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We construct a thermal dark matter model with annihilation mediated by a resonance to explain the
positron excess observed by PAMELA, Fermi-LAT and AMS-02, while satisfying constraints from cosmic
microwave background (CMB) measurements. The challenging requirement is that the resonance has twice
the dark matter mass to one part in a million. We achieve this by introducing an SUð3Þf dark flavor
symmetry that is spontaneously broken to SUð2Þf × Uð1Þf . The resonance is the heaviest state in the dark
matter flavor multiplet, and the required mass relation is protected by the vacuum structure and
supersymmetry from radiative corrections. The pseudo-Nambu-Goldstone bosons (PNGBs) from the
dark flavor symmetry breaking can be slightly lighter than one GeVand dominantly decay into two muons
just from kinematics, with subsequent decay into positrons. The PNGBs are produced in resonant dark
matter semiannihilation, where two dark matter particles annihilate into an anti–dark matter particle and a
PNGB. The dark matter mass in our model is constrained to be below around 1.9 TeV from fitting thermal
relic abundance, AMS-02 data and CMB constraints. The superpartners of Standard Model (SM) particles
can cascade decay into a light PNGB along with SM particles, yielding a correlated signal of this model at
colliders. One of the interesting signatures is a resonance of a SM Higgs boson plus two collimated muons,
which has superb discovery potential at LHC Run 2.
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I. INTRODUCTION

It is beyond doubt that the majority of matter in the
Universe is composed of dark matter, yet we still don’t
know how to describe the particle properties, if any, of dark
matter as we can with other particles in the Standard Model
(SM). The mechanism by which the abundance of observed
dark matter is generated is not known either, though
thermal freeze-out has long been regarded as the simplest
explanation of the dark matter relic abundance. For order-
one coupling strength between dark matter particles and
SM particles or other mediators, the dark matter mass is
anticipated to be around the TeV scale in freeze-out models.
These models furthermore generically predict additional
contributions to the cosmic ray spectra of electrons/
positrons, protons/antiprotons, photons and neutrinos, gen-
erated by dark matter annihilations in the present day.
Among the experimental searches for such cosmic rays,
known as indirect detection searches, AMS-02 has pro-
vided the most precise measurement of the electron and
positron energy spectrum up to 1 TeV [1]. Their

measurement of the positron fraction shows an excess
above the standard background estimation up to an energy
of 0.6 TeV [2,3]. This interesting excess has also been seen
in earlier experiments including HEAT [4], PAMELA [5],
Fermi-LAT [6].
On the one hand, the energy scale of the positron excess

matches the generic mass scale of thermal dark matter
models, which provides a strong hint that the positron
excess may be explained by thermal dark matter annihi-
lations. On the other hand, the preferred annihilation rate
from data, Oð10−23 cm3/sÞ, is 2 to 3 orders of magnitude
higher than the required rate, ∼3 × 10−26 cm3/s, of the
simple s-wave annihilation thermal dark matter models.
Additional complications are required in the dark matter
sector to explain why the dark matter annihilation rate is
higher in the present day Milky Way halo than during the
time of thermal freeze-out. One frequent approach to
accommodate both annihilation rates utilizes the so-called
“Sommerfeld enhancement,” whereby attractive long-range
interactions among the dark matter particles yield a 1/v
enhancement to the cross section for short-range annihila-
tion. Because the dark matter averaged velocity in
Milky Way is around 10−3, 2 orders of magnitude smaller
than that during thermal freeze-out, the large present day
annihilation rate preferred by data can be naturally
explained [7,8]. For this class of models, dark matter
annihilation rates during the recombination era, where
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v ≪ 10−3, are further enhanced and dump energetic elec-
trons and positrons into the plasma, which interact with the
CMB photons and lead to excluded distortions of the CMB
power spectrum (see Refs. [9,10] recent analysis for this
class of models and Refs. [11–14] and Planck constraints
[15] for general models). Up to the model-dependent
absorption efficiencies of electrons and positrons energy,
the constraint on the dark matter annihilation rate
is hσvi≲Oð10−24 cm3/sÞ.
Beforewemove to discuss other possible models, we first

study the schematic picture told by the experimental data in
Fig. 1. Because of the relations among three characteristic
velocities, vCMB < vAMS < vthermal and the large rate
required for the AMS-02 data, the underlying dark matter
annihilation rate hσvi has to have a peak structure around
vAMS. This observation is based on a simplified early
universe model for the dark matter relic abundance. More
possibilities are allowed within some nonstandard cosmo-
logical models. From the particle physics point of view, the
simplest explanation for the peak in Fig. 1 is to have the dark
matter annihilation mediated by a resonance, though other
possibilities exist [16]. If the resonance particle mass is very
close to twice of the dark matter mass, then the dark matter
may reach its peak annihilation rate around vAMS, yielding a
much larger rate for the dark matter annihilation in the
Milky Way halo.
Several studies of so-called “Breit-Wigner Enhancement”

[17–23] phenomenological models exist. Such models can
simultaneously fit to both theAMS-02 data and thermal relic
abundance. For somemodels considered in the literature (for
instance Ref. [19]), a light PNGB exists with a mass below
one GeV and mainly decay into two electrons and two
muons, which can satisfy gamma ray experimental con-
straints [24–26] from Fermi-LAT [27]. Although this class
of models seem to be in the right direction to provide a
thermal dark matter explanation for the data, it suffers its

own problem from the theoretical point of view. The biggest
issue with resonant annihilation is explaining why the
resonance mass MR is close to twice of the dark matter
mass MX at per million level: ðMR − 2MXÞ/ð2MXÞ∼
Oðv2AMSÞ ∼Oð10−6Þ.
One of the simplest ways to explain the small mass

splitting is to have the resonance be a bound state of two
dark matter particles. This scenario requires a long-range
force to provide the binding energy and also suffers the
additional 1/v Sommerfeld enhancement for the annihila-
tion rate at the CMB era. To solve this problem, one could
have two interacting dark matter states, X1 and X2, with the
mass splitting δM ∼ 1 MeV and only the long-range force
for the X2 state. Then, the lighter dark matter states X1 can
annihilate via exchanging an X2 bound state in the s-
channel. To have a natural model without fine-tuning the
parameter space, the gauge coupling, if mediated by Uð1Þ0
force, has to have the binding energy Oðα02MXÞ match to
the dark matter kinetic energy Oð1 MeVÞ, so α0 ∼ 10−3.
However, the additional gauge interaction for the X2 can
also shift its mass at loop level, with a contribution
Oðα0MXÞ ∼Oð1 GeVÞ, dramatically higher than the
required small mass splitting Oð1 MeVÞ. Another option
is a higher-dimensional model such as the Universal Extra
Dimension (UED) model [28] (as mentioned in Ref. [17]).
The second Kaluza-Klein (KK) mode has the mass close to
twice the first KK-mode mass. This seems to be an
interesting way to construct a UV model for resonant dark
matter. However, additional quantum corrections are antici-
pated to generate at least loop suppressed brane-localized
kinetic terms [29]. Taking those terms into account, if the
couplings in the dark sector are large, then the ratio of the
second KK-mode mass over the first KK-mode mass can be
close to two only at 10−3 level and still far from phenom-
enologically needed 10−6 level. Small couplings may be
possible from a low energy phenomenology perspective,
but the implementation of boundary conditions could
require some large couplings that would reintroduce
problematically large corrections to the mass spectrum.
It becomes a nontrivial model-building challenge to obtain
a natural model to realize resonant dark matter annihilation.
In this paper, we explore a new and natural way to realize

resonant dark matter annihilation based on the symmetry
breaking vacuum structure of non-Abelian global sym-
metry. As worked out a long time ago, the renormalizable
potential of a certain representation of SUðNÞ symmetry
has only a few discrete vacuum structures [30]. For
instance, one could have SUð3Þ → SUð2Þ ×Uð1Þ or
SUð3Þ → SUð2Þ, depending on the coupling relations in
the potential. Those symmetry breaking patterns are fairly
stable against radiative correction and higher-order dimen-
sional operator correction. The breaking pattern SUð3Þ →
SUð2Þ × Uð1Þ is achieved, for instance, when an SUð3Þ
octet scalar gets a vacuum expectation value (VEV). The
order parameter is hΦi ∝ diagð1; 1;−2Þ after a particular

FIG. 1. A schematic plot to show the required annihilation rates
for AMS-02 positron fraction data and dark matter thermal relic
abundance, as well as the constraints of the CMB power spectrum
from Planck. The dashed orange line is the possible behavior
from resonance-mediated annihilation, while the dotted black line
is a phenomenological fit to the data.
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choice of SUð3Þ basis. If this order parameter spurion
couples to dark matter fields in 3ð3̄Þ representation, the
ratio of the masses of the heavier dark matter state over the
lighter dark matter states is therefore two. In order to have
resonant annihilation, at least one of the dark sector states
should be a boson. Spin one dark matter would have
additional model building difficulties, so we are left with
scalar dark matter at the TeV scale. Additional symmetries
are needed to explain why such a scalar is light, as it has a
hierarchy problem analogous to that of the SM Higgs
boson. Supersymmetry (SUSY) remains a leading candi-
date to solve the hierarchy problem, so we construct a
“supersymmetric resonant dark matter” (SRDM) model,
based on the dark matter flavor symmetry breaking
of SUð3Þf/SUð2Þf ×Uð1Þf.
One interesting coincidence is that the symmetry break-

ing of SUð3Þf/SUð2Þf ×Uð1Þf also provides a PNGB
supermultiplet. The PNGB states could naturally have a
mass at scale dramatically below the dark matter mass
scale. If their mass is below around 1 GeV, the leading
decays into SM particles will likely be two muons or two
electrons, just from kinematics, which are functionally the
“best” dark matter annihilation channels [24–26]. The
SRDM model thus solves two problems at once, providing
further motivation for its structure.
The remainder of the paper is organized as follows. In

Sec. I, we explicitly write down the necessary super-
potential and soft terms for the dark matter states and
the interactions to break the global symmetry. We then
calculate the particle spectrum and decay rates in Sec. III. In
Sec. IV, we calculate the annihilation cross section for the
processes mediated by the resonance and the corresponding
dark matter relic abundance. We show the parameter space
to fit the AMS-02, Fermi-LAT gamma ray and CMB data in
Sec. V and show additional signals of the SRDM model in
Sec. VI. We conclude our paper in Sec. VII.

II. THE MODEL BASED ON SU(3)f /SU(2)f × U(1)f
SYMMETRY BREAKING

As is well known for nonsupersymmetric theories, certain
renormalizable potential of some representations of global
Lie group can only have some finite possible vacuum
symmetries. For SUð3Þf with an adjoint representationΦ≡
Φata with ta as the generators and a ¼ 1;…; 8, one possible
vacuum is hΦi ∝ diagð1; 1;−2Þ with the unbroken sym-
metry SUð2Þf × Uð1Þf. If the unbroken symmetry is nearly
exact in the low energy theory, the vacuum structure of Φ
should stay fairly stable and is not easily modified by
quantum correction or higher-dimensional operators. If this
symmetry-breaking spurion, Φ, couples linearly to other
matter fields that is fundamental under SUð3Þf, the SUð2Þf-
doublet field should have a mass half of the SUð2Þf-singlet
field, which is exactly the required condition to realize
resonant dark matter or Breit-Wigner features for dark

matter annihilations. In this section, we build the SRDM
model based on this simple observation in a supersymmetric
theory. The reason that we choose a supersymmetric model
is to extend the factor of two mass relation to particles with
different spins or different parities.
In the SRDM model, we have the spontaneously break-

ing global dark matter flavor symmetry to be SUð3Þf, under
which we have two superfields, X and X, as 3 and 3̄ and one
superfield Φ as 8. Based on the global symmetry, we have
following renormalization interactions in the superpotential

WSUð3Þ ¼ −yXiΦi
jX

j þ μΦTrðΦΦÞ þ λΦTrðΦΦΦÞ: ð1Þ

where i ¼ 1, 2, 3 are the indices of SUð3Þf. For simplicity,
we assume that all parameters are positive and this super-
potential conserves P and CP. Minimizing the potential,
one can have two degenerate supersymmetric minima for
hXi ¼ hXi ¼ 0 with hΦi ¼ 0 or hΦi ¼ 4μΦ/ð

ffiffiffi
3

p
λΦÞt8, up

to an arbitrary SUð3Þf transformation. In the symmetry
breaking vacuum, SUð3Þf breaks to its subgroup SUð2Þf ×
Uð1Þf with two massless complex superfields that are
doublets under SUð2Þf. If there are no additional inter-
actions in the superpotential or soft potential, one has
simple relations among the three dark matter states:
MX3

¼ 2MX1
¼ 2MX2

, which is simply from the symmetry
breaking pattern of dark flavor symmetry. Note that we
have neglected a few terms, such as XX. The additional
terms could be forbidden by a Z2 under which X and Φ are
charged, for example, which λΦ breaks by a small amount.
Furthermore, since this interaction would be in the super-
potential, it is not radiatively generated in the absence of
SUSY breaking effects.
Other than the SUð3Þf-conserving superpotential, we

also need to introduce an explicit SUð3Þf breaking super-
potential for three purposes: (a) introducing interactions
among the dark matter states; (b) providing masses for the
pseudo-Nambu-Goldstone bosons and fermions (PNGB/F)
of the coset space of SUð3Þf/SUð2Þf ×Uð1Þf; (c) intro-
ducing interactions of the dark matter sectors with the SM
sector. We introduce the following SUð3Þf breaking poten-
tial with the three terms fulfilling the three goals above,
respectively,

WSUð3Þ ⊃
λX
2
ðX1X1X3 þ X1X1X3Þ þ ϵ1μ

2
ΦΦ8

þ ϵ2
X
a

ΦaHuHd: ð2Þ

For the first term, one could also have interactions like
X2X2X3 or X1X2X3. Since we will have the lightest stable
dark matter state in X1, those interactions are not important
for dark matter phenomenology. We also note that there is a
Z3 symmetry for the two superpotentials in Eqs. (1) and
(2), under which Xi → ωXi, Xi → ω2Xi and Φ → Φ with
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ω ¼ ei2π/3. This Z3 symmetry is sufficient to protect the
dark matter states from decaying in the SRDM model. The
second term in the above superpotential can provide masses
for the PNGB/F. SUð3Þf freedom allows us to choose a
basis where this term goes asΦ8 andΦ3, though we neglect
the small correction due to a Φ3 term in what follows. This
pushes the vacuum into the Φ8 direction, whereas it was
previously arbitrary up to an SUð3Þf rotation. Here, the
dimensionless parameter, ϵ1 ≪ 1, will perturb the vacuum
expectation value (VEV) of Φ and introduce tiny mass
differences among different flavor components of XðXÞ.
For the last term in Eq. (2), the coefficient ϵ2 ≪ 1 is
introduced to mediate interactions of the dark sector to the
SM sector. This term has negligible effects on vacuum
structures and spectra of the SRDMmodel and will be only
responsible for the PNGB/F decays to SM particles.
As in the MSSM sector, various soft-mass terms could

exist for the dark matter sector. One necessary soft term is
needed to break the degeneracy of two vacua with hΦi ¼ 0
and hΦi ≠ 0. We choose this term to respect the SUð3Þf
global symmetry. The second soft term that we also need is
to break the degeneracy of the two dark matter states X1 and
X2 and potentially have X1 as the lightest dark matter state.
They are

Vsoft ⊃−bΦμ2ΦTrðΦ2ÞþH:c:þbXi
μ2ΦðXiX

†
i þXiX

†
i Þ: ð3Þ

The dimensionless parameters 0 < bΦ, bXi
≪ ϵ1 ≪ 1 and

will be determined later from our fit to the AMS-02
positron signal.
To the first order in both bΦ and ϵ1 and minimizing the

potential, we have hXi ¼ hXi ¼ 0 and

f ¼ hΦ8i ¼
4

ffiffiffi
3

p þ 4
ffiffiffi
3

p
bΦ þ 3λΦϵ1

3λΦ
μΦ: ð4Þ

It’s easy to check that VjΦ¼0−VjΦ¼f¼ð16bΦμ4ΦÞ/ð3λ2ΦÞ>0,
the symmetry-breaking vacuum with f ≠ 0 is the global
minimum of the potential. Knowing the vacuum structure of
the SRDMmodel,we first work out the particle spectrumand
properties, followed by the dark matter annihilation rate.

III. PARTICLE MASS SPECTRA AND DECAYS

For a small soft parameters, the mass spectrum in the
SRDM model is nearly supersymmetric. The tiny mass

splittings among different components could be crucial
for the dark matter phenomenology and also provide a
natural model for the dark matter annihilation mediated
by a resonance. The soft mass parameter modifies the
scalar particle masses, while the fermion masses only
change by the SUSY-breaking shift in f, so we first
discuss the fermion masses and then come back to scalar
masses.

A. Fermion mass spectrum

Under the remaining approximately global symmetry

SUð2Þf ×Uð1Þf, three components of X̃ðX̃Þ each separate
into a doublet and a singlet. In the basis we choose, the

doublets can be written as X̃D ¼ ðX̃1; X̃2ÞT and X̃D. The

two singlets are X̃3 ≡ X̃R and X̃3 ≡ X̃R. The Weyl fermions

X̃ and X̃ can be combined to form Dirac fermions. For the
fermion fields contained in the superfield Φ, there is an
SUð2Þf triplet field Φ̃T ¼ ðΦ̃1; Φ̃2; Φ̃3ÞT , two doublets as

Φ̃Dð ˜̄ΦDÞ ¼ ðΦ̃4 � iΦ̃5; Φ̃6 � iΦ̃7ÞT and a singlet Φ̃8.
The two Weyl fermion doublets combine to form Dirac
fermions, while the triplet and singlet are Majorana
fermions. In Table I, we show the mass square of various
fermions in leading orders of ϵ1 and bΦ, where one can see
that only the PNGF masses are suppressed by the small
coefficients ϵ1 and bΦ. All other fermion masses are
anticipated at the scale of f for Yukawa couplings of order
of unit. It also easy to check that the singlet fermion X̃R has
its mass to be twice of the doublet fermion X̃1;2, as one
anticipates.

B. Scalar mass spectrum

The scalar fields X and X separate into different parity
states. The mass eigenstates Xs and Xp as

Xs ¼
1ffiffiffi
2

p ðX þ X†Þ; Xp ¼ 1ffiffiffi
2

p ðX − X†Þ: ð5Þ

Under the unbroken Z3 symmetry, we simply have
Xs → ωXs and Xp → ωXp. The subscripts s and p here
indicate “scalar” and “pseudoscalar,” respectively. There
are both doublet and singlet scalars and pseudoscalars. We
show the mass spectrum in Table II at the leading order in
bΦ, bXi

and ϵ1.

TABLE I. The fermion mass spectrum in the SRDM model. Here, the parameter δm≡ ffiffiffi
3

p
bΦλΦf/8 ¼ bΦμΦ/2 and MX ≡

yf/ð2 ffiffiffi
3

p Þ − δm. We neglect some leading corrections in ϵ1 and bΦ to the Φ̃T and Φ̃8 masses that are unimportant to the remaining
discussion.

Fermions X̃1;2,
˜̄X1;2 X̃R,

˜̄XR Φ̃T Φ̃Dð ˜̄ΦDÞ Φ̃8

Mass MX þ δm 2MX þ 2δm 3
ffiffi
3

p
4
λΦf

4bΦþ
ffiffi
3

p
ϵ1λΦ

4
μΦ

ffiffi
3

p
4
λΦf
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FromTables I and II, it is easy to see that the stateX1
p is the

lightest dark matter state for all positive dimensionless
couplings and is the dark matter candidate in our model.
For our later phenomenological studies, we will have all
parameters δm, δm0, δm00 ¼ OðMeVÞ to be around the dark
matter kinetic energy. The two heaviest scalars, XR

s and XR
p ,

are just lightly heavier than twice of dark matter mass. We
will show that one of themwill be the relevant s-channel state
to mediate resonant annihilations of dark matter particles.
The scalar Φ soft potential contains terms like ΦΦ and

Φ†Φ†, which split the real and imaginary parts of the
original scalar fields in the supermultiplets. To leading
order in bΦ and ϵ1, we have the mass spectrum shown in
Table III. The light scalar fields are ΦD

s;p with their masses
suppressed by bΦ and ϵ1 at linear order.
Before we end this section, we briefly discuss the mass

scales in our model. The dark matter mass, MX will be
chosen to be Oð1 TeVÞ. The doublet X1;2ðX1;2Þ fermions
and scalars all have masses aroundMX. The singlet XRðXRÞ
fermions and scalars have masses around 2MX. The
fermions and scalars inΦ, excluding the Goldstone doublet
superfield, have masses of OðλΦ/yMXÞ and could be
dramatically heavier than the dark matter and decouple
from dark matter phenomenology. The PNGB masses will
be Oð500 MeVÞ to select muons as the leading decay
channel from kinematics. The mass splittings, related to
δm, δm0, δm00, among different XðXÞ states will be
Oð1 MeVÞ. Altogether, the small dimensionless parame-
ters in our model have magnitudes

δm ¼ 1

2
bΦμΦ ¼ 3

4
bΦ

λΦ
y
MX ∼ 1 MeV

⇒ bΦ ∼ 10−6 ×
y
λΦ

; ð6Þ

δm0ðδm00Þ ¼ 1

2
bX2

ðbX3
Þμ2Φ/MX ¼ 9

16
bΦ

λ2Φ
y2

MX ∼ 1 MeV

⇒ bX2
ðbX3

Þ ∼ 10−6 ×
y2

λ2Φ
; ð7Þ

MΦD
s;p
≈mΦ̃D

≈
3

ffiffiffi
3

p

8
ϵ1
λ2Φ
y
MX ∼0.5GeV⇒ ϵ1∼10−3×

y
λ2Φ

;

ð8Þ

which justifies our assumption of perturbative calculations
so far.

C. Interactions and heavier particle decay widths

We have demonstrated so far that the state X1
p is the

lightest stable states in our model. In principle, the super-
symmetric partner states of X1

p and other states in the
superfield of X2 could also be stable on a cosmological time
scale. Similarly, additional interactions are required to
mediate the decay of the other states of the PNGB super-
multiplet aside from ΦD

s . Because of the OðMeVÞ mass
splitting among some states and in order for not having too
much kinematic suppression factors, we introduce the
following “neutrino portal” to mediate the heavier state
decays. The relevant higher-dimensional operators in the
superpotential are

Wdecay ⊃
1

ΛX
½a11X1X1 þ a12X1X2 þ a22X2X2�LHu

þ 1

ΛΦ
ΦDΦ̄DLHu; ð9Þ

where we have ignored the flavor index for the SM leptons.
For the first term, we keep the different flavor couplings
independent for the moment, for reasons that we discuss in
detail below.
Based on the first operator in Eq. (9), other states in the

superfields X1 and X2 can either directly or in the cascade
way decay into X1

p. Assuming δm0 > δm, the allowed
decay channels are X1

s , X2
s , X2

p → X̃1ð2Þ and X̃1ð2Þ → X1
p.

Their decay widths are calculated as

Γ½Xi
sðpÞ → X̃j þ νL� ¼ Γ½Xi

sðpÞ → X̃j þ νL�

¼
a2ijv

2
u½MXi

sðpÞ
−mX̃j �2

16πMXΛ2
X

; ð10Þ

ΓðX̃i → Xj
p þ νLÞ ¼ ΓðX̃i → Xj

p þ νLÞ

¼
a2ijv

2
uðmX̃i −MXj

p
Þ2

32πMXΛ2
X

; ð11Þ

where i, j ¼ 1, 2, vu/
ffiffiffi
2

p ¼ hH0
ui. For a reasonably low

cutoff scale, all heavier dark matter states decay fast to be
treated as unstable particles for both dark matter thermal
and indirect signal calculations. For instance, choosing
MX ¼ 1 TeV, ΛX ¼ 1000 TeV, vu ∼ 246 GeV, aij ¼ 1

and a mass splitting of 1 MeV, the lifetime of these states
are evaluated to beOð10−6sÞ. We also note that both decays

TABLE II. Mass spectrum of X and X̄ scalars. Here,
XR
s;p ≡ X3

s;p; δm0 ≡ 1
2
bX2

μ2Φ/MX and δm00 ≡ 1
4
bX3

μ2Φ/MX with
bX1

¼ 0.

Scalars X1
p X1

s XR
s

X2
p X2

s XR
p

Mass MX MX þ 2δm 2MX þ δmþ δm00
MX þ δm0 MX þ 2δmþ δm0 2MX þ 3δmþ δm00

TABLE III. Mass spectrum of Φ scalars.

Scalars ΦT
s , ΦT

p ΦD
s;p ¼ 1ffiffi

2
p ðΦD � Φ̄D†Þ Φ8

s , Φ8
p

Mass mΦ̃T ∓ δm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mΦ̃DðmΦ̃D ∓ 2δmÞp

mΦ̃8 � δm
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into neutrinos and antineutrinos can happen here because of
the lepton-number violating interactions in our model.
For the real scalar of the PNGB,ΦD

s , it’s mixing with the
CP-even Higgs in the MSSM can be derived from the two
interaction terms, ϵ2ΦDHuHd and μHuHd, in the super-
potential. The mixing angle is at the order of ϵ2vuμ/M2

h. For
the mass range between the muon and kaon thresholds,
2mμ < MΦD

s
< 2MK, the leading decay channel is

ΓðΦD
s → μþ μ̄Þ ¼ ϵ22μ

2m2
μ

4πM4
h

MΦD
s

�
1 −

4m2
μ

M2
ΦD

s

�
3/2

∼ 1.8 × 10−16 GeV; ð12Þ

for μ ∼ 1 TeV, ϵ2 ∼ 10−4, and MΦD
s
∼ 0.5 GeV. The cor-

responding lifetime of this PNGB is around 10−11 s. The
superpartner states of ΦD

s can have decays mediated by the
second operator in Eq. (9) and have prompt decay widths
for a not-too-high cutoff scale, ΛΦ. The main decay of the
PNGF is Φ̃D → ΦD

s þ νLðνLÞ with its formula given by

Γ½Φ̃D → ΦD
s þ νLðνLÞ� ¼

v2uðmΦ̃D −MΦD
s
Þ2

32πMΦD
s
Λ2
Φ

: ð13Þ

The decay of ΦD
p is ΦD

p → Φ̃D þ νLðνLÞ with its decay
width calculated as

Γ½ΦD
p → Φ̃D þ νLðνLÞ� ¼

v2uðMΦD
p
−mΦ̃DÞ2

16πMΦD
s
Λ2
Φ

: ð14Þ

Both of them have a lifetime of 10−9 s for a mass splitting
of order MeV, MΦD

s
GeV and ΛΦ ∼ 1000 TeV.

Having discussed the decays of lighter dark matter states,
we now turn to the properties of the heavy dark matter state,
X3 ≡ XR, which will play the role of the resonance in our
model. The decays of the XR singlet states can be related in
the Breit-Wigner formalism to annihilation cross section of
the X1

p dark matter state. From the kinematics and parity
conservation, the only possible mass-on-shell state to
mediate resonant annihilation of dark matter states is the
XR
s scalar, so we pay special attention to this particle. Its

decay width into the two dark matter states is

ΓðXR
s → X1

p þ X1
pÞ ≈

λ2XM
2
X

8π
ffiffiffi
s

p vrel; ð15Þ

with the vrel ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

X/s
p

(s ¼ M2
XR
s
for an on-shell

resonance) or twice of the velocity of the particle in the final
state. Another decay channel, XR

s → X̃D þ X̃D, is at higher
order of vrel and given by

ΓðXR
s → X̃D þ X̃DÞ ¼ 1

64π
λ2X

ffiffiffi
s

p
v03rel; ð16Þ

with v0rel ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

X̃D
/s

q
and suppressed. From an

explicit calculation, one can show that there is no cubic
interaction among XR

s and two X1
s scalars. Finally, there are

also decays into PNGBs and PNGF’s, their decay branch-
ing widths are

ΓðXR
s →X1

s þΦD
s Þ¼ΓðXR

s →X2
s þΦD

s Þ¼
3

512π
y2MX;

ð17Þ

ΓðXR
s → X1

p þΦD
pÞ ¼ ΓðXR

s → X2
p þΦD

pÞ ¼
27

512π
y2MX;

ð18Þ

ΓðXR
s → X̃1 þ Φ̃DÞ ¼ ΓðXR

s → X̃2 þ Φ̃DÞ ¼ 9

256π
y2MX:

ð19Þ

It is understood that only one component of the ΦD state
enters the final state because of the SUð2Þf symmetry for
this decaying interaction.

IV. RESONANT ANNIHILATIONS

In our model, the leading annihilation channels for dark
matter at the current universe are dominated by the one
mediated by an on-shell resonance. Specifically, we have
the semiannihilation processes of

X1
p þ X1

p → XR†
s → X1;2†

p þΦD†
p ; X1;2†

s þΦD†
s ; X̃1;2 þ ˜̄ΦD:

ð20Þ

All the other states in X1 and X2 will decay into X1
p. The

states, ΦD
p and Φ̃D, decay to ΦD

s , which decays to two
muons in the SM. So, from the cosmic ray positron signal
point of view, we can sum all the annihilation channels and
group them together as the outgoing Breit-Wigner width.
Using the standard nonrelativistic Breit-Wigner for-

mula [31], the dark matter annihilation cross section

X1
pX1

p → XR†
s → ðX1;2†; X̃1;2Þ þ ðΦD†; ˜̄ΦDÞ is given by

σX1
pX1

p
ð ffiffiffi

s
p Þ ¼ 2

ð2J þ 1Þ
ð2s1 þ 1Þð2s2 þ 1Þ

4π

kkin

×

�
Γ2/4

ð ffiffiffi
s

p
−MXR

s
Þ2 þ Γ2/4

�
BinBout: ð21Þ

Here, the J ¼ 0 is the resonance spin; s1 ¼ s2 ¼ 0 are the
dark matter spin; k ¼ MXvrel/2 is the center-of-mass
momentum in the initial state with vrel as the relative speed
of the two dark matter particles; kin ≈MX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

X/s
p

¼
MXvrel/2; the center-of-mass energy s ≈ 4M2

X þM2
Xv

2
rel;

the resonance mass is MXR
s
¼ 2MX þ δmþ δm00. We
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include an overall factor of two in Breit-Wigner formula to
account for the fact that the initial state is made up of
identical particles [32]. The total width of the resonance as
a function of s is

ΓðXR
s Þ ¼

1

16π
λ2XMXvrel þ

3

16π
y2MX: ð22Þ

Introducing the resonance velocity, vR ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

XR
s
/M2

X − 4
q

≈

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðδmþ δm00Þ/MX

p
, we have the effective annihilation rate

ðσvrelÞeff ¼
1

2
σX1

pX1
p
ð ffiffiffi

s
p Þ

¼ 3y2λ2X
4πM2

X½ðv2rel − v2RÞ2 þ 1
64π2

ð3y2 þ λ2XvrelÞ2�
;

ð23Þ

where the factor of 1/2 for the first equality comes from the
fact that our dark matter field is a complex scalar instead of
a real scalar.
In the narrow width approximation, the term inside

the square bracket of Eq. (21) can be replaced by
πΓ
2
δð ffiffiffi

s
p

−MXR
s
Þ. The annihilation rate takes the form of

ðσvrelÞeff ¼ 2
8π

M2
Xvrel

πΓ
2
BinBoutδð

ffiffiffi
s

p
−MXR

s
Þ

¼ 2
8π

M2
Xvrel

πΓ
2
BinBout

2

MXvrel
δðvrel − vRÞ: ð24Þ

Substituting the widths and branching ratios into Eq. (24),
we have the annihilation rate to be

ðσvrelÞeff ¼
3πλ2Xy

2

vrelð3y2 þ λ2XvrelÞM2
X
δðvrel − vRÞ: ð25Þ

A. Annihilation rates in our Galactic halo
and the CMB era

Assuming the normalized and isotropic dark matter
velocity distribution is

fðvÞ ¼ 4π

ðπv20Þ3/2
e−v

2/v20 ; ð26Þ

such that
R
∞
0 fðvÞv2dv ¼ 1. Here, v0 ≈ 220 km/s for the

Standard Halo model [33]. We ignore the distortions due to
the escape velocity and will have the resonance velocity be
close to v0. In terms of the two dark matter relative velocity,
the normalized distribution is

fðvrelÞ ¼
4π

ð2πv20Þ3/2
e−v

2
rel/2v

2
0 : ð27Þ

Using the delta function approximation, the averaged dark
matter annihilation rate is

hðσvrelÞeffi≡
Z

dvrelv2relðσvrelÞefffðvrelÞ

¼ 3πλ2Xy
2vR

ð3y2 þ λ2XvRÞM2
X

4π

ð2πv20Þ3/2
e−v

2
R/2v

2
0 ; ð28Þ

which provides a good approximation for the narrow-
width case.
In Fig. 3, we show the averaged annihilation rate as a

function of v0 for fixed model parameters. For a benchmark
model point with MX ¼ 1.7 TeV, vR ¼ 2.75 × 10−3, λX ¼
0.027 and y ¼ 1 × 10−3, we have the prediction of
hσvreliAMS

eff ¼ 7.9 × 10−23 cm3/s. For a small value of
v0 ≪ 10−4, relevant for the CMB era, the predicted anni-
hilation rate is hσvreliCMB

eff ¼ 1.2 × 10−23 cm3/s, around a
factor of seven smaller than the prediction for AMS-02. One
can see that the resonant dark matter could provide a
sufficiently large rate for AMS-02 and at the same time
satisfy the constraints from CMB. To understand better of
this good feature of resonance effect, we can set vrel ¼ 0 in
Eq. (23) and have the averaged annihilation rate at the CMB
era to be

hσvreliCMB
eff ≈

3y2λ2X
4πM2

Xv
4
R
; ð29Þ

and the ratio of the two annihilation rates as

hσvreliCMB
eff

hσvreliAMS
eff

¼ ð3y2 þ λ2XvRÞ
4π2v5R

ð2πv20Þ3/2
4π

ev
2
R/2v

2
0 : ð30Þ

For vR ∼ v0, one can have a suppressed annihilation rate
during the CMB era only when y≲ vR and λX ≲ v1/2R .

B. Dark matter thermal relic abundance
and kinetic decoupling

In order to determine the thermal relic abundance, we
first note that resonant models are known to have the
potential for early kinetic decoupling [21,23,34]. The
completion of the process of thermal and kinetic freeze-
out is slow, due to the increasing resonant enhancement of
the semiannihilation cross section. For kinetic decoupling
in our semiannihilation case, this behavior is exaggerated
by the large energy of the final state dark matter, which is
produced with a momentum of order 3MX/4. If the semi-
annihilation process dominates the evolution of the dark
matter energy too early or if the dark matter fails to
maintain kinetic equilibrium even with itself, then the dark
matter could end up going through the resonance in
semiannihilation too late, leading to phenomenological
issues such as an overproduction of dark matter or a large
cross section around the time of recombination that is ruled
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out by CMB data. In order to satisfy these phenomeno-
logical constraints, we consider parameter space for the
SRDM model that has a schematic cosmological evolution
as follows:

(i) Darkmatter loses chemical equilibrium and ceases to
follow a Boltzmann suppressed number density. The
dark matter continues to deplete due to an enhanced
semiannihilation cross section approaching the res-
onance. It maintains kinetic equilibrium dominantly
via resonantly enhanced elastic scattering off neu-
trinos, effectively via the a12 term in Eq. (9). The
diagram for elastic scattering is shown in Fig. 4.

(ii) As the dark matter and SM bath temperature goes
through the resonance at T ∼ 1 MeV in both the
semiannihilation and neutrino scattering processes,
these processes become significantly less efficient.
The abundance of dark matter per comoving volume
freezes out to nearly its present day value. There is a
large initial energy dump into the dark matter at
x≳ 1/δ, as kinetic equilibrium is lost and the semi-
annihilation process comes to dominate the kinetic
evolution of the dark sector. After this energy dump,
the dark sector cools slowly as it redshifts. There are
two possibilities for the dark matter evolution at this
point. If a new mediator is introduced that couples
only to the dark matter, then the dark matter may
thermalize among itself. Otherwise, the quasi-rela-
tivistic dark matter produced in residual semianni-
hilation comes to dominate and has only a small
annihilation rate. The choice between the two
possibilities has little relevance for indirect detec-
tion, CMB constraints or the relic abundance of dark
matter, but may have other interesting cosmological
consequences as the dark sector gains a large amount
of extra energy from the residual semiannihilation
events.

(iii) As the dark matter slowly cools in either way, it
eventually crosses through the semiannihilation
resonance pole once more, then decouples and cools
rapidly compared to the SM sector, with only a small
residual semiannihilation rate.

In the remainder of this subsection, we study each of these
pieces in turn.
The process of chemical decoupling is governed by the

Boltzmann equation for the number density, n, of X1
p. It is

convenient to define the quantity “yield”, Y ≡ n/s with the
entropy s ¼ 2π2g�T3/45. Then, the resulting Boltzmann
equation for Y due to the resonant semiannihilation process
[35–37] is

dY
dx

¼ −
1

2

s
xH

Yðhσvrelieff;xDMY − hσvrelieff;xYeqÞ; ð31Þ

where for future convenience we define x ¼ MX/T with T
as the SM particle temperature and xDM ¼ MX/TX for the

dark matter temperature could be different from x after the
dark matter sector kinetically decouples from the SM
sector. We include a factor of 1/2 that arises due to having
identical particles in the initial state phase space integra-
tion. The number density is the summation of dark matter
and antidark matter number densities. In the radiation
dominated era, H ¼ ð8πρ/3M2

plÞ1/2, t ¼ 1/ð2HÞ, ρðTÞ ¼
g�π2T4/30 and neqðTÞ ¼ gðMXT/2πÞ3/2e−MX /T , where we
will choose g� ¼ 10.75 because of the freeze-out temper-
ature at a few MeVand g ¼ 2 for the dark matter degrees of
freedom. Yeq ≡ neq/s is the kinetic and chemical equilib-
rium of Y. The final dark matter relic abundance has
ΩDM ¼ MXn/ρc ¼ MXs0Yð∞Þ/ρc with the critical density
ρc ¼ 3H0M2

pl/8π ¼ 1.0539 × 10−5h2 GeV cm−3 and s0 ¼
2889.2 cm−3 as the entropy today. From the Planck
collaboration, the measured dark matter energy density
has ΩDMh2 ¼ 0.1199� 0.0022 [15].
For the dark matter thermal averaged annihilation rate

and in terms of the parameter xDM, we have

hσvvelieff;xDM ¼
x3/2DM

2π1/2

Z
∞

0

dvrelv2rele
−v2relxDM/4ðσvvelÞeff : ð32Þ

To understand the behavior during the different periods of
the extended freeze-out process, we use the general para-
metrization for the resonance annihilation (see Appendix A
for details),

ðσvrelÞeff ¼ σ0
δ2 þ γ2

ðδ − v2rel/4Þ2 þ γ2
; ð33Þ

with the resonance speed vR ¼ 2
ffiffiffi
δ

p
and the parameter γ

related to the resonance width. During earlier times with
x ≪ 1/δ, the resonance annihilation cross section is grow-
ing with xDM and is given to very good approximation by

hσvrelieff;xDM ¼ σ0
2

ffiffiffi
π

p
x3/2DMδ

5/2

γ
: ð34Þ

When the resonant semiannihilation process is efficient, the
dark matter follows its equilibrium distribution as usual,
with Y ¼ Yeq. The chemical equilibrium is lost when
hσvrelieffneq ≲H as in the usual s-wave or p-wave anni-
hilation cases, and with the chemical decoupling xcd ∼ 20
as usual.
After chemical decoupling, since the cross section grows

as the temperature approaches the resonant temperature at
xDM → 1/δ, the dark matter number density continues to
decrease as a power law, instead of rapidly freezing out to a
plateau as in the standard freeze-out calculation. At this
point, Yeq ≪ Y and can be neglected, so that the differential
equation in Eq. (31) can be solved easily and provides a
power-law behavior for Y before freeze-out at xfo
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Y ∝ x−1/2; for xcd < x < xfo: ð35Þ

We have assumed at this point that kinetic equilibrium is
maintained between dark matter and the SM sector. This is
a nontrivial assumption and we consider this further now.
At temperatures below the weak scale, there are two
processes that could potentially maintain kinetic equilib-
rium: scattering off the relativistic ΦD states via quartic
interactions as well as via t-channelΦ3 andΦ8 exchange or
scattering off neutrinos via the first operator in Eq. (9). The
first of these possibilities necessarily is lost at x ∼MX/MΦD

as the ΦD become nonrelativistic and rapidly decay away.
We therefore consider parameter space where the second
possibility is large. It in fact receives a resonant enhance-
ment as well, as is clear from the structure of dominant
diagram in Fig. 4. We consider only the dark matter flavor-
changing superpotential operators X1X2LHu to be signifi-
cant. If the dark matter flavor-conserving operators have
large coefficients, then they contribute to the neutrino
Majorana mass at an unacceptably large level. Kinetic
equilibrium is maintained until x ∼ 1/δ for ΛX/a12 ∼ vEW,
the Higgs VEV. The operator should be UV completed at
the TeV scale, though we do not study such a completion
further in this work. To study the process of kinetic
decoupling and freeze-out, we follow Refs. [38,39] and
define a normalized measure of the dark matter temperature

y≡MXTDM

s2/3
≡ 4g

Ys5/3

Z
d3p
ð2πÞ3 p

2fXðpÞ; ð36Þ

where fX is the phase space distribution of dark matter. The
variable y is defined such that after kinetic freeze-out, y →
constant and in kinetic equilibrium y ∝ x−1 up to changes
in the composition of the SM relativistic fluid. The
evolution of y is governed by a higher moment of the
Boltzmann equation and is given in this era by [38]

dy
dx

¼ −
1

Hx
2MXcðTÞðy − yEQÞ; ð37Þ

with cðTÞ defined and calculated in Appendix B. We will
choose the relevant model parameters in cðTÞ to keep dark
matter kinetically coupled to SM before its chemical freeze-
out. For the purposes of determining the relic abundance
this is equivalent to the choice of kinetic decoupling
temperature as xkd ¼ ∞.
At x≳ 1/δ, the abundance of dark matter per comoving

volume freezes out. At this point, kinetic equilibrium with
the SM sector is lost as well. Since the abundance of dark
matter is already frozen, this will turn out to not have a large
effect on the phenomenology relevant to this work, pro-
vided that dark matter is sufficiently cold by the time the
SM goes through recombination, which is the case regard-
less of the kinetic decoupling phenomenology. We there-
fore only briefly describe a couple of possibilities here and

present some in more details in Appendix B. If there is
insufficient interaction within the dark sector, then the
dominant dark matter population will be produced with an
energy very close to 3MX/4 as predicted from semianni-
hilation with an initial state at rest. As the universe expands,
this initial energy redshifts. Even if there is sufficient
interaction among dark matter particles, the energy dumped
into the dark matter fluid due to residual semiannihilations
is significant. In either case, the dark sector does eventually
cool back to a point where very few particles have a
velocity above the resonant velocity, at which point the
semiannihilation process shuts off and the dark matter
quickly redshifts to a very cold distribution. At this point,
the averaged dark matter semiannihilation goes to its zero
velocity level. All of this happens before recombination in
the SM sector, so it does not have any bearing on the CMB
bound as derived above.
In Fig. 5, we show the behavior of the yield function in

terms of the temperature parameter x. We show the results
from solving the full coupled differential equations of
Eqs. (31), (37) and (B9) in the red curve and from the
approximate approach in the blue curve. The good over-
lapping between those two curves justify our understanding
that the kinetic decoupling in our model happens after the
chemical freeze-out. Furthermore, the final freeze-out
temperature is around 1 MeV and larger than the one
without considering kinetic decoupling. We also note that
the temperature of dark matter has a nontrivial evolution
even after the chemical freeze-out. Since this is not
important for the main purpose of our current paper, we
show its behavior in Fig. 11 of Appendix B.
In Appendix A, we have used a general parametrization

for the resonance annihilation in Eq. (33) and found a
simple relation of parameters to fit the thermal relic
abundance

γ

σ0δ
2
¼ 1.35 × 1010 GeV2: ð38Þ

Applying that to our model, the condition to satisfy the
thermal dark matter relic abundance is approximately

M2
X
3y2 þ λ2XvR

y2λ2X
≈ 2.0 × 1010 GeV2; ð39Þ

Though in later sections the ðy; λXÞ value we use to
satisfy the dark matter thermal relic abundance is obtained
by parameter space scanning, we would still point out that
the result from Eq. (39) matches very well to the
exact value.

V. FIT TO AMS-02 DATA AND CONSTRAINTS

In the SRDM model, there is thus a nontrivial interplay
between various constraints and the fit to the cosmic
positron excess. Annihilation just after recombination must
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be sufficiently small to not generate CMB distortions,
annihilation during freeze-out must be large enough to not
overproduce dark matter, and annihilation in the
Milky Way today must have the correct rate to generate
the observed cosmic ray spectrum, while not producing too
many gamma rays. In this section, we determine model
parameters that provide a good fit to the observed positron
excess. We then turn to the remaining constraints on the
model from cosmic gamma ray observations and CMB
spectrum measurements.

A. Fitting the positron excess

The primary motivation for the models considered in this
work are as explanation for the excess in the cosmic ray
positron flux above a few GeV, as seen at PAMELA [5],
Fermi-LAT [6], and AMS-02 [2]. Dark matter annihilations
have been considered as a potential explanation for the
excess in the past. Annihilations into quarks, gluons or
electroweak gauge bosons can provide a good fit to the

positron data alone, but there are additional stringent
constraints from gamma ray searches at VERITAS [40],
Fermi-LAT [27], MAGIC [41], and H.E.S.S. [42] that rule
out these possibilities by orders of magnitude [24]. Direct
annihilations into electron pairs do not provide a good fit to
the data [24], while direct annihilations into μ and τ pairs
provide good fits, but are also highly constrained by the
same gamma ray searches. The remaining possibility
considered in the literature that can have a sufficiently
large cross section, while providing a reasonable fit to the
data, is annihilation into two light particles that each decay
to a pair of leptons, generally referred to as ϕϕ → 4l
models [24–26] with l ¼ e, μ. Such models additionally
have relatively weak constraints from annihilated products
distorting the CMB spectrum [43], though the constraints
are still significant and we revisit them below. The models
considered here effectively behave like ϕϕ → 4l bench-
mark models for sufficiently light PNGBs ΦD

s (see the
annihilation Feynman diagram in Fig. 2), up to a remapping
of the parameter space that we discuss below. If the mass of
the PNGB is above 2mK , then significant hadronic modes
open up generate conflicts with the data outlined above, so
we consider ΦD

s masses below 2mK ∼ 1 GeV and the

FIG. 2. A representative Feynman diagram for the semianni-
hilation of dark matter mediated by a resonance. An unbroken Z3

is responsible for the stability of dark matter. The muon energies
can be up to the dark matter mass, while the neutrino energies are
OðMeVÞ, determined by the mass difference of different dark
matter states.

5

FIG. 3. Averaged annihilation rate as a function of the averaged
dark matter velocity v0. For the dark matter velocity in our galaxy
halo with v0 ≈ 7.3 × 10−4, the averaged annihilation rate is 5 ×
10−23 cm3/s for the benchmark point with y ¼ 1 × 10−3, while it
is 1.2 × 10−23 cm3/s for a small velocity at the CMB era.

FIG. 4. Feynman diagrams for the dark matter elastically scatter
off neutrinos via a resonance in the s-channel.

FIG. 5. The dark matter yield as a function of the temperature
parameter x for a benchmark point. The red line is the result from
solving the full coupled Eqs. (31), (37) and (B9), while the blue
line is using xDM ¼ x and only solving Eq. (31), assuming xkd ¼
∞ as phenomenologically justified in the text. This benchmark
point has ΩXh2 ≈ 0.12.
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dominant decay into μþμ−, which subsequently decay into
eþe− to increase the positron fraction. For our benchmark
point, we will choose MΦD

s
¼ 0.5 GeV.

In order to fit the AMS-02 data, we calculate the
contribution of our model to the positron and electron
fluxes. Noting that the energy of a ΦD

s particle produced in
the annihilation channel studied in the model above is

EΦD
s
¼ 3MX

4
: ð40Þ

from neglecting the tinyΦD
s particle mass and the small dark

matter kinetic energy. This is different from the ordinary
annihilation case with EΦD

s
¼ MX in Refs. [24–26].

We can then successively determine the spectrum of
positrons from their parent chain as for example in
Ref. [44]. The spectrum of positrons produced at the time
and location of DM annihilation is given by

dN
dE

¼ 4

3MX

Z
1

4E
3MX

dxϕ
xϕ

Z
1

xϕ

dxμ
xμ

dN
dxμ

; ð41Þ

where xϕ ¼ 2EΦD
s rest

e /MΦD
, xμ ¼ 2Eμ rest

e /mμ, and dN/dxμ is
the spectrum of positrons produced in a muon decay in the
muon rest frame. By EP rest

e , we mean the energy of the
positron in the rest frame of P. This last spectrum can be
calculated from the four-Fermi interaction for muon decay
and is given by

dN
dxμ

¼ 2x2μð3 − 2xμÞ; ð42Þ

such that the resulting positron spectrum in the dark matter
rest frame is given by

dN
dE

¼ 2

27MX
ð−8x3 þ 27x2 − 30 log x − 19Þ; ð43Þ

with x ¼ 4E/3MX as the fraction of electron energy over its
maximum energy.
The spectrum at annihilation is related to the spectrum

observed at detectors at or near the Earth by propagation
through the galactic medium. For this work, we calculate
the spectrum using the PPPC4DMID package [45]. In their
formalism, the flux of positrons at Earth is given by

dΦ
dE

¼ ve
4πbðEÞ

1

2

�
ρ⊙
MX

�
2
Z

3MX /4

E
dE0hσvieff

dN
dE0 IðE;E0Þ;

ð44Þ

where ve ≈ c is the electron velocity, ρ⊙ ¼ 0.3 GeV/cm3 is
the local dark matter energy density. bðEÞ is the energy loss
function of electron and positron at the location of the Earth
and IðE; E0Þ is the generalized halo function at the Earth.

The energy loss function bðE; x⃗Þ is the summation of four
different terms, which characterize the energy loss of a
electron or positron by Coulomb interaction and ionization,
bremsstrahlung, inverse Compton scattering (ICS) and
synchrotron emission, respectively. We explicitly write
out the form of the piece for ICS for later convenience,

bICS¼ 3cσT

Z
∞

0

dϵϵ
Z

1

1/4γ2
dqnðϵÞð4γ

2−ΓϵÞq−1

ð1þΓϵqÞ3

×

�
2q lnqþqþ1−2q2þ1

2

ðΓϵqÞ2
1þΓϵq

ð1−qÞ
�
; ð45Þ

with σT ¼ 8πα2em/ð3m2
eÞ, γ ¼ E/me, Γϵ ¼ 4ϵγ/me, nðϵÞ as

the number density of photons with energy ϵ. For the
expressions of the other three terms we refer the reader to
Ref. [45] for detail. The generalized halo function IðE;E0Þ
is the solution to the following differential equation [46]:

∇2Ĩðϵ; ϵ0; x⃗Þ þ 1

K0τ⊙ϵ
δ−2

∂
∂ϵ

�
bðϵ; x⃗Þ
bTðϵÞ

Ĩðϵ; ϵ0; x⃗Þ
�
¼ 0; ð46Þ

IðE;E0; x⃗Þ ¼ Ĩðϵ; ϵ0; x⃗Þ
�
bTðϵÞ
bðϵ; x⃗Þ

�
ρðx⃗Þ
ρ⊙

�
2
�
−1
; ð47Þ

with the boundary condition8><
>:

Ĩðϵ0; ϵ0; x⃗Þ ¼ bTðϵ0Þ
bðϵ0; x⃗Þ

�
ρðx⃗Þ
ρ⊙

�
2

;

Ĩðϵ; ϵ0; x⃗Þjgalaxy boundary ¼ 0:

ð48Þ

Here ϵ ¼ E/GeV, ϵ0 ¼ E0/GeV, τ⊙ ¼ 5.7 × 1015 sec, ρðx⃗Þ
is the dark matter density profile and bTðϵÞ ¼ ϵ2 GeV/τ⊙ is
the normalizing factor. K0 and δ depend on propagation
model, which can be found in [45]. For our benchmark, we
use “EinastoB” profile, “MAX” propagation model and
“MF2” galactic magnetic field model, though several other
propagation models and magnetic field models are also
shown for comparison.
In order to predict the positron fraction, which is the

most sensitive observable to the model presented by cosmic
ray experiments, we must also determine the background
electron and positron fluxes. The positron fraction can be
written as

Φeþ

Φe− þΦeþ ¼ Φeþ
sig þΦeþ

bkg

2Φeþ
sig þΦe−

bkg þΦeþ
bkg

; ð49Þ

where we have used the fact that the signal positron and
electron fluxes are the same in our model. Here and where
relevant, we use Φ to represent dΦ/dE for continuous
spectra and the flux in a given bin for binned distributions.
The background positron flux Φeþ

bkg appearing in the
numerator of Eq. (49) must be taken from a theoretical
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model, but the background lepton fluxes may be taken
either from a model or from data. We have applied both
methods in this work. For the theoretical model method, we
use the background fluxes from Refs. [47,48], given by

dΦe−
bkg

dE
¼ 0.16E−1.1

1þ 11E0.9 þ 3.2E2.15

þ 0.70E0.7

1þ 110E1.5 þ 660E2.9 þ 580E4.2 ; ð50Þ

and

dΦeþ
bkg

dE
¼ 4.5E0.7

1þ 650E2.3 þ 1500E4.2 ; ð51Þ

for E in GeV and dΦ/dE in GeV−1 cm−2 s−1 sr−1. When
applying data to determine the sum of electron and positron
fluxes, we interpolate the data in Ref. [1] from AMS-02.
For a fixed dark matter mass of MX ¼ 1.7 TeV, we then

determine a cross section that fits the available data. The
data is largely taken from Ref. [2], though we supplement
this data with a new data point presented in Ref. [3]. The
data and the spectrum resulting from our model are shown
in Fig. 6. For the benchmark “MAX” propagation model,
the required annihilation rate is around 5 × 10−23 cm3/s
and matched by our benchmark model point in Fig. 3 or 5.

B. Gamma ray constraints

Given this fit to the AMS data, we now turn to the
constraints from the flux of gamma-rays. The dominant of
such constraints come from the isotropic diffusive gamma-
ray background (IGRB) measured by Fermi-LAT. The
contribution of dark matter annihilation to IGRB is char-
acterized by two pieces, one from annihilations in the
Milky Way and one from extragalactic annihilations. The
calculation of both pieces are included in the PPPC4DMID
package [46] and, in the model considered in this work, are

dominated by ICS. The gamma-ray flux from ICSwithin the
Milky Way can be calculated by

d2ΦICγ

dEγdΩ
¼ 1

E2
γ

r⊙
4π

1

2

�
ρ⊙
MX

�
2

×
Z

3MX /4

me

dE0hσvieff
dN
dE0 IICðEγ; E0; b; lÞ; ð52Þ

where IICðEγ; E0; b; lÞ is the halo function of ICS, which is
given by

IICðEγ; E0; b; lÞ ¼ 2Eγ

Z
l:o:s:

ds
r⊙

�
ρðx⃗ðs; θÞÞ

ρ⊙

�
2

×
Z

E0

me

dE
PICðEγ; E; x⃗ðs; θÞÞ

bðE; x⃗ðs; θÞÞ
× IðE; E0; x⃗ðs; θÞÞ; ð53Þ

PICðEγ; E; x⃗Þ ¼
3σT
4γ2

Z
1

1/4γ2
dq

�
Eγ −

Eγ

4qγ2ð1 − ηÞ
�

×
nðE0

γðqÞ; x⃗Þ
q

�
2q ln qþ qþ 1 − 2q2

þ 1

2

η2

1 − η
ð1 − qÞ

�
; ð54Þ

with

q ¼ η

ΓEð1 − ηÞ ; ΓE ¼ 4E0
γE

m2
e

; η ¼ Eγ

E
: ð55Þ

Here, E0
γ is the initial energy of photon in the background

bath, andnðE0
γðqÞ; x⃗Þ is the photon distribution in the photon

gas frame.
The formula of extragalactic gamma-ray flux for

observer at redshift z ¼ 0 is given by

eff

5002001005020
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FIG. 6. Left: Fits to the AMS-02 data with a heavy dark matter state, with dark matter profile EinastoB and propagation/magnetic field
models (MAX, MF2), (MAX, MF3) and (MED, MF2). All fits assume MX ¼ 1.7 TeV, MΦD

s
¼ 0.5 GeV and annihilation rates

hσvieff ¼ 5 × 10−23 cm3/s, using tools from Ref. [45]. The AMS measurement of the positron fraction is also shown for comparison.
Right: Comparison of the gamma ray flux produced by our model and the constraints from Fermi-LAT measurements at jbj > 20° [49].
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dΦEGγ

dEγ
¼ c

1

Eγ

Z
∞

0

dz0
1

Hðz0Þð1þ z0Þ4 jEGγðE
0
γ; z0Þe−τðEγ ;z0Þ;

ð56Þ

with E0
γ ¼ Eγð1þ z0Þ. As there is no prompt gamma-ray

production in the SRDM model, the local gamma-ray
emissivity for annihilating dark matter jEGγ has the main
contribution from inverse Compton radiation, which is
expressed as

jEGγðE0
γ;z0Þ ¼

Z
3MX /4

me

dEe
PCMB

IC ðE0
γ;Ee;z0Þ

bCMB
IC ðEe;z0Þ

×
Z

3MX /4

Ee

dEhσvieff
dN
dE

Bðz0Þ
�
ρ̄ðz0Þ
MX

�
2

: ð57Þ

The power function PCMB
IC has similar definition as

Eq. (53), but has the photon distribution nðE0
γ ; x⃗Þ replaced

with the CMB distribution at redshift z0. Similarly, the
energy loss function bCMB

IC is just Eq. (45) with the
corresponding replacement. The cosmological boost factor
Bðz;MminÞ characterizes the effect of dark matter clustering
and is defined as

hρ2DMðzÞi
ρ̄2DMðzÞ

≡Bðz;MminÞ

¼1þ Δc

3ρ̄m;0

Z
∞

Mmin

dMM
dn
dM

ðM;zÞf½cðM;zÞ�;

ð58Þ

with dn/dM is the halo mass function. The function fðcÞ is
given by

fðcÞ ¼ c3

3

�
1 −

1

ð1þ cÞ3
��

logð1þ cÞ − c
1þ c

�
−2
: ð59Þ

Within in the PPPC4DMID package, the halo
concentration function cðM; zÞ is set according to
a choice of two models. For the “power-law” model,
cðM;zÞ¼6.5½HðzÞ/H0�−2/3ðM/M�Þ−0.1, with M� ¼ 3.37×
1012h−1 M⊙. For the model proposed by Macciò et al.
[50] cðM;zÞ¼3.9½HðzcðMÞÞ/HðzÞ�2/3, where zc is defined
via σ½M�ðzcÞ�DðzcÞ ¼ 1.686, with σðMÞ the root-mean-
square over-density at the redshift z ¼ 0 for a mass scale
M and DðzÞ the linear growth rate of perturbation.
Summing the galactic and extragalactic gamma-ray

contribution to IGRB together, we show the total
gamma-ray flux in the right panel of Fig. 6 and compare
it with the high latitude Fermi-LAT measurement result
taken from Ref. [49]. Our SRDM model is severely ruled
out when using the “power-law” concentration parameter
function, but is still within the constraint for the
“Macciò” model.

C. CMB constraints

The next important constraint we consider comes from
the spectrum of the CMB radiation. Dark matter annihi-
lations just after the time of recombination can dump
energy into the photon bath, leading to distortions in the
CMB spectrum. At the relevant times for this process, the
typical dark matter velocity is very small. The annihilation
cross section is thus close to its zero velocity value.
The PLANCK collaboration has presented general

bounds on annihilation of dark matter into electromagnetic
particles, i.e. electrons and photons [15]. They are sensitive
to the rate of energy deposition per unit volume, which can
generally be written as

dE
dVdt

ðzÞ ¼ 2g̃ρ2DMðzÞ
fðzÞhσvreli

mχ
; ð60Þ

where g̃ is a degeneracy factor of 1/2 for Majorana or real
scalar dark matter and 1/4 for Dirac or complex scalar dark
matter; ρDM is the dark matter energy density at a given
redshift z; fðzÞ is an efficiency factor for absorption of
electromagnetic energy that we discuss in greater detail
below; and mχ is the dark matter mass. We discuss each of
these factors in greater detail as they pertain to the
model above.
The degeneracy factor g̃ is taken to be 1/2 for the

determination of constraints by the PLANCK collaboration.
This is consistent with the model we work with here, which
effectively behaves like Majorana or real scalar dark matter,
with onlyXX annihilation. Particles annihilatewith identical
particles, rather than antiparticles. The darkmatter density as
a function of z is an observable that is fixed independently.
The factor of fðzÞ is the efficiency for produced electrons
and photons to dump energy into the matter-radiation bath.
At the narrow relevant range of z ¼ 600–1000, it has been
shown [13,51,52] that f is nearly independent of z, such that
a constraint can be determined in terms of a constant feff . To
determine feff for the model considered here, we follow
Ref. [14]. In particular, this factor can be determined from
Eq. (2) therein, which we modify to the model above as

feffðMXÞ ¼
R 3MX /4
0 dEE2fe

þe−
eff ðEÞdN/dE

2MX
; ð61Þ

where fe
þe−
eff ðEÞ is the efficiency for absorption of energy

from electrons and positrons and dN/dE is the spectrum of
positrons produced in dark matter annihilation given in
Eq. (41). The spectrum fe

þe−
eff ðEÞ is taken from the calcu-

lation inRef. [14].Note oncemore that themaximumenergy
that an electron or positron produced in annihilation is
3MX/4, unlike in models where two light scalars are
produced in annihilation.
The remaining factors in Eq. (60) are trivial. hσvreli

should just be taken to be hðσvrelÞeffi in our model, while
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mχ ¼ MX. The resulting bound from combining the
PLANCK collaboration constraint [15] with Eq. (61) can
be written as

hðσvrelÞiCMB
eff < 1.7 × 10−23 cm3/s ×

MX

1.7 TeV
: ð62Þ

The constraints above can also be approximately
obtained by reading constraints on VV → 4μ models with
V as a light vector boson or exactly obtained by reading
constraints on ϕϕ → 4μmodels. All that is required is some
rescaling factors that we derive below. Before beginning,
note that the spectrum of electrons in VV → 4μ is not very
different from those in ϕϕ → 4μ, leading to similar con-
straints and predictions for the two models. The rescaling
that we derive here is physically due to two important, but
somewhat superficial differences between the SRDM
model and the ϕϕ → 4μ model. The first is that the
semiannihilation process in the SRDM model produces
only a single scalar that decays to muons, leading to a trivial
relative factor of 1/2. The second difference has less trivial
repercussions: the momentum of the scalar produced in
annihilation is 3MDM/4 in the SRDM as opposed toMDM in
the ϕϕ → 4μ model. In order to read off constraints on
SRDM model using constraints on ϕϕ → 4μ or VV → 4μ,
one needs to rescale the constrained mass Meff

DM and
hðσvrelÞieff;4μ to the physical parameters of the SRDM
model MX and hðσvrelÞieff . We derive this rescaling below.
Since the scalar decaying to muons is produced with

fixed momentum in both models, the energy spectrum of
positrons (and electrons) is related by a constant factor, so
that we have the mapping, Meff

DM ¼ 3MX/4. Since the
number density of dark matter is given by ρDM/MDM

and MDM ¼ MX ¼ 4Meff
DM/3, the annihilation rate for

SRDM dark matter is suppressed by a factor of
ð3/4Þ2 ¼ 9/16, in addition to the factor of 1/2 described
above. Note that this factor applies to CMB constraints as
well, since one explicit factor of 3/4 is obtained from the

factor of mχ in the denominator of Eq. (60) and second
factor of 3/4 enters in from writing feff as

feff ¼
3

4

R
1
0 dxxf

eþe−
eff ðxMeff

DMÞdN/dx
2

; ð63Þ

where we change variables to x ¼ 4E/3MX ¼ E/Meff
DM.

Combining these two factors, we obtain the relation

hðσvrelÞieff;4μ ¼
9

32
hðσvrelÞieff : ð64Þ

This relation allows us to read off any constraint on the
annihilation rate of ϕϕ → 4μ directly.
Combining the required parameters to achieve the

observed thermal relic abundance, the fit to the positron
fraction data and the constraints from annihilations in the
recombination epoch, we arrive at results shown in Fig. 7.
To explain the AMS-02 preferred annihilation rate, the dark
matter mass has to be below around 1.9 TeV. This is another
interesting general feature of the resonant dark matter
model, in which an upper bound on dark matter mass exists.

VI. ADDITIONAL SIGNALS

The main signal of the SRDM model is annihilation that
produces muons and thereby cosmic ray positrons. In this
section, we discuss other possible mechanisms for discov-
ering dark matter. As usual, there are three possible
approaches for confirming the SRDM model: direct detec-
tion, indirect detection, and collider production. We discuss
these in turn.
Direct detection of the SRDM model is challenging. The

light Goldstone modes do not couple directly to the dark
matter state without sufficient energy to excite the heavy
XR states and can only mediate interactions with the proton
at one loop, while the heavy Φ modes lead to a large mass
suppression of their interaction cross section. The domi-
nated heavy Φ mediated tree-level interaction, on the other
hand, has an estimated cross section of

FIG. 7. Left panel: The parameter space in λX and y to fit the dark matter thermal abundance and the AMS-02 signal with
hσvreliAMS

eff ¼ 5 × 10−23 cm3/s × ðMX/1.7 TeVÞ2. The constraint from CMB is approximately taken as hσvreliCMB
eff < 1.7×

10−23 cm3/s × ðMX/1.7 TeVÞ. Right panel: after satisfying the thermal relic abundance with the approximation Eq. (39), the allowed
parameter space to fit the AMS-02 rate and satisfy the CMB constraints.
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σΦT;Φ8
∼

1

16πM2
X
ϵ22y

2
M4

p

M4
h

∼ 10−58 cm2

×

�
1.7 TeV
MX

�
2
�

ϵ2
10−4

�
2
�

y
10−3

�
2

; ð65Þ

which is too small to be accessed in the near future.
Indirect detection of positrons and gamma rays from the

SRDM model has been discussed above, but as seen in
Fig. 2, another SM product of dark matter annihilation is
neutrinos. The neutrinos are emitted with an energy
E ∼ δm ∼ 1 MeV. Such neutrinos are relatively low energy
and are difficult to detect without an enormous flux, such as
that from the Sun. To detect such neutrinos, detectors use
either inverse beta decay or scattering off electrons. In
either case, the cross section is determined by the four
Fermi weak interaction and is thus highly suppressed. In
addition, the flux is expected to be of order

Φν ∼ Jρ2⊙r⊙
hσvieff
M2

X
∼ 10−11 cm−2 s−1 × J; ð66Þ

where J is a dimensionless line-of-sight integral that is of
order 100–1000 for the dominant contribution from the
Galactic center. For comparison, the flux of solar neutrinos
near E ¼ 1 MeV is few × 108 cm−2 s−1 [53]. The predicted
MeV neutrino flux in our model is far too small to be
detected with current detectors.
The most promising additional means of detecting the

SRDMmodel is by producing states at colliders. Our model
is by necessity added onto a supersymmetrized SM. Since
the Goldstone multiplet states are rather light, with masses
≲1 GeV, the lightest SM superpartner states can decay to
them if other R-parity violating decay modes are subdomi-
nant. If this decay is sufficiently fast, then the SRDM leads
to a striking prediction of several muon jets arising from the
collimated muons in the Goldstone scalar decays that end
the decay chain [54–57]. The mediation to the dark sector
can be achieved from production of Higgsino, charginos or
sneutrinos. We therefore consider the minimal scenario in
which either a Higgsino or a sneutrino is the lightest SM
partner. Any spectrum in which there are light squarks or
gluinos will of course be easier to detect. In Fig. 8, we show
a representative Feynman diagram for the signature at the
LHC. Higgsino states are dominantly pair produced via s-
channel γ�, Z, andW. The chargino states can be produced
as well, assuming they are nearly degenerate with the
neutralino states. The dominant production modes are χ̃�χ̃0

and χ̃þχ̃−, as the χ̃0χ̃0 only couples via the Z and accidental
cancellation suppresses this channel by a factor of a few.
Depending on the cutoff of the higher-dimensional operator
ΦDΦ̄DHuL/ΛΦ operator in Eq. (9) and the coefficient of the
SUSY Higgs-portal operator ϵ2ΦDHuHd, the neutralino
could decay into the SM Higgs plus ΦDν and the chargino
could decay into charged Higgs plus ΦDν, or they can also
decay to multiple PNGBs as ΦDΦDν and ΦDΦDl. For the
first possibility with the dominant decay for Higgsino as
hΦ̃D (ignoring the soft neutrino), one has two collimated

FIG. 8. A representative Feynman diagram for the collider
signatures with Higgs fields and collimated (displaced) “dimuon
jet” in the final state.

FIG. 9. Left panel: Production cross section for the dominant Higgsino states when the Higgsino is the lightest SM partner. We show
the channels χ̃þχ̃− (solid red) and χ̃�χ̃0 (dashed blue). Right panel: Production cross section for sneutrinos when the sneutrino is the
lightest SM partner. We present cases where there is only one light sneutrino state (solid red) and where there are three degenerate light
sneutrino states (dashed blue). Current estimated constraints from an ATLAS search for displaced lepton tracks [58] are shown for
lifetimes of 100 mm (dot dashed gray) and 10 mm (dotted gray).
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muons along with a Higgs that together reconstruct the
Higgsino mass. The production cross section for the
dominant modes is shown in the left panel of Fig. 9.
Because of the striking signature properties, we anticipate
a very good coverage of the model parameter space at the
LHC Run 2.
The other minimal scenario, with only light sneutrinos,

has a smaller cross section both due to the fact that the
sneutrinos don’t carry charge and that they are scalars. The
left-handed sleptons corresponding to the relatively light
sneutrinos may also be light, but we neglect this possibility
here. The dominant decay also occurs via the operator
ΦDΦ̄DHuL in Eq. (9). The decay products are ΦDΦ̃D. The
production cross section is shown in the right panel of Fig. 9.
In either of the above cases, the final state may contain

four ΦD PNGBs, each of which decays to a collimated pair
of muons since the ΦD’s are produced at highly relativistic
energies. Therefore, the signal of these models is multiple
muon jets, along with other possible SM particles. The
upper bound on ΛΦ in the SRDM model is very mild and
arises by requiring that the heavier states in the ΦD
supermultiplet decay sufficiently promptly on a cosmo-
logical. Their decays to ΦD therefore may or may not be
prompt in colliders, depending on the value of ΛΦ. TheΦD,
on the other hand, has a lifetime of order 10−11s, as seen in
Eq. (12). The decays of ΦD are therefore generally
displaced by Oð3 mmÞ at rest and Oð30 cmÞ with a
Lorentz boost of Oð100Þ.
CMS and ATLAS have searched for long-lived scalars

having displaced decays to muons at 7 [59] and 13 TeV
[58], respectively. The ATLAS search has greater sensi-
tivity to the SRDM model at the moment. Since there is
some flexibility in the lifetime of the ΦD states, we indicate
two benchmark lifetimes of cτ ¼ 10 mm and cτ ¼
100 mm in Fig. 9. These bounds should be interpreted
as rough, since the models considered in Ref. [58] do not
map exactly onto the model we consider. We focus on the
FRVZ [57] 4γd model with mH ¼ 800 GeV and mγd ¼
400 MeV since this is the model that most closely matches
the interesting portion of parameter space of SRDMmodel.
We note that the LHC is just beginning to have sufficient
data to probe these processes in the most difficult channels.
For our SRDM model, because of the additional energetic
SM particles in the final state, both the trigger choices and
reduction of backgrounds in our model are much easier
than the FRVZ model. A more careful collider study is
needed to know the final reach of neutralino or sneutrino
masses at the LHC Run 2, which we leave to future study.

VII. DISCUSSION AND CONCLUSIONS

There are some effects we have neglected up to this point
in our calculations that should have a minimal effect. We
have thus far neglected the SUð3Þf-breaking effects in the
superpotential that will feed back at loop-level into the
Kähler potential, which could cause small distortions of

the delicate factor of in the X mass spectrum required for
the resonant enhancement of the semiannihilation cross
section. The largest of these effects comes from the λX
interaction in Eq. (2). The one-loop contribution to the
wave-function renormalization of X in the Kähler potential
is of order λ2X/ð16π2Þ ∼ 10−6, leading to a contribution to
δm/MX ∼ 10−6, comparable to the benchmark discussed
above. We note this additional contribution, but it is not an
issue for the phenomenological analysis above. Other
contributions to the mass splitting are suppressed smaller
parameters, higher scales, or more loops and are negligible.
Another loop-level effect on the spectrum affects the SM

particle properties. The first term in the decay super-
potential of Eq. (9) can generate a Majorana neutrino
mass. The contribution is of order

Δmν ∼
v2uMXa2ii
16π2Λ2

X

δm
MX

∼ 0.07 eV

×

�
105 GeV
ΛX/aii

�
2
�
δm/MX

10−6

��
MX

1.7 TeV

�
: ð67Þ

Note that the generation of Majorana neutrino masses
necessarily requires SUSY breaking by holomorphy, so
additional suppression factor of δm/MX is anticipated. A
lower bound is set onΛX, since the largest possible neutrino
mass is around 0.23 eV from cosmological constraints [15]
and is around 0.31 eV for Majorana effective mass
determined by neutrinoless double beta decay (0νββ)
[60]. Since the mass generated is in fact a Majorana mass,
the constraint from 0νββ should be taken into account and
we can set a constraint of ΛX/aii ≳ 5 × 104 GeV. We also
note that the dark flavor-changing operator with an coef-
ficient of a12 will not generate neutrino Majorana mass by
itself. This is because the lepton-number is conserved if
other coefficients a11, and a22 are tiny.
One final effect to consider is the feedback of SM SUSY

breaking into the dark sector. The dominant mediation of
SUSYbreaking occurs via the SUSYHiggs portal parameter
ϵ2 ≲ 10−4. All such effects on the spectrum are highly
suppressed as they require a double insertion of operators
coupling to the SM.Loop effects fromSUSYbreaking could
also in principle destabilize the desired vacuum alignment
which is dominantly along the Φ8 direction. Such effects
should only led to small corrections that could not induce a
large change to a completely different vacuum structure.
In addition to these higher-order effects on the spectrum,

we have made a few assumptions in our solution to the
Boltzmann equations. The semiannihilation process gen-
erates a quasirelativistic X or X in the final state. We have
made the assumption that there is an interaction that allows
these relativistic dark matter particles to rapidly thermalize
with the nonrelativistic dark matter population. This inter-
action also erases any distortions caused by the nontrivial
dark matter momentum dependence of the semiannihilation
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cross section on the nonrelativistic dark matter population.
Independent of the interpretation of the AMS-02 positron
excess, the velocity-dependent semiannihilation scenario
introduced in our model may have other interesting
implications on the large scale structure with a mixture
of cold and warm dark matter components.
Before concluding, we note that the precise predictions

for the spectrum and flux of cosmic ray positrons is quite
sensitive to the details of the electron and positron
propagation in the galaxy, the size of the standard back-
ground of positrons and the velocity distribution of dark
matter in the galactic halo. We have shown a few examples
of how the spectrum could change due to the first of these.
One particular effect is on the upper bound on the allowed
dark matter mass to accommodate all the data fit in this
work. This uncertainty could leave a larger window of
viability for the SRDM model.
In summary, we have developed and studied a SRDM

model where annihilations producing positrons are reso-
nantly enhanced in the Milky Way. The model evades
strong constraints from precision CMB measurements,
while explaining the observed dark matter relic abundance
and high energy cosmic ray positron excess. The resonance
must have a mass very close to twice the dark matter mass,
which is achieved by spontaneously breaking an SUð3Þf
flavor symmetry to SUð2Þf ×Uð1Þf under which dark
matter is charged. The factor of two relation in the VEV-
induced mass for a triplet of SUð3Þf provides a novel
mechanism for naturally explaining resonant dark matter.
The PNGB of spontaneous flavor symmetry breaking
decay dominantly to muons, leading to an implementation
of a class of models where dark matter annihilates into
particles that only later decay to the SM. Such models are
known to be far safer from gamma ray constraints at the
large cross sections required to explain the positron excess.
Since the model structure requires supersymmetry for
stability, weak scale superpartners of the SM lead to
distinctive signals for colliders, such as decay chains with
an SM Higgs and collimated muons. We have shown that
searches for displaced lepton jets could have sensitivity to
such models, while searches more optimized for the
particular structure of this model could increase sensitivity
at the LHC.
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APPENDIX A: GENERAL PARAMETRIZATION

Starting from the generalized parametrization, we have
the effective annihilation rate as

ðσvrelÞeff ¼ σ0
δ2 þ γ2

ðδ − v2rel/4Þ2 þ γ2
: ðA1Þ

Here, the parameter γ is treated to be independent of vrel. If
only the complex scalar X1

p is the dark matter, the degrees
of freedom is g ¼ 2. To suppress the prediction for the
CMB while explain the rate for the AMS-02, we need to
work in the limit of δ ≫ γ.
To satisfy the relic abundance, Ωh2 ¼ 0.112, the follow-

ing simple relation is needed:

Ωh2

0.112
¼7.4×10−11

γ

σ0δ
2
⇒

γ

σ0δ
2
¼1.35×1010GeV2: ðA2Þ

For a narrow resonance and if the pole can be reached for
the integration, the annihilation rate is

ðσvrelÞeff ¼
πσ0δ

3/2

γ
δðvrel − 2

ffiffiffi
δ

p
Þ: ðA3Þ

So, the prediction for AMS-02 is

hσvreliAMS
eff ¼ 4πσ0δ

5/2

γ

4π

ð2πv20Þ3/2
e−2δ/v

2
0 : ðA4Þ

For our case, we have the effective annihilation rate as

ðσvrelÞeff¼
3y2λ2X

4πM2
X½ðv2rel−v2RÞ2þ 1

64π2
ð3y2þλ2XvrelÞ2�

: ðA5Þ

In the limit of γ ≪ δ, we have the following match relations

σ0δ
2¼ 3y2λ2X

64πM2
X
; γ¼ 1

32π
ð3y2þλ2XvrelÞ; δ¼v2R/4: ðA6Þ

To simplify our discussion, we first treat the vrel in γ as a
constant with vrel ≈ vR ¼ 2

ffiffiffi
δ

p
. In general, a larger value of γ

(allowed by CMB constraints) can make our model easier to
fit. This is because of the simple math relation 2ab ≤
a2 þ b2. Defining the parameter κ ¼ 1.35 × 1010 GeV2

from Eq. (A2), the condition to have real solutions for y
and λX is

δ <
4π2κ2

M4
X

γ2: ðA7Þ

For MX¼1.7TeV and γ¼5×10−8, one needs δ<2.15×
10−6. Let’s choose γ¼5×10−8 and δ¼1.89×10−6, the
corresponding model parameters are vR ¼ 2.75 × 10−3

and ðy; λXÞ ¼ ð7.9 × 10−4; 3.4 × 10−2Þ or (1.0 × 10−3,
2.6 × 10−2). For this model point, we have hσvreliAMS

eff ¼
5 × 10−23 cm3/s and hσvreliCMB

eff ¼ 1.2 × 10−23 cm3/s. The
predicted cross-sections in this parametrization for annihi-
lation in theMilkyWay and during the recombination era are
shown in Fig. 10.

SUPERSYMMETRIC RESONANT DARK MATTER: A … PHYS. REV. D 97, 115012 (2018)

115012-17



Finally, we also note that there is an upper bound on the
dark matter mass in our model. From Eq. (A4), we can
rewrite the annihilation rate for AMS-02 as

hσvreliAMS
eff ≈

ηðδ; v0Þ
κ

; with

ηðδ; v0Þ≡ δ1/2
16π2

ð2πv20Þ3/2
e−2δ/v

2
0 : ðA8Þ

In this general parametrization, the prediction for the
annihilation rate in the CMB era is simply hσvreliCMB

eff ¼
σ0 ¼ γ/ðκδ2Þ. Requiring an upper bound on the ratio of
those two annihilation rates, we have

hσvreliCMB
eff

hσvreliAMS
eff

≤ Rmax ×

�
1.7 TeV
MX

�

⇒ γ ≤ Rmaxδ2η ×

�
1.7 TeV
MX

�
; ðA9Þ

where numerically we have Rmax < 0.34 from Sec. V.
Combining the two inequalities in Eqs. (A7), (A9), we
arrive at the following upper bound on the dark matter mass

MX ≤ ½2πκRmaxδ3/2ηðδ; v0Þ�1/3 × ð1.7 TeVÞ1/3 ≈ 1.6 TeV;

ðA10Þ

after we use δ ¼ 1.89 × 10−6 to fit the rate for AMS-02.
There is another weaker bound from satisfying the narrow-
width condition of γ < δ and Eq. (A7). We note that the
above approximated upper bound on the dark matter mass
becomes less precise if the narrow resonance condition
γ ≪ δ is not satisfied, in which case the actual bound
should rely on numerical calculations.

APPENDIX B: DETAILS OF BOLTZMANN
EQUATIONS AND KINETIC DECOUPLING

In order to study kinetic decoupling, additional
moments of the full Boltzmann equation are required. It
is conventional and convenient to parametrize the kinetic
coupling by the variable y defined as

y ¼ 1

s2/3n

Z
d3p
ð2πÞ3 p

2fðpÞ; ðB1Þ

where f is the phase space distribution of X1
p. The variable

y is chosen such it goes to a constant after kinetic
decoupling and such that in kinetic equilibrium with the
SM bath yEQ ¼ 3M2

Xx/s
2/3ðx ¼ 1Þ. The contribution to the

evolution of y due to elastic scattering off of other species,
namely neutrinos in the SRDM model, has been studied in
Ref. [61], where it is found that

dy
dx

����
elas

¼ −
1

Hx
2MXcðTÞðy − yEQÞ; ðB2Þ

where cðTÞ is given by

cðTÞ ¼ 1

12ð2πÞ3M4
XT

Z
dkk4ðek/T þ 1Þ−1

× ½1 − ðek/T þ 1Þ−1�
X
f

gjMj2; ðB3Þ

for scattering off of massless fermions f. Here, k is the
momentum of the relativistic fermion. We define the
Mandelstam t averaged amplitude by

gjMj2 ¼ 1

8k4

Z
0

−4k2
jMj2ð−tÞdt: ðB4Þ

FIG. 10. Predicted cross sections (solid lines) for annihilation in the Milky Way (as would be seen by AMS-02) and during the
recombination era (dotted lines), which lead to CMB constraints. The low velocity cross section is fixed by requiring that the model
achieves the observed present day dark matter abundance, whileMX is fixed to 1.7 TeV in order to obtain a good fit to the AMS-02 data.
The AMS-02 data fit above had a best fit cross section of hσviAMS

eff ¼ 5 × 10−23 cm3/s, while the constraint from annihilations during
recombination on MX ¼ 1.7 TeV dark matter is hσviCMB

eff < 1.7 × 10−23 cm3/s. The blue dotted line is the additional constraint on the
SRDM model as in Eq. (A7).
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For scattering off neutrinos in the SRDM model, there are
two different relevant amplitudes. If the incoming state has
a neutrino (antineutrino) and the final state has a neutrino
(antineutrino), then the amplitude is given by

jMj2 ¼ λ4ν½ðs −M2
XÞ2 þ st�

ðs −M2
X̃2Þ2 þ Γ2

X̃2ðsÞs : ðB5Þ

If the incoming state has a neutrino (antineutrino) and the
final state has an antineutrino (neutrino), then the amplitude
is given by

jMj2 ¼ λ4νM2
X̃2ð−tÞ

ðs −M2
X̃2Þ2 þ Γ2

X̃2ðsÞs : ðB6Þ

Here, we define λν ¼ a12vu/
ffiffiffi
2

p
ΛX. After integrating over t

as prescribed by Eq. (B4), summing over all four possible
combinations of neutrinos, and using s ¼ M2

X þ 2MXk, we
find, to leading order in k/MX and δ2 ¼ δm/MX,

X
f

gjMj2 ¼ 2λ4νk2

ðk − δmÞ2 þ Γ2
X̃2 /4

: ðB7Þ

This contribution tends to push the dark sector toward
equilibrium with the relativistic fermion bath off of which it
is scattering. There is an additional contribution in the
model considered here due to the semiannihilation process.
To leading order in 1/x, the dominant contribution to the
evolution of y is due to the large momentum of the final
state Xp

1 state, which is produced with a momentum

p2
X;out ¼

9M2
X

16
þOðp2

X;inÞ; ðB8Þ

where the additional contributions go like the very non-
relativistic momentum of the incoming X particles, which
is suppressed by 1/x. By integrating the Boltzmann
equation weighted by p2, the contribution to y of this
injection is then given by

dy
dx

����
semiann

¼ 9M2
Xs

1/3

32Hx
hσvrelieff;xDMY: ðB9Þ

Our full solution for the abundance of dark matter is
obtained by solving the coupled Eqs. (31), (B2), and (B9)
under the assumption that dark matter is in kinetic equilib-
rium among itself at all temperatures. From this solution, we
are able to derive the constraint ΛX/a12 ∼ vEW, as well as to
verify that the dark matter cools to an effectively low
temperature by the time of recombination. The temperature
of the dark sector as parametrized by xDM is shown in

Fig. 11. One can clearly see from Fig. 11 that the darkmatter
is hotter than the SM particles after chemical freeze-out era
with x ≈ 106. As a result, there is a delayed behavior
for the resonant semiannihilation process to reach the
physical pole at x ∼ 1011 before the recombination era.
For 106 < x < 1011, xDM follows a simple power-law
behavior as xDM ∝ x2/5. After that, the dark matter temper-
ature continues to cool down. At the start of the recombi-
nation erawith z¼1000 and x ≈ 6 × 1012, the corresponding
dark matter averaged speed is v ≤ 4 × 10−5 and well below
the resonance pole.
Maintaining kinetic equilibrium within the dark sector

requires the introduction of a new mediator state that
interacts with the dark matter. The interaction must be
quite large, so the assumption of kinetic equilibrium within
the dark matter sector could be difficult to achieve. Then,
the dark matter produced in a small time window will begin
with a large momentum very close to 3MX/4. We briefly
verify that this does not pose a problem for our assumption
that dark matter annihilates at effectively zero velocity
around the time of recombination. The semiannihilation
cross section for these states is small at the time they are
produced, since they are far from the resonance. They thus
redshift as essentially free nonrelativistic particles with
kinetic energy scaling as 1/x2 so that the hottest dark matter
states around the time of recombination have kinetic energy

Ekin <
9MXx2kd
32x2rec

∼ 10−3 eV ≪ δm: ðB10Þ

Whether or not the dark matter remains in kinetic equi-
librium among itself, the cross section at the time of
recombination is well approximated by its zero veloc-
ity value.

FIG. 11. The dark matter temperature parameter as a function of
the SM temperature parameter.
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