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We show how the hopping parameter expansion at order κ2 and κ4 can be exploited in the simulation of
lattice QCD with two flavors of degenerate Wilson fermions. A natural extension of this idea is a
“UV filtering” by using rooted polynomials. These approaches can be easily combined with, for example,
mass preconditioning. First numerical tests are performed for the Wilson gauge action at β ¼ 5.6 and
κ ¼ 0.156 and 0.1575.
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I. INTRODUCTION

Lattice QCD simulations are our primary tool to obtain
nonperturbative results from QCD. To this end, a fair share
of CPU time on the largest supercomputers that are
available today is used. Still we would not mind getting
more accurate results from such simulations. Hence any
algorithmic progress is highly desirable. Here I shall
address the generation of the gauge field.
In order to fix the notation, let us briefly recall the def-

inition of lattice QCD. It is defined on a four-dimensional
hypercubic lattice. On the links of the lattice there are
matrices Ux;μ ∈ SUð3Þ, representing the gluon field, where
x denotes a site of the lattice and μ ∈ f0; 1; 2; 3g labels the
directions. The fields that represent the fermions live on the
sites. These fields assume Grassmanian values. The inter-
actions are encoded by the Euclidian action,

S½U;ψ ; ψ̄ � ¼ SG½U� þ SF½U;ψ ; ψ̄ �: ð1Þ

The fermion fields ψ , ψ̄ appear in bilinear form, and
therefore can be integrated out exactly in the partition
function Z. It remains an integral over the gauge field only:

Z ¼
Z

D½U� expð−SG½U�Þ
Yn
f¼1

detMf½U�; ð2Þ

where Mf½U� is the fermion matrix and the product runs
over the flavors of the quarks. In the literature different

types of fermion actions are discussed. In the following we
shall consider two degenerate flavors of Wilson fermions.
The fermion matrix is given by

M ¼ 1 − κH; ð3Þ
where

Hxy¼
X
μ

fð1− γμÞUx;μδxþμ̂;yþð1þ γμÞU†
x−μ̂;μδx−μ̂;yg ð4Þ

is the hopping matrix and the hopping parameter κ is a real
number. The Wilson plaquette action is given by

SG½U� ¼ −
β

3

X
x

X
μ>ν

ReTrðUx;μUxþμ̂;νU
†
xþν̂;μU

†
x;νÞ; ð5Þ

where μ̂ is a unit vector in the μ-direction. For a more
detailed discussion, see for example the textbooks and
review articles [1–4].
For lattice sizes that are needed to extract continuum

physics from the simulation, it is by far too expensive
to evaluate the determinant of the fermion matrix
exactly. Therefore, following the proposal of Weingarten
and Petcher [5], in the case of two degenerate flavors,
one introduces auxiliary degrees of freedom, so-called
pseudofermions:

detM†M ∝
Z

D½ϕ�D½ϕ†� expð−SPFÞ; ð6Þ

where

SPF ¼ jM−1ϕj2; ð7Þ

where ϕ is a vector with complex components. Hence the
action, as a function of the gauge field and the pseudo-
fermion fields, is given by
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SðU;ϕÞ ¼ SGðUÞ þ SPFðU;ϕÞ: ð8Þ

Still the pseudofermion action is nonlocal and the evalu-
ation requires the solution of a system of linear equations.
The nonlocality is in particular a problem for local
algorithms that are used to simulate the pure gauge action.
The hybrid Monte Carlo (HMC) algorithm [6] is better
adapted to this situation, since all gauge degrees of
freedom evolve simultaneously. To this end, an artificial
Hamiltonian is introduced:

H ¼ 1

2
ðΠ;ΠÞ þ SðU;ϕÞ; ð9Þ

where the anti-Hermitian momenta Πx;μ are conjugate to
the gauge field Ux;μ. They are auxiliary variables that are
solely introduced for algorithmic reason. Their scalar
product is defined as

ðΠ;ΠÞ ¼ −2
X
x;μ

TrΠ2
x;μ: ð10Þ

Here we follow the convention of, for example, Ref. [7].
Note that in the literature often the factor 2 is omitted in
the definition of the scalar product, see e.g., Ref. [8]. Note
that this leads to a relative factor

ffiffiffi
2

p
in the fictitious

Monte Carlo time τ that is introduced below. A discussion
of this point is given in Ref. [9], below Eq. (3.2).
The momenta and the gauge field evolve according the
equations of motion,

d
dτ

Πx;μ ¼ −F x;μ and
d
dτ

Ux;μ ¼ Πx;μUx;μ; ð11Þ

where τ is the fictitious Monte Carlo time and the force F
fulfills ðω;F Þ ¼ δωSðUÞ for infinitesimal variations of the
gauge field δωUx;μ ¼ ωx;μUx;μ. Here we consider the so-
called ϕ-algorithm [10], where the pseudofermions stay
fixed during the evolution of the gauge field and the
momenta.
The equations of motion (11) cannot be integrated

exactly. Therefore a numerical integration scheme with a
finite step-size is used. This leads to an integration error.
The idea of the HMC algorithm [6] is that this error can be
corrected for by a Metropolis accept/reject step.
One update cycle (or trajectory) of the HMC is com-

posed of the following three steps:
(i) Perform a heat bath for both the conjugate momenta

Π and the pseudofermion field ϕ. In the case of the
pseudofermion field one generates a field η with a
Gaussian distribution PðηÞ ∝ expð−jηj2Þ and then

ϕ ¼ Mη: ð12Þ

Evaluate the Hamiltonian

HðU;ϕ;ΠÞ ¼ SGðUÞ þ jηj2 þ 1

2
ðΠ;ΠÞ ð13Þ

and save the initial gauge configuration U.
(ii) Keeping ϕ fixed, we evolve the gauge field U and

the conjugate momenta Π according to the classical
equations of motion for the fictitious time τ. Since
this cannot be done exactly, a numerical integration
scheme with the finite step-size δτ is used. At the
end of the integration we have the fields U0, Π0, and
ϕ0 ¼ ϕ. For a detailed discussion of the integration
scheme see below.

(iii) Accept U0 as the new gauge field with the
probability

Pacc ¼ min½1; expð−ΔHÞ�; ð14Þ

where

ΔH ¼ HðU0;ϕ;Π0Þ −HðU;ϕ;ΠÞ ð15Þ

else we keep U.
In order to fulfill detailed balance, the numerical inte-

gration scheme has to be area preserving and reversible.
Reversible means that changing the sign of the momenta at
the end of the integration time, we run back exactly to the
initial gauge field U. Such integration schemes are called
symplectic integrators. Let us introduce a shorthand for
finite update steps by δτ:

PðδτÞ∶ Πx;μ → Π0
x;μ ¼ Πx;μ þ δτF x;μ; ð16Þ

TðδτÞ∶ Ux;μ → U0
x;μ ¼ expðiδτΠx;μÞUx;μ: ð17Þ

Integrators are built from these basic steps. Here we
consider the second order Omelyan integrator [11],

TO ¼ PðλδτÞTðδτ=2ÞPð½1 − 2λ�δτÞTðδτ=2ÞPðλδτÞ; ð18Þ

where we get for λ ¼ 1=6 the scheme proposed in Ref. [12],
which is also discussed for example inRef. [13].A trajectory
of length τ is given byTm

O with τ ¼ mδτ. Taking λ ¼ 1=2 the
expression (18) simplifies to the well-known leapfrog
scheme:

TL ¼ Pðδτ=2ÞTðδτÞPðδτ=2Þ: ð19Þ

In our simulations, we use both the leapfrog and the
Omelyan scheme with λ ¼ 1=6. Sexton and Weingarten
proposed a multilevel integration scheme [12]. Each level is
associated with a term in the action. For example, in Eq. (8),
we can associate the gauge action with level i ¼ 0 and the
pseudofermion action with i ¼ 1. For each level a time step
δτi ¼ 2mi−1δτi−1 is defined. The scheme can be iteratively
defined:
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TSW;i ¼ PiðλδτiÞ½TSW;i−1�mi−1Pið½1 − 2λ�δτiÞ½TSW;i−1�mi−1

× PiðλδτiÞ ð20Þ

and

TSW;0 ¼ P0ðλδτ0ÞTðδτ0=2ÞP0ð½1 − 2λ�δτ0ÞTðδτ0=2Þ
× P0ðλδτ0Þ: ð21Þ

Note that for the leapfrog scheme, we use the convention
δτi ¼ mi−1δτi−1, which is more natural in this case. For
a nice discussion of this scheme see for example Sec. 2.2 of
Ref. [14]. The scheme can be generalized even further. The
parameter λ might depend on the level i. Or me might use
a fourth order scheme at low levels and a second order
scheme at higher levels. An important property of symplec-
tic integrators is that they preserve a so-called shadow
Hamiltonian. Here we will not delve into this discussion
but refer the reader to Refs. [13,15] and references therein.
Applying the HMC algorithm to the pseudofermion

action (7), two problems are encountered: Going to lighter
quark masses, sending κ to κc, the condition number of the
fermion matrix increases. As a result, for iterative solvers
like the conjugate gradient (CG) or the biconjugate gradient
stabilized method (BiCGstab) [16,17], the number of
iterations needed to solve the system of linear equations
is increasing. The second problem is less obvious. It turns
out that, in order to keep the acceptance rate fixed, the step-
size of the integration scheme has to be reduced with
decreasing quark mass. At the Lattice 2001 conference,
which took place in Berlin, the situation was referred to as
“Berlin wall.” At the time, it seemed impossible to reach
sufficiently small masses, to reliably extrapolate, by using
chiral perturbation theory, to the physical mass of the pion.
The situation considerably improved by the advent of

better solvers, for example [18,19], and by replacing the
pseudofermion action (7) by better alternatives. Note that
the representation of the fermion determinant by pseudo-
fermions is not unique. In [20] a large number of pseudo-
fermion fields were introduced, allowing to express the
fermion determinant in terms of a local pseudofermion
action. This approach did not outperform the HMC
algorithm in the end. It turned out that the large number
of fields implicate that only small steps can be performed in
the update. An alternative approach to local updating,
which also did not outperform the HMC, is discussed in
Ref. [21]. See also [22] and references therein.
Based on this experience, alternatives to Eq. (7), to be

used in HMC simulations, were proposed. These are
primarily mass preconditioning [23,24], domain decom-
position [7,25], and rooting [26]. The basic idea behind
these approaches is to split the fermion matrix M into
(several) factors, and introduce a separate pseudofermion
field for each of the factors. By using a suitable factori-
zation, the stochastic estimate of the fermion determinant

becomes less noisy, allowing for a larger step-size in the
integration scheme. A second potential advantage is that
different parts of the pseudofermion action can be put on
different timescales of the integration scheme [12]. In the
ideal case, the numerically most expensive parts can be put
on large timescales.
In the case of a finite step updating scheme [21], the

multiboson (MB) algorithm [20] and the polynomial hybrid
Monte Carlo (PHMC) algorithm [27–29], it has been
shown that the updating scheme becomes more efficient
by incorporating the hopping parameter expansion [30–32].
The hopping parameter expansion, taken at a low order, is
used as UV filter for the pseudofermion action. Here we
demonstrate how this can efficiently be done for the HMC
algorithm applied to two degenerate flavors. Compared
with the simulation using the pseudofermion action (7) we
get a speed-up of a factor of 2 or 3, depending on the order
of the hopping parameter expansion. In large scale simu-
lations, this idea can be combined with mass precondition-
ing [23] and might allow to reduce the number of auxiliary
fermion matrices by one. Furthermore, we give a prelimi-
nary discussion of UV filtering by using rooted polyno-
mials. The motivation is similar to Ref. [26] and could also
be seen as a natural extension of the UV filtering by using
the hopping parameter expansion.
The outline of the paper is the following. In the next

section we discuss in detail how the hopping parameter
expansion is used as UV filter. Then we discuss how this
idea can be naturally extended by using polynomial
approximations of the rooted inverse of the fermion matrix.
We briefly summarize results on the acceptance rate, the
variance of ΔH and the forces that are given in the
literature. Then in Sec. IV we discuss our numerical results.
First we study the effect of UV filtering by using the
hopping parameter expansion up to the orders κ2 and κ4.
Then we present our still very preliminary results on rooted
polynomials. Finally we give a summary and an outlook.

II. INCORPORATING THE HOPPING
PARAMETER EXPANSION INTO THE
HYBRID MONTE CARLO SIMULATION

In the case of two degenerate flavors, the fermion
determinant can be expressed as

detM†M ¼ expðTr lnM† þ Tr lnMÞ; ð22Þ

where one expands

lnM ¼ lnð1 − κHÞ ¼ −
X∞
n¼1

1

n
κnHn: ð23Þ

For small values of n, TrHn can be evaluated analytically.
In the case of Wilson fermions, terms with odd values of
n do not contribute. Furthermore n ¼ 2 also does not
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contribute. The leading nonvanishing contribution TrH4

amounts to a plaquette term. This can be written as a shift of
the parameter β. In the case of two degenerate Wilson
fermions one gets Δβ ¼ 96κ4. For n ¼ 6 we get contribu-
tions from three different Wilson loops. With increasing n,
the number of Wilson loops that contribute rapidly
increases and things become intractable. For a more
detailed discussion see Sec. III of Ref. [33]. In the case
of clover-improved Wilson fermions the situation is worse.
There is already a nonvanishing contribution for n ¼ 2, see
Eq. (2.8) of Ref. [32]. Already n ¼ 4 was not considered in
Ref. [32], since it is too involved.
In the simulation we consider a modified gauge action,

S̃G ¼ SG þ 2
Xk
n¼1

1

n
κnTrHn; ð24Þ

where k is the order, up to which TrHn in terms of Wilson
loops is tractable in the simulation.
In Ref. [21] we discussed preconditioning by using the

hopping parameter expansion in the context of a finite step
updating scheme. To this end the value of the pseudofer-
mion action has to be evaluated. Following Eq. (8) of
Ref. [21] a modified fermion matrix is introduced by

M̃ ¼ M exp

�Xk
n¼1

1

n
κnHn

�
; ð25Þ

and correspondingly

S̃PF ¼ jM̃−1ϕj2: ð26Þ

The idea is that S̃PF fluctuates less than SPF and hence
allows for a larger step-size in the HMC simulation. In
Ref. [21] we evaluated M̃−1ϕ by using the series expansion
of M̃−1 in κH. Also in the case of the MB algorithm [30,31]
and the PHMC algorithm [32] it is natural to represent M̃
by using a polynomial in M.
Here we discuss an alternative representation that is more

suitable for the HMC algorithm applied to two degenerate
fermion flavors. In particular, we express M̃−1 essentially in
terms of M−1 to make use of iterative solvers to compute
M̃−1ϕ. For simplicity, let us first discuss the case k ¼ 1.
The series expansion of the inverse of M̃ in κH is given by

M̃−1 ¼ expð−κHÞð1 − κHÞ−1 ¼
X∞
n¼0

anκnHn: ð27Þ

Since all coefficients of the expansion of M−1 are equal to
one, we can easily evaluate the coefficients

an ¼
Xn
l¼0

ð−1Þl 1
l!
; lim

n→∞
an ¼ expð−1Þ: ð28Þ

Hence we can write

M̃−1 ¼
X∞
n¼0

bnκnHn þ αM−1; ð29Þ

where α ¼ expð−1Þ and

bn ¼ −
X∞
l¼nþ1

ð−1Þl 1
l!
: ð30Þ

Since bn rapidly converges to 0, the sum

X∞
n¼0

bnκnHn ð31Þ

can be truncated at a low order nmax. For larger values of k
we get a similar result, where α ¼ expð−P

k
n¼1 1=nÞ. The

coefficients bn can be evaluated by using an algebra
program like MAPLE or MATHEMATICA. Note that the
coefficients in Eq. (24) are tunable parameters of the
algorithm. Previous experience [21,32] however shows
that taking the values given by the hopping parameter
expansion is a good choice. Here we will not further discuss
this question.
Now let us discuss how the HMC algorithm can be

implemented for M̃−1. The crucial question is how the
forces can be computed. Here we have to put together the
results obtained for the HMC algorithm and the PHMC
algorithm. The variation of the pseudofermion action SPF
with respect to the gauge field can be computed as

δSPF ¼ −X†δMY þ H:c:; ð32Þ

where

X ¼ ðMM†Þ−1ϕ; Y ¼ M−1ϕ: ð33Þ

The variation of the polynomial has been worked out
in Refs. [28,29]. We follow the implementation of
Refs. [29,32] using Horner’s scheme. Here we need the
variation of S̃PF ¼ jM̃−1ϕj2 with

M̃−1 ¼ αM−1 þ
Xnt
n¼0

bnκnHn: ð34Þ

Note that we are free to take nt < nmax, since the truncation
error introduced is corrected for in the accept/reject step,
where the summation is performed up to nmax. We get

δS̃PF ¼ ϕ†M̃−1†δM̃−1ϕþ H:c:; ð35Þ

where
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δM̃−1ϕ ¼
�
−αM−1δMM−1 þ

Xnt
n¼1

bnκnδðHnÞ
�
ϕ; ð36Þ

where

δðHnÞ ¼
Xn
l¼1

Hl−1δHHn−l: ð37Þ

In order to compute the variation for the polynomial
efficiently, nt vectors have to be precomputed, following
Horner’s scheme:

Ynt ¼ bntϕ ð38Þ

and then recursively

Yl−1 ¼ bl−1 þ κHYl ð39Þ

down to

Y0 ¼
�Xnt
l¼0

blκlHl

�
ϕ: ð40Þ

Then we compute recursively

X1 ¼ Y0 þ Ỹ; where Ỹ ¼ αM−1ϕ ð41Þ

and

Xl ¼ κHXl−1: ð42Þ

The variation of the pseudofermion action can be written as

δS̃PF ¼ κX̃†δHỸ þ κ
XN
l¼1

X†
l δHYl þ H:c:; ð43Þ

where X̃ ¼ M−1X1.
In the following we refer to exploiting the hopping

parameter expansion up to order κk as κk-filtering.

A. Rooted polynomials

In our simulations we make use of the hopping parameter
expansion up to κ4. It is practically impossible to push the
hopping parameter expansion to higher order. Therefore,
with a similar motivation as Ref. [26], where the rational
HMC is considered, we propose to use polynomials that
approximate M−1=N as UV filters. Introducing a pseudo-
fermion field for each factor M−1=N, the pseudofermion
action, Eq. (7), is replaced by

SPF;N ¼
XN
l¼1

jM−1=Nϕlj2: ð44Þ

In the limit N → ∞, as discussed in Sec. II. B of
Ref. [21], SPF;N converges, up to an additive constant, to
Tr lnM† þ Tr lnM. This means that for sufficiently large
N, we can approximate the hopping parameter expansion
by using low order polynomials that approximate M−1=N .
Let us define M1 ¼ M̃, Eq. (25), and then recursively

Mjþ1 ¼ W
−Nj

j Mj ð45Þ

up to some maximal jmax, where

W−1
j ¼

Xnj
l¼0

aj;lκlHl ¼ M
−1=Nj

j þ Oðκnjþ1Þ; ð46Þ

where nj > nj−1. The remainder can be written as

M−1
jmaxþ1 ¼

X∞
n¼0

bnκnHn þ αM−1; ð47Þ

where bn and α are computed by using an algebra program.
The corresponding pseudofermion action is

SPF;Polynom ¼
Xjmax

j¼1

SPF;j þ jM−1
jmaxþ1ϕjmaxþ1j2; ð48Þ

where

SPF;j ¼
XNj

l¼1

jW−1
j ϕj;lj2: ð49Þ

The construction proposed here contains both the noise
reduction by rooting as proposed in [21,26] as well as
a hierarchical splitting similar to mass preconditioning.
Note that a hierarchical splitting, in the framework of the
PHMC, was already discussed in Refs. [34–36].
In particular, aiming at the application to a single flavor,

one would like to investigate how well M−1=N
jmaxþ1 can be

approximated by a rational approximation. Also it might be
feasible to compute detMjmaxþ1, without using a noisy
estimator, since likely only a few smallest eigenvalues ofM
contribute. In this case, it might be sufficient to compute
detMjmaxþ1 in the accept/reject step only.
In our numerical tests we have used jmax ¼ 2 and N1 ¼

N2 ¼ N for simplicity. The general framework contains
a large number of free parameters that are hard to tune
without having a theoretical understandingof the dependence
of the acceptance rate on these parameters. Reference [13]
and possible extensions might be helpful to this end.
In the case of the pseudofermion action (7) it is simple to

perform a heat-bath update, Eq. (12), of the pseudofer-
mions at the beginning of the trajectory. The fermion matrix
M has to be applied to a vector with a Gaussian distribution.
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In the case of the rooted polynomials the numerical costs
are considerably larger, sinceWj has to be represented by a
high order polynomial in M or equivalently H. In our
preliminary study, we implemented the heat-bath update of
the pseudofermions associated with Wj in the straight-
forward way. A more efficient solution is provided by
Ref. [37], where only a good approximation of Wj is
needed to update the pseudofermions.

B. Even/odd preconditioning

In all our numerical tests, we started from the even/odd
preconditioned fermion matrix,

Moo ¼ 1oo − κ2HoeHeo; ð50Þ

where e and o denote the collection of even and odd sites,
respectively. Note that detMoo ¼ detM and the condition
number of Moo is reduced compared with M. In the
discussion of the algorithm above, essentially κH has to
be replaced by κ2HoeHeo. Note that indices in Sec. IV
below refer to powers of κ2HoeHeo. Note that in Ref. [29] it
is explicitly spelled out, how the PHMC algorithm can be
implemented for even/odd preconditioned clover-improved
Wilson fermions.

III. THE ACCEPTANCE RATE AND FORCES

Typically the step-size of the HMC is tuned such that the
acceptance rate 0.8 ⪅ Pacc ⪅ 0.9. The optimal value
depends on the integration scheme that is used. Also the
occurrence of spikes might require to decrease the step-size
δτ. Spikes mean that occasionally ΔH ≫ 1 appears in the
simulation. Here we have encountered this phenomenon
when using the second order Omelyan integrator.
The acceptance rate can be determined by simply

counting the accepted configuration. The statistical error is
reduced by sampling min½1; expð−ΔHÞ� instead. Detailed
balance implies

hexpð−ΔHÞi ¼ 1: ð51Þ

It is a useful check for the correctness of the program to
sample expð−ΔHÞ and check whether the average is
consistent with one. Based on Eq. (51) one can derive
for high acceptance rates

Pacc ¼ erfc
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðΔHÞ=8
p �

: ð52Þ

See Eq. (3.1) of Ref. [13] and references therein. In our
simulations, as long as no spikes occur, Eq. (52) turned out
to be valid to good precision.
The HMC simulation using improved pseudofermion

actions [7,24,26,34–36] requires to tune a number of
parameters. Therefore it is highly desirable to know how
the acceptance rate, or equivalently VarðΔHÞ, depends on

these parameters. A step in this direction is taken by
Ref. [13], where the variances of the forces associated with
the different parts of the action are related to VarðΔHÞ. For
the second order Omelyan scheme with λ ¼ 1=6 the
authors of Ref. [13] find, see their Eq. (3.4),

VarðΔHÞ ¼ 2δτ4

722

�
VarðjF imax

j2Þ þ VarðjF imax−1j2Þ
ð4m2

imax−1Þ2
þ � � �

�
:

ð53Þ

Note that for λ ≠ 1=6 also other terms than the forces
appear at the order δτ4. For a more general result see
Ref. [38]. A main ingredient in the derivation of Eq. (53) is
the fact that a symplectic integrator conserves a shadow
Hamiltonian. The deviation of the shadow Hamiltonian
from the true Hamiltonian can be computed as a power
series in the step-size δτ. Furthermore, it is assumed that
the forces due to different pieces of the action are not
correlated.

IV. NUMERICAL RESULTS

The study is performed on three servers with two CPUs
with ten cores each, which were immediately available to
us. For programming convenience no highly optimized
code was used. As solver, we have used the BiCG-stab
[16,17] algorithm. Here we did not experiment much with
the stopping criterion, but did run the solver essentially up
to machine precision. We simulate comparatively small
lattices at β ¼ 5.6. In particular we have tested κ2- and
κ4-filtering extensively by simulating a 123 × 24 lattice at
κ ¼ 0.156. To consolidate the result, two simulations of a
163 × 32 lattice at κ ¼ 0.1575 are performed. Our prelimi-
nary study of the performance of the HMC using rooted
polynomials are also performed for a 163 × 32 lattice
at κ ¼ 0.1575. The linear lattice sizes are measured in
units of the lattice spacing a. We use periodic boundary
conditions in the spatial direction. In the case of the
temporal direction, periodic boundary conditions are
employed for the gauge action and antiperiodic ones for
the fermion action.
A rather detailed study at this value of β is presented in

Ref. [39]. Based on the Sommer scale r0 [40], the authors
of Ref. [39] find that for β ¼ 5.6, κ ¼ 0.156 on a 163 × 32
lattice a ¼ 0.09796ð56Þ fm. For the same parameters they
find mPS ¼ 0.9002ð69Þ GeV for the mass of the lightest
pseudoscalar particle. For β¼5.6, κ¼0.1575 on a 163 × 32
lattice they obtain a ¼ 0.0839ð11Þ fm and mPS ¼
0.6524ð86Þ GeV. This means that the masses are still quite
large compared with the mass of the pion mπ0 ≈ 135 MeV.
Note that a number of algorithmic studies were performed
at β ¼ 5.6, the values of κ and lattice sizes that were studied
in Ref. [39]. See for example [7,14,34].
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A. Exploiting the hopping parameter expansion

In this set of simulations, we tested the efficiency of
κk-filtering. To this end, we simulated the system with the
pseudofermion action (7) and the modified pseudofermion
action (26) up to κ2 and κ4. We simulated by using the
leapfrog as well as the second order Omelyan integrator at
λ ¼ 1=6. In both cases, we used two timescales. On the
coarse time step we put the pseudofermion action and on
the fine one the gauge action. The time step of the gauge
action was chosen to be such that further decreasing it
virtually does not increase the acceptance rate. Next we
have to decide how to truncate Eq. (31). In the extended
runs that we performed first, we set ad hoc nt ¼ 7 and
nmax ¼ 19 for κ2. Note that b7 ¼ 1.98… × 10−4 and
b19 ¼ 8.22… × 10−18. Instead, for κ4 we took nt ¼ 15

and nmax ¼ 29, where b15 ¼ 7.91… × 10−6 and b29 ¼
1.15… × 10−14. Later we carefully checked the depend-
ence of the acceptance rate on nt. Furthermore we dem-
onstrate that the value of nt has no influence on the
reversibility.

1. Extended runs

We performed a few extended runs. This way we
checked for spikes in ΔH and tried to estimate auto-
correlation times. Throughout we used trajectories of the
length τ ¼ ffiffiffi

2
p

, corresponding to τ ¼ 1 in the convention
of, for example, Ref. [8].
A first set of runs was performed by using the leapfrog

integration scheme. We performed preliminary simulations
to find the step-size δτ that gives Pacc ≈ 0.8. In Table I we
summarize the results of our extended runs. The plaquette
value is P ¼ 1

3Np

P
pReTrUp, where the sum runs over all

plaquettes on the lattice and Up denotes the ordered
product of the gauge variables around the plaquette p
and Np is the number of plaquettes. Since the effort
required for the evaluation of the polynomial (31) is small
compared with that for the iterative solver, the performance
gain achieved by the κk-filtering is essentially given by the
ratio of the step numbers m. This means that even in the

case of κ2-filtering that is still achievable in the case of
clover improvement [32], we see a gain of a factor of 2.
Next we redid the exercise by using the second order
Omelyan integrator at λ ¼ 1=6. In order to get an accep-
tance rate of ≈80%, we find from preliminary simulations
that m ¼ 18 and 8 for the order 0 and 2 are needed,
respectively. Hence the performance gain is even a bit
larger than in the case of the leapfrog integrator. Performing
longer runs, spikes in ΔH appeared. Therefore we do not
further discuss these runs. It is known that the second order
Omelyan integrator at λ ¼ 1=6 is more susceptible to this
problem than the leapfrog. The problem can be cured by
reducing the step-size. In the case of κ4-filtering we could
not find an m that gives an acceptance rate of ≈80%. For
m ¼ 6, the acceptance rate is considerably larger and for
m ¼ 5 it is smaller. We decided to perform a longer run
form¼6. From 24540 trajectories we get hPi¼0.56991ð2Þ,
Pacc ¼ 0.8830ð15Þ, and VarðΔHÞ ¼ 0.0886ð15Þ. In this run
no spikes appear. We find that the direct determination of
Pacc and the result obtained from Eq. (52) are consistent.
From this run we get the estimates τint;P ¼ ffiffiffi

2
p

× 9.3ð1.7Þ
and τint;iter ¼

ffiffiffi
2

p
× 24.8ð4.5Þ for the integrated autocorre-

lation times of the plaquette and the iteration number of the
solver, respectively. Given the relatively low accuracy of
the autocorrelation time, we are not able to decide whether
the UV filtering has an influence on the autocorrelation
time.

2. The forces

As it is argued in Ref. [13], the acceptance rate can be
inferred from the variance of the forces VarðjF j2Þ.
Computing VarðjF j2Þ for κ4-filtering, we get essentially
consistent results from the run with the leapfrog and
the second order Omelyan integrator. We conclude
VarðjFPFj2Þ ¼ 57500ð1000Þ, where the error is only a
rough estimate. In the case of the runs without filtering and
κ2-filtering, using the leapfrog integration scheme, we get
VarðjFPFj2Þ ¼ 11400000ð200000Þ and 344000(4000),
respectively. The runs with the second order Omelyan
scheme contain spikes in ΔH. These spikes can also be
seen in FPF. As a result, VarðjFPFj2Þ is by far larger than
for the runs with the leapfrog. Excluding the spikes by
hand, VarðjFPFj2Þ is much reduced, and very roughly
consistent with what we find in the runs with the leapfrog
integrator. Following Eq. (53), keeping VarðjFPFj2Þδτ4
fixed, should result in a fixed acceptance rate. Indeed,
ð11400000=344000Þ1=4 ≈ 2.4 and ð11400000=58000Þ1=4 ≈
3.7 are roughly consistent with the speed-ups that we have
observed directly.
For the gauge action, we get from the runs with the

leapfrog and the second order Omelyan scheme for both
κ2-filtering and no filtering consistent results that can be
summarized as VarðjFGj2Þ ¼ 28800000ð400000Þ. In the
case of κ4-filtering, due to the larger value of β in S̃G, we get

TABLE I. Extended runs using the leapfrog algorithm for a
123 × 24 lattice at β ¼ 5.6 and κ ¼ 0.156. We study the effect of
κk-filtering. stat gives the number of trajectories, the number of
coarse time steps m, and the expectation value of the plaquette
hPi. The acceptance rate is given by Pacc ¼ hmin½1; expð−ΔHÞ�i.
In all three cases, the estimate of Pacc obtained from the variance
VarðΔHÞ by using Eq. (52) is consistent with the result given in
column 5.

k m stat hPi Pacc VarðΔHÞ
0 42 2770 0.56982(7) 0.8006(43) 0.2673(54)
2 21 7050 0.56991(6) 0.7981(26) 0.2643(43)
4 16 7610 0.56995(4) 0.8106(24) 0.2264(40)
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the larger value VarðjFGj2Þ ¼ 30000000ð400000Þ. We
checked that, also according to Eq. (53), our choices of
δτG are small enough, not to influence the acceptance rate
markedly.

3. Truncation of the series and reversibility

In principle we can relax the accuracy of the calculation
of the force to the point, where the acceptance rate is
markedly affected. However it turned out that, using
iterative solvers, the reversibility of the integration is
increasingly violated with decreasing accuracy of the
solution. With exact numerics, reversibility would be given
at any precision of the solver. However we work with
double precision numbers, and rounding errors occur.
Furthermore, iterative solvers approach the solution in
a chaotic way. Hence, if we stop the solver at a moderate
precision, deviations caused by rounding errors are blown
up. This phenomenon does not occur when we evaluate
a series with fixed coefficients. Therefore the truncation at
the order nt < nmax of the sum (31) can be chosen such that
the acceptance rate is reduced by little compared with larger
values of nt. We checked this reasoning for κ4-filtering and
the second order Omelyan scheme at λ ¼ 1=6. To this end,
we selected ten configurations, which were separated by
400 trajectories each from our extended run. For each of
these configurations, we started a trajectory using the same
parameters as for our extended run. At the end of the
trajectory the momenta are reversed and the trajectory is run
backwards, resulting in the configuration U0. We compute

Δ ¼
X
x;μ

jUx;μ −U0
x;μj2: ð54Þ

For nt ¼ 5, 6, and 15 and running the solver essentially up
to machine precision, we get Δ ≈ 6.3 × 10−21 for all three
choices. Instead, keeping nt ¼ 15 fixed and relaxing the
stopping criterion of the BiCG-stab,Δ is clearly increasing.

4. The acceptance rate as a function of nt
For both κ2- and κ4-filtering, we performed runs with

different values of nt. We used the second order Omelyan
scheme with λ ¼ 1=6 throughout. In all cases the trajecto-
ries have the length τ ¼ ffiffiffi

2
p

. As expected, we find that with
increasing nt the acceptance rate rapidly reaches a pla-
teau value.
For κ2-filtering, we first performed runs with m ¼ 8.

Similar to the extended run, spikes appeared. Therefore we
redid the runs with m ¼ 10, where we did not encounter
this problem for nt > 3. The results are summarized in
Table II. The acceptance rate as well as VarðΔHÞ rapidly
approach a plateau, which is reached at the level of our
numerical precision for nt ¼ 5. For nt > 3, the estimate of
Pacc obtained from the variance VarðΔHÞ, by using
Eq. (52) is consistent with the direct measurement.

Our results for κ4-filtering are summarized in Table III.
Also here the acceptance rate as well as VarðΔHÞ rapidly
reach a plateau value. At the level of our accuracy this
happens for nt ¼ 7. As expected, this value is larger than
for κ2-filtering.
We conclude that the choice of nt is uncritical. Using

a few short runs we can locate the point, where the
acceptance rate as a function of nt levels off. In the
production run we then add a small safety margin.

5. Scaling with the lattice size and κ

To get an idea of how the performance scales with the
hopping parameter κ, we performed two short runs at
κ ¼ 0.1575 on a 163 × 32 lattice by using κ4-filtering. In
both cases the length of a trajectory is τ ¼ ffiffiffi

2
p

. We started
the simulations with a configuration taken from the runs
discussed in the section below. In the first simulation we
used the leapfrog algorithm with m ¼ 32. From 500
trajectories we get Pacc ¼ 0.874ð8Þ. Note that from
Table I of Ref. [39] we read off that without UV filtering,
m ¼ 100 results in Pacc ¼ 0.78. Hence we see a speed-up
by roughly a factor of 3 as it is the case for κ ¼ 0.156 and
the 123 × 24 lattice. In the second simulation we used the
second order Omelyan scheme with λ ¼ 1=6 and m ¼ 16.
Performing 500 trajectories we find Pacc ¼ 0.926ð6Þ.

TABLE II. Numerical results for κ2-filtering. Simulations are
performed with the second order Omelyan scheme at λ ¼ 1=6. We
give the acceptance rate andVarðΔHÞ as a function of themaximal
summation index nt. Throughout we usem ¼ 10 and the length of
the trajectory is τ ¼ ffiffiffi

2
p

. In the run for nt ¼ 3 spikes occurred.
After removing them by hand we get VarðΔHÞ ¼ 0.88ð5Þ.
nt stat Pacc VarðΔHÞ
3 1000 0.6420(11)
4 2500 0.9187(21) 0.0424(14)
5 2000 0.9361(21) 0.0268(9)
6 1950 0.9412(20) 0.0249(8)
7 2000 0.9406(20) 0.0242(9)

TABLE III. Same as Table II but for κ4-filtering. Here we use
m ¼ 6 throughout.

nt stat Pacc VarðΔHÞ
3 200 0.22(3) 4.98(59)
4 1030 0.177(8) 8.12(24)
5 6400 0.8631(22) 0.1180(31)
6 2200 0.8506(45) 0.1512(63)
7 2200 0.8868(32) 0.0920(36)
8 2000 0.8845(31) 0.0848(29)
9 2200 0.8851(36) 0.0904(33)
15 24500 0.8830(15) 0.0886(15)
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B. Runs with rooted polynomials

We performed a few runs with the rooted polynomial
action. We simulated a 163 × 32 lattice at β ¼ 5.6 and
κ ¼ 0.1575. All runs are characterized by jmax ¼ 2. In all
cases we use for simplicity the leapfrog scheme with
different timescales. Throughout we use the trajectory
length τ ¼ ffiffiffi

2
p

.

1. Without hopping parameter expansion

In this first set of runs we simulated without making use
of the hopping parameter expansion. This means that we
start the recursion, Eq. (45), with M1 ¼ M. The polyno-
mials are characterized by n1 ¼ 8 and n2 ¼ 32 and rooting
with N ¼ 2, 3, 4, 6, 8, and 16. In Fig. 1 we show the
coefficient bn of Eq. (47) for N ¼ 2, 3, and 4. For
n > n2 ¼ 32, bn is oscillating, with a decreasing ampli-
tude. As it can be seen from the figure, the decay is
exponential in n. The decay becomes faster with increasing
N. With increasing N, the decay rate converges to a finite
limit. In Table IV we summarize the basic parameters of
the simulations and give the acceptance rate Pacc and

VarðΔHÞ. We have taken m such that Pacc ≈ 0.8. The
parametersm2,m1, andm0 are chosen ad hoc and are likely
larger than the optimal values. Note that error bars might be
underestimated, since the lengths of the runs are relatively
short. It is reassuring that our estimates of hPi are
consistent with the result given in Table I of [39].
In Table V we summarize the results obtained for the

variances of the forces. As one might expect, VarðjFGj2Þ
does not depend on N. Furthermore, comparing with the
runs for the 123 × 24 lattice of the previous section, we see
that VarðjFGj2Þ is roughly proportional to the volume of
the lattice. In the case of the rooted pseudofermion action
we find that VarðjFPF;1j2Þ and VarðjFPF;2j2Þ are decreas-
ing with increasing N. In the limit N → ∞, a finite value,
corresponding to the hopping parameter expansion should
be reached. Here, it seems that we are still far away from
this limit. Going from N ¼ 8 to 16, VarðjFPF;1j2Þ and
VarðjFPF;2j2Þ are reduced by roughly a factor of 4.
Following Eq. (53), this should allow to increase the
corresponding step-size by a factor of

ffiffiffi
2

p
. Since the

numerical effort for evaluating SPF increases by a factor
of 2, the algorithm becomes less efficient. In order to
compare the numerical costs, we define the cost index c ¼
njN VarðjFPF;1j2Þ1=4, where the exponent 1=4 is motivated
by Eq. (53). Our results are summarized in Table VI. In the
case of SPF;1 we see a small increase from N ¼ 2 to 4. For
SPF;2 the cost index is very similar for N ¼ 2, 3, and 4. On
the other hand, VarðjFPF;3j2Þ is clearly decreasing going
fromN ¼ 2 to 4. The costs related with SPF;3 depend on the
solver that is used. Here we made no effort to find the
optimal solver. Therefore we refrain from quoting a
performance index for SPF;3. Anyway, it seems likely that
the optimal overall performance is reached for N > 2.

2. Employing κ4-filtering

UV filtering by using the hopping parameter expansion
can by easily implemented in the PHMC algorithm [32].
Herewe perform a preliminary study, employing κ4-filtering.

50 100 150
n

1e-06

1e-05

0.0001

0.001

0.01

0.1

b
N = 2
N = 3
N = 4

FIG. 1. We give the coefficients bn, Eq. (47), as a function of
the index n for N ¼ 2, 3 and 4. Only results for bn ≥ 10−6 are
shown.

TABLE IV. Basic properties of our runs with rooted polynomials. We employ κk-filtering. The polynomials approximate the Nth root
of M−1. n1 and n2 give the maximal order of the first and second level approximation. stat gives the number of trajectories, m0, m1, m2

andm are the number of steps that characterize the multilevel integration scheme, and hPi is the expectation value of the plaquette. In the
10th column we give α of Eq. (47). Note that in the limit N → ∞ we get α ¼ 0.017275… and α ¼ 0.013210… for n2 ¼ 32 and 42,
respectively. Finally, in the 11th and 12th columns we give the acceptance rate Pacc and the variance VarðΔHÞ, respectively.
k N n1 n2 stat m0 m1 m2 m α hPi Pacc VarðΔHÞ
0 2 8 32 290 6 6 4 8 0.022110… 0.57279(6) 0.870(11) 0.110(9)
0 2 8 32 510 4 4 2 8 0.022110… 0.57257(5) 0.836(12) 0.191(16)
0 3 8 32 500 10 6 3 6 0.020504… 0.57255(6) 0.788(9) 0.253(22)
0 4 8 32 910 6 5 4 5 0.019687… 0.57258(3) 0.793(9) 0.299(16)
0 6 8 32 600 10 5 2 5 0.018872… 0.57256(5) 0.773(11) 0.309(18)
0 8 8 32 500 6 5 2 5 0.018467… 0.57254(5) 0.792(12) 0.311(19)
0 16 8 32 200 6 5 2 5 0.017866… 0.57259(6) 0.806(17) 0.241(25)

4 8 16 42 500 40 3 2 4 0.013902… 0.57265(5) 0.790(10) 0.249(22)
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The basic parameters of our run are summarized in
the last row of Table IV. Our results for the variance
of the forces is given in the last row of Table V. These
results can be compared with those for N ¼ 8 without
κk-filtering. VarðjFPF;1j2Þ is considerably reduced by using
κ4-filtering. The reduction in the case of VarðjFPF;2j2Þ and
VarðjFPF;3j2Þ is due to the increased values of n1 and n2,
respectively.

V. CONCLUSION AND OUTLOOK

We discuss how the hopping parameter expansion can be
used as an efficient UV filter in the HMC simulation of
lattice QCD with two degenerate fermion flavors. We have

carefully tested the idea for the Wilson gauge action and
Wilson fermions at β ¼ 5.6 and κ ¼ 0.156 and the rela-
tively small lattice size 123 × 24. Compared with the
pseudofermion action (7) we find a speed-up of a factor
of 2 and 3, using κ2- and κ4-filtering, respectively. The latter
result is confirmed by short runs performed for a 163 × 32
lattice and κ ¼ 0.1575.
In large scale simulations, going to small fermion

masses, the idea can be combined with mass precondition-
ing or domain decompositioning. In the case of mass
preconditioning one might be able to skip the term in
the action that corresponds to the most heavy mass. In the
case of domain decompositioning one applies the idea to
the fermion matrix that is restricted to the domains.
A natural extension of applying the hopping parameter

expansion as UV filter is the use of rooted polynomials.
This idea is related with the rooting proposed in Ref. [26] as
well as the idea of hierarchically factorized polynomials
[35,36]. Here our results are still preliminary, and both a
better theoretical understanding as well as further numeri-
cal experiments are needed.
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