.397887
ffiffiffi
k

p
; ð56Þ

consistent with the treatment presented in [47,49] for B ¼ 0
in one higher dimension. Now, using the values of k
obtained in the Appendix B we find that the critical
temperatures, Tcð0Þ, in units of the string tension, for
the SUð2Þ, SUð3Þ, and SUðN → ∞Þ gauge theories in
(2þ 1) dimensions, are given by

TcðB ¼ 0Þffiffiffi
σ

p ¼
8<
:

0.77 SUð2Þ;
0.71 SUð3Þ;
0.67 SUðN → ∞Þ:

ð57Þ

As happened for the hard wall model, the above results for
the SUð2Þ and SUð3Þ gauge theories in (2þ 1) dimensions
are close to N ¼ ∞, again in agreement with [23,50].
For B ≠ 0, we have the following constraint for the

critical horizon, zHC
,

�
1

2z3H
þ e−kz

2
Hð2kz2H − 1Þ

z3H
þ B2zH

2

−
ffiffiffi
π

p ðB2 þ 4k2Þerfcð ffiffiffi
k

p
zHÞ

2
ffiffiffi
k

p
�

¼ 0; ð58Þ

which can be solved numerically for zHC
. The numerical

result for zHC
as a function of the magnetic field is shown in

Fig. 4 for different values of k, each one corresponding a
different gauge theory in (2þ 1) dimensions. One can see,
in contrast with the hard wall model discussed in the
previous subsection, that the critical horizon, zHC

ðBÞ,
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0.0

0.5

1.0

1.5

2.0

B

Bc

T
c

T
c0

FIG. 3. Normalized critical temperature, Tc=Tc0 , as a function
of B=Bc for the hard wall model for the three values of the cutoff
zmax corresponding to SUð2Þ, SUð3Þ, and SUðN → ∞Þ. Note that
the three corresponding curves coincide.
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increases with increasing magnetic field up to a certain
point and then saturates for higher magnetic fields in the
soft wall model.
For the critical temperature as a function of the magnetic

field, TcðBÞ, the numerical result is shown in Fig. 5 for
different values of k. Here the numerical results are consistent
with our analytical results (57) for Tcð0Þ. As in the hard wall
model, these numerical results are the exact solutions in the
sense that they represent the behavior of the critical temper-
ature as a function of the magnetic field for any range of
magnetic field. As one can note in Fig. 5, we also obtained
the magnetic and inverse magnetic catalysis phases, sepa-
rated by a critical magnetic field, whose values are larger than
those obtained in the hard wall model. For the soft wall
model, the critical magnetic field depends on k, each one
corresponding to a different gauge theory on the boundary.
The values of the critical magnetic field found in this model,
in units of the string tension squared, are the following

Bc

σ
¼

8<
:

15.9 SUð2Þ;
13.6 SUð3Þ;
12.1 SUðN → ∞Þ:

ð59Þ

In Fig. 6, we show the plot of the normalized critical
temperature, Tc=Tc0 , as a function of B=Bc, where Tc0 ≡
TcðB ¼ 0Þ and Bc is the critical magnetic field. The values
of Bc are given by (59) for the SUðNÞ gauge theories in
(2þ 1) dimensions with N ¼ 2, 3,∞ from the holographic
soft wall model.
Finally, for comparison, we plot in Fig. 7 the normalized

critical temperature, Tc=Tc0 , as a function of B=Bc, for both
hard and soft wall models. From this figure, we can clearly
see that the predictions for the two models are very similar.

VI. CONCLUSION AND DISCUSSION

In this work, we studied the problem of the deconfine-
ment phase transition in the presence of an external
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k = 2.82

0 20 40 60 80 100
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0.36

0.38

eB

z H
C

FIG. 4. Critical horizon, zHC
ðBÞ, as a function of the magnetic

field, B, for different values of the dilaton constant k, corre-
sponding to the SUð2Þ, SUð3Þ and SUðN → ∞Þ gauge theories
in (2þ 1) dimensions, respectively, from the soft wall model.
Here, we fixed the values of k from lattice data [50].
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FIG. 5. Critical temperature, TcðBÞ, as a function of the
magnetic field, B, for different values of the dilaton constant
k, corresponding to the SUð2Þ, SUð3Þ and SUðN → ∞Þ gauge
theories in (2þ 1) dimensions, respectively, from the soft wall
model. Here, we fixed the values of k from lattice data [50].
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FIG. 6. Normalized critical temperature, Tc=Tc0 , as a function
of B=Bc, for the soft wall model with different values of k for the
gauge groups SUð2Þ, SUð3Þ, and SUðN → ∞Þ, as discussed in
Appendix B. Note that the three corresponding curves coincide.
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FIG. 7. The ratio of the critical temperatures as a function of the
ratio of the magnetic fields for the hard and soft wall models.
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magnetic field in SUðNÞ gauge theories in (2þ 1) dimen-
sions using two different holographic models. This work is
a more detailed version of [46]. This study was motivated
by recent lattice results indicating inverse magnetic cataly-
sis in the context of chiral phase transition [20]. Previous
studies include [4–14]. Since then, many different works
appeared dealing with IMC in both chiral and deconfine-
ment phase transitions within holographic models [15–18].
However, these works were valid only for a small range of
the magnetic field. Here we obtained the solution for any
magnetic field. Then, we were able to find the IMC andMC
phases separated by a critical magnetic field Bc in (2þ 1)
dimensions.
Since we have worked in (2þ 1) dimensions, physical

quantities such as the critical temperature, Tc, the magnetic
field, B, and the critical magnetic field, Bc, are not
measured in GeV or MeV. However, one might consider
gauge theories in lower-dimensional condensed matter
physics setup as effective field theories where one can
bring in physical units. Anyway, in place of the string
tension,

ffiffiffi
σ

p
, frequently used in lattice simulations

[23,24,50], the most natural physical unit we could have
used in this work is the gauge theory coupling constant, g2,
which has dimensions of mass in (2þ 1) dimensions.
Moreover, the fact that we are in (2þ 1) dimensions make
things easier also for lattice calculations, which are much
more accurate and the computational cost is much smaller
than in (3þ 1) dimensions [23]. Furthermore, since the
largeN limit is much simpler than the physically interesting
N ¼ 2, 3 theory (depending on whether we are in three or
four dimensions), it is a relevant problem to study the
physics in the large N approximation in order to get a better
understanding of the N ¼ 2, 3 theory in three, four
dimensions. In fact, we have seen that the critical temper-
ature Tc for the SUð2Þ gauge theory is already close to the
critical temperature for the SUðN → ∞Þ gauge theory, in
agreement with lattice results both in (2þ 1) and (3þ 1)
dimensions.
Recently, in [51], it was found that the IMC could be

explained by anisotropy (with no magnetic field) in (3þ 1)
dimensions. For large fields, they also found that there
might be a competing effect due to B yielding the MC.
Currently, we are investigating the chiral phase transition

and symmetry restoration in the presence of an external
magnetic field in (2þ 1) dimensions from holographic
models [52], inspired by many recent works in (3þ 1)
dimensions, including especially [17,53,54].

ACKNOWLEDGMENTS

We would like to thank Luiz F. Ferreira, Adriana Lizeth
Vela, Renato Critelli, Rômulo Rogeumont, and Marco
Moriconi for helpful discussions during the course of this
work. We also thank Elvis do Amaral for the help with
numerical solutions. We would also like to thank Michael
Teper, Juan F. Pedraza, Konstantin Klimenko, and Gergely

Endrodi for useful correspondence. The calculations were
done using the MATHEMATICA package diffgeo. D. M. R. is
supported by Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq), E. F. C. is partially
supported by PROPGPEC-Colégio Pedro II, and H. B.-F.
is partially supported by CNPq.

APPENDIX A: FIXING THE CUTOFF zmax IN
THE HARD WALL MODEL

In this appendix, we construct a holographic picture (in
four dimensions) for glueball spectra in three dimensions
based on the higher-dimensional version [36,40] in order to
fix the slice zmax in the AdS4 space. In [47], zmax was
associated with the lightest ρ meson mass. In this work, we
follow a similar method, but, as it will be clear in the end of
this construction, we will associate zmax with the lightest
glueball state in (2þ 1) dimensions with gauge groups
SUð2Þ, and SUð3Þ as well as the large N limit SUðN → ∞Þ
from the lattice [23,24,50].
First, let us consider the equation of motion for a scalar

field with mass M4 in AdS4�
z2∂z

1

z2
∂z þ ημν∂μ∂ν −

ðM4LÞ2
z2

�
Φðz; xμÞ ¼ 0; ðA1Þ

where ημν ¼ diagð−;þ;þÞ is the Minkowski metric in
(2þ 1) dimensions and L is the radius of AdS4. From the
AdS/CFT dictionary [30] we have, in dþ 1 dimensions,

ðMdþ1LÞ2 ¼ ΔðΔ − dÞ; ðA2Þ
where Δ is the conformal dimension, which can be written
as

Δ ¼ d
2
þ ν; ðA3Þ

where ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
4
þ ðMdþ1LÞ2

q
. Thus, in d ¼ 3 dimensions,

we have

ðM4LÞ2 ¼ ΔðΔ − 3Þ; ðA4Þ
with

Δ ¼ 3

2
þ ν; ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
þ ðM4LÞ2

r
: ðA5Þ

Using the AnsatzΦðz; xμÞ ¼ e−iPμxμϕðzÞ, where P2 ¼ −m2

with m being the mass of glueball states in three dimen-
sions, we can write (A1) as

z2ϕ00ðzÞ − 2zϕ0ðzÞ þ ððmzÞ2 − ðM4LÞ2ÞϕðzÞ ¼ 0: ðA6Þ
This is the Bessel equation and the solutions are given by

ϕðzÞ ¼ z3=2½c1Jνðmν;kzÞ þ c2Nνðmν;kzÞ�; ðA7Þ
where c1 and c2 are normalization constants, JνðzÞ and
NνðzÞ are the Bessel and Neumann functions, respectively.
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Since we are interested in regular solutions inside AdS4
space, we are going to disregard the Neumann solution
because it will act as a source for the field theory operator
on the boundary, according to Witten’s prescription [27]. In
this particular case, the physical solution for Φðz; xμÞ
becomes

Φν;kðz; xμÞ ¼ Cν;ke−iPμxμz3=2Jνðmν;kzÞ; ðA8Þ

where ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
þ ðM4LÞ2

q
, mν;k are the masses of glueball

states and k ¼ 2; 3;…, represents the radial excitations,
with k ¼ 1 being the ground state. Since we are going to
focus only on the ground state mass we will omit the index
k from now on.
Now we must impose boundary conditions at z ¼ zmax.

For Dirichlet boundary conditions,

Φðz ¼ zmax; xμÞ ¼ 0; ðA9Þ

we have

JνðmνzmaxÞ ¼ 0; ðA10Þ

and for Neumann boundary conditions,

∂zΦðz ¼ zmax; xμÞ ¼ 0; ðA11Þ

we have

2zmaxJν−1ðmνzmaxÞ þ ð3 − 2νÞJνðmνzmaxÞ ¼ 0 ðA12Þ

Following [35], we are going to associate ν with the spin
J of the glueball states. To see this consider the glueball
operator O ¼ F2, where F is the field strength. In three
dimensions, this operator has conformal dimension Δ ¼ 3.
Now consider the same operator O with J insertions of
covariant derivatives Dμ

OJ ¼ FDfμ1…DμJgF: ðA13Þ

In this case, the operator OJ has dimensions Δ ¼ 3þ J.
Therefore, the mass relation becomes

ðM4LÞ2 ¼ JðJ þ 3Þ: ðA14Þ

Using this relation in the equation for ν, we have

ν ¼ 1

2
ð3þ 2JÞ: ðA15Þ

So, for the scalar glueball case, J ¼ 0, we have from (A10)
and (A12), respectively,

J3=2ðm3=2zmaxÞ ¼ 0; ðDirichlet b:c:Þ ðA16Þ

J1=2ðm1=2zmaxÞ ¼ 0; ðNeumann b:c:Þ ðA17Þ

Therefore, the ground state mass for the scalar glueball is
given by the first zero of J3=2ðλÞ or J1=2ðλÞ, which are λ ¼
4.493 and λ ¼ 3.141, respectively. Thus, we have

m3=2 ¼
4.4934
zmax

; ðA18Þ

m1=2 ¼
3.141
zmax

: ðA19Þ

From a recent lattice result in (2þ 1) dimensions [50],
the mass of the lightest glueball state, 0þþ, in units of
string tension and in the continuum limit for the gauge
group SUð2Þ, SUð3Þ and the large N limit SUðN → ∞Þ, is
given by

m0þþffiffiffi
σ

p ¼
8<
:

4.7367 SUð2Þ;
4.3683 SUð3Þ;
4.116 SUðN → ∞Þ;

ðA20Þ

where
ffiffiffi
σ

p
is the string tension [23].

Therefore, using (A18) for Dirichlet boundary condi-
tions we can fix zmax as

zmax
ffiffiffi
σ

p ¼
8<
:

0.949 SUð2Þ;
1.03 SUð3Þ;
1.09 SUðN → ∞Þ;

ðA21Þ

and using (A19) for Neumann boundary conditions, we
have

zmax
ffiffiffi
σ

p ¼
8<
:

0.66 SUð2Þ;
0.72 SUð3Þ;
0.76 SUðN → ∞Þ;

ðA22Þ

which is, as expected, expressed in units of the inverse of
the string tension.

APPENDIX B: GLUEBALL SPECTRA IN d
DIMENSIONS AND k FIXING IN THE

SOFT WALL MODEL

In this appendix, we calculate holographically the glue-
ball spectra in d dimensions using the soft wall model in
(dþ 1) dimensions. In addition, we use this spectra to fix
the dilaton constant k in the four-dimensional soft wall
model from the glueball masses in (2þ 1) dimensions
obtained from lattice [50].
The soft wall action for a massive scalar field in AdSdþ1,

up to dimensional parameters, reads

S ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p
e−ΦðzÞ½gMN∂MG∂NGþM2

dþ1G
2�; ðB1Þ
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where ΦðzÞ ¼ kz2 is the dilaton field and G ¼ Gðz; xμÞ is a
scalar field with massMdþ1 in AdSdþ1. The corresponding
equations of motion coming from this action are given by

∂M½
ffiffiffiffiffiffi
−g

p
e−ΦðzÞgMN∂NG� −

ffiffiffiffiffiffi
−g

p
e−ΦðzÞM2

dþ1G ¼ 0: ðB2Þ

Using the Ansatz Gðz; xμÞ ¼ gðzÞe−iPμxμ with the metric
given by

ds2 ¼ L2

z2
ðdz2 þ ημνdxμdxνÞ; ðB3Þ

we obtain the following second-order differential equation
for gðzÞ

z2g00ðzÞ þ ð1 − d − 2kz2Þzg0ðzÞ
þ ðm2z2 − ðMdþ1LÞ2ÞgðzÞ ¼ 0: ðB4Þ

Up to some normalization constant and a global phase, the
solution for gðzÞ which is regular at z → 0 and z → ∞ is
given by

gðzÞ ¼ ð
ffiffiffi
k

p
zÞΔ1F1

�
−n;

�
Δ −

d
2
þ 1

�
; kz2

�
; ðB5Þ

where n is an integer, Δ ¼ d
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
4
þ ðMdþ1LÞ2

q
and

1F1ða; b; xÞ is the confluent hypergeometric function.
The mass spectra is given by

m2
n ¼

�
4nþ dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4ðMdþ1LÞ2

q �
k: ðB6Þ

This result is valid for k > 0. However, for k < 0, this result
still remains unchanged, but in this case we have to put the
absolute value of k. Therefore, we have for any k ≠ 0

m2
n ¼

�
4nþ dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4ðMdþ1LÞ2

q �
jkj: ðB7Þ

It is easy to see that for d ¼ 4 and M5 ¼ 0 one reproduces
the result m2

n ¼ ð4nþ 8Þk, which is the spectrum of scalar
glueballs in (3þ 1) dimensions found in [38]. The integer n
is the radial quantum number, with n ¼ 0 being the ground
state and n ¼ 1; 2… being the radial excitations.
In our particular case, for d ¼ 3 and M4 ¼ 0, we have

m2
n ¼ ð4nþ 6Þk: ðB8Þ

Using the masses (A20) for the lightest glueball in (2þ 1)
dimensions from the lattice [50] and setting n ¼ 0, we can
fix the dilaton constant k as

k
σ
¼

8<
:

3.74 SUð2Þ;
3.18 SUð3Þ;
2.82 SUðN → ∞Þ;

ðB9Þ

in units of the string tension squared.
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