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We study the asymptotic safety conjecture for quantum gravity in the presence of matter fields.
A general line of reasoning is put forward explaining why gravitons dominate the high-energy behavior,
largely independently of the matter fields as long as these remain sufficiently weakly coupled. Our
considerations are put to work for gravity coupled to Yang-Mills theories with the help of the functional
renormalization group. In an expansion about flat backgrounds, explicit results for beta functions, fixed
points, universal exponents, and scaling solutions are given in systematic approximations exploiting
running propagators, vertices, and background couplings. Invariably, we find that the gauge coupling
becomes asymptotically free while the gravitational sector becomes asymptotically safe. The dependence
on matter field multiplicities is weak. We also explain how the scheme dependence, which is more
pronounced, can be handled without changing the physics. Our findings offer a new interpretation of
many earlier results, which is explained in detail. The results generalize to theories with minimally
coupled scalar and fermionic matter. Some implications for the ultraviolet closure of the Standard Model
or its extensions are given.
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I. INTRODUCTION

The Standard Model of particle physics combines three
of the four fundamentally known forces of nature. It
remains an open challenge to understand whether a
quantum theory for gravity can be established under the
same set of basic principles. Steven Weinberg’s seminal
asymptotic safety conjecture stipulates that it can, provided
the high energy behavior of gravity is controlled by an
interacting fixed point [1,2]. By now, the scenario has
become a viable contender with many applications ranging
from particle physics to cosmology [3–8].
Fixed points for quantum gravity have been obtained from

the renormalization group in increasingly sophisticated
approximations ranging from the Einstein-Hilbert theory
[9–39] to higher derivative and higher curvature extensions
and variants thereof [40–63]. Strong quantum effects invar-
iably modify the high-energy limit. Interestingly, however,
canonical mass dimension continues to be a good ordering
principle [54]: classically relevant couplings remain relevant

while classically irrelevant couplings remain irrelevant
[59], including the notorious Goroff-Sagnotti term [60].
Further aspects such as diffeomorphism invariance in the
presence of a cutoff and the role of background fields have
also been clarified.
It then becomes natural to include matter fields and to

clarify the impact of matter on asymptotic safety for gravity
[64–92]. In general it is found that matter fields constrain
asymptotic safety for gravity, although not all specifics for
this are fully settled yet. In expansions about flat back-
grounds, it was noticed that the graviton dominates over
free matter field fluctuations, either via an enhancement
of the graviton propagator or the growth of the graviton
coupling [79]. This pattern should play a role for asymp-
totic safety of the fully coupled theory and for weak gravity
bounds [82,85,86]. In a similar vein, the impact of
quantized gravity on gauge theories has been investigated
within perturbation theory [93–98] by treating gravity as an
effective field theory [99] and within the asymptotic safety
scenario [67–69]. Modulo gauge and scheme dependences,
all studies find the same negative sign for the Yang-Mills
beta function (β < 0) in support of asymptotic freedom.
The reason for this was uncovered in [68,69]: due to an
important kinematical identity (Fig. 2), related to diffeo-
morphism and gauge invariance, β < 0 follows automati-
cally, and irrespective of the gauge or regularization.
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In this paper, we want to understand the prospect for
asymptotic safety of quantum gravity coupled to matter. To
that end, we combine general, formal considerations with
detailed and explicit studies using functional renormaliza-
tion. A main new addition is a formal line of reasoning,
which explains why and how gravitons dominate the high-
energy behavior, largely independently of the matter fields
as long as these remain sufficiently weakly coupled. Using
functional renormalization, this is then put to work for
SUðNcÞ Yang-Mills theory coupled to gravity. In an
expansion about flat backgrounds, explicit results for beta
functions, fixed points, universal exponents, and scaling
solutions are given. Systematic approximations exploiting
running propagators, the three-graviton and the graviton-
gauge vertices are performed up to including independent
couplings for gauge-gravity and pure gravity interactions
and for the background couplings. Care is taken to
distinguish fluctuating and background fields. Invariably,
we find that the gauge coupling becomes asymptotically
free while the gravitational sector becomes asymptotically
safe. The dependence on matter field multiplicities is weak.
We also investigate the scheme dependence, which is found
to be more pronounced, and explain how it can be handled
without changing the physics. This allows us to offer a new
interpretation of many earlier results and to lift some of the
tensions amongst previous findings.
This paper is organized as follows. In Sec. II, we present a

formal argument for asymptotic safety of Yang-Mills gravity
and extensions to general matter–gravity systems. In Sec. III,
we introduce the renormalization group for Yang-Mills
gravity, and some notation and conventions. In Sec. IV,
we analyze whether asymptotic freedom in Yang-Mills
theories is maintained when coupled to a dynamical grav-
iton. Conversely, in Sec. V, the influence of gluon fluctua-
tions on UV-complete theories for gravity are studied. In
Sec. VI, asymptotic safety of the fully coupled Yang-Mills
gravity system is investigated in the standard uniform
approximation with a unique Newton’s coupling. We further
discuss the stable large-Nc limit of this system. In Sec. VII,
we lift the uniform approximation and discuss the system
with separate Newton’s couplings for gauge-gravity and
pure gravity interactions. We also discuss the renormaliza-
tion group (RG) scheme dependence and relate our findings
with earlier ones in the literature. In Sec. VIII, we briefly
summarize our findings. The Appendixes comprise the
technical details.

II. FROM ASYMPTOTIC FREEDOM TO
ASYMPTOTIC SAFETY

In this section, we provide our main line of reasoning for
why matter fields, which are free or sufficiently weakly
coupled in the UV—such as in asymptotic freedom—entail
asymptotic safety in the full theory including gravity.
Throughout, Yang-Mills theory serves as the principle
example.

A. Yang-Mills coupled to gravity: The setup

Any correlation function approach to gravity works
within an expansion of the theory about some generic
metric. The necessity of gauge fixing in such an approach
introduces a background metric into the approach. Hence,
we use a background field approach in the gauge sector,
giving us a setting with a combined background ḡμν, Āa

μ.
Background independence is then ensured with the help
of Nielsen or split Ward-Takahashi identities and the
accompanying Slavnov-Taylor identities (STIs) for both
the metric fluctuations and the gauge field fluctuations.
The superfield ϕ comprises all fluctuations or quantum
fields with

Aμ ¼ Āμ þ aμ; gμν ¼ ḡμν þ
ffiffiffiffi
G

p
hμν;

ϕ ¼ ðhμν; cμ; c̄μ; aμ; c; c̄Þ; ð1Þ

with the dynamical fluctuation graviton hμν and gauge
field aμ. In (1), cμ and c are the gravity and Yang-Mills
ghosts, respectively. The classical Euclidean action of the
Yang-Mills–gravity system is given by the sum of the
gauge-fixed Yang-Mills and Einstein-Hilbert actions,

Scl½ḡ; Ā;ϕ� ¼ Sgauge½ḡ; Ā;ϕ� þ Sgravity½ḡ; Ā;ϕ�; ð2Þ

where the two terms Sgauge ¼ SA þ SA;gf þ SA;gh and
Sgravity ¼ SEH þ Sg;gf þ Sg;gh are the fully gauge fixed
actions of Yang-Mills theory and gravity, respectively.
The Yang-Mills action reads

SA½g; A� ¼
1

2

Z
d4x

ffiffiffiffiffiffiffiffiffi
det g

p
gμμ

0
gνν

0
trFμ0ν0Fμν; ð3Þ

where the trace in (3) is taken in the fundamental
representation, and

Fμν¼
i
gs
½Dμ;Dν�; Dμ¼∂μ− igsAμ; trtatb¼1

2
: ð4Þ

The classical Yang-Mills action (3) only depends on the full
fields g, A and induces gauge-field-graviton interactions
via the determinant of the metric as well as the Lorentz
contractions and derivatives. The gauge fixing is done in
the background Lorentz gauge D̄μaμ ¼ 0with D̄ ¼ DμðĀÞ.
The gauge fixing and ghost terms read

SA;gf ¼
1

2ξ

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
ðḡμνD̄μaνÞ2;

SA;gh ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
det ḡ

p
ḡμνc̄D̄μDνc; ð5Þ

where we take the limit ξ → 0. The gauge fixing and
ghost terms only depend on the background metric and
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hence, do not couple to the dynamical graviton hμν. The
Einstein-Hilbert action is given by

SEH ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffiffiffiffi
det g

p
ð2Λ − RðgÞÞ; ð6Þ

with a linear gauge fixing Fμ and the corresponding ghost
term,

Sg;gf ¼
1

2α

Z
d4x

ffiffiffiffiffiffiffiffiffi
det ḡ

p
ḡμνFμFν;

Sg;gh ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
det ḡ

p
ḡμμ

0
ḡνν

0
c̄μ0Mμνcν0 ; ð7Þ

with the Faddeev-Popov operator Mμνðḡ; hÞ of the gauge
fixing Fμðḡ; hÞ. We employ a linear, de-Donder type
gauge fixing,

Fμ ¼ ∇̄νhμν −
1þ β

4
∇̄μhνν;

Mμν ¼ ∇̄ρðgμν∇ρ þ gρν∇μÞ − ∇̄μ∇ν; ð8Þ

with β ¼ 1 and the limit α → 0, which is a fixed point of
the RG flow [100].

B. Asymptotic freedom in Yang-Mills with gravity

Gauge theories with gauge group UðNÞ or SUðNÞ
describe the electroweak and the strong interactions, and
form the basis of the Standard Model of particle physics.
A striking feature of non-Abelian gauge theories is asymp-
totic freedom, meaning that the theory is governed by a
Gaussian fixed point in the ultraviolet, which implies that
gluon interactions weaken for high energies and that
perturbation theory is applicable. In fact, the great success
of the Standard Model is possible only due to the presence
of such a Gaussian fixed point, which allows us to neglect
higher order operators in the high energy limit. The
weakening of interactions is encoded in the energy
dependence of the Yang-Mills coupling, which in turn is
signaled by a strictly negative sign of the beta function.
However, it is well-known that fermions contribute with a
positive sign to the running of the Yang-Mills coupling,

β1�loop
αs

α2s
≡ μ

∂αs
∂μ

1

α2s
¼ −

1

4π

�
22

3
Nc −

4

3
Nf

�
; ð9Þ

where we have displayed only the one-loop contributions
with Nc and Nf denoting the number of colors and fermion
flavors, and αs ¼ g2s=ð4πÞ. One can see that there is a
critical number of fermion flavors Ncrit

f ¼ 11
2
Nc above

which the one-loop beta function changes sign. This
implies that asymptotic freedom is lost. It has been noted
recently that gauge theories with matter and without gravity

may very well become asymptotically safe in their
own right [101–106].
Returning to gravity, it has been shown in [67–69,93–98]

that graviton fluctuations lead to an additional negative
term βαs;h in βαs → βαs;a þ βαs;h where βαs;a is the pure
gauge theory contribution (9). The graviton contribution
has a negative sign,

βαs;h ≤ 0: ð10Þ

Because of the lack of perturbative renormalizbility, this
term is gauge and regularization dependent. However, it has
been shown that it is always negative semidefinite [68,69],
based on a kinematic identity related to diffeomorphism
invariance. Hence, asymptotic freedom in Yang-Mills
theories is assisted by graviton fluctuations. In the case
ofUð1Þ, they even trigger it. This result allows us to already
get some insight into the coupled Yang-Mills–gravity
system within a semianalytic consideration in an effective
theory spirit: in the present work, we consider coupled
Yang-Mills–gravity systems within an expansion of the
pure gravity part in powers of the curvature scalar as well
as taking into account the momentum dependence of
correlation functions. In the Yang-Mills subsector, we
consider an expansion in trFn and ðtrF2Þn, the lowest
nonclassical terms being

w2ðtrF2Þ2; v4trF4: ð11Þ

Asymptotic freedom allows us to first integrate out the
gauge field. This subsystem is well-described by integrat-
ing out the gauge field in a saddle point expansion within a
one-loop approximation. Higher loop orders are suppressed
by higher powers in the asymptotically free gauge cou-
pling. This leads us to the effective action

Γ½ḡ; Ā;ϕ� ¼ Sgravity½ḡ;ϕ� þ Sgauge½ḡ; Ā;ϕ�

−
1

2
Tr ln

�
Δ1δμν þ

�
1 −

1

ξ

�
∇μ∇ν

�
kUVa

kIRa

; ð12Þ

where Δ1 represents the spin-one Laplacian and kIRa , kUVa
indicate diffeomorphism-preserving infrared and ultra-
violet regularizations of the one-loop determinant. Most
conveniently, this is achieved by a proper-time regulari-
zation, for a comprehensive analysis within the FRG
framework, see [107,108]. In any case, both regulariza-
tions depend on the metric gμν and the respective scales
kIRa , kUVa . The computation can be performed with standard
heat-kernel methods.
The infrared sector of the theory is not relevant for the

present discussion of the fate of asymptotic safety in the
ultraviolet. Note also that Yang-Mills theory exhibits an
infrared mass gap with the scale ΛQCD due to its confining
dynamics. In covariant gauges, as used in the present work,
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this mass gap results in a mass gap in the gluon propagator,
for a treatment within the current functional renormaliza-
tion group (FRG) approach, see [109,110] and references
therein. This dynamical gaping may be simulated here by
simply identifying the infrared cutoff scale with ΛQCD.
Moreover, even though integrating out the gauge field

generates higher order terms such as (11) in the UV, they
are suppressed by both powers of the UV cutoff scale as
well as the asymptotically free coupling. Accordingly, we
drop the higher terms in the expansion of the Yang-Mills
part of the effective action (12). Note that they are present
in the full system as they are also generated by integrating
out the graviton. This is discussed below.
It is left to discuss the pure gravity terms that are

generated by ultraviolet gluon fluctuations in (12). They
can be expanded in powers and inverse powers of the
UV-cutoff scale ka ¼ kUVa . This gives an expansion in
powers of the Ricci scalar R and higher order invariants.
From the second line of (12), we are led to

ðN2
c − 1Þ

�
cg;ak2a

Z
d4x

ffiffiffiffiffiffiffiffiffi
det g

p
ð2cλ;ak2a − RÞ

þ cR2;a

Z
d4x

ffiffiffiffiffiffiffiffiffi
det g

p
ðR2 þ zaR2

μνÞ ln
Rþ kIRa 2

k2a

�

þO
�
R3

k2a

�
; ð13Þ

where we suppressed potential dependences on Δg and ∇μ,
in particular, in the logarithmic terms. The logarithm also
could contain further curvature invariants such as R2

μν. In
the spirit of the discussion of the confining infrared physics,
we may substitute kIRa → ΛQCD in a full nonperturbative
analysis. In (13), the coefficients cg;a, cλ;a, cR2;a and za, are
regularization dependent and lead to contributions to
Newton’s coupling, the cosmological constant, as well as
generating an R2 term and potentially an R2

μν term. In the
present Yang-Mills case, cg;a is positive for all regulators.
For fermions and scalars, the respective coefficients cg;ψ ,
cg;ϕ are negative. In summary, this leaves us with an
asymptotically free Yang-Mills action coupled to gravity
with redefined couplings

Geff ¼
G

1þ ðN2
c − 1Þcg;ak2aG

;

Λeff

Geff
¼ Λ

G
þ ðN2

c − 1Þcg;acλ;ak4a: ð14Þ

The coupling parameters G, Λ should be seen as bare
couplings of the Yang-Mills–gravity system and chosen
such that the (renormalized) couplings Geff , Λeff are ka
independent. This corresponds to a standard renormaliza-
tion procedure (introducing the standard RG scale μRG)
and leads to GðNc; kaÞ, ΛðNc; kaÞ. Note that demanding ka

independence of the effective couplings also eliminates
their Nc running. For example, for the effective Newton’s
coupling

ðN2
c − 1Þ∂ðN2

c−1Þ lnGeff ¼ k2a∂k2a lnGeff ¼ 0; ð15Þ

holds in a minimal subtraction scheme where the
renormalization scale μRG does not introduce further Nc-
dependencies, most simply done with μRG-independent
couplings G, Λ.
We also have to include gR2R2 and gR2

μν
R2
μν terms in the

classical gravity action in order to renormalize also these
couplings,

gR2;eff ¼ gR2 þ ðN2
c − 1ÞcR2;a ln

kIRa 2

k2a
;

gR2
μν;eff ¼ gR2

μν
þ ðN2

c − 1ÞcR2;aza ln
kIRa 2

k2a
: ð16Þ

Here, the minimal subtraction discussed above requires
gR2ðNc; ln ka=kIRa Þ and gR2

μν
ðNc; ln ka=kIRa Þ. This leaves us

with a theory, which includes all ultraviolet quantum effects
of the Yang-Mills theory. Accordingly, in the ultraviolet,
its effective action (12) resembles the Einstein-Hilbert
action coupled to the classical Yang-Mills action with
appropriately redefined couplings. It also has R2 and R2

μν

terms. However, the latter terms are generated in any case
by graviton fluctuations so there is no structural difference
to standard gravity with the Einstein-Hilbert action coupled
to the classical Yang-Mills.
The only relevant Nc dependence originates in the

logarithmic curvature dependence of the marginal operators
R2 and R2

μν leading, e.g., to

ðN2
c − 1ÞcR2;a

Z
d4x

ffiffiffiffiffiffiffiffiffi
det g

p
R2 ln

�
1þ R

kIRa 2

�
: ð17Þ

These terms are typically generated by flows towards
the infrared, for a respective computation in Yang-Mills
theory, see [111]. Such a running cannot be absorbed in
the pure gravity part without introducing a nonlocal
classical action. From its structure, the logarithmic run-
ning in (16) resembles the one of the strong coupling in
many flavor QCD: the role of the gravity part here is taken
by the gluon part in many flavor QCD and that of the
Yang-Mills part here is taken by the many flavors.
Accordingly, a fully conclusive analysis has to take into
account these induced interactions. This is left to future
work, here we concentrate on the Einstein-Hilbert part.
The respective truncation to matter-gravity systems have
been studied at length in the literature, and the arguments
presented here fully apply. Note also that the current setup
(and the results in the literature) can be understood as a
matter-gravity theory, where the respective terms are
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removed by an appropriate classical gravity action that
includes, e.g., R2 lnR terms. The discussion of these
theories is also linked to the question of unitary in
asymptotically safe gravity.
If we do not readjust the effective couplings within the

minimal subtraction discussed above, they show already
the fixed point scaling to be expected in an asymptotically
safe theory of quantum gravity, see (14) and (16). This
merely reflects the fact that Yang-Mills theory has no
explicit scales. If we only absorb the ka running of the
couplings while leaving open a general μRG dependence,
the effective Newton’s coupling Geff scales with 1=N2

c,
while the effective cosmological constant scales with N0

c.
In any case, we have to use Geff for the gravity scale in

the Yang-Mills–gravity system instead of G. For example,
the expansion of the full metric gμν in a background and a
fluctuation then reads

gμν ¼ ḡμν þ
ffiffiffiffiffiffiffiffi
Geff

p
hμν; ð18Þ

with the dimension-one field hμν in the d ¼ 4 dimensional
Yang-Mills–gravity system.

C. Asymptotic safety in gravity with Yang-Mills

It is left to integrate out graviton fluctuations on the basis
of the combined effective action, where the pure gravity
part is of the Einstein-Hilbert type. The couplings of the
pure gravity sector, in particular, Newton’s coupling and
the cosmological constant only receive quantum contribu-
tions from pure gravity diagrams, while pure gauge and
gauge-graviton couplings only receive contributions from
diagrams that contain at least one graviton line. This system
is asymptotically safe in the pure gravity sector and assists
asymptotic freedom for the minimal gauge coupling,
see (9) and (10), and leads to graviton-induced higher-
order coupling such as (11). In summary, we conclude
that Yang-Mills–gravity systems are asymptotically safe.
The flow of this system and its completeness is discussed
in Sec. VII.
The present analysis is also important for the evaluation

of general matter-gravity systems: we have argued that
asymptotic freedom of the Yang-Mills theory allows us to
successively integrate out the degrees of freedom, starting
first with the Yang-Mills sector. Evidently, this is also true
for matter-gravity systems with free matter such as treated
comprehensively, e.g., in [75,79]. In the former, fermions
and scalars were found to be unstable for a large flavor
numbers while in the latter fermions were shown to be
stable. For scalars, the situation was inconclusive as the
anomalous dimension of the graviton was exceeding an
upper bound, ηh < 2, beyond which a regulator of the form

Rh;kðp2Þ ∝ ZhR
ð0Þ
h;kðp2Þ with Rð0Þ

h;kð0Þ ¼ k2 is no longer a
regulator with the cutoff scale k,

lim
k→∞

Rh;kð0Þ ∝ ðk2Þ1−ηh=2 → 0; for ηh > 2: ð19Þ

This bound can be pushed to ηh < 4 but also this bound
was exceeded, see [79]. While the differences in the
stability analysis can be partially attributed to the differ-
ent approximations in [75,79] (the former does not
resolve the difference between background gravitons
and fluctuation gravitons in the pure gravity sector),
we come to conclude here, that both (and all similar
ones) analyses lack the structure discussed above. This
calls for a careful reassessment of the UV flows of
matter-gravity systems also in the view of relative cutoff
scales. The latter is since long a well-known problem
in quantum field theoretical applications of the FRG, in
particular, in boson-fermion systems. For example, in
condensed matter systems, it has been observed that
exact results for the three-body scattering (STM), see
[112], can only be obtained within a consecutive inte-
grating out of degrees of freedom in local approxima-
tions. If identical cutoff scales are chosen, the three-body
scattering only is described approximately. For a recent
analysis of relative cutoff scales in multiple boson and
boson-fermion systems, see [113].
In summary, the gravitationally coupled free-matter–

gravity systems, Yang-Mills–gravity systems, or more
generally asymptotically free gauge-matter–gravity sys-
tems are asymptotically safe, independent of the number
of matter degrees of freedom if this holds for one degree of
freedom or more generally if this holds for the minimal
number of degrees of freedom that already has the most
general interaction structure of the coupled theory. Phrased
differently: simple large N scaling cannot destroy asymp-
totic safety, with N being the number of gauge-matter
degrees of freedom.
We emphasize that the analysis of such a minimal system

as defined above is necessary. It is not sufficient to rely on
the fact that the matter or gauge part can be integrated out
first as gravity necessarily induces nontrivial matter and
gauge self-interactions at an asymptotically safe gravity
fixed point [71,72,81,85,86]. If these self-interactions do
not destroy asymptotic safety, the systems achieve asymp-
totic safety for a general number of matter or gauge fields
by guaranteeing the ultraviolet dominance of graviton
fluctuations.
With these results at hand, we can now ask the question

whether a “relative scaling” of gravity vs matter cutoffs
maintains the observed graviton dominance. A natural
“scaling hierarchy” for the cutoff scales kh in the gravity
and ka in the Yang-Mills sector is motivated by the
following heuristic consideration: while gravity feels the
effective Newton’s coupling Geff , and hence, graviton
fluctuations and gravity scales should be measured in
Geff , the Yang-Mills field generates contributions to the
(bare) Newton’s coupling G. Assuming that both are of a
similar strength, this leads to
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Geffk2h ≃ Gk2a ð20Þ

for the respective cutoff scales. Interestingly though, under
this hierarchy of scales, the Nc dependence of the coupled
system disappears, and, within an appropriate fine-tuning
of the relation (20), the fixed point values of Newton’s
coupling and the cosmological constant show no Nc
dependence at all. Stated differently, a rescaling such as
in (20) guarantees the dominance of graviton fluctuations
over gauge or matter fluctuations as long as the gauge-
matter system is asymptotically free. The phenomenon of
graviton dominance as observed with identical cutoffs
continues to be observed under a weighted rescaling (20).
We close this chapter with some remarks.
(1) The naturalness of the rescaling (20) is finally decided

by taking into account momentum or spectral depend-
encies of the correlation functions. This is at the
root of the question of stability and instability of
matter-gravity systems. It is here where the marginal,
logarithmically running, terms such as (17) come into
play. They are not affected by this rescaling, which
also shows their direct physics relevance.

(2) Within the above rescaling, the fixed point of the
gravity-induced gauge couplings such as w2 and v4,
see (11), are of order g�4 of the pure gravity fixed
point coupling g�. Note however, that this value can
be changed by readjusting the rescaling (20).

(3) Note that within the dynamical readjustment of the
scales the fixed point Newton’s coupling gets weak,
g� ∝ 1=N2

c. In other words, gravity dominates by
getting weak. This is in line with the weak-gravity
scenario advocated recently [82,85,86]. However, its
physical foundation is different.

(4) For a sufficiently large truncation, the theory should
be insensitive to a relative rescaling of the cutoff
scales kgravity and kmatter and to other changes of the
regularization scheme. This is partially investigated
in Sec. VII. Moreover, in all of the following
renormalization group computations, we do not
resort to the rescaling (20) but use identical cutoff
scales kgravity ¼ kmatter.

In the following analysis, we will refer to the present
chapter for an evaluation of our results.

III. RENORMALIZATION GROUP

In the present work, we quantize the Yang-Mills–gravity
system within the functional renormalization group
approach. The general idea is to integrate-out quantum
fluctuations of a given theory successively, typically in
terms of momentum or energy shells, p2 ∼ k2. This
procedure introduces a scale dependence of the correlation
functions, which is most conveniently formulated in terms
of the scale-dependent effective action Γk, the free energy
of the theory. Its scale dependence is governed by the flow

equation for the effective action, the Wetterich equation
[114], see also [115,116],

∂tΓk½ḡ;ϕ� ¼
1

2
Tr

�
1

Γð0;2Þ
k ½ḡ;ϕ� þ Rk

∂tRk

�
; ð21Þ

where the trace sums over species of fields, space-time,
Lorentz, spinor, and gauge group indices, and includes a
minus sign for Grassmann valued fields. For the explicit
computation, we employ the flat regulator [117,118],
see Appendix A. From here on, we drop the index k for
notational convenience. The scale dependence of cou-
plings, wave function renormalizations, or the effective
action is implicitly understood.
The computation utilizes the systematic vertex expansion

scheme as presented in [24,26,31,36,61,79] for pure gravity
as well as matter-gravity systems: the scale dependent
effective action that contains the graviton-gluon inter-
actions is expanded in powers of the fluctuation super
field ϕ defined in (1),

Γ½ḡ; Ā;ϕ� ¼
X
n

1

n!
Γðϕ1…ϕnÞ
a1…an ½ḡ; Ā; 0�ϕa1…ϕan : ð22Þ

In (22), we resort to de-Witt’s condensed notation. The bold
indices sum over species of fields, space-time, Lorentz,
spinor, and gauge group indices. The auxiliary background
field is general. Here, we choose it as ϕ̄ ¼ ðĀ ¼ 0; ḡ ¼ 1Þ
for computational simplicity. In this work, we truncate
such that we obtain a closed system of flow equations
for the gluon two- and the graviton two- and three-point
functions, ∂tΓðaaÞ, ∂tΓðhhÞ, and ∂tΓðhhhÞ. The corresponding
flow equations are derived from (21) by functional
differentiation.
The pure gravity part of the effective action Γgrav in (22)

is constructed exactly as presented in [24,26,31,36,61,79].
This construction is extended to the Yang-Mills part.
Moreover, for the flow equations under consideration here,
only terms with at most two gluons contribute. In summary,
our approximation is based solely on the classical tensor
structures Scl that are derived from (2). The correlation
functions follow as,

Γðϕ1…ϕnÞ
a1…an ¼

�Yn
i¼1

Z
1
2

ϕi

�
Sðϕ1…ϕnÞ
cl;a1…an

ðp; gϕ1…ϕn
; λϕ1…ϕn

Þ; ð23Þ

where the Zϕi
are the wave function renormalizations of the

corresponding fields and p ¼ ðp1;…; pnÞ. The gϕ1���ϕn
,

λϕ1…ϕn
are the couplings in the classical tensor structures

that may differ for each vertex. In the present approxima-
tion, these couplings are extracted from the momentum
dependence at the symmetric point and hence, carry part of
the nontrivial momentum dependence of the vertices. The
projection procedure is detailed later. We further exemplify
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the couplings at the example of the pure graviton and the
gauge-graviton vertices. Each graviton n-point function,
Γðh1���hnÞ, depends on the dimensionless parameters

gn ≡ ghn ¼ Gnk2; λn ≡ λhn ¼ Λn=k2; ð24aÞ

and a mixed gauge-graviton (nþ 2)-point function on

ga2hn ¼ Ga2hnk
2; gA2hn ¼ GA2hnk

2: ð24bÞ

In particular, the parameters λn should not be confused with
the cosmological constant, for more details see, e.g., [36].
In the present approximation, we identify all gravity
couplings

gAmhn ¼ g3≕ g; λn>2 ¼ λ3; λ2 ¼ −
1

2
μ; ð25Þ

the general case without this identification is discussed in
Sec. VII. Note that the identification in (25) introduces
(maximal) diffeomorphism invariance to the effective
action: in order to elucidate this statement, we discuss
the full effective action for constant vertices. With g ¼
ḡþ ffiffiffiffi

G
p

Z1=2
h h and A ¼ Āþ Z1=2

a a and (25), the current
approximation can schematically be written as a sum of the
classical action and a mass-type term for the fluctuation
graviton,

Γ½ḡ; Ā;ϕ� ¼ Scl½g; A�jG¼G3;Λ¼Λ3
þ ΔΓ½ḡ�

þ k4

2
Zhðμþ 2λ3ÞhaT abhb; ð26Þ

where T ab ¼ SðhhÞEH abðp2 ¼ 0; g ¼ 1; λ ¼ 1Þ is the tensor
structure of the second derivative of the cosmological
constant term. The λ3 term cancels with the corresponding
contribution in the first line, and thus, μ is the coupling of
this tensor structure. This is the minimal approximation that
is susceptible to the nontrivial symmetry identities, both the
modified STIs and the Nielsen identities present in gauge-
fixed quantum gravity. This information requires the non-
trivial running of wave function renormalizations Zḡ, ZĀ,
Zh, Zc, Za, that of the graviton mass parameter μ, as well as
the dynamical gravity interactions g and λ3. Note that at a
(UV) fixed point the flows of the couplings μ, g, and λ3
vanish while the anomalous dimensions do not vanish.
The last identification in (25) reflects the fact that −2λ2 is

the dimensionless mass parameter of the graviton. Note
however that μ is not a physical mass of the graviton in the
sense of massive gravity: in the classical regime of gravity, it
is identical to the cosmological constant, λ̄ ¼ − 1

2
μ. Higher

order operators in particular gan may couple back in an
indirect fashion, see, e.g., [85]. In summary, this leads us to
an expansion of the mixed fluctuation terms (with both,
powers of a and powers of h) of the effective action (22)

Γ½ḡ;Ā;ϕ�jmixed

¼ΓðahÞ
a1a2aa1ha2 þ

1

2
ΓðahhÞ
a1a2a3aa1ha2ha3

þ1

2
ΓðaahÞ
a1a2a3aa1aa2ha3 þ

1

4
ΓðaahhÞ
a1a2a3a4aa1aa2ha3ha4

þ 1

12
ΓðaahhhÞ
a1a2a3a4a5aa1aa2ha3ha4ha5 þOða3h;ah3Þ: ð27Þ

As we consider also correlation functions of the background
gluon, we need the expansion of the fluctuation vertices
in (27) in the background field, i.e.,

ΓðahÞ
a1h2

½Ā� ¼ ΓðahÞ
a1h2

½0� þ ΓðĀahÞ
b1a1h2

½0�Āb1
þOðĀ2Þ; ð28Þ

in an expansion about vanishing background gauge field. In
the following, we consider trivial metric and gluon back-
grounds ḡ ¼ 1l and Ā ¼ 0. In this background, the terms of
the orderOða3h; ah3Þ do not enter the flow equations of the
gluon and graviton propagators nor that of the graviton three-
point function. This is the reason why they have not been
displayed explicitly in (27). Note that with this background
choice, the terms linear in a in the second line in (27) vanish.
In this trivial background, we can use standard Fourier

representations for our correlation functions. In momentum
space, the above correlation functions are given as follows:
the gluon two-point function reads

ΓðaaÞ
μν ðp1;p2Þ¼Z

1
2
aðp2

1ÞZ
1
2
aðp2

2Þ
δ2SA

δaμðp1Þδaνðp2Þ
����
ϕ¼0

: ð29Þ

The graviton two-point function is parameterized according
to the prescription presented in [24,26,31,36,61,79],

ΓðhhÞ
μναβðp1; p2Þ ¼ Z

1
2

hðp2
1ÞZ

1
2

hðp2
2Þ

G2δ
2SEHðG2;Λ2Þ

δhμνðp1Þδhαβðp2Þ
����
ϕ¼0

;

ð30Þ

where −2Λ2 ¼ μk2 as introduced in (25). Note that the
right-hand side of (30) does not depend on G2. The two-
gluon–one-graviton vertex is given by

ΓðaahÞ
μναβ ðp1;p2;p3Þ ¼ Z

1
2
aðp2

1ÞZ
1
2
aðp2

2ÞZ
1
2

hðp2
3Þ

×
G

1
2

3δ
3SA

δaμðp1Þδaνðp2Þδhαβðp3Þ
����
ϕ¼0

; ð31Þ

with scale- and momentum-dependent wave function
renormalizations Za for the gluon and Zh for the graviton
and a scale-dependent gravitational coupling G3. The other
n-point functions have a completely analogous construc-
tion, which is not displayed here.
In addition to the fluctuation vertices, we also need

mixed vertices involving two background gluons and the
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fluctuation fields as in (28), ΓA2hn and ΓA2an with n ¼ 1, 2.
They are parameterized as in (29)–(31) with Za → ZA. We
also would like to emphasize two structures that facilitate
the present computations:
(1) As we consider the flow equations for the gluon two-

point function, and the graviton two- and three-point
functions, only the terms quadratic in aμ in (27)
contribute to the graviton-gluon interactions in the
flow equations. The non-Abelian parts in the F2

term do not contribute since they are of order 3 and
higher. Hence, modulo trivial color factors δab, the
vertices defined above are identical for SUðNÞ and
Uð1Þ gauge theories.

(2) In principle, the derivatives in Fμν are covariant
derivatives with respect to the Levi-Civita connec-
tion. However, since Fμν is asymmetric, and the
Christoffel-symbols symmetric in the paired index,
the latter cancel out, and the covariant derivatives
can be replaced by partial derivatives.

In the end, we are interested in the gravitational corrections
to the Yang-Mills beta function, and the Yang-Mills
contributions to the running in the gravity sector. The beta
functions of the latter have been discussed in great detail in
[24,26,31,36,61]. In the Yang-Mills sector, we make use of
the fact that the wave function renormalization ZA of the
background gluon is related to the background (minimal)
coupling by

Zαs ¼ Z−1
A ; ð32Þ

which is derived from background gauge invariance
of the theory. The latter can be related to quantum gauge
invariance with Nielsen identities, see [23,119–122] in
the present framework. This also relates the background
minimal coupling to the dynamical minimal coupling of the
fluctuation field. Note that this relation is modified in the
presence of the regulator, in particular, for momenta
p2 < k2. There the interpretation of the background min-
imal coupling requires some care. The running of the
background coupling is then determined by

∂tαs ¼ βαs ¼ ηAαs; ð33Þ

with the gluon anomalous dimension

ηA ≔ −
∂tZA

ZA
: ð34Þ

Note that in general all these relations carry a momentum
dependence as ZAðp2Þ carries a momentum dependence.
This will become important in the next section for the
physics interpretation of the results.

IV. GRAVITON CONTRIBUTIONS
TO YANG-MILLS

In this section, we compute the gravitational corrections
to the running of the gauge coupling. The key question is
if graviton-gluon interactions destroy or preserve the
property of asymptotic freedom in the Yang-Mills sector.
The running of the gauge coupling can be calculated from
the background gluon wave function renormalization. Its
flow equation is derived from (21) with two functional
derivatives with respect to Ā. Schematically, it reads

∂tΓðĀ ĀÞðpÞ ¼ FlowðĀ ĀÞ
A ðpÞ þ FlowðĀ ĀÞ

h ðpÞ; ð35Þ

where the first term contains only gluon fluctuations and
the second term is induced by graviton-gluon interactions.
The diagrammatic form of the second term is displayed in
Fig. 1. This split is reflected in a corresponding split of the
anomalous dimension

ηAðp2Þ ¼ ηA;Aðp2Þ þ ηA;hðp2Þ: ð36Þ

Note that in the present approximation, we have
ηA;h ¼ ηa;h. This originates in the fact that the fluctuation
graviton only couples to gauge invariant operators.
Asymptotic freedom is signaled by a negative sign of

the gluon anomalous dimension as the beta function for
the coupling is proportional to ηA. We know that the pure
gluon contributions ηA;A are negative. Hence, the question
whether asymptotic freedom is preserved in the Yang-
Mills–gravity system boils down to the sign of the gravity
contributions ηA;h, and we arrive at

ηA;h ≤ 0 ⇔ asymptotic freedom: ð37Þ

The anomalous dimension in (37) depends on both
cutoff and momentum scales. For small momentum scales
p2=k2 → 0, the regulator induces a breaking of quantum-
gauge and quantum-diffeomorphism invariance: the respec-
tive STIs of the fluctuation field correlation functions are
modified. This necessitates also a careful investigation of
the background observables, which only carry physics due
to the relation of background gauge- and diffeomorphism
invariance.
Note that asymptotic freedom as defined in (37) only

applies to the minimal coupling. Higher order fluctuation
couplings are not necessarily vanishing. Indeed, it has been
shown that the asymptotically safe fixed points of general

FIG. 1. Diagrammatic depiction of graviton contributions to the
flow of the gluon propagator. Wiggly and double lines represent
gluon and graviton propagators, respectively.
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matter and gauge fields coupled to gravity can not be fully
asymptotically free in the matter and gauge field sector,
see [72,81,82,85,86]. In the present work, this leads to a4

vertices from higher order invariants such as ðtrF2Þ2 and
trF4 with fixed point values proportional to g2a=ð1þ μÞ3
with ga ¼ g in our approximation. Moreover, these vertices
generate a tadpole diagram that contribute to the gluon
propagator. Apart from shifting the Gaussian fixed point of
higher order operators in the Yang-Mills sector to an
interacting one, see [85] for the Uð1Þ case, it also deforms
the gluon contribution to the Yang-Mills beta function. Its
qualitative properties will be discussed later, as it is
important for the large Nc behavior of the fixed point.
However, a full inclusion is deferred to future work.

A. Background observables

The discussion of physics content of background observ-
ables and its relation to gauge- and diffeomorphism
invariance has been initiated for the Yang-Mills–gravity
system in [68,69]. There it has been shown that ηa;h ¼ 0

vanishes for

ra
1þ ra

1

1þ rh
¼ 0 ð38Þ

due to a nontrivial kinematic identity. This identity relates
angular averages of one- and two-graviton–two-gluon
scattering vertices in the absence of a gluon regulator ra,
see Fig. 2. In other words, for a combination of regulators
that satisfy (38) the quantum-gauge and quantum-
diffeomorphism symmetry violating effects of the regula-
tors do not effect the kinematic identity that holds in the
absence of the regulator.
This structure requires some care in the interpretation of

the running of background observables for k → ∞: while
the physics properties of the dynamical fluctuation fields
should not depend on the choice of the regulators, back-
ground observables do not necessarily display physics in
this limit. By now, we know of many examples for the latter
deficiency ranging from the beta function of Yang-Mills
theory, see [120], to the behavior of the background
couplings in pure gravity, [24,26,31,36,61] and matter-
gravity systems [79,82]. Moreover, we have already argued
that the relation between the dynamical and the background
minimal coupling only holds without modifications for
sufficiently large momenta.

In summary, this implies the following for the interpre-
tation of background observables: we either choose pairs
of regulators that satisfy (38) or we evaluate background
observables for momentum configurations that are not
dominantly affected by the breaking of quantum-gauge
and quantum-diffeomorphism invariance. Here, we will
pursue the latter option that gives us more freedom in the
choice of regulators. For the computation of the graviton
contribution to the running of the Yang-Mills background
coupling, this implies that we have to evaluate the flow
of the two-point function for sufficiently large external
momenta,

p2 ≳ k2: ð39Þ

For these momenta, the three-point function diagrams
effectively satisfy (38), and the anomalous dimension
ηa;hðp2Þ carries the information about the graviton con-
tribution of the beta function of the background coupling.

B. Gravity supports asymptotic freedom

The results of the discussion on background observables
in the previous Sec. IVA allow us to access the question of
asymptotic freedom of the minimal Yang-Mills coupling.
With the construction of the effective action (27), we obtain
a flow equation for ∂tΓðaaÞ, which is projected with the
transverse projection operator

Pμν
T ðpÞ ¼ δμν −

pμpν

p2
: ð40Þ

The graviton-induced contributions to the resulting flow
equation take the form

Pμν
T ðpÞ∂tΓ

ðaaÞ
μν ðpÞ

¼ FlowðaaÞ
h ðp2Þ

¼ Zaðp2Þg
Z
q
ðð_rðq2Þ − ηaðq2Þrðq2ÞÞfaðq; p; μÞ

þ ð_rðq2Þ − ηhðq2Þrðq2ÞÞfhðq; p; μÞÞ; ð41Þ

where the terms on the right-hand side originate from
diagrams with a regulator insertion in the gluon and
graviton propagator, respectively. The left-hand side is
simply given by

Pμν
T ∂tΓ

ðaaÞ
μν ðpÞ ¼ p2∂tZaðp2Þ: ð42Þ

Dividing by Zaðp2Þ, one obtains an inhomogeneous
Fredholm integral equation of the second kind for the
gluon anomalous dimension,

ηaðp2Þ ¼ fðp2Þ þ g
Z

d4q
ð2πÞ4 Kðp; q; μ; ηhÞηaðq

2Þ: ð43Þ
FIG. 2. Kinematic identity for the one- and two-graviton–
two-gluon scattering vertices for ra ¼ 0 and Γð2Þ

A ≃ Sð2ÞA , taken
from [68,69].
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This integral equation can be solved using the resolvent
formalism by means of a Liouville-Neumann series. In this
work, we approximate the full momentum dependence by
evaluating the anomalous dimension in the integrand in (43)
at q2 ¼ k2. This is justified since the integrand is peaked at
q ≈ k due to the regulator. With this approximation, (43) can
be evaluated numerically for all momenta. This approxima-
tion was already used in [79] and led to results in good
qualitative agreement with the full momentum dependence.
Details of the full solution are discussed in Appendix C.
With the approximation to (43), we investigate the sign of
the graviton contributions to the gluon propagator. These
contributions are functions of the gravity couplings, which in
turn depend on the truncation. It is therefore interesting to
evaluate ηa;h with a parametric dependence on the gravity
couplings, in order to obtain general conditions under which
asymptotic freedom is guaranteed.
The gluon anomalous dimension is of the form

ηaðp2; g; μ; ηhÞ. In order to avoid the unphysical regulator
dependence potentially induced by the violation of the
kinematical identity (38), we choose the momentum
p2 ¼ k2 in order to satisfy (39). In summary, this provides
us with a minimal coupling αs,

∂tαs ¼ βαs ¼ ηaðk2Þαs: ð44Þ

As a main result in the present section, we conclude that

βαs ≤ 0 for μ > −1 and ηhðk2Þ ≤ 2: ð45Þ

The restriction to ηh ≤ 2 is also the bound on the anoma-
lous dimension advocated in [79]. To be more precise,
ηh > 2 only changes the sign of the Yang-Mills beta
function in the limit μ → −1. For other values of μ, very
large values of ηh are necessary in order to destroy
asymptotic freedom, e.g., for μ ¼ −0.4 the bound is
ηh ≈ 50. The precise bound is displayed in Fig. 4, where
the red region indicates βαs > 0.
Despite the necessary restriction to momenta p2 ≳ k2 for

its relation to the physical background coupling, we have
also evaluated ηa;h for more general momentum configu-
rations and a range of gravity parameters μ and ηh: in Fig. 3,
the sign of the graviton-induced part of the gluon anoma-
lous dimension ηa;h is plotted in the momentum range
0 ≤ p2 ≤ k2. For small momenta, ηa;h changes sign for
μ → −1. Again it can be shown that this does not happen
for regulators with (38).
In order to understand the patterns behind Figs. 3 and 4 it

is illuminating to examine ηa;hðp2 ¼ 0Þ for flat regulators
(A1) with a p2 derivative. It reads

ηa;h ¼ −
g
8π

�
8 − ηa
1þ μ

−
4 − ηh
ð1þ μÞ2

�
: ð46Þ

The first term on the right-hand side stems from ∂tRk;a and
is positive for ηa < 8. The second stems from ∂tRh;k. It is
nonvanishing for ηh ¼ 0 and hence, already contributes at
one-loop order. Its very presence reflects the breaking of
the nontrivial kinematical identity depicted in Fig. 2 as it is
proportional to it. The interpretation of ηa;h as the graviton-
induced running of the Yang-Mills background coupling
crucially hinges on physical quantum gauge invariance:
it is important to realize that only with the relation between
the auxiliary background gauge invariance and quantum
gauge invariance the latter carries physics. In turn, in the
momentum regime where the kinematical identity is
violated, physical gauge invariance is not guaranteed,
and background gauge invariance reduces to an auxiliary
symmetry with no physical content. Accordingly, one
either has to evaluate ηa;hðp2Þ for sufficiently large
momenta p2 ≳ k2 or utilizes regulators that keep the
kinematical identity Fig. 2 at least approximately for all
momenta.

FIG. 3. Sign of the graviton contributions to the gluon anoma-
lous dimension ηa;h as a function of ηh, μ, and p. The colored
region indicates sgnηa;h < 0. At p ¼ k, the whole displayed
region supports asymptotic freedom.

FIG. 4. Sign of the graviton contributions to the gluon anoma-
lous dimension ηa;hðk2Þ as a function of ηh and μ. The red region
indicates sgnηa;hðk2Þ > 0 and the loss of asymptotic freedom.
The dashed line marks ηh ¼ 2.
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In summary, Figs. 3 and 4 entail that sgnðηa;hÞ < 0 holds
for physically relevant momenta and values of the gravity
couplings. Thus asymptotic freedom is preserved. We have
argued that (44) provides the correct definition for the beta
function of the minimal coupling of Yang-Mills theory
with sgnðβαsÞ ≤ 0. Hence, we conclude that an ultraviolet
fixed point in the spirit of the asymptotic safety scenario is
compatible with asymptotic freedom of the minimal cou-
pling in Yang-Mills theories. In Appendix D, we utilize
different approximations to the gluon anomalous dimen-
sion, and we discuss in detail the regimes, where it changes
the sign in the parameter space of the gravity couplings.

V. YANG-MILLS CONTRIBUTIONS
TO GRAVITY

This section is concerned with the impact of gluon
fluctuations on the gravity sector. The fully coupled system
is analyzed subsequently in Sec. VI.

A. General structure

For the question of asymptotic safety, we have to
investigate the gluon contributions to the graviton propa-
gator as well as to the graviton three-point function. This
allows us to compute the corrections to the running of the
gravity couplings ðμ; g; λ3Þ due to gluon fluctuations.
The gluon corrections to the graviton two- and three-

point function split analogously to the graviton corrections
to Yang-Mills theory in the preceding section, since for any
graviton n-point function the structure is given by

FlowðnhÞ ¼ FlowðnhÞ
h þ FlowðnhÞ

a ; ð47Þ

with graviton and gluon contributions denoted by FlowðnhÞ
h

and FlowðnhÞ
a , respectively. For example, the gluon con-

tributions to the flow of the graviton two- and three-point
function are depicted in Figs. 5 and 6. Accordingly, the beta
function for Newton’s coupling including gluon corrections
has the structure

∂tg ¼ ð2þ 3ηhÞgþ g2ðAhðμ; λ3Þ þ ηhBhðμ; λ3Þ
þ Ca þ ηaDaÞ; ð48Þ

where we have used the identifications (25). In (48), Ah and
Bh originate from graviton loops, and they depend on μ and
λ3, while Ca and Da are generated by gluon loops and are

just numbers. Similarly, the beta function for λ3 has the
structure

∂tλ3 ¼
�
−1þ 2

3
ηh þ

∂tg
2g

�
λ3 þ gðEhðμ; λ3Þ

þ ηhFhðμ; λ3Þ þGa þ ηaHaÞ: ð49Þ

Throughout this chapter, we display the anomalous dimen-
sions ηh, ηa as momentum independent. Note, however, that
they are momentum dependent, and we approximate their
momentum dependence by evaluating them at p ¼ k if they
appear in an integral, see [79] for details.
Moreover, the Yang-Mills contributions to the graviton

propagator enter the above beta function (48) via the
graviton anomalous dimension ηh and the graviton mass
parameter μ. These equations have the general form

ηh ¼ gðIhðμ; λ3Þ þ ηhJhðμ; λ3Þ þ Ka þ ηaLaÞ;
∂tμ ¼ ðηh − 2Þμþ gðMhðμ; λ3Þ þ Nhðμ; λ3Þηh

þOa þ ηaPaÞ; ð50Þ

where again all pure gravity contributions are labeled with
an index h and the one generated by gluons with an index a.
Note again that all the Yang-Mills contributions do not
depend on μ and λ3, as the corresponding diagrams do not
involve graviton propagators and pure graviton vertices, see
Figs. 5 and 6. In particular, this implies that these terms
have no 1=ð1þ μÞ singularity in the limit μ → −1.
Furthermore, all these diagrams contain a closed gluon
loop, and hence, all the factors in the above equations with
an index a are proportional to N2

c − 1.

B. Contributions to the graviton propagator

The gluon contribution to the graviton propagator has
been studied in a derivative expansion around p2 ¼ 0 in
[69], where it was shown that this projection is insufficient
due to the nontrivial momentum dependence of the flow.
The latter is characterized by a dip at p2 ≈ k2. It has been
shown in [24] that this structure is also present in the full
flow, i.e., including the graviton contributions and that
projections at momentum scales close to the cutoff are
necessary, see also [31,36]. We have rederived the momen-

tum dependence of Flowð2hÞ
a ðp2Þ, see Fig. 7.

FIG. 5. Diagrammatic depiction of the gluon contributions to
the flow of the graviton propagator. Wiggly and double lines
represent gluon and graviton propagators, respectively.

FIG. 6. Diagrammatic depiction of the gluon contributions to
the flow of the graviton three-point function. Wiggly and double
lines represent gluon and graviton propagators, respectively.
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For the projection at p2 ¼ 0 and flat regulators (A1), we
rederive the result of [69] and obtain for the momentum-
independent part

Flowð2hÞ
a ðp2 ¼ 0Þ ¼ gZhðN2

c − 1Þ 1

60π
ηa: ð51Þ

Surprisingly, this contribution is proportional to ηa. This
happens due to a cancellation between both diagrams
displayed in Fig. 5. Note that this cancellation only occurs
for the flat regulator. For other regulators, the contribution
can be either positive or negative. This is discussed in
Appendix B and will play a crucial role in the later analysis.
For the computation of the graviton anomalous dimen-

sion, we resort to a finite difference projection, which is of
the general form

Flowð2hÞ
a ðp2

1Þ − Flowð2hÞ
a ðp2

2Þ
p2
1 − p2

2

¼ gZhðN2
c − 1Þðαþ βηaÞ;

ð52Þ

where α and β depend only on p1 and p2. This is rooted in
the fact that there are only internal gluon propagators and
graviton-gluon vertices, and these do not depend on λ3 and
μ as discussed in the last section. For p2 ¼ 0 and p1 → p2,
i.e., a p2 derivative at p2 ¼ 0, we obtain

α ¼ β ¼ −
1

12π
≈ −0.027: ð53Þ

For a finite difference with p2
1 ¼ k2 and p2 ¼ 0, we obtain

α ≈ −0.012; β ≈ −0.0033: ð54Þ

Equations (53) and (54) display the gluon contribution to
−ηh; thus, the gluon contribution to ηh is positive inde-
pendent of the momentum projection scheme. Note
however that (53) and (54) display a qualitatively different
behavior, and (54) is the correct choice due to the

momentum dependence of the flow. This has already
been observed in the pure gravity computations in
[24,26,31,36] and emphasizes the importance of the
momentum dependence. In this work, we use a finite
difference between p2

1 ¼ p2 and p2
2 ¼ −μk2 for the equa-

tion of ηhðp2Þ, see [26,79] for details.

C. Contributions to the three-point function

The contributions to the graviton three-point function
enter the beta function of the Newton’s coupling g (48) via
Ca and Da and the beta function of λ3 (49) via Ga and Ha.
The diagrammatic representation of these contributions is
shown in Fig. 6. Here, the contribution to ∂tg is the
momentum dependent part and the contribution to ∂tλ3
in the momentum independent part to the graviton three-
point function. For the projection on the couplings g and λ3,
we use precisely the same projection operators as in [31].
These are different projection operators for g and λ3, and we
mark this with an index G and Λ in the following.
We have seen in the previous sections, that the momen-

tum dependence of the flow plays a crucial role, and key
properties may be spoiled if nontrivial momentum depend-
ence is not taken into account properly. Therefore, we
resolve the momentum dependence of the contributions

flowð3hÞ
G;a ðp2Þ, which is shown in the right panel of Fig. 7.

Interestingly, the contribution is peaked at p2 ¼ 1
2
k2 and

is not well described by p2 in the region 0 ≤ p2 ≤ k2.
Because of this nontrivial structure, the contribution to ∂tg
depends on the momenta where it is evaluated. For general
momenta p2

1 and p2
2, we obtain

Flowð3hÞ
G;a ðp2

1Þ − Flowð3hÞ
G;a ðp2

2Þ
p2
1 − p2

2

¼ g
3
2Z

3
2

hðN2
c − 1Þðγ þ δηaÞ;

ð55Þ

where γ and δ again only depend on p2
1 and p2

2. Evaluated
as derivatives, i.e., p2

2 ¼ 0 and p2
1 → 0, we arrive at

FIG. 7. The momentum dependence of Flowð2hÞ
a =ðN2

c − 1Þ (left) and Flowð3hÞ
a =ðN2

c − 1Þ (right) for g ¼ 1 and ηa ¼ 0 on the right-hand
side of the flow.
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γ ¼ −
7

30π
≈ −0.074; δ ¼ −

1

570π
≈ −0.00056: ð56Þ

With p2
1 ¼ k2 and p2

2 ¼ 0, they are given by

γ ≈ −0.018; δ ≈ −0.0014: ð57Þ

As in the case of the gluon propagator, the sign of the
derivative definition agrees with the bilocal one but they
differ strongly in their magnitude. In the present work, we
use (57). The contribution to λ3 is always evaluated at
vanishing momentum. We obtain

Flowð3hÞ
Λ;a ðp2 ¼ 0Þ ¼ g

3
2Z

3
2

hðN2
c − 1Þ 3 − ηa

60π
: ð58Þ

D. Mixed graviton-gluon coupling

So far, we have only considered pure gluon and pure
graviton correlation functions in the coupled Yang-Mills–
gravity system. Indeed, the results that will be presented in
Sec. VI are based on precisely these correlation functions,
and other couplings are identified according to (25). In
Sec. VII, we will then discuss the stability of the results
under extensions of the truncation. In particular, we will
have a look at the inclusion of a flow equation for the
graviton–two-gluon coupling ga.
The flow equation for ga is derived analogously to the g3

coupling from three-graviton vertex: we build the projec-
tion operator from the classical tensor structure SðhaaÞ with
a transverse traceless graviton and two transverse gluons.
This projection operator is contracted with both sides of
the flow equation for this specific vertex. The equation is
further evaluated at the momentum symmetric point [31].
The resulting p2 part gives the flow equation for ga. We
obtain an analytic flow equation for ga by a p2 derivative at
p2 ¼ 0. The resulting flow equation is given in Appendix F.
For the computations in Sec. VII, we use the preferred

method of finite differences. In particular, we choose the
evaluation points p2 ¼ k2 and p2 ¼ 0. With this method,
we do not obtain analytic flows but we take more nontrivial
momentum dependences into account [31,36]. The com-
putation is simplified by the fact that the present flow is
actually vanishing at p2 ¼ 0. Consequently, the finite
difference equals to an evaluation at p2 ¼ k2, and the
momentum derivative gives the same result as a 1=p2

division.

E. Momentum locality

We close this section with a remark on the momentum
locality introduced in [31] as a necessary condition for
well-defined RG flows. It was shown to be related to
diffeomorphism invariance of the theory. It entails that
flows should not change the leading order of the large
momentum behavior of correlation functions.

The asymptotics of the diagrams for the graviton two-
point function, ordered as displayed in Fig. 5, are

Diagð2hÞ1 ðp2 → ∞Þ ¼ −g
8 − ηa
12π

;

Diagð2hÞ2 ðp2 → ∞Þ ¼ g
8 − ηa
12π

; ð59Þ

while the asymptotics for the graviton three-point function,
again ordered as displayed in Fig. 6, are

Diagð3hÞ1 ðp2 → ∞Þ ¼ −g3=2
8 − ηa
19π

;

Diagð3hÞ2 ðp2 → ∞Þ ¼ g3=2
4ð8 − ηaÞ

19π
;

Diagð3hÞ3 ðp2 → ∞Þ ¼ −g3=2
3ð8 − ηaÞ

19π
: ð60Þ

Consequently, we again have a highly nontrivial cancella-
tion between different diagrams, which leads to the
property of momentum locality. In summary, we assert

lim
p2=k2→∞

∂tΓð2h;3hÞðp2Þ
Γð2h;3hÞðp2Þ ¼ 0; ð61Þ

at the symmetric point in the transverse traceless mode.
Hence, the full flows of the graviton two- and three-point
functions including Yang-Mills corrections are momen-
tum local.

VI. ASYMPTOTIC SAFETY OF
YANG-MILLS–GRAVITY

In this section, we provide a full analysis of the ultra-
violet fixed point of the coupled Yang-Mills–gravity
system. It is characterized by the nontrivial fixed point
of Newton’s coupling g, the coupling of the momentum-
independent part of the graviton three-point function λ3,
and the graviton mass parameter μ while the minimal gauge
coupling vanishes, αs ¼ 0.

A. Finite Nc

The fully coupled fixed point shows some remarkable
features. The fixed point values are displayed in the left
panel of Fig. 8. The fixed point value of the graviton
mass parameter remains almost a constant as a function of
Nc. The Newton’s coupling is approaching zero, while λ�3
becomes slowly smaller and crosses zero at N2

c ≈ 166.
This behavior can be understood from the equations: the
leading contribution from Yang-Mills to ∂tμ cancels out,
and only a term proportional to ηa remains, see (51).
The latter is small at the fixed point, and hence, the effect
on ∂tμ is strongly suppressed. The falloff of g� and λ�3 is
explained by the respective contribution in the flow
equations, see (57) and (58).
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The critical exponents of the fixed point, which are
given by minus the eigenvalues of the stability matrix, are
displayed in the central panel of Fig. 8. They remain stable
over the whole investigated range. Two critical exponents
form a complex conjugated pair. The real part of this pair is
positive and thus corresponds to two UV attractive direc-
tions. The third critical exponent is real and negative and
corresponds to a UV repulsive direction. The eigenvector
belonging to the latter exponent points approximately in the
direction of λ3, which is in accordance with pure gravity
results [31].
In the right panel of Fig. 8, we show the anomalous

dimensions at the fixed point, evaluated at p2 ¼ 0 and
p2 ¼ k2. The ghost and gluon anomalous dimensions tend
towards zero for increasing Nc. Most importantly, ηaðk2Þ
is always negative, which is a necessary condition for
asymptotic freedom in the Yang-Mills sector. The graviton
anomalous dimension does not tend towards zero. At
p2 ¼ k2, it is getting smaller with an increasing Nc despite
the positive gluon contribution (54). The reason is that the
anomalous dimension is also proportional to g�, which is

decreasing, and this effect dominates over the gluon
contribution. At p2 ¼ 0, on the other hand, the gluon
contribution is also positive but larger in value, see (53),
and consequently, dominates over the decrease in g�. ηhð0Þ
is increasing, crosses the value 2 and starts to decrease
again for large Nc. As mentioned in (19), η < 2 is a bound
on regulators that are proportional to the respective wave
function renormalization. In our case, ηhð0Þ exceeds the
value 2 just slightly and remains far from the strict bound,
which is ηh < 4, see [79] for details.
The fixed point values of the background couplings

are displayed in Fig. 9. The equations for the pure gravity
part are identical to the ones in [36] and the gluon part is
identical to the one in [73]. In this setting, the background
couplings behave very similar to the dynamical ones. The
background Newton’s coupling goes to zero with 1=N2

c
while the background cosmological constant goes to a
constant for large Nc. Interestingly, the background cou-
pling approach their asymptotic behavior faster than the
dynamical ones.

B. Large Nc scaling

In the limit Nc → ∞, the couplings approach the fixed
point values

g� →
89

N2
c
þ 8.0 × 104

N4
c

; μ� → −0.45 −
3.3 × 102

N2
c

;

λ�3 → −0.71þ 2.4 × 103

N2
c

: ð62Þ

As expected, the ’t Hooft coupling g�N2
c is going to a

constant in the large Nc limit. This behavior is also
displayed in Fig. 10 for finite Nc. Remarkably, μ� and
λ�3 remain finite. In the λ3 equation, this originates from a
balancing of the gluon contribution with the canonical
term. In the μ equation, on the other hand, all contributions
go to zero in leading order and the fixed point value of μ
follows from the second order contributions. The asymp-
totic anomalous dimensions follow as

FIG. 8. Properties of the UV fixed point as a function of N2
c − 1 in the uniform approximation with one Newton’s coupling. Displayed

are the fixed point values (left panel), the critical exponents (central panel), and the anomalous dimensions (right panel).

FIG. 9. Displayed are the background couplings ḡ� and λ̄� as a
function of N2

c − 1 evaluated at the UV fixed point displayed in
Fig. 8. The coupling ḡ� is going to zero with 1

N2
c
and λ̄� goes to the

constant 0.38, see (64).
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ηhð0Þ → 2þ 2.7 × 103

N2
c

; ηhðk2Þ → 0.36þ 2.9 × 102

N2
c

;

ηcð0Þ → −
1.3 × 102

N2
c

; ηcðk2Þ → −
1.5 × 102

N2
c

;

ηað0Þ → −
8.7
N2

c
; ηaðk2Þ → −

22

N2
c
; ð63Þ

which satisfy the bounds ηi ≤ 2 necessary for the consis-
tency of the regulators that are proportional to Zh, Zc, Za.
Note that only the graviton anomalous dimension is non-
vanishing in this limit. Importantly, the gluon anomalous
dimension approaches zero from the negative direction,
which means that it supports asymptotic freedom in the
Yang-Mills sector. The asymptotic value ηhð0Þ ¼ 2 follows
directly from the demand that all contributions in the μ
equation have to go to zero in leading order, as discussed in
the last paragraph. The critical exponents are given by

θ1;2 → 1.2� 2.1iþ ð1.1 ∓ 5.6iÞ · 103
N2

c
;

θ3 → −2.3 −
14 × 103

N2
c

: ð64Þ

The fixed point has two attractive and one repulsive
direction for all colors. Remarkably, the values of the
critical exponents remain of order 1. The background
couplings approach the values

ḡ� →
9.4
N2

c
−
1.3 × 102

N4
c

; λ̄� → 0.38 −
1.4
N2

c
: ð65Þ

Again, the background ’t Hooft coupling, ḡ�N2
c remains

finite in the large Nc limit, which is also displayed
in Fig. 10.
In summary, we have found a stable UV fixed point with

two attractive directions. The fixed point values, the critical
exponents and the anomalous dimensions are of order 1. In

Fig. 8, we display this behavior up to N2
c ¼ 1500, and in

this section, we have augmented this with a solution for
Nc → ∞. Consequently, we conclude that the system is
asymptotically safe in the gravity sector and asymptotically
free in the Yang-Mills sector for all Nc.

C. Decoupling of gravity-induced gluon
self-interactions

It has been advocated in [72] that interacting matter-
gravity systems necessarily contain self-interacting matter
fixed points. This has been investigated in scalar, fermionic,
and Yukawa systems in, e.g., [81,82,86].
Recently, also a Yang-Mills–gravity system with an

Abelian Uð1Þ gauge group has been investigated [85]. It
was found that that the coupling of the fourth power of the
field strength, F4, takes a finite fixed point value, while
the minimal coupling that enters the covariant derivative
can be asymptotically free. As already mentioned before in
Sec. IV, the same happens in Yang-Mills–gravity systems.
In particular, we are led to

w�
2ðtrF2

μνÞ2 þ v�4trF
4
μν; ð66Þ

with w�
2 ≠ 0 and v�4 ≠ 0 without nontrivial cancellations.

A quantitative computations of these fixed point couplings
is deferred to future work. Here, we simply discuss their
qualitative behavior: even if not present in the theory, the
couplings w2 and v4 are generated by diagrams with the
exchange of two gravitons, see Fig. 11. In leading order,
these diagrams are proportional to

g2

ð1þ μÞ3 ∝
1

N4
c
→ 0; ð67Þ

and vanish in the large Nc scaling of (62). It is simple to
show that the further diagrams in the fixed point equations
of w2, v2 proportional to w2, v2 decay even faster when
using (67) for the diagrams.
Finally, we get additional gluon tadpole contributions

proportional to ω�
2, v

�
4 for the running of the Yang-Mills

beta function. In leading order, these contributions are
proportional to N2

c due to a closed gluon loop. Together
with the fixed point scaling of ω�

2, v
�
4 in (67), this leads to a

1=N2
c decay of these contributions. They have the same

large Nc scaling as the pure gravity contributions but also

FIG. 10. Displayed are the fixed point ’t Hooft couplings g�N2
c

and ḡ�N2
c as a function of N2

c − 1. The couplings approach the
asymptotic values g�N2

c → 89 and ḡ�N2
c → 9.4, see (62) and (64).

FIG. 11. Diagrammatic depiction of the graviton induced
higher-order gluon interactions. Wiggly and double lines re-
present gluon and graviton propagators, respectively.
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share the same negative sign supporting asymptotic free-
dom, see [85] for a study in Uð1Þ theories.
We close this chapter with a qualitative discussion of the

stability for the interacting fixed point: as ω2, v2 do not
couple into the pure gravity subsystem, the stability matrix
is skew symmetric, and the eigenvalues are computed in the
respective subsystems. Both, the gravity as well as the ω2,
v4 subsystems are stable in the limit g → 0.
This concludes our analysis of the large Nc behavior of

quantum gravity with the flat regulator and the identifica-
tion (25). As expected, Newton’s coupling g shows the
1=N2

c-behavior discussed in Sec. II.

VII. UV DOMINANCE OF GRAVITY

A. Dynamical scale fixing

In Sec. VI, we used the identifications of all Newton’s
couplings (25). In the present chapter, we discuss the
general case without this identification. We provide a
comprehensive summary of results and the underlying
structure, more details can be found in Appendix E.
While we have argued in Sec. II that the present Yang-
Mills–gravity system, as well as all free-matter–gravity
systems are asymptotically safe, the interesting question
is how and if at all in the present approximation this is
dynamically observed.
Within the iterative procedure in Sec. II, we arrived at a

fixed point action that is identical to that of the pure gravity
sector with fixed point values for g�n, λ�n, and μ�. We also
have ga ¼ g3 due to the expansion of the metric gμν ¼
ḡμν þ ffiffiffiffiffi

g3
p

k2hμν with k ¼ kh. Note also that in such a two-
scale setting with kh and ka, the latter rather is to be
identified with kUVa and not with kIRa . As the effect of the
latter has been absorbed in a renormalization of Newton’s
coupling prior to the integrating out of graviton fluctuations
(or rather their suppression with kh → ∞), this sets the
graviton cutoff scale kh ¼ k as the largest scale in the
system. This leads to (20) that effectively induces

k2 ≃ N2
ck2a; ð68Þ

in the large Nc limit. Note that with a rescaling of our
unique cutoff scale in Sec. VI with N2

c we already arrive at
the Nc independent fixed point values (62). The large
values come from dropping the Nc-independent prefactor
in the ratio G=Geff . The latter fact signals the unphysical
nature of fixed point values, which within this two-scale
setting also extends to the product g�λ�, typically used in
the literature as a potentially rescaling-invariant observable.
Despite (20) being a natural relative scale setting, without

any approximation, the full system of flow equations with
kh ¼ ka should adjust itself dynamically to this situation
with g�a ∼ g�c ∼ g� and with g� ∝ 1=N2

c in the large Nc limit.
In the present approximation, this can happen via two
mechanisms that both elevate the graviton fluctuations to

the same Nc strength as the gluon fluctuations: the graviton
propagator acquires a Nc scaling

k2Ghðp2 ¼ 0Þ ¼ 1

Zh

1

1þ μ
∝ N2

c; ð69Þ

after an appropriate rescaling of the couplings, for more
details see Appendix E. We proceed by discussing the two
dynamical options that the system has to generate the Nc
scaling in (69):
(1) Evidently, (69) can be achieved via

μ� ∝ −1þ cþ=N2
c; ð70Þ

with a positive constant cþ. Note that (70) is not
present in the fixed point results in Sec. VI. Accord-
ingly, adding the fixed point equation for ga has to
trigger this running. Below we shall investigate this
possibility in more detail.

(2) The Nc scaling can also be stored in 1=Zh. As we
have chosen regulators that are proportional to Zh,
this leads to an effective elimination of Zh from the
system; its only remnant is the anomalous dimension
ηh in the cutoff derivative. Since 1=Zh ∝ ðk2Þηh=2−1,
the anomalous dimension ηh has to grow large and
positive in order to effectively describe the Nc
scaling in (69),

ηh → ∞: ð71Þ

In the present setting with Rh;k ∝ Zh, this option
cannot be investigated as (71) violates the bound

Rh;k ∝ Zh ⇒ ηh < 2; ð72Þ

for the regulator. For ηh > 2, the regulators of
type (72) cannot be shown to suppress UV degrees
of freedom anymore in the limit k → ∞ as
limk→∞Rkðp2Þ → 0 for ηh > 2. This bound was
introduced and discussed in [79] within the scalar-
gravity system, where ηh grows beyond this bound
for the number of scalars Ns getting large. It was
stated there that the stability of the scalar-gravity
system could not be investigated conclusively since
the regulator cannot be trusted anymore. In the light
of the present results and discussion, we know that
the free-matter system is asymptotically safe. Then,
the growing ηh signals that the system wants to
accommodate (69) with a growing 1=Zh.

We emphasize that the physics of both options, (1) and (2), is
captured by (69) and is identical. Which part of the scaling of
the propagator is captured by μ and which one by Zh is
determined by the projection procedure. Note that the latter
is also approximation dependent.
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In summary, the coupled Yang-Mills–gravity system
approaches the large Nc limit via (69). Whether or not
this is seen in the current approximation with the cutoff
choice (72) is a technical issue. If the approximation admits
option (1) then the fixed point can be approached, if (2) or a
mixture of (1) and (2) is taken then the fixed point cannot
be seen due to the regulator bound in our setup. We
emphasize again that this does not entail the nonexistence
of the fixed point, which is guaranteed by the analysis of
Sec. II. The analysis here evaluates the capability of the
approximation to capture this fixed point. The understand-
ing of this structure and guaranteeing this capability of the
approximation is of chief importance when evaluating the
stability of more complex matter-gravity systems with
genuine matter self-interaction: no conclusion concerning
the stability of these systems can be drawn if the capability
problem for the free-matter–gravity systems is not resolved.
Moreover, even if the fixed points exist, their physics may
be qualitatively biased by this problem.

B. Results in the extended approximation

In the following analysis, we concentrate on the ga fixed
point equation and keep gc ¼ g. Before we extend the
approximation to this case, let us reevaluate the results with
ga ¼ g in the light of the last Sec. VII A. There it has been
deduced that a consistent Nc scaling requires g� ∝ 1=N2

c
and either (70) or (71), or both. Figure 8 shows the
consistent large Nc scaling for Newton’s coupling but
neither (70) nor (71). This comes as a surprise as the
system is asymptotically safe and the large Nc limit in the
approximation g ¼ ga is seemingly stable. To investigate
this stability, we examine the regulator dependence of the
coefficients of the flow equations. To that end, we notice
that the coefficients in the μ equation (and the g3, ga
equations) are of crucial importance for the stability of
the system. The coefficient cμ;a ¼ −1=ð60πÞηa of the
Yang-Mills contribution to the graviton mass parameter
is proportional to the gluon anomalous dimension ηa: the
leading coefficient vanishes, see (E4) and (G1). Indeed,
choosing other regulators, the leading order term is non-
vanishing with

−0.2≲ cμ;aðRkÞ≲ 0.2; ð73Þ

see Appendix B. Typically, it supersedes the ηa-dependent
term, and the flat regulator appears to be a very special
choice. If cμ;a ≳ 0.013, we indeed find a solution, which is
consistent with (70), see Fig. 13 for cμ;a ¼ 1

24π ≈ 0.0133. In
turn, for cμ;a ≲ −0.005, we find solutions with growing ηh,
hence in the class (71). Accordingly, this solution is not
trustworthy with ηh beyond the bound (72). Its failure
simply is one of the approximation (within this choice of
regulator) rather than that of asymptotic safety.
In summary, this leads us to a classification of the

regulators according to the large Nc limit: they either

induce the dynamical readjustment of the scales via (70) or
via (71) or they fall in between such as the flat cutoff.
Within the current approximation it is required that the
readjustment happens via (70).
Now we are in the position to discuss the general case

with ga ≠ g. An optimal scenario would be that the
inclusion of the ga equation already stabilizes the system
such that it enforces the dynamical readjustment via (70)
for all regulators proportional to Zh. However, as we shall
see, the general scheme from the uniform approximation
persists with this upgrade of the approximation.

1. No apparent Nc scaling for μ and ηh
In the uniform approximation with one Newton’s cou-

pling (25), this scenario was taken with regulators with
−0.005≲ cμ;a ≲ 0.013. A typical regulator in this class is
the flat regulator used in the present work. This scenario
does not enhance the graviton propagator and hence, does
not fulfil (69). The stability of the results in the large Nc
limit in the uniform approximation must thus rather be
considered a mere coincidence. Indeed in the extended
truncation with g ≠ ga, the enhancement of the graviton
propagator is not triggered by the included ga equation, and
consequently, the flat regulator does not have a stable large
Nc limit anymore. The fixed point values, critical expo-
nents, and the anomalous dimensions in this approximation
are shown in Fig. 14. The fixed point values show a
marginal Nc dependence up to the point where the fixed
point vanishes into the complex plane at N2

c ≈ 13.5, which
is signaled by one of the critical exponents going towards
zero. The vanishing critical exponent can be associated
with ga. Typically, this is interpreted as a sign for the failure
of asymptotic safety. Here, it is evident that the truncation
cannot accommodate the dynamical readjustment of the
scales that takes place in the full system. This could also
signal an overcomplete system: g and ga are related by
diffeomorphism invariance. In any case, the failure of the
approximation can either lead to the divergence of the
couplings [related to (71)], or in complex parts of the fixed
point values. For the flat regulator, the latter scenario
is taken.

2. Scenario with 1+ μ ∝ 1=N2
c

This scenario requires regulators with cþ < cμ;a < cmax.
A typical regulator in this class is the sharp regulator, see
(A3) and Fig. 12. Here, we do not present a full analysis of
this case but only change the coefficient cμ;a accordingly.
This is justified in terms of linear small perturbations of
the system: cμ;a is the only leading order coefficient in the
system that exhibits a qualitative change when changing
the regulator away from the flat regulator. Note however,
that this change ceases to be small for large Nc as cμ;a is
multiplied by N2

c. If accompanied by a respective change
of the relative cutoff scales kh=ka, this factor could be
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compensated. Then, however, we are directly in the stable
regulator choice with (20). Here, we are more interested
in the dynamical stabilization, and we refrain from the
rescaling. The system exhibits the 1=N2

c scaling in the
Newton’s couplings, g� and g�a, as well as the mass
parameter μ�, see Fig. 15 for cμ;a ≈ 0.08. However, with
this choice, the critical exponents of the fixed point become
rather large. We determined the constant cþ ≈ 0.07.

3. Scenario with ηh growing large

This scenario requires regulators with −cmin < cμ;a <
−c−. A typical regulator in this class is the exponential
regulator, see (A2) and Fig. 12. For this class of regulators,
both couplings grow large, and we have the scenario with
(71) bound to fail to provide fixed point solutions beyond a
maximal Nc due to the failure of the approximation scheme.

C. Resumé: Signatures of asymptotic safety
of Yang-Mills–gravity systems

In summary, with the choice of the regulator, we can
dial the different scenarios that all entail the same
physics: the dynamical readjustment of the respective
scales in the gauge and gravity subsystems and the
asymptotic safety of the combined system. The two
different scenarios are described in Sec. VII B 2 and
Sec. VII B 3. Both scenarios entail the same physics
mechanism: the enhancement of the graviton propagator,
see (69). This triggers the dominance of gravity in the
ultraviolet, which is clearly visible in the consecutive
integrating out of degrees of freedom discussed in Sec. II.
The crucial property for the validity of this structure is the
asymptotic freedom of the Yang-Mills system, and hence,
the existence of the gauge system in a given background.
This property is trivially present in systems with free

FIG. 12. Schematic picture of the dynamical scale readjustment mechanisms as a function of the coefficient cμ;aðRkÞ.

FIG. 13. Properties of the UV fixed point as a function of N2
c − 1 in the uniform approximation with one Newton’s coupling and with

cμ;a ¼ 1
24π ≈ 0.0133. Displayed are the fixed point values (left panel), the critical exponents (central panel), and the anomalous

dimensions (right panel).

FIG. 14. Properties of the UV fixed point as a function of N2
c − 1 in the approximation with two Newton’s couplings and with the flat

regulator, cμ;a ¼ 0. Displayed are the fixed point values (left panel), the critical exponents (central panel), and the anomalous dimensions
(right panel).
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matter coupled to gravity, and hence the present analysis
extends to these cases.
This leaves us with the question of how to reevaluate the

existing results on matter-gravity system in the light of the
present findings. We first notice that the helpful peculiarity
of the Yang-Mills–gravity system that allowed us to easily
access all the different scenarios, is the possibility to choose
the sign of cμ;a with the choice of the regulator. Clearly, the
gauge contribution to the running of the graviton mass
parameter plays a pivotal role for how the enhancement of
the graviton propagator in (69) is technically achieved. In
the other matter-gravity system, this parameter has a
definite sign, which is why one sees a specific scenario
for typical regulators. Collecting all the results and restrict-
ing ourselves to truncations that resolve the difference
between fluctuation and background fields, [79], we find
the following:
(1) Fermion-gravity systems: they fall into the class

Sec. VII B 2, and the asymptotic safety of the system
can be accessed in the approximation. The required
large flavor Nf pattern with (70) is visible in the
results.

(2) Scalar-gravity systems: they fall into the class
Sec. VII B 3, and for large enough number of scalars
Ns, the fixed point seemingly disappears due to the
fixed point coupling g� and anomalous dimension ηh
growing too large.

(3) Vector-gravity/Yang-Mills–gravity systems: this
system has been discussed here, and it falls into
all classes, Secs. VII B 1, VII B 2, and VII B 3. This
also includes the Uð1Þ system.

(4) Self-interacting gauge-matter–gravity systems: these
systems only fall into the pattern described in
Secs. VII B 1, VII B 2, and VII B 3 if the gauge-
matter system is itself ultraviolet stable. For exam-
ple, one flavor QED exhibits a UV-Landau pole and
is stabilized by gravity, which makes the combined
system asymptotically safe, for a comprehensive
analysis see [85,88]. Adding more flavors poten-
tially destabilizes the system; however, such an

analysis has to avoid the interpretation of the
seeming failure of asymptotic safety described here.
One possibility to take this into account is the scale
adjustment (20). This discussion also carries over to
general gauge-matter–gravity systems including the
Standard Model and its extensions.

In summary, this explains the results obtained in gravi-
tationally interacting gauge-matter–gravity systems,
which are the basis of general gauge-matter–gravity sys-
tem. While it suggests the use of relative cutoff scales
such as (20), it still leaves us with the task of devising
approximations that are capable of capturing the dynamical
readjustment of scales that happens in gravitationally
interacting gauge-matter–gravity systems. In particular,
the marginal operator R2 lnð1þ R=kIRa 2Þ, cf. (17), has to
be included as discussed in Sec. II B.
Besides this task, the present analysis also requires a

careful reanalysis of phenomenological bounds on ultra-
violet fixed point couplings. It is well-known that the values
of the latter are subject to rescalings and only dimension-
less products of couplings such as g�λ� possibly have a
direct physical interpretation. We have argued here that the
dynamically adjusted or explicitly adjusted relative cutoff
scales ask for a reassessment also of these dimensionless
products.

VIII. SUMMARY AND CONCLUSIONS

We have investigated the prospect for asymptotic safety
of gravity in the presence of general matter fields. A main
new addition are general arguments, which state that if
matter remains sufficiently weakly coupled in the UV, or
even free, asymptotic safety for the combined matter-
gravity theory follows, in essence, from asymptotic safety
of pure gravity (Sec. II). Ultimately, the UV dominance of
gravitons relates to the fact that the integrating out of UV-
free matter fields only generates local counter terms in the
gravitational sector.
Our reasoning has been tested comprehensively for

Yang-Mills theory coupled to gravity. Using identical

FIG. 15. Properties of the UV fixed point as a function of N2
c − 1 in the approximation with two Newton’s couplings and with

cμ;a ¼ 1
4π ≈ 0.08. Displayed are the fixed point values (left panel), the critical exponents (central panel), and the anomalous dimensions

(right panel).
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cutoffs for gravity and matter, we invariably find that
asymptotic safety arises at a partially interacting fixed point
with asymptotic freedom in the Yang-Mills and asymptotic
safety in the gravity sector. Fluctuations of the gravitons
dominate over those by matter fields including in the
asymptotic limit of infinite Nc (Fig. 8). Interestingly, the
UV dominance of gravity can materialize itself in different
manners (Figs. 13–15), strongly depending on technical
parameters of the theory such as the gauge, the regulari-
zation, and the momentum cutoff. The overall physics,
however, is not affected (Fig. 12). This pattern is reminis-
cent of how confinement arises in gauge-fixed continuum
formulations of QCD. It is also worth noting that the
observed Nc independence with identical cutoffs follows
automatically, if, instead, “relative cutoffs” for matter and
gravity fluctuations are adopted, following (20). This may
prove useful for practical studies of gravity-matter systems
in set approximations. The necessity for “relative cutoffs” is
well-understood in condensed matter systems, albeit for
other reasons [112,113].
There are several points that would benefit from further

study in the future. While we explained in general terms how
findings extend to more general matter sectors (Sec. VII), it
would seem useful to further substantiate this in explicit
studies. Also, our study highlighted the appearance of
logarithmic terms such as R2 lnR, and similar (Sec. II).
These classically marginal terms are of relevance for the
question of unitarity of asymptotically safe gravity. It
remains to be seen whether they affect the observed Nc
independence of gravity-matter fixed points in any signifi-
cant manner (Sec. VII). Finally, our findings offer a natural
reinterpretation of earlier results. It is important to confirm
whether this is sufficient to remove a tension amongst
previous findings based on different implementations of
the renormalization group. Understanding these aspects
opens a door towards reliable conclusions for UV comple-
tions of the Standard Model or its extensions.
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APPENDIX A: REGULATORS

In the present work, we use the optimized or flat
regulator [117,118,123,124] for all field modes.
Specifically, the superfield regulator at ḡ ¼ 1l and Ā ¼ 0
with flat Euclidean background metric is given by

Rij
k ðpÞ ¼ δijΓðϕiϕ

�
i ÞðpÞjμ¼0rϕi

ðp2=k2Þ;

rðxÞ ¼
�
1

x
− 1

�
θð1 − xÞ: ðA1Þ

Here, ϕ� is the dual superfield with ϕ� ¼ ðhμν;−c̄μ; cμ; Aμ;
−c̄; cÞ. The regulator (A1) is diagonal in field space
keeping in mind the symplectic metric and allows for
analytic expressions of the flow [13]. For the general
scaling analysis, we also discuss more general regulators,
in particular, we refer to the exponential regulator with

rðxÞ ¼ 1

expðxÞ − 1
; ðA2Þ

and to the sharp cutoff regulator with

rðxÞ ¼ 1

θðx − 1Þ − 1: ðA3Þ

These regulators and variants thereof can be used to scan
the space of cutoff functions [125,126].

APPENDIX B: REGULATOR DEPENDENCE OF
THE GLUON CONTRIBUTION TO THE

GRAVITON MASS PARAMETER

The coefficient cμ;a, which parameterizes the gluon
contribution to the graviton mass parameter, is given by

cμ;a ¼ −
Flowð2hÞ

a ðp2 ¼ 0Þ
gðN2

c − 1Þ

¼ 1

3π

Z
dxx_rhðxÞ

ð1þ rhðxÞÞ2
�

4

1þ rhðxÞ
− 3

�
; ðB1Þ

with x ¼ q2

k2, ηa ¼ 0 on the right-hand side and where the
angular integration was already performed. We now use
that

k∂krhðk; xÞ ¼ k
∂x
∂k ∂xrhðk; xÞ ¼ −2x∂xrhðk; xÞ; ðB2Þ

and consequently, we get

cμ;a ¼ −
2

3π

Z
dxx2

�
∂x

�
2

ð1þ rhðxÞÞ2
− 2

�

− ∂x

�
3

1þ rhðxÞ
− 3

��
; ðB3Þ

where we added zeros in order to perform the partial
integration without boundary terms. The result after partial
integration is
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cμ;a ¼
4

3π

Z
dxx

rhðxÞðrhðxÞ − 1Þ
ð1þ rhðxÞÞ2

: ðB4Þ

We have evaluated this integral for different types of
regulator shape functions. The results are displayed in
Table I. The flat regulator evaluates this integral to zero,
while exponential regulators give a positive sign and
steplike or sharp regulators even give a negative sign.
The usual expectation is that the regulator changes the size
of a contribution but not its sign. In this case, however, two
diagrams cancel each other approximately and by changing
the regulator, we shift the weights between these two
diagrams. Thus, any sign of this contribution is possible.

APPENDIX C: INHOMOGENEOUS FREDHOLM
INTEGRAL EQUATIONS OF THE SECOND KIND

In this Appendix, we discuss methods to solve Fredholm
integral equations on the example of the gluon anomalous
dimension

ηaðp2Þ ¼ fðp2Þ þ g
Z

d4q
ð2πÞ4Kðp; q; μ; ηhÞηaðq2Þ; ðC1Þ

see Sec. IV B. Fredholm integral equations of the second
kind are a well-known topic in pure and applied math-
ematics, and there are several methods in order to solve
such equations. A straightforward numerical solution is the
so-called Nystroem method that is based on discretization
of the integral operator with quadratures on N points. By
doing so, one obtains Riemann sums that reduce to a
system of N linear equations. Moreover, if there exist a
solution to (C1), it can be shown by the general theory of
such equations that it is unique and the discretized version
converges towards this solution in the limit N → ∞.
Another method that comes along with less numerical
effort are iterative solutions based on the resolvent formal-
ism and the Liouville-Neumann series. The basic idea of
this approach is as follows. In order to get a feeling for such
integral equations, we observe that for g ¼ 0, the unique
solution to (C1) is trivially given by the inhomogeneity

fðp2Þ. Hence, if g is small in some sense, it seems
reasonable that fðp2Þ is at least a good zeroth order
approximation to the full solution ηaðp2Þ, i.e. ηaðp2Þ≈
ηa;0ðp2Þ≡ fðp2Þ. In a first iteration step, we substitute
ηa;0ðq2Þ for ηaðq2Þ under the integral on the right-hand side
of the integral equation (C1),

ηa;1ðp2Þ¼fðp2Þþg
Z

d4q
ð2πÞ4Kðp;q;μ;ηhÞηa;0ðq2Þ: ðC2Þ

In this spirit, we can construct iteratively a sequence
ðηa;iðp2ÞÞi∈N with

ηa;iþ1ðp2Þ ¼ fðp2Þ þ g
Z

d4q
ð2πÞ4Kðp; q; μ; ηhÞηa;iðq

2Þ:

ðC3Þ

The convergence properties depend on the kernel K and
the coupling constant g. We observe that due to the
regulator structure, the kernel K is proportional to
raðq2Þ. Therefore, the kernel is integrable with respect to
the loop momentum q. For the sake of simplicity, we will
assume in the following a flat regulator raðq2Þ ∼ θð1 − q2Þ,
where q is the dimensionless momentum. The discussion
can be generalized straightforwardly to arbitrary regulators.
With a flat regulator, we write Kðp; qÞ≕ θð1 − q2ÞǨðp; qÞ.
As a consequence, the integral in the Fredholm equation is
defined on the domain [0, 1], and in all equations, K is
substituted by Ǩ. Moreover, we define the angular averaged
kernel

hǨiΩðp; q; μ; ηhÞ ≔
Z
S3

dΩ
ð2πÞ4 Ǩðp; q; x; μ; ηhÞ; ðC4Þ

where dΩ is the canonical measure on the three sphere.
The kernel hǨiΩ can be normed, in particular, it exists its
2-norm with respect to the first two arguments

jjhǨiΩjj2≔
�Z

1

0

Z
1

0

dqdpjhǨiΩðp;q;μ;ηhÞj2
�

1=2
: ðC5Þ

It can then be shown that the sequence ðηiðp2ÞÞi∈N
converges towards the full solution, i.e.,

lim
i→∞

ηa;iðp2Þ ¼ ηaðp2Þ; ðC6Þ

if the kernel is bounded as

jgjjjhǨiΩjj2 < 1: ðC7Þ

The solution can then be written as a Liouville-Neumann
series according to

TABLE I. Gluon contribution to the graviton mass parameter
for different regulators. Remarkably, the contribution does not
only change in size but also its sign.

Regulator cμ;a

rðxÞ ¼ 1
expðxÞ−1 −0.21

rðxÞ ¼ 1
x expð−x2Þ −0.027

rðxÞ ¼ ð1x − 1ÞΘð1 − xÞ 0

rðxÞ ¼ 1
xΘð1 − xÞ 0.034

rðxÞ ¼ 10
x Θð1 − xÞ 0.17

rðxÞ ¼ 1
Θðx−1Þ − 1 2

3π ≈ 0.21
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ηaðp2Þ¼fðp2Þþg
Z
R4

d4q
ð2πÞ4Rðp;q;μ;ηh;gÞfðq

2Þ; ðC8Þ

with the resolvent kernel

Rðp; q; μ; ηh; gÞ ¼
X∞
i¼1

gi−1Kiðp; q; μ; ηhÞ; ðC9Þ

where Ki are the iterated kernels given by

Kiðp; q; μ; ηhÞ ¼
Z Z

…

Z
d4q1
ð2πÞ4

d4q2
ð2πÞ4…

d4qi−1
ð2πÞ4

× Kðp; q1; μ; ηhÞKðq1; q2; μ; ηhÞ ×…

× Kðqi−1; q; μ; ηhÞ: ðC10Þ

By truncating the resolvent series at some finite order i0,
one obtains an approximate solution to the integral equa-
tion. If the bound (C7) is satisfied, the Liouville-Neumann
series converges for any smooth initial choice ηa;0. One can
also choose zeroth iterations that are different from the
inhomogeneity fðp2Þ. It is clear that convergence proper-
ties depend on the initial choice. For instance, if one has
the correct guess for the full solution and uses this as a
starting point for the iteration, then one finds ηa;0 ¼ ηa;1,
and one can conclude that the exact solution has been
found. Additionally, there are improved iteration schemes
that increase the radius of convergence significantly. In
[127], it has been proven that it exists a parameter c ∈ R,
such that the iteration prescription

ηa;iþ1ðp2Þ ¼ ð1 − cÞfðp2Þ þ cηa;iðp2Þ

þ ð1 − cÞg
Z

d4q
ð2πÞ4Kðp; q; μ; ηhÞηa;iðq2Þ

ðC11Þ

has a radius of convergence that is larger than the one of the
standard Liouville-Neumann series, which is obtained from
the improved iterations with c ¼ 0.

The convergence in the present system is analyzed in
Fig. 16. We plot ηaðp2Þ for some specific parameter values.
All these plots are obtained for g ¼ 0.5; however, we stress
that the sign of ηa does not depend on this choice as
the result is a power series in g. We investigate the
iterations, where we have always assumed a constant
function ηa;0 ¼ const as a first approximation. We then
plot the first, second, and third order and find rapid
convergence in all cases, which is expected as we have
checked that the kernel in (41) generates a very large radius
of convergence. The third iteration is for this choice of ηa;0
not even visible any more, since the corresponding curve
lies exactly on top of the second iteration.

APPENDIX D: SIGN OF THE GLUON
ANOMALOUS DIMENSION

In this appendix, we discuss the stability of the sign of
the gluon anomalous dimension. As discussed in Sec. IV,
we need a negative sign in order to obtain asymptotic
freedom in the gauge sector. This directly corresponds to
the demand that the gravity contributions to the gluon
anomalous dimension should be negative. In the
Appendix C, we discussed the full momentum dependent
solution of ηaðp2Þ. We further argued in Sec. IV that the
sign at p2 ¼ k2 is the decisive one for the Yang-Mills beta
function. In the following sections, we present different
approximations to the gluon anomalous dimension, and
how stable the sign is within these approximations.

1. Derivative at vanishing momentum

The simplest approximation is to assume a momentum
independent anomalous dimension and to obtain an equa-
tion for ηa with a derivative at p2 ¼ 0. The equation for ηa
is then given by

ηa;h ¼ −∂p2FlowðAAÞ
h

���
p2¼0

: ðD1Þ

We obtain the analytic result

FIG. 16. Shown is the momentum dependence of the graviton contribution to the gluon anomalous dimension ηa for different values of
the graviton mass parameter μ ¼ 0;−0.2;−0.5, and −0.7 (from left to right). In each case, starting with a flat trial function (orange), a
fast convergence from first (blue) to second (red) order in the iteration (C3) is observed (g ¼ 0.5 and ηh ¼ 0.5).
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ηa;h ¼ −
g
8π

�
8 − ηa
1þ μ

−
4 − ηh
ð1þ μÞ2

�
; ðD2Þ

which is identical to the ηa in the UV if the gauge sector is
asymptotically free. Therefore, assuming a fixed point in
the gravitational sector, we are left with the ultraviolet limit

η�a ¼
g�

1 − g�
8πð1þμ�Þ

�
4þ 8μ� þ η�h
8πð1þ μ�Þ2

�
: ðD3Þ

This function changes sign at the critical value

μ�crit ¼ −
1

8
ð4þ η�hÞ: ðD4Þ

Moreover, there is a pole at μ� ¼ −1þ g�
8π with another sign

change for the regimes to the left and to the right of the
pole. However, this sign change at the pole can be
neglected, as usual fixed point values of g are Oð1Þ. For
fixed point values of this order, the pole is located at
μ� ≈ −0.96, which in turn is a fixed point value that is very
unusual. Therefore, we assume the overall prefactor in (D3)
to be positive. Then, η�a≷0 for μ� ≶ − 1

8
ð4þ η�hÞ. This

agrees with previous computations in the background
field approximation, where η�h ¼ −2 and μ ¼ −2λ, and
consequently, λ�crit ¼ 1

8
[68]. In our more general case, the

anomalous dimension of the graviton is not fixed by the
fixed point condition for Newton’s coupling. The fixed
point value for the graviton mass parameter where the
gravitational contribution changes sign is plotted against
the graviton anomalous dimension in the left panel of
Fig. 17. There are some bounds on anomalous dimensions
for well-defined theories. From previous results
[24,26,31,36,61,79], we know that typical fixed point
values are roughly given by ηh ≈ 1 and μ ≈ −0.6, which
is just at the critical value where asymptotic freedom is lost.
We conclude that in this simplest approximation the

stability of asymptotic freedom is not guaranteed, but
depends strongly on subtle effects in the gravity sector.

In the following, we investigate how this picture changes in
more elaborate approximations and specifications.

2. Derivative at nonvanishing momentum

We now generalize the procedure from the previous
section and use a derivative at finite momentum. The
equation for ηa is then given by

ηa;h ¼ −∂p2FlowðAAÞ
h jp¼αk: ðD5Þ

For such derivatives, the results are only numerical. In
Fig. 17, we show the results for α ¼ 1

4
; 1
2
; 3
4
. We again

display the sign of the gluon anomalous dimension in the
(μ�, η�h) plane. We find the encouraging result that the area,
which does not support asymptotic freedom in the gauge
sector is getting smaller with an increasing α. With a
derivative at p2 ¼ k2, the region has completely disap-
peared from the investigated area. We conclude that with
this generalized derivation of the gluon anomalous dimen-
sion, asymptotic freedom is supported in the whole
important parameter region of gravity.

3. Finite differences

A further generalization of the procedure from the
previous sections is to derive the gluon anomalous dimen-
sion by a finite difference. In this case, we define ηa to be
momentum dependent. It is then given by

ηa;hðp2Þ ¼ −
FlowðAAÞ

h ðp2Þ − FlowðAAÞ
h ð0Þ

p2
: ðD6Þ

The corresponding results are presented in Fig. 18 for
p ¼ 1

2
; 3
4
; 1. The results are very similar to the ones with

the derivative definition at nonvanishing momentum.
The gluon anomalous dimension is negative and supports
asymptotic freedom if we evaluate it at p2 ¼ k2. This is
also the approximation for ηa that we utilize throughout
this work and also Fig. 4 is computed with this
approximation.

FIG. 17. In the plane of the graviton anomalous dimension (η�h, lower axis) and the graviton mass parameter μ�, the region with
asymptotic freedom (AF) is colored (orange) corresponding to a positive sign of the gluon anomalous dimension ηa. Moreover, the
gluon anomalous dimension is determined from a momentum derivative evaluated at different momenta p ¼ 0, 0.25, 0.5, and 0.75 (from
left to right). The domain with asymptotic freedom consistently grows as soon as momenta of order of the RG scale are adopted.
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APPENDIX E: SCALING EQUATIONS

In this appendix, we augment the analysis fromSec. VII by
providing scaling equations for all couplings. In particular,
we are lifting the identification (25). Here, we extract the
fixed point scaling from a flat regulator choice and utilize a
reparameterization of the flow equations that minimizes the
occurrence of factors of 1þ μ. Moreover, in the previous
chapter, we have utilized projections on gravitational cou-
plings gn and gaah within a finite difference construction. In
the literature, projections with derivatives at vanishing
momentum, p2 ¼ 0, are often used. It has been argued in
[24,26,31,36,61,79,85] that this definition has large ambi-
guities atp2 ¼ 0, which limits its applicability. Still, it has the
charm of providing analytic flows and fixed point equations
and hence facilitating the access to the current analysis.
The structure of the flow and fixed point equations is

more apparent if we absorb 1=ð1þ μÞ-factors in the
gravitational couplings with

ḡn ¼ gn

�
1

1þ μ

�
γn
; ḡc̄chn ¼ gc̄chn

�
1

1þ μ

�
γc
;

ḡanhm ¼ ganhm
�

1

1þ μ

�
γa
; ðE1aÞ

with the scaling coefficients

γn ¼
n

n − 2
; γa ¼ γc ¼ 1; ðE1bÞ

and μ; λn are not rescaled. This removes all potentially
singular factors 1=ð1þ μÞ-factors in the diagrams that stem
from the respective powers of the graviton propagators in
the loops. It still leaves us with contributions proportional
to 1=ð1þ μÞ due to the projection procedure with deriv-
atives at p2 ¼ 0 and due to regulator insertions. The
rescaling power of 1=ð1þ μÞ varies between 1=ð1þ μÞ3
for the lowest coupling g3 and 1=ð1þ μÞ for gn→∞.
In the following equations, we identify blocks of gravi-

tational couplings: as before all gravitational self-couplings
ḡn, ḡc̄chn are identified with ḡ3 and all λn are identified

with λ3. Additionally, we identify all Yang-Mills–gravity
interactions ḡaahn with ḡaah. This leads us to

ḡn ¼ ḡ3 ¼ ḡ; λn>2 ¼ λ3; ðE2aÞ
for the pure gravity couplings and

ḡc̄chn ¼ ḡc; ḡaahn ¼ ḡa; ðE2bÞ
for the ghost-graviton and gluon-graviton couplings. We
emphasize that (E2) and (E1a) imply

gn ¼ g3ð1þ μÞγ3−γn ; ðE3Þ
with γ3 > γn. Equation (E3) seemingly entails the irrel-
evance of the lower order couplings gn for μ → −1.
However, the lower order couplings contribute to diagrams
with more graviton propagators. In combination, this leads to
a uniform scaling of all diagrams as expected in a scaling
limit. Note that the scaling analysis can also be performed if
removing the approximation (E2). It leads to an identical
scaling ḡn ∼ ḡ3 and ḡaahn ∼ ḡaah. The discussion of such a
full analysis is deferred to future work.
Here, we are only interested in the relative scaling between

the pure gravity andYang-Mills gravity diagrams, and simply
discuss the structureof theseequations.To that end,weuse the
analytic pure gravity equations derived in [31,36] expressed
with the rescaled couplings (E1). We also use the identifica-
tion (E2), and additionally,we suppress the ghost contribution
for simplicity. The ghost contribution comes with the same
power in 1þ μ as the gluon contribution. The analysis is
facilitated by only using positive coefficients ci, di, making
the relative signs of the different terms apparent. In general,
the sign of some of these coefficients depends on λ3, and
we define them such that they are positive at λ3 ¼ 0. The
explicit values for the coefficients is provided in AppendixG.
Within this notation, all factors 1=ð1þ μÞ in the loops are
absorbed in the couplings except the one, which comes from
external momentum derivatives of propagators, ∂p2G, due to
the projection procedure or from regulator insertions. In
summary, we are led to

FIG. 18. Same as Fig. 17, except that the gluon anomalous dimension is determined from a finite difference derivative (D6) with
p2 ¼ 0 and various momenta p1 ¼ 1

2
; 3
4
; 1 (from left to right). The domain with asymptotic freedom consistently grows with growing

p1 − p2 of the order of the RG scale, fully consistent with Fig. 16.
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_μ ¼ −ð2 − ηhÞμ − ḡa

�
cμ;h þ ð1þ μÞðN2

c − 1Þcμ;a
ḡa
ḡ

�
;

_̄g ¼ ð2þ 3η̄hÞḡ

− ḡ2
�
cḡ;h
1þ μ

þ dḡ;h
ð1þ μÞ2 þ ðN2

c − 1Þcḡ;a
�
ḡa
ḡ

�3
2

�
;

_λ3 ¼ −
�
1þ ∂tḡ

2ḡ
−
3

2
η̄h

�
λ3

þ ḡ

�
cλ3;h
1þ μ

þ ðN2
c − 1Þcλ3;a

�
ḡa
ḡ

�3
2

�
; ðE4aÞ

for the pure gravity couplings. Here, the term dḡ;h=ð1þ μÞ2
stems from the ∂p2G contributions, and all coefficients c, d
from graviton loops depend on λ3 with cð0Þ, dð0Þ > 0. The
ghost-graviton and the gauge-graviton coupling have the
flows

_̄ga ¼ ð2þ 2ηa þ η̄hÞḡa − ḡ2a

�
−cḡa;a þ

dḡa;a
1þ μ

þ
�
cḡa;h −

dḡa;h
1þ μ

��
ḡ
ḡa

�1
2

�
:

_̄gc ¼ ð2þ 2ηc þ η̄hÞḡc − ḡ2c

�
cḡc;c þ

dḡc;c
1þ μ

þ
�
cḡc;h þ

dḡc;h
1þ μ

��
ḡ
ḡc

�1
2

�
: ðE4bÞ

Here, the d terms originate from the diagram with a
regularized graviton line, ðG∂tRkGÞðhhÞ. The coefficients
ci;h and di;h are λ3 dependent as they receive contributions
from the diagram with a three-graviton vertex. The signs are
chosen such that ci;hð0Þ,di;hð0Þ > 0. The coefficients and the
signs in the flow equation for ḡc were not derived in thiswork.
The rescaled graviton anomalous dimension η̄h reads

η̄h ¼ −
∂t½Zhð1þ μÞ�
Zhð1þ μÞ ¼ ηh −

_μ

1þ μ
; ðE5Þ

which includes the scale dependence of the full dressing of
the graviton propagator including the mass parameter. The
set of anomalous dimensions is given by

ηh ¼ ḡ

�
cηh;h þ

dηh;h
1þ μ

þ ðN2
c − 1Þcηh;a

ḡa
ḡ

�
;

ηc ¼ −ḡ
�
cηc;h þ

dηc;h
1þ μ

�
;

ηa ¼ −ḡa
�
cηa;h −

dηa;h
1þ μ

�
; ðE6Þ

and completes the set of flow equations. Again, the graviton
contributions to ηh have a λ3 dependence with cηh;hð0Þ,
dηh;hð0Þ > 0. All other coefficients do not carry a λ3
dependence. Note also that the ∂tμ=ð1þ μÞ terms in the
scaling terms on the right-hand side of (E4) come from
the normalization of the ḡ’s with powers of 1=ð1þ μÞ. In
the ḡn flows, this term is n=ðn − 2Þ∂tμ=ð1þ μÞ derived
from the rescaling (E1a). For the ghost-gravity and gauge
gravity couplings, it is always the term ∂tμ=ð1þ μÞ derived
from (E1).

APPENDIX F: FLOW EQUATIONS

Here, we recall the results for the pure gravity flow for μ,
g3, and λ3 derived in [31,36], add the derived gluon
contributions, and formulate them in terms of the rescaled
couplings

ḡn ¼ gn

�
1

1þ μ

� n
n−2
; ḡc ¼ gc

�
1

1þ μ

�
;

ḡa ¼ ga

�
1

1þ μ

�
; η̄h ¼ ηh −

_μ

1þ μ
; ðF1Þ

see Appendix E and (E1) for details. In order to show the
interrelation of the different couplings, we keep all depend-
ences on the higher couplings ḡn. The flow equations are
given by

∂tμ ¼ −ð2 − ηhÞμþ
ḡ3

180π
½21ð10 − ηhÞ − 120λ3ð8 − ηhÞ þ 320λ23ð6 − ηhÞ�

−
ḡ4
12π

½3ð8 − ηhÞ − 8λ4ð6 − ηhÞ� − ð1þ μÞ ḡc
5π

ð10 − ηcÞ þ ð1þ μÞðN2
c − 1Þ ḡaηa

60π
;

∂tλ3 ¼ −
�
1þ ∂tḡ3

2ḡ3
−
3

2
η̄h

�
λ3 þ ḡ3

�
−

1

1þ μ

1

240π
½11ð12 − ηhÞ − 72λ3ð10 − ηhÞ þ 120λ3

2ð8 − ηhÞ − 80λ33ð6 − ηhÞ�

þ 1

6π

1

1þ μ

ḡ4
ḡ3

½3λ4ð8 − ηhÞ − 16λ3λ4ð6 − ηhÞ� þ
1

8π

1

1þ μ

�
ḡ5
ḡ3

�3
2½ð8 − ηhÞ − 4λ5ð6 − ηhÞ�

þ 1

10π

�
ḡc
ḡ3

�3
2ð12 − ηcÞ þ

1

60π
ðN2

c − 1Þ
�
ḡa
ḡ3

�3
2ð3 − ηaÞ

	
;
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∂tḡ3 ¼ ð2þ 3η̄hÞḡ3 −
ḡ23
19π

�
1

ð1þ μÞ2
2

15
½229 − 1780λ3 þ 3640λ23 − 2336λ33�

−
1

1þ μ

1

180
½147ð10 − ηhÞ − 1860λ3ð8 − ηhÞ þ 3380λ23ð6 − ηhÞ þ 25920λ33ð4 − ηhÞ�

−
1

1þ μ

ḡ4
ḡ3

�
1

18
½45ð8 − ηhÞ − 8ð30λ3 − 59λ4Þð6 − ηhÞ − 360λ3λ4ð4 − ηhÞ� þ

16

1þ μ
ð1 − 3λ3Þλ4

�

þ 1

1þ μ

47

6

�
ḡ5
ḡ3

�3
2ð6 − ηhÞ þ

�
ḡc
ḡ3

�3
2

�
50 − 53ηc

10

�
þ ðN2

c − 1Þ
�
ḡa
ḡ3

�3
2

�
133þ ηa

30

�	
;

∂tḡa ¼ ð2þ 2ηa þ η̄hÞḡa −
ḡ2a
30π

�
−
100 − 13ηa

2
þ 13ð5 − ηhÞ

μþ 1

þ
�
ḡ3
ḡa

�1
2

�
330 − 640λ3 − ηað33 − 80λ3Þ

12
þ −15þ 400λ3 − ηhð80λ3 − 6Þ

3ðμþ 1Þ
�	

; ðF2Þ

and the anomalous dimension read

ηh ¼
ḡ3
4π

�
ḡ4
ḡ3

ð6 − ηhÞ
6ð8 − ηhÞ þ 8ð6 − ηhÞλ3 − 36ð4 − ηhÞλ23

9
þ 17þ 8λ3ð9λ3 − 8Þ

3ð1þ μÞ −
ḡc
ḡ3

ηc þ ðN2
c − 1Þ ḡa

ḡ3

1þ ηa
3

�
;

ηc ¼ −
ḡc
9π

�
8 − ηh
1þ μ

þ 8 − ηc

�
; ηa ¼ −

ḡa
8π

�
8 − ηa −

4 − ηh
1þ μ

�
: ðF3Þ

The two terms in the flow equation for ḡ3 proportional to
1=ð1þ μÞ2 and the term in ηh proportional to 1=ð1þ μÞ
signal the derivative expansion at p2 ¼ 0. This is the price
to pay for an analytic flow equation. On the other hand, the
terms proportional to 1=ð1þ μÞ in ḡa, ηa and ηc come from
a regulator insertion in a graviton propagator compared to a
ghost or gluon propagator.
The computation of these flow equations involves

contractions of very large tensor structures. These con-
tractions are computed with the help of the symbolic
manipulation system FORM [128,129]. We furthermore
employ specialized MATHEMATICA packages. In particular,
we use xPert [130] for the generation of vertex functions,
and the FormTracer [131] to trace diagrams.

APPENDIX G: COEFFICIENTS IN THE
SCALING EQUATIONS

The coefficients in the scaling equations in Appendix E
are given here in the approximation (E2). We assume that
the anomalous dimensions satisfy jηj ≤ 2: they should not
dominate the scaling of the regulator. While the upper
bound η ≤ 2 is a (weak) consistency bound for the
regulator, for a detailed discussion, see [79]; the lower
one can be seen as a (weak) consistency bound on the
propagators. For η < −2, they cease to be well-defined as
Fourier transforms of space-time correlations functions (if
they scale universally down to vanishing momenta). For
simplicity, we display the coefficients with λ3 ¼ 0. Note

that all coefficients are defined such that they are always
positive. All coefficients can be directly read off from the
Eqs. (F2) and (F3).
We get the coefficients cμ;h and cμ;a in the fixed point

equation of the mass parameter μ are given by

cμ;h ¼
17

6π
−

2

15π
ηh −

1

5π
ηc; cμ;a ¼ −

1

60π
ηa: ðG1Þ

Note that the second coefficient is positive since ηa < 0.
The coefficients cḡ;h and cḡ;a in the fixed point equation of
the pure gravity coupling ḡ read

cḡ;h ¼
47

57π
−

53

190π
ηh −

37

190π
ηc; dḡ;h ¼

598

285π
;

cḡ;a ¼
7

30π
þ 1

570π
ηa; ðG2Þ

while the coefficients cλ3;h and cλ3;a in the fixed point
equation of the coupling λ3 are given by

cλ3;h ¼
33

20π
−

19

240π
ηh −

1

10π
ηc;

cλ3;a ¼
3

60π
−

1

60π
ηa: ðG3Þ

Furthermore, the coefficient cḡa in the fixed point equation
for the two-gluon–graviton coupling ḡa reads
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cḡa;a ¼
5

3π
−

13

60π
ηa; dḡa;a ¼

13

6π
−

13

30π
ηh; cḡa;h ¼

11

12π
−

11

120π
ηa; dḡa;h ¼

1

6π
−

1

15π
ηh: ðG4Þ

We also summarize the coefficients of the anomalous dimensions, to wit

cηh;h ¼
1

6π
−

1

12π
ηh −

1

4π
ηc; dηh;h ¼

17

12π
; cηh;a ¼

1

12π
þ 1

12π
ηa; cηc ¼

8

9π
−

1

9π
ηc; dηc ¼

8

9π
−

1

9π
ηh;

cηa ¼
1

π
−

1

8π
ηa; dηa ¼

1

2π
−

1

8π
ηh: ðG5Þ
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