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Spinning particles, axion radiation, and the classical double copy
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We extend the perturbative double copy between radiating classical sources in gauge theory and gravity
to the case of spinning particles. We construct, to linear order in spins, perturbative radiating solutions to
the classical Yang-Mills equations sourced by a set of interacting color charges with chromomagnetic
dipole spin couplings. Using a color-to-kinematics replacement rule proposed earlier by one of the
authors, these solutions map onto radiation in a theory of interacting particles coupled to massless fields
that include the graviton, a scalar (dilaton) ¢ and the Kalb-Ramond axion field B,,. Consistency
of the double copy imposes constraints on the parameters of the theory on both the gauge and gravity
sides of the correspondence. In particular, the color charges carry a chromomagnetic interaction which, in
d = 4, corresponds to a gyromagnetic ratio equal to Dirac’s value g = 2. The color-to-kinematics map
implies that on the gravity side, the bulk theory of the fields (¢. g,,, B,,) has interactions which match
those of d-dimensional “string gravity,” as is the case both in the BCJ double copy of pure gauge theory
scattering amplitudes and the KLT relations between the tree-level S-matrix elements of open and closed

string theory.

DOI: 10.1103/PhysRevD.97.105018

I. INTRODUCTION

Almost one decade ago Bern, Carrasco, and Johansson
(BCJ) discovered remarkable relations between perturba-
tive amplitudes in gauge and gravity theories [1-3]. The
BCJ correspondence generates gravity amplitudes by
applying a set of simple color-to-kinematics transforma-
tions to the S-matrix of gauge theory, once written in a
suitable form. This correspondence includes, as a special
case, the @ — 0 limit of the earlier KLT relations [4] found
in tree-level string theory, but generalizes them to much
wider classes of field theories, both at tree and loop levels.
See [5] for a recent review of the literature.

Given the relative simplicity of the gauge theory
Feynman rules, the BCJ correspondence has made acces-
sible the evaluation of high precision perturbative observ-
ables that would otherwise be intractable by direct
calculation in gravity. See [6] for a recent example at five
loops, based on developments in [7]. It is therefore natural
to ask if a similar “double copy” structure also underlies,
thereby simplifying, the calculation of observables beyond
the S-matrix. This question was first analyzed in the work
of Refs. [8—10] within the context of classical Kerr-Schild
solutions to the Einstein equations, and further developed
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in Refs. [11]. More recently, Ref. [12] showed that the
classical double copy can be applied to the analysis of
radiation from perturbative, time-dependent sources. In
particular, Ref. [12] showed that the classical bremsstrah-
lung radiation fields in a certain theory of gravity can be
obtained from a simpler gauge theory calculation by a set of
color-to-kinematics replacement rules which are similar to
those used in the case of amplitudes. This result was later
generalized [13] to radiation from a system of point sources
in bound orbital configurations, analogous to the compact
binary inspirals recently detected via gravitational radiation
emission [14].

Note that the classical gravitational radiation fields found
in [12,13] are not those of pure gravity. Rather, they are
those of a dilaton gravity theory consisting of a scalar
(dilaton) ¢ and the graviton #,,. This is consistent with the
BClJ double copy of pure gauge theory, which by degree of
freedom (d.o.f.) counting,

Ay ®Ay:¢®huv@3yw (1)

is a theory that has the scalar field ¢ as well as the Kalb-
Ramond [15] axion B, = —B,, in addition to the graviton.
In the calculation of [12,13], the role of the dilaton was to
cancel the explicit dependence on the spacetime dimension-
ality d from the pure gravity Feynman rules, as discussed in
[16] (see also a cryptic remark made earlier in [17]).
However, for the nonspinning point sources considered in
[12,13], there is no classical radiation in the antisymmetric
channel.
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The fact that the radiation in the mode B,,, does not arise
in the results of [12,13] can be understood on the basis of
symmetry. In order to have radiation in the axion channel,
the point sources must have linear couplings to B,,.
However, in the absence of additional structure, it is
impossible to write linear interactions with the particle
worldlines that respect both diffeomorphism invariance as
well as the gauge symmetry 6B, = 9,{, — 0,¢, of the
bulk action. On the other hand, if the particles carry spin, a
coupling to the field strength H = dB, of the form

/ A SH,,,. 2)

is allowed, and one would expect to find axion radiation in
the double copy of gauge theory coupled to spinning point
color charges.

In this paper, we extend the classical double copy to
include particle sources with spin. Starting in Sec. II from a
system of weakly coupled adjoint color charges c¢, with
spin couplings f dzc,S*" Fy, to the gluon field strength, we
compute radiation to linear order in the spins. In Sec. III, we
apply the same color-to-kinematics replacements as in [12]
to obtain a gravitational double copy radiation field. Unlike
the spin-independent case, the double copy is only con-
sistent for a specific value of the chromomagnetic coupling,
corresponding (in d = 4) to classical particles that carry a
gyromagnetic ratio equal to Dirac’s value g = 2. Only for
this choice of parameters do we find a gravitational field
that is consistent with Ward identities. As we check
explicitly in Sec. III, this solution encodes axion radiation
in a theory of particles with interaction as in Eq. (2), and a
bulk Lagrangian which is of the form

S, = —2171‘;1_2 / ddx\@
x [R —(d=2)¢"0,00,¢ + ée-‘*mgw . (3)

(see also [18]) at least to the order in perturbation theory that
we consider in this paper. This is precisely the action for
“string gravity” at noncritical dimension d (in the classical
limit, where the O(#) dilaton potential can be neglected). It
also matches the double copy of pure gluon amplitudes,
which is suggestive of a relation at higher orders in pertur-
bation theory between the classical color-to-kinematics rules
proposed in [12] and BCJ duality of the S-matrix.

Here, we focus our attention only to the case of radiation
in the axion mode. The complete agreement between the
double copy and Eq. (3) in all radiation channels will be
presented in a separate paper [19]. (In the case of pure
gravity, the analogous bremsstrahlung process has been
analyzed in Ref. [20]). Taken together with the bound state
results in [13], the spin corrections studied in this paper and
in [19] bring the classical double copy one step closer to

making contact with astrophysically relevant [14] sources
of gravitational radiation, although a systematic procedure
for projecting out the unwanted dilaton and axion modes
remains to be fully developed (in the case of purely spinless
sources, progress in this direction was made in the recent
paper [21], which adapts techniques introduced in the
context of scattering amplitudes in Ref. [22] to the classical
problem). To keep our discussion self-contained, we
provide a review of the classical spinning particle formal-
ism that we use in this paper in the Appendix.

II. GLUON RADIATION FROM SPINNING
COLOR CHARGES

We consider a system of classical spinning Yang-Mills
color charges which interact and emit gluon radiation to
infinity. Each particle is described by a trajectory in space-
time x*(s), a spin angular momentum S*(s) = —S"(s),
and a color charge [23] ¢“(s) transforming in the adjoint
representation of the gauge group. The interactions with the
gauge field are encoded in an interaction worldline
Lagrangian which is

Sint = —gs/dx"ca (7)A; +% drc,(7)S* (2)F, + -,

(4)

where g, is the gauge coupling, and the coefficient x
determines the strength of the particle’s chromomagnetic
interaction. We denote by 7 the reparametrization invariant
time coordinate along the particle worldline. Note that the
form of the interaction is valid for either massive or massless
particles. In the massive case, 7 is proportional to the proper
time along the worldline, but more generally itis related to an
arbitrary worldline parameter by dz(s) = e(s)ds, where e(s)
is a non-dynamical “einbein” inserted to ensure reparamet-
rization invariance s — s'(s). Only terms linear in spin, and
with up to one derivative of the gauge field are kept in our
analysis. We have omitted kinetic terms for the d.o.f. x¥(s),
S#(s), c4(s), which are spelled out in more detail in the
Appendix.

The equations of motion for this system consist of the
Yang-Mills equations.1

D,Fd'(x) = g,Ja(x). (5)

where the color current sourced by the point charges
(labeled by the index a = 1,2, ...) is

'"The conventions are D, =0, + ig,AiTe, [T*, T"| = if*>°Te,
(ng])g = _ifabC'

105018-2



SPINNING PARTICLES, AXION RADIATION, AND THE ...

PHYS. REV. D 97, 105018 (2018)

Ji(x) = ——W— Z/dx”c 5(x = x,(5))

ke / 42,8 (2,) D, [c4(20)8(x = x4(z))]. (6)

The time evolution of the color charges then follows from
the covariant conservation of this current D,Ji(x) = 0,
which yields

(v-D)c [$"F y» €], (7)

lgs
2
where we define v* = dx*/dx.
Likewise, the orbital equations of motion follow from
the conservation of total energy-momentum, 9,7 = 0,
where T receives contributions from the gauge field and
from the point particles themselves. As reviewed in the
Appendix, it is necessary to impose a constraint on the spin
S* in order to reduce to the correct number of physical spin
d.o.f. implied by Poincare invariance. We find it convenient
to implement the choice

puS" =0 (8)
which is sometimes referred to as the “covariant spin

supplementary condition.” With this choice, the energy-
momentum tensor for a single spinning particle, defined by

Thp(x) :/dx(”p”)é(x—x(r)) +/dx(”S”)"855(x—x(r))

. Té(x—x(r))c ¢ (uewlo
gs/d—ﬁ JFO 50, (9)

is such that, for F** = (), the global momentum and angular
momentum of the particle are

P —/d3xT0”(X,x0), (10)

JH = /d3xx[”T0”] (x,x9) = x#p¥ — xVpH + SH, (11)

as measured by a fixed inertial observer. Given the form of
the energy-momentum tensor, the equations of motion
follow:

d
— p' = g ¢“Fa'v

1
o zkgscaSi"D”Ffo, (12)

d
d—S"” = pfv¥ — pYv* — 2kg,c “Fa[”Si”] (13)
T

They imply in particular that S,,$* and m? = pupt +
gske S Fy, are conserved along the worldline.

Our goal is to compute the gluon radiation field sourced

by a set of interacting spinning particles satisfying the
above equations of motion. For our purposes in this paper,
it is sufficient to compute the relevant observables to linear
order in spins. We solve the equations of motion as a
perturbative expansion, formally2 in powers of the gauge
coupling g,, using the same method as in [12]. The starting
point is the Yang-Mills equations, written in the gauge
9,Aa =0,
OAG = 9 Ja(x) = 904 + g, f AN AL = FE),  (14)
where the current J%(x) is conserved, 8ﬂ7ﬁ (x) = 0, but not
gauge invariant. Nevertheless, it is related to physical
quantities measured by observers at infinity. In particular,
the long distance radiation field is related to the momentum
space current J4 (k) = [ d?xe™**J;(x), evaluated on-shell
with k> = 0. For example, in d =4 dimensions, the
radiation field is given by

lim A (x) = 1
r—oo r

e[S, as)

2

with k* = (@, k) = w(1,%/r), and similarly for general d.
As long as the particles remain well separated, the current
J4(k) can be calculated in perturbation theory, in terms of
Feynman diagrams such as those (up to second order in the
gauge coupling) shown in Fig. 1. These diagrams are
computed using standard Yang-Mills Feynman rules, with
insertions of the classical particle current Eq. (6). The
contribution from Figs. 1(a) and 1(b), to all orders in
perturbation theory, can be written formally as

( |F1g I(a

Z/dr e ¥aclvh + ik, (S, A K)H].
(16)

In this equation, we have abbreviated xf, = x4(7), vy =
vh(7), ¢4 = c&(z), St’ =S4 (z) and introduced the notation
(S, A a)* = Sia, for any Lorentz vector a¥. To leading
order in perturbation theory, the particles move on free
trajectories with constant momentum p/}, that is parallel
to the velocity v4, implying that the spin S,° is time-
independent (see the Appendix). Thus we have at this
order x; = bl + pht, with constant b, as well as ¢¢ = 0.
In this limit, the particles then source a static color current
given by

*There are actually two different perturbative expansions for a
system of particles with typical energy E Z m and impact
parameter b. In the limit relevant to the classical double copy
¢® ~L =Eb> 1, these two parameters coincide, with eyy ~
g2c® < 1 playing the role of the small expansion parameter. See
[13] for a more detailed discussion.
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FIG. 1. Feynman diagrams for the perturbative expansion of
J4 (k) up to order O(g?). The diagram (a) represents corrections to
the spin-independent color current due to the equations of
motion. Diagrams (b)—(d) correspond to a single insertion of
the spin-dependent color current.

= "(2m)8(k- po)e™eca]ph+ iy (Su A K],

a

Tl o)

(17)

This static current cannot source radiation. For on-shell
gluons with k> = 0, k- p,, is non-vanishing only if p, is
lightlike and collinear with k. If k is along the direction
of p,, the second term in the above expression vanishes due
to the constraint (S, A p,)* = 0. The first term also cannot
contribute to the radiation amplitude A (k) = g,e;; (k) T4 (k)
since pl, dotted into the gluon polarization e, (k) is zero. So,
to get radiation, we must go to O(g?).

At second order in perturbation theory, we need to
account for two types of effects. One is radiation emitted
directly by the particles, depicted in Figs. 1(a) and 1(b). The
time-dependent current at this order in perturbation theory
is conveniently computed by integrating by parts in
Eq. (16) to put it in the form

:Z/d’[(leik'x“k ! [ég{vg—f—ika(sa/\k)}
'1}1

: (va+u<a(S Nk )H

+ca{va—|—zka(Sa Nk)— k
.Ua

(18)
Here, the time evolution of the worldline d.o.f. is due to

their interaction with the field sourced by all the other
particles,

dés e—if-x
Ad(x)= Ja (¢
R e

d —if(x—x,)
—QSZ/d'r d f b+ ik (Sy A O],

(19)

This is then fed into the equations of motion for the d.o.f.
(P, S&, c%). The spin-independent parts of the equations
of motion were obtained in Ref. [12], which we quote:

. ddf e—n,’x(,/,
Prl = lgsZ/ 2” Lpz (Ca : Cﬁ)

X [(pa : p/i)l’ﬂﬂ - (f : pa)p;] (20)

ddl/ﬂ e—if-x,,/,
=it} [ d

271)‘[ nZza
where we have used the fact that in our worldline para-
metrization ph = v} up to terms that are higher order in
perturbation theory. At linear order in the spins, we have,
from Eq. (7),

ddf e—zfx,l/,
a|(9 s QSZ/ Tﬂ [Cav cﬂ]a

X [Ka(l’ﬂ A pﬂ)a - Kﬁ(f A pa)ﬂ}? (22)

with (a A b), =a- (S, A D). Similarly, inserting the field
Eq. (19) into the Lorentz force law yields the result

ddbﬂ e—lfxr,ﬂ
gsZ/ 271_ (Ca ' Cﬂ)

X [K{I(f A p/i)al’ﬂﬂ - Kﬁ((l’ﬂ A pa)[)’f”
+ (2 pa)(Sp A E))]. (23)

In the presence of a background gauge field, the momen-
tum is no longer parallel to the velocity ¢#. The relation
between these variables can be obtained by imposing that
the constraint p, S = 0 is consistent with the equations of
motion, with the result

[c avcﬂ]a(pa'p/)’)’ (21)

Palosy =

g o rra
M = p” + m_sz(l + K)Cap Frf/)S/)ﬂ + O(SZ) (24)

a

to linear order in spin. Then, Eq. (23) implies that the spin
correction to the velocity is

l dl/ﬂ e—lfxa/;
2l Z/ ‘ 2o 2 (ca-cp)
x [((pa'pﬁ)(SaAf) = (€ Pa)(SaApp))].  (25)

Notice that the orbital position is not well-defined in the
massless limit m2 — 0 unless the chromomagnetic moment

U/é|0(sl) pat
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takes the special value x = —1. This value x = —1 that
ensures a smooth massless limit corresponds to the “natu-
ral” magnitude, in the sense defined in Ref. [24], of the
gyromagnetic ratio g of the particle. In the particular case
d =4, the non-relativistic limit of the chromomagnetic
coupling in Eq. (4) reduces to

_ K / dc,S - B° (26)
m
|

after accounting for the relation mdr = ds between
proper time and our worldline parametrization. We see
that k = —1 corresponds to a massive classical particle,

with spin |§ | > h, whose gyromagnetic ratio corresponds
to the Dirac value g, = 2. We will also see k = —1 playing
an important role in the double copy in the next section.
Inserting Egs. (23), (25) into the spin equation of motion
gives, to linear order in spin,

(e ddf e_lfxaﬁ v H v
S |O s lgsz 2ﬂ' Lpz (Ca : Cﬁ) Ka(ﬂl(sa A pﬁ) - p/j(Sa A l) )

+(1;42Ka)((17a “Pp)(Sa NE) = (Pa-C)(Sa A Pp)) Pa— (n<v)|. (27)

The second type of contribution to the radiation field at infinity is due to the self-interactions of the gauge field. These
terms are conveniently organized in terms of the Feynman diagrams shown in Figs. 1(c) and 1(d). We find

‘7[1; (k) |Fig.1(c)

( |F1g1

where we have introduced the integration measure

ddl/ﬂa eifa-xl,

= ig%ZKa [Cav Cﬂ]
ap

lgsZK Cas c/i /d.uaﬁ(k)[_z(fa A I/ﬂﬁ)apz - 2(k ’ p/i)(Sa A I’ﬂa)ﬂ + (fa A pﬁ)a(f/f - fa)ﬂ]’ (29)

ddfﬂ eifﬂ'x/’

a / ditap(K)E2(S A Py, (28)

(30)

du (k) = dr,drg [(271)‘1 2

over both worldline parameters and momenta.

|l

} 2m)15 (k= 4 — )

We can now combine the effect of the time-dependent orbits with the contributions of the nonlinear interactions in
Fig. 1(c) and 1(d) to obtain the total current at O(g?) and linear order in the spins. The result can be expressed as a sum of

two color structures

Wlors) =23 [ sl ep)cs AL + ean sl At (31)
with
K & i /23 H 2
All = Kq (f(l A p/i)(z(fﬂ - fa)” - (f/)’ A p[)’)apa -7 (Z/ﬂa A p/)’)apﬂ + fa(Sa A p/i)ﬂ
k Pa kpﬂ
(kAZ,), 2
= 2K,(k - pp) [(Sa AN EC ) = ﬁpz - Kak_—pa(pa “Pp)(Sa A K. (32)
and
/) 1+Ka (k/\p )a (k/\f )a L
A= e p {(sunmr =S b g { suntyr =5
a pa pa
(kAEp)g 2 (kA Lﬂ/}) (kA pg)
—mﬂg[s ANE ”—717’(;]—&—1(3 a {k-p {Sa/\f "o } k-t {Sa/\p po L Lhapn H
sla|(SpACp) s k~pa( 5)q (SanEp) K7 (k-5)q (SaApp) 0,
‘a y 2 k-t
xgt Cpnmi oot + ) SunRY | iy | = L
I/ﬂ2
—Kg < (pa'p ) k-¢ (Sa/\k>” (33)
(k‘Pa)2 p ( /f)
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The analytic structure of the terms in this expression reflects
their origin in Fig. 1. For example, the double pole at 2 =
fﬁ = 01is the contribution from the diagram in Fig. 1(c), while
the poles at k- p, =0 generally correspond to the time
dependence of the particles in orbital, color, and spin space. It
is straightforward to check that k,J% (k) = 0, so that we have
obtained a consistent solution to the classical Yang-Mills
equations for sources in general, but self-consistent, time-
dependent orbits.

III. DOUBLE COPY

We now apply the classical double copy rules proposed
in [12], as applied to orbits with general time dependence in
[13]. In the spin-independent case, it was shown that the
formal substitution rules

ca(7) = ipa(r).
: 1
fubcczcz = E [(p(l : p[)’)(bﬂ/)’ - f{l>y + Pp- (fa + ‘I)PZ
= Pa (€5 + q)Pjl.
Pa(7) = Plal(7), (34)
together with g,+—>1/ me)‘f_z)/ 2 map the current J% (k)
iT" (k), to an object whose form is

Tk HZ [ s (0o =

+ (k- pp)pe— (k- pa)p;> Azgj = (P Pp) P ’s‘] ,

(35)
where
Aol = 0u pa) [ p =y C
adj o(sY) a B D) p a k- . a
+ (k- pp)pa = (k- pa) Py (36)
and
2 -
l’,{ = - @ . H ﬂ
AA ‘O(SO) k- Du |:(pa pﬂ) (2 (l’pﬂ fa)  Pu P(l)
- (k- palp)+ (- oot (7)

The effective source T#*(k) defined by Eq. (35) is sym-
metric, 7% (k) = T*(k), and for on-shell k> = 0 satisfies
the Ward identity k,7*(k) = 0. Therefore, it defines con-
sistent graviton, €, (k)T””( ), and scalar, T#,(k), emission

3 .. . .
amplitudes,’ or equlvalently radiation fields at retarded time
t and r — oo (taking d = 4 for illustration)

*We choose normalization conventions in which the canonically
normalized graviton emission amplitude is A, = —e,, (k)T" (k)/
(2m (d 2) /2)

N 4G do . i\~
ha(e,) =22 [ e T, 0. (38)
= G do —iwtJ
¢(r,n)=7N / 5 ¢ T (k). (39)

in a theory of gravity coupled to point sources. Here
7i = k/|k| is the unit vector that points from the source to
a far away detector, and w = k° is the frequency of radiation
(in d = 4, we define Gy = 1/32zm3)).

Reference [12] verified by direct calculation, in the case
of classical scattering and bremsstrahlung, that indeed
T#*(k) matches the radiation fields in dilaton gravity
coupled to point particles, with Lagrangian

S, = —2mg-2 / dx /7R — (d - 2)¢" 0,0, ¢
- Zma / dre?. (40)

As shown in [13], Eq. (35) also captures the radiation fields
of dilaton gravity for more general perturbative orbits,
including nonrelativistic bound systems.

In the case of spinning particles, it is natural to apply the
same color-to-kinematics replacements, as well as the
mapping S5 +— S,°. This now yields an effective source
T#(k) which has the same form as in Eq. (35), where at
linear order in the spins A§ and A4 are given in Egs. (32),
(33). In the spinning case, 7#(k) is no longer symmetric.
Even though it satisfies &, T (k) = 0, for generic values of
the chromomagnetic parameters «,, the spin-dependent
source has k,7**(k) # 0, so it does not yet define a
consistent radiating solution in a theory of gravity coupled
to other massless fields. By simple inspection, k, 7" (k)
contains a term whose integrand is of the form

L pu- pe - ) el g
X |:(k : pa){(sa A pﬁ)ﬂ —ng}
e e

which, for generic k,, is not cancelled by other terms in
k, T (k). Thus a necessary condition for consistency of the
double copy is that the chromomagnetic coupling of each
particle takes on the specific value®

“Reference [25] noticed, in d = 4, a similar factorization of
graviton Compton scattering off massive particles with spin
s =1/2,1. For the special case in which the particles have
k = —1 or gyromagnetic ratio g = 2, graviton scattering factor-
izes into two copies of photon scattering.
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K, = —1. (42)

Once this choice is made, there are additional nontrivial
cancellations among terms proportional to k, and x2 that
ensure k, 7" (k) = k,T" (k) = 0 for k* = 0. It follows that
for the specific choice k, = —1, the double copy rules define
a consistent radiation field that includes, as before, graviton
and scalar channels. Because 7* (k) # T%(k), this theory
also describes radiation into an antisymmetric mode, with
amplitude
o= —— TR, (@)
mp|
where the (normalized) polarization tensor a,, (k)=
—ay,(k), k*a,,(k) = 0, is defined up to gauge transforma-
tions a,, (k) — a,, (k) +k,{, (k) —k,£,(k). Turning on the
particle spins, we can now probe the entire spectrum of
the gravitational double copy, consisting of 4, ¢ as well
as the Kalb-Ramond [15] axion (two-form gauge field)
B,,(x) = —=B,,(x). As in the non-spinning case, this theory
is local. In particular, the double pole in T*(k) at
2 = f/i = 0, which encodes the trilinear interactions of
the fields in the gravitational sector, is analytic in momenta.
The form of the theory containing (4, . ¢, B, ) fields is
largely fixed by general covariance and by the two-form
gauge invariance [6B(x)],, = [d{(x)],. with one-form
gauge parameter ¢,. At the two-derivative level, the most
general bulk Lagrangian is

S, = —2mi? / dx\/g {R - (d=2)g"0,40,¢

1
+ Ef(¢)H/wﬂHmm:| ’ (44)
where H,,, = (dB),,, and f(¢) =1+ f'(0)p +--- is a
function that, to linear order in ¢, we will fix below by
comparing to the double copy prediction. Because there is
radiation in the axion channel, there must be a linear
interaction with the point particle sources. If the point particles
carry no worldline d.o.f. other than momentum and spin, the
unique possibility at leading order in a derivative expansion is

s, = / R() H s S (45)

for some dilaton dependent function &(¢p) =& +&'¢p + - - -,
which we also determine to linear order in ¢.

To fix the form of the dilaton couplings in Egs. (44),
(45), we directly compute the on-shell axion current
J#(x) = =J*(x), to linear order in both spin and the
couplings &,. This current is defined such that the axion
equations of motion take the form

L), (46)

OB (x) =
P1

Sa Sa

j

]

A I

v 1 v

]

1

1

B

(@ (b)

SQ Sa
v ) v

1

o o] |

8 B

FIG. 2. Perturbative corrections to axion emission. Dashed
lines, wavy lines, and curly lines denote respectively scalar,
graviton, and axion propagators. Diagrams (a) and (b) represent
axion radiation emitted off the worldline. Diagrams (c) and (d)
correspond to axion radiation via 3-point vertices involving the
graviton and dilaton respectively.

which is a flat space wave equation, with [1= 0,0" and
index raising/lowering with the flat metric. We write this
equation in the gauge 0"B,, = 0, so that our current by
definition obeys the Ward identity 8”7”” (x) = 0. Given our
normalization conventions, the amplitude for axion emis-
sion is then Ap = a;j,/(k)j””/ml(;f_z)/z.

The expansion of the current J*(x) is depicted by the
graphs in Fig 2. The diagram in Fig. 2(a), corresponding to
direct emission from the particle worldlines, only contrib-
utes to radiation if the sources are time-dependent, and
yields a contribution to the Kalb-Ramond current of the form

=i dsit e[ (k - v,)Sk
Fig.2(a) ;/ [( )

+ Va(Sq A k)Y — 05(S, A K. (47)
To calculate this explicitly, we need to insert the solution
to the O(&Y) equations of motion for the orbital and spin
d.o.f. To linear order in spin, these are just the geodesic
equation for pt=i*+O(S?) in the conformally scaled
metric g, = €*%g,,, as well as the equation v - VS* 0,

(k)

where V,3,,=0. Note that in Eq. (45), we implicitly defined
S# to be the spin measured with respect to g, . Itis related to
the spin in the Einstein frame by S* = ¢72/S’. See the
Appendix for details. Inserting the leading order metric

g/w =NMw =+ ilﬂl/’

5 1 ddl/ﬂ e—if-(x—xa)
By, (x) = WZ/dTaWTPng (48)

the equations of motion take the form
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Pl = Z/ e a2 = 2(pa )€ PP (49)
Pa = 4mP12 271_ Pa " Pp Pa " Pp Pa pﬂ

(from Ref. [12]), and
ddf e_lf Xap) H v H v v
a _4 d QZ 71,' Kpa f)p/](sa/\p/)’) _(pa'pﬁ)p/j(sa/\l’ﬂ) _(pa’p/})fﬂ(sa/\pﬁ) _(ﬂQD)]' (50)

Using these results, the direct emission term in Fig. 2(a) becomes

jﬂl/(k)|Fig'2 4md ZZK /dﬂa/j /2[ ([;:;ﬂ) ((k- Pa)P/U; — (k- P/;)PZ) <(Sa N - (kk/\‘ Za)a p’é)

af a

(0 pay = @ vt o) (=02 ) ) ({50 e = E L2 )

a

(Pa-Pp)

* k'pa

(52 AR = (<> 1)] (51)
The contribution of the diagram Fig. 2(b) is given by

JH (k) |Fig.2(b) 4m§1 / Haﬁ
aff

Finally, to compute Figs. 2(c) and 2(d), we need the B-field propagator in the gauge 9B, = 0,

al(k- pa)Sa” + pa(Sa A k) = pa(Sa A k). (52)

i
<B v(k)Bm(_k)> = —_[71 MNve — 1, (rrlu)}' (53)
H ’ ngi 2) 2t uo'lvp

We then find that the relevant diagrams contributing to the axion current are

~ m3(4 (0 .
Wi = s S [ s[5 ) (2= ) (5, -2 ke

mMpy af a k'pa

k-2, (kA ZEy)
+(k-p (k‘l? Pa— (k- pa)py— (Pa- P (f,”l— p”))(Sa/\f,,ﬂ—“p”>
(k- pp){ (k- pp)pa— (k- pa)Pp = (Pa Pp) kp, "0 ( ) vy

k-2,
k'pa

F(Ca n pp)allk- Dy — (k- pa)p) (féi - pz) N u)] . (54)

We can now compare the gravity result with the double copy prediction. We see from Egs. (52), (54) that cancelling the
explicit dependence on the dimension d of the gravity Feynman rules requires the choice of parameters

f(0) =—4, K, =0. (55)
We also find, by brute force calculation, cancellations only for the special case in which the particles have universal axion

couplings

Ky = Z . (56)

For this choice of parameters, the difference between the antisymmetric double copy amplitude, Az =
—aﬂy(k)Tﬂ”(k)/ng_z)/ 2) and the axion emission amplitude computed directly using Eq. (44) takes the form

~ 1. Ay
aﬂu(k) ‘Iﬂy(k) _ET[W/] (k):| = 4m /d/’la[)’ [(pa pﬁ){fﬂpﬂ(sa A f{z) f{lp{I(S/} A fﬂ)ﬂ) - (/’l <~ I/)}
Pl aﬁ
—(€5(Ca A Ppla+ Callp A Pa)p)(Parl — Papl)]; (57)
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after dropping contributions that vanish when k> = 0, or
when dotted into the on-shell polarization tensor a,, (k).
The integrand is anti-symmetric under label exchange
a < f, while the measure ) [ du,p(k) is symmetric.
We therefore find precise agreement between the double
copy and the axion emission amplitude computed directly
in the gravity theory.

Note that the agreement between the two results is only
operative for specific parameter choices. On the gauge
theory side, the chromomagnetic coupling must take on the
value x, = —1. Otherwise, the double copy amplitude
obtained by applying the rules in Eq. (34) is not consistent
with gravitational Ward identities. Once this choice is
made, the gravity theory must have couplings among ¢,
B,, and the graviton that ensure the cancellation of any
explicit dependence on spacetime dimensionality d intro-
duced by the graviton propagator. The couplings we found
are consistent with the bulk gravity action in Eq. (3), and
point-particle interactions

1
Sop =1 / dx"H 8% (58)

written in terms of the “string frame” spin. In particular,
Eq. (3) is equivalent, after Weyl rescaling to the string
frame, to the action for the massless bosonic gravitational
sector of noncritical string theory (ignoring the gauge field
and O(h) contributions to the dilaton potential). As
discussed in [16] (see also Ref. [17]), the form of these
couplings ensures the cancellation of explicit d-dependence
in scattering amplitudes computed using Eq. (3). Of course,
to check the consistency of the linear spin-dependent terms
in the double copy, it is also important to verify that
radiation in the graviton and scalar channels agrees with the
prediction of Eq. (3). This is indeed the case, and the details
of those results will be presented elsewhere [19].

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have extended the perturbative double
copy to the case of spinning particles. The same color-to-
kinematics replacement rules introduced in [12], and
generalized in [13], map the long-distance field produced
by a collection of spinning color charges to a corresponding
classical solution in the gravity theory of coupled scalar,
axion, and graviton modes. One novel aspect of the
calculation is that, unlike the case of spinless particles,
the double copy map only yields a consistent solution that
satisfies gravitational Ward identities if the sources on the
gauge theory side have specific values of the chromomag-
netic dipole interaction. In d = 4, this corresponds to the
“natural” [24] Dirac value g = 2 of the gyromagnetic ratio.
Once this choice is made, the theory on the gravity side is
consistent with the action of string gravity. This action,
which also arises as the BCJ double copy of pure Yang-
Mills, has the form [17] of an Einstein-Hilbert type action

S, = =2m&? [d'x/GR(7, V) with a non-Riemannian
connection whose torsion is related to the axion field
strength H¥ .

The double copy also fixes the strength of the spin-axion
interaction on the gravity side. It would be interesting to see
if these point-particle interactions arise as limits of more
fundamental classical extended objects on either side of the
correspondence5 On the gravity side, the extended objects
in question are presumably spinning black holes, or
perhaps naked singularities [18], with nonzero dilaton
monopole and axion dipole charges. While vacuum sol-
utions to Eq. (3) with these exact properties are not known,
Ref. [27] constructed spinning, axion-dilaton solutions of
d = 4 massless string theory, with axion and dilaton “hair”
sourced by O(a') string corrections to the action in Eq. (3).

Further constraints on the structure of the objects that arise
from the double copy would result by including, for
instance, higher order spin corrections to the results pre-
sented here. In particular, to get a consistent double copy at
O(8?), it may be necessary to include worldline couplings to
gravity of the schematic form [ dzR,,,,S*S*°, which
encodes the quadrupole moment induced by the rotation
(with definite coefficients [28] for a d = 4 Kerr black hole).
Also, applying the double copy to classical scattering
solutions with gluon radiation in the initial state would test
possible worldline terms of the schematic form f dTRI%ypg,
S dTHfM, that encapsulate the “tidal” responses of the
extended object in the point particle limit. Finally, the spin
results here can also be extended in the direction of the
classical double copy [9,29,30] between Yang-Mills sol-
utions and the bi-adjoint scalar theory of [31]. We hope to
address some of these questions in future work.
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action for the center-of-mass coordinate of the string which
includes the chromomagnetic term with coefficient x = —1, in
agreement with results in [24]. However, the obvious double copy
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the closed string configuration, so that, unlike a d = 4 Kerr black
hole, its multipole moments are not fully determined by the spin.
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APPENDIX: FORMALISM FOR CLASSICAL
SPINNING PARTICLES

In this Appendix, we provide a self-contained review of
the spin formalism used in this paper. The approach we
follow is equivalent to the one introduced in [28,32-34] in
the context of worldline effective theories of gravity [35],
which itself is based on the classic papers [36-38].

1. The free spinning particle

We begin with free particles moving in flat space, and
define the system in terms of a worldline x#(s) (with s an
arbitrary parameter) and an einbein e(s) to enforce world-
line reparametrization invariance, s—s'(s), €'(s')ds'=
e(s)ds. In addition we introduce [38] an orthonormal
reference frame e/ (s) moving along with the particle, as
well as its inverse ¢/ (s). These are related by the constraints

71116;14611/ = 77;41/77;41/676.1; =1N1- (Al)
The rotation of the particle relative to fixed inertial frames
is then encoded in the angular velocity

QY = n””eﬁ%e,{ = -/
Finally, we also introduce worldline d.o.f. p;(s) and S/ (s)
corresponding to momentum and spin (which can be
regarded as conjugate variables to x*(s) and Q.

The system of variables (x*, e, e}, p;, S") is redundant,
and constraints must be imposed to reduce the number of
independent d.o.f. down to the physical number implied by
Poincaré invariance. A common choice in the literature

(which we follow) is to impose the constraint

SIJpj — 0’

(A2)

(A3)

sometimes referred to as the “covariant spin supplementary
condition.” As discussed in Refs. [32,33], the variational
principle is essentially fixed by worldline reparametrization
and Lorentz invariance to be of the form 4S,, = 0, where

1
Spp:—/dxﬂeﬁp[+§/dssljglj

1
—1—5/dse(p,p’—m2(5)+~~-)—i—/dse/l,S”pj.
(A4)

Here we have introduced a Lagrange multiplier 4; to
enforce the constraint in Eq. (A3). The equations of
motion follow from the variation of §,, with respect to

(x*.e.e), p;, S, 4;). Varying with respect to x* yields

d

d
o — (M — A
dsp ds (efp") =0, (AS)
while varying with respect to p; implies
el = pt— ), 5", (A6)

with X* = dx*/ds.

The variation with respect to e/, must be performed in a
way that is consistent with the orthonormality constraint
Eq. (Al), so we introduce

O =nelse] = 60" (A7)
The vanishing of the coefficient of #/ in the variation of
S,p then implies

d oy I GKJ J QKT | ,Jiu I _ I op ]
%S = QI S™ = QIS + et p' — e, X p’.
This equation simplifies if expressed in terms of the spin
measured in the inertial frame, S* = efe4SY, which
becomes

(A8)

(A9)

S =k — Y,
ds
Variation with respect to S provides the relation
between spin and angular velocity

0
e_lQ” :/IJ 1 —/IIpJ + m2(s)

35, (A10)

In general this is a model-dependent relation which is sensitive
to the specific choice of “Regge trajectory” m?(S). By
definition, a spherically symmetric particle is one in which
m2(S) is a function of the Lorentz invariants® constructed
from S!/. The function m? () is not predicted by the effective
point particle theory, but is determined by matching to the full
UV theory of the extended object. We assume m?(S) is an
analytic function about S™ = 0, so that the action can be
expanded in powers of the polynomial invariants of S/ Note
that if we treat x#, p# and S** as the fundamental variables, the
equations of motion can be formulated without specific
knowledge of this UV function m?(S).

Finally, variation with respect to the Lagrange multipliers
e,A; reproduces the constraints S p,=0 and p,p’ =
m?(S). From these constraints, we find that p,p+ =
m?(S) and S, S are constants of the motion. Demanding

°In generic dimension d, a basis of such invariants consist of a
finite set of traces of the antisymmetric matrix S/. More
generally, if the particle is not spherically symmetric, m? can
also depend on additional structure, fore instance the inertia
tensor /'/ defined in the frame of the particle. See [39] for a coset
space formulation of the action for extended objects without

rotational symmetry.
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consistency of the time evolution with the constraint
S p, =0 gives
d 2- .
0=—(8p,)=p# = (&-p)pt.  (All)
s
Thus in the absence of external fields, p* is collinear with the

vector x* tangent to the worldline. In light of Eq. (A6), x -
p = ep® and we find

ph=e it (A12)

Thus, $* = 0, and the free particle moves in a straight line
with constant momentum p* and constant spin S**.

2. Coupling to pure gravity
To include gravity, we covariantize the action Eq. (A4) to

allow for general spacetime diffeomorphisms. First, replace
QY with

QY - QI = gvel 1oV e] = gel (&) — T e]),  (A13)
and promote the constraints on e}, to

rllje;llei = gﬂl/('x(s)) g[ll/(‘x(s))el;e? ="1- (Al4)

Even in problems without gravity, the advantage of
turning on a background metric is that it allows one to
define a symmetric energy-momentum tensor

2 6
VI 8Gu (x) 1P

which in the presence of gravity is conserved V, 7#*(x) = 0
as a consequence of the Einstein equations. It is well known
[36,37] that the dynamics of the spinning point particle
follow model-independently from the conservation of the
distributional energy-momentum tensor defined by S,,,.
To obtain the spinning particle energy-momentum tensor

T (x) = (A15)

we vary S, taking into account the dependence on g, in
Eq. (A14),
Sel = Lt b5 Al6
eu - E'eagfl gﬂﬂ’ ( )
as well as the variation of the connection
1
ga/lér/ﬁu = 5 (vyégau + vvégoy - voag/w)' (A17)

From these formulas, we get S;,6Q" = —$"*v°V|,6g,),.
and the spinning particle energy-momentum tensor is

T’,i”p(x):/dep”)é(x?/g(s))+/dx("5”>“va5(x:/g(s))7

(A18)

The meaning of the covariant derivative on the Dirac delta
function is more fully explained in Refs. [37,40,41]. Here,
we only need to know that it can be integrated by parts
covariantly against an arbitrary test vector field X*(x),

4 . 5(x—2z)
/d x\/9X (x)VA< 7
As explained in Refs. [37,40,41] the form of T* gives
physical meaning to the variables p, = ejp; and S*
obeying the constraint $**p, = 0. For instance, turning
off gravity and defining the total momentum and angular
momentum measured in a fixed frame by

) =-V,X*(z). (A19)

pr— / BXTO%(x, ), (A20)

JH = /d3xx[”T0”](x,x0), (A21)

yields P# = p* and J* = x#p* — x*p* + S*. More gen-
erally, in a curved background, P# and J* can be defined as
integrals over an observer dependent spacelike hypersur-
face, see [41]. These relations give the interpretation of x*
as the “center-of-mass” worldline and $**, with $*p, = 0,
as the particle spin relative to the center of mass.

We now obtain the spinning particle equations of motion

by averaging V, 7%, = 0 against the test vector X, (x):

/ dix\/9X,V,Th,
:—/dxwp”)VyX#(x(s))+/dx(”S”)/’V/,V,,Xﬂ(x(s))
(A22)

Shuffling terms around using [V,,V,]X, = -X°R,,,, and

opuv
the Bianchi identities for the Riemann tensor then gives

/ddx\/ﬁXﬂV,,T’,‘,”p = /dsXﬂ <x -Vpt + %)’C"S’V’R"MJ
- / dsV,X, (w Y+ %x - VS””).
(A23)
Since the test vector field X#(x) is arbitrary, the conserva-

tion of T%, implies that the coefficients of X,(s) and
V,X,(s) vanish independently in the above expression,

1
(x-V)pt = —ch”S’lf’R”(w,, (A24)

(k- V)SH = priv — priat, (A25)

which are the Papapetrou-Mathison-Dixon equations of
motion. These equations together with the constraint
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S* p, = 0 determine the dynamics. It follows in particular
that S, 8" and m? = p,p" are constants of the motion.
Note that in general x* and p* are not collinear. Rather,

1
ep = ¥ 2 KRy S SV (A26)

after using the constraints [including X - p = ep? from
Eq. (A6)] and the above equations of motion.

3. Dilaton gravity
When the dilaton ¢ is included, the point particle action
Eq. (A4), is modified in such a way that every term picks up
an arbitrary coefficient function of ¢p. However, it is possible
to perform dilaton-dependent redefinitions of the worldline
variables (el p;, ", Q;;.2;) such that the most general
action takes the same form as in Eq. (A4)

1
Spp:—/dx"elllpl—f—i/dssuﬁu

1
by [ dselpup! =m(5.9)+ )+ [ dsessp,.
(A27)

where now the Regge function m?(S, ¢) becomes dilaton-
dependent, and the e}, now satisfy the constraint el e} =
G = €*?g,,. It follows immediately that the equations of
motion for p* and S* are again of the form

~ 1 -
(.X' ’ V)pﬂ = _ExGSApRﬂo’A/J! (A28)

(x - V)S™ = pri¥ — p“it, (A29)
where now vﬂ and R“,w, are the covariant derivative and
Riemann tensor corresponding to the conformal metric g,,.
The relation between p* and the velocity is now

(.
ep! = ¥ b oA R,, S (A30)

4. Gauge interactions

The interactions of the spin with a dynamical gauge field
are accomplished by modifying the action in Eq. (A4) to

Spp = Syp— gs/dx”cuA,‘} +%/ dsec,S*Fp, + -,
(A31)

where c,(s) is a color d.o.f. (“color charge”) carried by the
particle, g, is the gauge coupling constant, and x controls
the strength of the chromo-magnetic dipole interaction.
As in the gravitational case, the dynamics follows from
conservation laws

D,Jh =0, (A32)

V, (Tl + T = 0. (A33)

Here, D, =V, + ig,T°Aj is the gauge covariant deriva-
tive. The color current is given by

1 6
—— %
gy0A5 (x) "7

:/dx”caW—K/dseSWDa (caﬁ(x—\/);(s)))

(A34)

Ja(x)=

and the Yang-Mills equations of motion are D, F¢" = g.J4.
By considering the integral 0 = [ d’x,/gX“D,J% for X“(x)
an arbitrary Lorentz scalar in the adjoint representation,
we obtain

i

1
e_l (X ! D)Ca = _EgsKSﬂyfabCF,Zvcc - 2gsK[SﬂyFﬂw C}a'

(A35)

Unlike the case of spinless particles, the color charge is no
longer parallel transported along the particle. However, it is
still true that the gauge invariant c,c? is a constant of the
motion.

The orbital equations of motion are obtained by includ-
ing the coupling of the gauge field to the spin in 7%,. Using
SSH = 184,69 —18¥,64™, the correction to T%), is

8(x = x(s))
T, — T, —Kgs/dse
pp pp 7

From the Yang-Mills equations of motion V,T%,,=
—g, F*J¢, and thus by the same method as in gravity

c Fe rsie (A36)

/ddx\/gxu(val;?I;’ _gsFaﬂng>
. 1. .
= /dsXﬂ (x -Vpt + Ex"S’I”R"MI, —g,¢“Fi'x,
+1K ec, S pHF
2 gs a aﬂ

1 .
- / dsV, X, ()'c[f‘p”] —I—Eic VS 4 gSKec”F;[”Sa”])
(A37)

after using the Bianchi identity, D,F,; + cyclic =0. A
nontrivial check is that the coefficient of V, X, is auto-
matically anti-symmetric, as a result of a cancellation
between terms in 7%, and J4. Turning off gravity for

simplicity, we arrive at
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d
$p" = g,c“Fi'x, — glcgsCaSaﬂD”FZm (A38)

d . . 104
— S = pHx¥ — p¥xt — 2Kgsec“Fa[”Sa”].

e (A39)

It is straightforward to check that these equations also
follow via variation of the action with respect to
(x*, el e, p;, S, 4;) directly in flat space. Using the same

type of argument as in Ref. [40], one can show that these
equations imply that S, $* is conserved along the world-
line. In addition we have the conservation law

d
R (pypﬂ + gsKCaS”Vqu) =0, (A40)

ds

so that m? = puP" + gskc, S Fy, plays the role of a (field-
dependent) invariant mass.
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