
 

Spinning particles, axion radiation, and the classical double copy
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We extend the perturbative double copy between radiating classical sources in gauge theory and gravity
to the case of spinning particles. We construct, to linear order in spins, perturbative radiating solutions to
the classical Yang-Mills equations sourced by a set of interacting color charges with chromomagnetic
dipole spin couplings. Using a color-to-kinematics replacement rule proposed earlier by one of the
authors, these solutions map onto radiation in a theory of interacting particles coupled to massless fields
that include the graviton, a scalar (dilaton) ϕ and the Kalb-Ramond axion field Bμν. Consistency
of the double copy imposes constraints on the parameters of the theory on both the gauge and gravity
sides of the correspondence. In particular, the color charges carry a chromomagnetic interaction which, in
d ¼ 4, corresponds to a gyromagnetic ratio equal to Dirac’s value g ¼ 2. The color-to-kinematics map
implies that on the gravity side, the bulk theory of the fields ðϕ; gμν; BμνÞ has interactions which match
those of d-dimensional “string gravity,” as is the case both in the BCJ double copy of pure gauge theory
scattering amplitudes and the KLT relations between the tree-level S-matrix elements of open and closed
string theory.

DOI: 10.1103/PhysRevD.97.105018

I. INTRODUCTION

Almost one decade ago Bern, Carrasco, and Johansson
(BCJ) discovered remarkable relations between perturba-
tive amplitudes in gauge and gravity theories [1–3]. The
BCJ correspondence generates gravity amplitudes by
applying a set of simple color-to-kinematics transforma-
tions to the S-matrix of gauge theory, once written in a
suitable form. This correspondence includes, as a special
case, the α0 → 0 limit of the earlier KLT relations [4] found
in tree-level string theory, but generalizes them to much
wider classes of field theories, both at tree and loop levels.
See [5] for a recent review of the literature.
Given the relative simplicity of the gauge theory

Feynman rules, the BCJ correspondence has made acces-
sible the evaluation of high precision perturbative observ-
ables that would otherwise be intractable by direct
calculation in gravity. See [6] for a recent example at five
loops, based on developments in [7]. It is therefore natural
to ask if a similar “double copy” structure also underlies,
thereby simplifying, the calculation of observables beyond
the S-matrix. This question was first analyzed in the work
of Refs. [8–10] within the context of classical Kerr-Schild
solutions to the Einstein equations, and further developed

in Refs. [11]. More recently, Ref. [12] showed that the
classical double copy can be applied to the analysis of
radiation from perturbative, time-dependent sources. In
particular, Ref. [12] showed that the classical bremsstrah-
lung radiation fields in a certain theory of gravity can be
obtained from a simpler gauge theory calculation by a set of
color-to-kinematics replacement rules which are similar to
those used in the case of amplitudes. This result was later
generalized [13] to radiation from a system of point sources
in bound orbital configurations, analogous to the compact
binary inspirals recently detected via gravitational radiation
emission [14].
Note that the classical gravitational radiation fields found

in [12,13] are not those of pure gravity. Rather, they are
those of a dilaton gravity theory consisting of a scalar
(dilaton) ϕ and the graviton hμν. This is consistent with the
BCJ double copy of pure gauge theory, which by degree of
freedom (d.o.f.) counting,

Aμ ⊗ Aν ¼ ϕ ⊕ hμν ⊕ Bμν; ð1Þ

is a theory that has the scalar field ϕ as well as the Kalb-
Ramond [15] axion Bμν ¼ −Bνμ in addition to the graviton.
In the calculation of [12,13], the role of the dilaton was to
cancel the explicit dependence on the spacetime dimension-
ality d from the pure gravity Feynman rules, as discussed in
[16] (see also a cryptic remark made earlier in [17]).
However, for the nonspinning point sources considered in
[12,13], there is no classical radiation in the antisymmetric
channel.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 105018 (2018)

2470-0010=2018=97(10)=105018(14) 105018-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.105018&domain=pdf&date_stamp=2018-05-29
https://doi.org/10.1103/PhysRevD.97.105018
https://doi.org/10.1103/PhysRevD.97.105018
https://doi.org/10.1103/PhysRevD.97.105018
https://doi.org/10.1103/PhysRevD.97.105018
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The fact that the radiation in the mode Bμν does not arise
in the results of [12,13] can be understood on the basis of
symmetry. In order to have radiation in the axion channel,
the point sources must have linear couplings to Bμν.
However, in the absence of additional structure, it is
impossible to write linear interactions with the particle
worldlines that respect both diffeomorphism invariance as
well as the gauge symmetry δBμν ¼ ∂μζν − ∂νζμ of the
bulk action. On the other hand, if the particles carry spin, a
coupling to the field strength H ¼ dB, of the form

Z
dxμSνσHμνσ; ð2Þ

is allowed, and one would expect to find axion radiation in
the double copy of gauge theory coupled to spinning point
color charges.
In this paper, we extend the classical double copy to

include particle sources with spin. Starting in Sec. II from a
system of weakly coupled adjoint color charges ca, with
spin couplings

R
dτcaSμνFa

μν to the gluon field strength, we
compute radiation to linear order in the spins. In Sec. III, we
apply the same color-to-kinematics replacements as in [12]
to obtain a gravitational double copy radiation field. Unlike
the spin-independent case, the double copy is only con-
sistent for a specific value of the chromomagnetic coupling,
corresponding (in d ¼ 4) to classical particles that carry a
gyromagnetic ratio equal to Dirac’s value g ¼ 2. Only for
this choice of parameters do we find a gravitational field
that is consistent with Ward identities. As we check
explicitly in Sec. III, this solution encodes axion radiation
in a theory of particles with interaction as in Eq. (2), and a
bulk Lagrangian which is of the form

Sg ¼ −2md−2
Pl

Z
ddx

ffiffiffi
g

p

×

�
R − ðd − 2Þgμν∂μϕ∂νϕþ 1

12
e−4ϕH2

μνσ

�
; ð3Þ

(see also [18]) at least to the order in perturbation theory that
we consider in this paper. This is precisely the action for
“string gravity” at noncritical dimension d (in the classical
limit, where the OðℏÞ dilaton potential can be neglected). It
also matches the double copy of pure gluon amplitudes,
which is suggestive of a relation at higher orders in pertur-
bation theory between the classical color-to-kinematics rules
proposed in [12] and BCJ duality of the S-matrix.
Here, we focus our attention only to the case of radiation

in the axion mode. The complete agreement between the
double copy and Eq. (3) in all radiation channels will be
presented in a separate paper [19]. (In the case of pure
gravity, the analogous bremsstrahlung process has been
analyzed in Ref. [20]). Taken together with the bound state
results in [13], the spin corrections studied in this paper and
in [19] bring the classical double copy one step closer to

making contact with astrophysically relevant [14] sources
of gravitational radiation, although a systematic procedure
for projecting out the unwanted dilaton and axion modes
remains to be fully developed (in the case of purely spinless
sources, progress in this direction was made in the recent
paper [21], which adapts techniques introduced in the
context of scattering amplitudes in Ref. [22] to the classical
problem). To keep our discussion self-contained, we
provide a review of the classical spinning particle formal-
ism that we use in this paper in the Appendix.

II. GLUON RADIATION FROM SPINNING
COLOR CHARGES

We consider a system of classical spinning Yang-Mills
color charges which interact and emit gluon radiation to
infinity. Each particle is described by a trajectory in space-
time xμðsÞ, a spin angular momentum SμνðsÞ ¼ −SνμðsÞ,
and a color charge [23] caðsÞ transforming in the adjoint
representation of the gauge group. The interactions with the
gauge field are encoded in an interaction worldline
Lagrangian which is

Sint¼−gs
Z

dxμcaðτÞAa
μþ

gsκ
2

Z
dτcaðτÞSμνðτÞFa

μνþ��� ;

ð4Þ

where gs is the gauge coupling, and the coefficient κ
determines the strength of the particle’s chromomagnetic
interaction. We denote by τ the reparametrization invariant
time coordinate along the particle worldline. Note that the
form of the interaction is valid for either massive or massless
particles. In the massive case, τ is proportional to the proper
time along theworldline, butmore generally it is related to an
arbitraryworldline parameter bydτðsÞ ¼ eðsÞds, whereeðsÞ
is a non-dynamical “einbein” inserted to ensure reparamet-
rization invariance s → s0ðsÞ. Only terms linear in spin, and
with up to one derivative of the gauge field are kept in our
analysis. We have omitted kinetic terms for the d.o.f. xμðsÞ,
SμνðsÞ, caðsÞ, which are spelled out in more detail in the
Appendix.
The equations of motion for this system consist of the

Yang-Mills equations.1

DνF
νμ
a ðxÞ ¼ gsJ

μ
aðxÞ; ð5Þ

where the color current sourced by the point charges
(labeled by the index α ¼ 1; 2;…) is

1The conventions areDμ ¼ ∂μ þ igsAa
μTa, ½Ta; Tb� ¼ ifabcTc,

ðTa
adjÞbc ¼ −ifabc.
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JμaðxÞ ¼ −
1

gs

δ

δAa
μðxÞ

Sint ¼
X
α

Z
dxμαcaαðταÞδðx − xαðταÞÞ

− κα

Z
dταS

μσ
α ðταÞDσ½caαðταÞδðx − xαðταÞÞ�: ð6Þ

The time evolution of the color charges then follows from
the covariant conservation of this current DμJ

μ
aðxÞ ¼ 0,

which yields

ðv ·DÞca ¼ igsκ
2

½SμνFμν; c�a; ð7Þ

where we define vμ ¼ dxμ=dτ.
Likewise, the orbital equations of motion follow from

the conservation of total energy-momentum, ∂μTμν ¼ 0,
where Tμν receives contributions from the gauge field and
from the point particles themselves. As reviewed in the
Appendix, it is necessary to impose a constraint on the spin
Sμν in order to reduce to the correct number of physical spin
d.o.f. implied by Poincare invariance. We find it convenient
to implement the choice

pμSμν ¼ 0 ð8Þ

which is sometimes referred to as the “covariant spin
supplementary condition.” With this choice, the energy-
momentum tensor for a single spinning particle, defined by

Tμν
ppðxÞ¼

Z
dxðμpνÞδðx−xðτÞÞþ

Z
dxðμSνÞσ∂σδðx−xðτÞÞ

− κgs

Z
dτ

δðx−xðτÞÞffiffiffi
g

p caFa
σ
ðμSνÞσ; ð9Þ

is such that, for Fμν ¼ 0, the global momentum and angular
momentum of the particle are

pμ ¼
Z

d3xT0μðx; x0Þ; ð10Þ

Jμν ¼
Z

d3xx½μT0ν�ðx; x0Þ ¼ xμpν − xνpμ þ Sμν; ð11Þ

as measured by a fixed inertial observer. Given the form of
the energy-momentum tensor, the equations of motion
follow:

d
dτ

pμ ¼ gscaF
μν
a vν −

1

2
κgscaSλσDμFa

λσ; ð12Þ

d
dτ

Sμν ¼ pμvν − pνvμ − 2κgscaF
λ½μ
a Sλν�: ð13Þ

They imply in particular that SμνSμν and m2 ¼ pμpμ þ
gsκcaSμνFa

μν are conserved along the worldline.

Our goal is to compute the gluon radiation field sourced
by a set of interacting spinning particles satisfying the
above equations of motion. For our purposes in this paper,
it is sufficient to compute the relevant observables to linear
order in spins. We solve the equations of motion as a
perturbative expansion, formally2 in powers of the gauge
coupling gs, using the same method as in [12]. The starting
point is the Yang-Mills equations, written in the gauge
∂μA

μ
a ¼ 0,

□Aμ
a ¼ gsJ̃

μ
aðxÞ ¼ gsJ

μ
a þ gsfabcAb

νð∂νAμ
c − Fμν

c Þ; ð14Þ

where the current J̃μaðxÞ is conserved, ∂μJ̃
μ
aðxÞ ¼ 0, but not

gauge invariant. Nevertheless, it is related to physical
quantities measured by observers at infinity. In particular,
the long distance radiation field is related to the momentum
space current J̃μaðkÞ ¼

R
ddxeik·xJ̃μaðxÞ, evaluated on-shell

with k2 ¼ 0. For example, in d ¼ 4 dimensions, the
radiation field is given by

lim
r→∞

Aa
μðxÞ ¼

gs
4πr

Z
dω
2π

e−iωtJ̃μaðkÞ; ð15Þ

with kμ ¼ ðω; k⃗Þ ¼ ωð1; x⃗=rÞ, and similarly for general d.
As long as the particles remain well separated, the current

J̃μaðkÞ can be calculated in perturbation theory, in terms of
Feynman diagrams such as those (up to second order in the
gauge coupling) shown in Fig. 1. These diagrams are
computed using standard Yang-Mills Feynman rules, with
insertions of the classical particle current Eq. (6). The
contribution from Figs. 1(a) and 1(b), to all orders in
perturbation theory, can be written formally as

JμaðkÞjFig:1ðaÞþðbÞ ¼
X
α

Z
dταeik·xαcaα½vμαþ iκαðSα ∧ kÞμ�:

ð16Þ

In this equation, we have abbreviated xμα ¼ xμαðτÞ, vμα ¼
vμαðτÞ, caα ¼ caαðτÞ, Sμνα ¼Sμνα ðτÞ and introduced the notation
ðSα ∧ aÞμ ¼ Sμνα aν for any Lorentz vector aμ. To leading
order in perturbation theory, the particles move on free
trajectories with constant momentum pμ

α that is parallel
to the velocity vμα, implying that the spin Sμνα is time-
independent (see the Appendix). Thus we have at this
order xμα ¼ bμα þ pμ

ατ, with constant bμα, as well as _caα ¼ 0.
In this limit, the particles then source a static color current
given by

2There are actually two different perturbative expansions for a
system of particles with typical energy E≳m and impact
parameter b. In the limit relevant to the classical double copy
ca ∼ L ¼ Eb ≫ 1, these two parameters coincide, with ϵYM ∼
g2sca ≪ 1 playing the role of the small expansion parameter. See
[13] for a more detailed discussion.
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J̃μaðkÞjOðg0sÞ ¼
X
α

ð2πÞδðk ·pαÞeik·xαcaα½pμ
αþ iκαðSα ∧ kÞμ�;

ð17Þ

This static current cannot source radiation. For on-shell
gluons with k2 ¼ 0, k · pα is non-vanishing only if pα is
lightlike and collinear with k. If k is along the direction
of pα, the second term in the above expression vanishes due
to the constraint ðSα ∧ pαÞμ ¼ 0. The first term also cannot
contribute to the radiation amplitudeAaðkÞ ¼ gsϵ�μðkÞJ̃μaðkÞ
since pμ

α dotted into the gluon polarization ϵμðkÞ is zero. So,
to get radiation, we must go to Oðg2sÞ.
At second order in perturbation theory, we need to

account for two types of effects. One is radiation emitted
directly by the particles, depicted in Figs. 1(a) and 1(b). The
time-dependent current at this order in perturbation theory
is conveniently computed by integrating by parts in
Eq. (16) to put it in the form

JμaðkÞ¼
X
α

Z
dταeik·xα

i
k ·vα

�
_caαfvμαþiκαð _Sα∧kÞg

þcaα

�
_vμαþiκαð _Sα∧kÞ−k · _vα

k ·vα
ðvμαþiκαðSα∧kÞμÞ

��
:

ð18Þ

Here, the time evolution of the worldline d.o.f. is due to
their interaction with the field sourced by all the other
particles,

Aa
μðxÞ¼ gs

Z
ddl
ð2πÞd

e−il·x

l2
JμaðlÞ

¼ gs
X
α

Z
dτα

ddl
ð2πÞd

e−il·ðx−xαÞ

l2
caα½vμαþ iκαðSα ∧lÞμ�:

ð19Þ
This is then fed into the equations of motion for the d.o.f.
ðpμ

α; S
μν
α ; caαÞ. The spin-independent parts of the equations

of motion were obtained in Ref. [12], which we quote:

_pμ
α ¼ ig2s

X
β

Z
dτβ

ddl
ð2πÞd

e−il·xαβ

l2
ðcα · cβÞ

× ½ðpα · pβÞlμ − ðl · pαÞpμ
β� ð20Þ

_caα ¼−ig2s
X
β

Z
dτβ

ddl
ð2πÞd

e−il·xαβ

l2
½cα;cβ�aðpα ·pβÞ; ð21Þ

where we have used the fact that in our worldline para-
metrization pμ

α ¼ vμα up to terms that are higher order in
perturbation theory. At linear order in the spins, we have,
from Eq. (7),

_caαjOðS1Þ ¼ g2s
X
β

Z
dτβ

ddl
ð2πÞd

e−il·xαβ

l2
½cα; cβ�a

× ½καðl ∧ pβÞα − κβðl ∧ pαÞβ�; ð22Þ
with ða ∧ bÞα ≡ a · ðSα ∧ bÞ. Similarly, inserting the field
Eq. (19) into the Lorentz force law yields the result

_pμ
αjOðS1Þ ¼ −g2s

X
β

Z
dτβ

ddl
ð2πÞd

e−il·xαβ

l2
ðcα · cβÞ

× ½καðl ∧ pβÞαlμ − κβððl ∧ pαÞβlμ

þ ðl · pαÞðSβ ∧ lÞμÞ�: ð23Þ
In the presence of a background gauge field, the momen-
tum is no longer parallel to the velocity vμ. The relation
between these variables can be obtained by imposing that
the constraint pμSμν ¼ 0 is consistent with the equations of
motion, with the result

vμ ¼ pμ þ gs
m2

α
ð1þ κÞcapσFa

σρSρμ þOðS2Þ ð24Þ

to linear order in spin. Then, Eq. (23) implies that the spin
correction to the velocity is

vμαjOðS1Þ ¼pμ
αþ ig2sð1þκαÞ

m2
α

X
β

Z
dτβ

ddl
ð2πÞd

e−il·xαβ

l2
ðcα ·cβÞ

× ½ððpα ·pβÞðSα∧lÞ−ðl ·pαÞðSα∧pβÞÞμ�: ð25Þ

Notice that the orbital position is not well-defined in the
massless limitm2

α → 0 unless the chromomagnetic moment

(a) (c)

(d)(b)

FIG. 1. Feynman diagrams for the perturbative expansion of
J̃μaðkÞ up to orderOðg2sÞ. The diagram (a) represents corrections to
the spin-independent color current due to the equations of
motion. Diagrams (b)–(d) correspond to a single insertion of
the spin-dependent color current.
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takes the special value κ ¼ −1. This value κ ¼ −1 that
ensures a smooth massless limit corresponds to the “natu-
ral” magnitude, in the sense defined in Ref. [24], of the
gyromagnetic ratio g of the particle. In the particular case
d ¼ 4, the non-relativistic limit of the chromomagnetic
coupling in Eq. (4) reduces to

−
gsκ
m

Z
dtcaS⃗ · B⃗a ð26Þ

after accounting for the relation mdτ ¼ ds between
proper time and our worldline parametrization. We see
that κ ¼ −1 corresponds to a massive classical particle,
with spin jS⃗j ≫ ℏ, whose gyromagnetic ratio corresponds
to the Dirac value gD ¼ 2. We will also see κ ¼ −1 playing
an important role in the double copy in the next section.
Inserting Eqs. (23), (25) into the spin equation of motion
gives, to linear order in spin,

_Sμνα jOðS1Þ ¼ ig2s
X
β

Z
dτβ

ddl
ð2πÞd

e−il·xαβ

l2
ðcα · cβÞ

�
καðlμðSα ∧ pβÞν − pμ

βðSα ∧ lÞνÞ

þ ð1þ καÞ
m2

α
ððpα · pβÞðSα ∧ lÞ − ðpα · lÞðSα ∧ pβÞÞνpμ

α − ðμ ↔ νÞ
�
: ð27Þ

The second type of contribution to the radiation field at infinity is due to the self-interactions of the gauge field. These
terms are conveniently organized in terms of the Feynman diagrams shown in Figs. 1(c) and 1(d). We find

J̃μaðkÞjFig:1ðcÞ ¼ ig2s
X
α;β

κα½cα; cβ�a
Z

dμαβðkÞl2
αðSα ∧ pβÞμ; ð28Þ

J̃μaðkÞjFig:1ðdÞ ¼ ig2s
X
α;β

κα½cα; cβ�a
Z

dμαβðkÞ½−2ðlα ∧ lβÞαpμ
β − 2ðk · pβÞðSα ∧ lαÞμ þ ðlα ∧ pβÞαðlβ − lαÞμ�; ð29Þ

where we have introduced the integration measure

dμαβðkÞ ¼ dταdτβ

�
ddlα

ð2πÞd
eilα·xα

l2
α

��
ddlβ

ð2πÞd
eilβ ·xβ

l2
β

�
ð2πÞdδdðk − lα − lβÞ ð30Þ

over both worldline parameters and momenta.
We can now combine the effect of the time-dependent orbits with the contributions of the nonlinear interactions in

Fig. 1(c) and 1(d) to obtain the total current at Oðg2sÞ and linear order in the spins. The result can be expressed as a sum of
two color structures

J̃μaðkÞjOðS1Þ ¼ ig2s
X
α;β

Z
dμαβðkÞ½ðcα · cβÞcaαAμ

s þ ½cα; cβ�aAμ
a�; ð31Þ

with

Aμ
a ¼ κα

�
ðlα ∧ pβÞαðlβ − lαÞμ −

l2
α

k · pα
ðlβ ∧ pβÞαpμ

α −
l2
β

k · pβ
ðlα ∧ pβÞαpμ

β þ l2
αðSα ∧ pβÞμ

�

− 2καðk · pβÞ
�
ðSα ∧ lαÞμ −

ðk ∧ lαÞα
k · pβ

pμ
β

�
− κα

l2
α

k · pα
ðpα · pβÞðSα ∧ kÞμ: ð32Þ

and

Aμ
s ¼ð1þκαÞ2

m2
α

l2
α

�
ðk ·pαÞ

�
ðSα∧pβÞμ−

ðk∧pβÞα
k ·pα

pμ
α

�
þðpα ·pβÞ

�
ðSα∧lβÞμ−

ðk∧lβÞα
k ·pα

pμ
α

��

−κβl2
α

�
ðSβ∧lβÞμ−

ðk∧lβÞβ
k ·pα

pμ
α

�
þκ2α

l2
α

k ·pα

�
ðk ·pβÞ

�
ðSα∧lβÞμ−

ðk∧lβÞα
k ·pβ

pμ
β

�
−ðk ·lβÞ

�
ðSα∧pβÞμ−

ðk∧pβÞα
k ·pβ

lμ
β

��

þκα
l2
α

k ·pα

�
ðlβ∧pβÞα

�
lμ
β−

k ·lβ

k ·pα
pμ
α

�
þðk ·pβÞðSα∧kÞμ

�
þκβ

l2
α

k ·pα
ðlβ∧pαÞβ

�
lμ
β−

k ·lβ

k ·pα
pμ
α

�

−κα
l2
α

ðk ·pαÞ2
ðpα ·pβÞðk ·lβÞðSα∧kÞμ ð33Þ
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The analytic structure of the terms in this expression reflects
their origin in Fig. 1. For example, the double pole at l2

α ¼
l2
β ¼ 0 is the contribution from the diagram in Fig. 1(c), while

the poles at k · pα ¼ 0 generally correspond to the time
dependence of the particles in orbital, color, and spin space. It
is straightforward to check that kμJ̃

μ
aðkÞ ¼ 0, so that we have

obtained a consistent solution to the classical Yang-Mills
equations for sources in general, but self-consistent, time-
dependent orbits.

III. DOUBLE COPY

We now apply the classical double copy rules proposed
in [12], as applied to orbits with general time dependence in
[13]. In the spin-independent case, it was shown that the
formal substitution rules

caαðτÞ ↦ ipμ
αðτÞ;

fabccaαcbβ ↦
1

2
½ðpα · pβÞðlβ − lαÞν þ pβ · ðlα þ qÞpν

α

− pα · ðlβ þ qÞpν
β�;

pμ
αðτÞ ↦ pμ

αðτÞ; ð34Þ
together with gs↦1=2mðd−2Þ=2

Pl , map the current J̃μaðkÞ↦
iT̃μνðkÞ, to an object whose form is

T̃μνðkÞ¼ 1

4md−2
Pl

X
α;β

Z
dμαβðkÞ

��
1

2
ðpα ·pβÞðlβ−lαÞν

þðk ·pβÞpν
α− ðk ·pαÞpν

β

�
Aμ

adj− ðpα ·pβÞpν
αA

μ
s

�
;

ð35Þ
where

Aμ
adj

			
OðS0Þ

¼ ðpα · pβÞ
�
1

2
ðlβ − lαÞμ þ

l2
α

k · pα
pμ
α

�

þ ðk · pβÞpμ
α − ðk · pαÞpμ

β ð36Þ
and

Aμ
s

			
OðS0Þ

¼ −
l2
α

k · pα

�
ðpα · pβÞ

�
1

2
ðlβ − lαÞμ −

k · lβ

k · pα
pμ
α

�

− ðk · pαÞpμ
β þ ðk · pβÞpμ

α

�
: ð37Þ

The effective source T̃μνðkÞ defined by Eq. (35) is sym-
metric, T̃μνðkÞ ¼ T̃νμðkÞ, and for on-shell k2 ¼ 0 satisfies
the Ward identity kμT̃μνðkÞ ¼ 0. Therefore, it defines con-
sistent graviton, ϵμνðkÞT̃μνðkÞ, and scalar, T̃μ

μðkÞ, emission
amplitudes,3 or equivalently radiation fields at retarded time
t and r → ∞ (taking d ¼ 4 for illustration)

h�ðt; n⃗Þ ¼
4GN

r

Z
dω
2π

e−iωtϵ�μν� ðkÞT̃μνðkÞ; ð38Þ

ϕðt; n⃗Þ ¼ GN

r

Z
dω
2π

e−iωtT̃μ
μðkÞ; ð39Þ

in a theory of gravity coupled to point sources. Here
n⃗ ¼ k⃗=jk⃗j is the unit vector that points from the source to
a far away detector, andω ¼ k0 is the frequency of radiation
(in d ¼ 4, we define GN ¼ 1=32πm2

Pl).
Reference [12] verified by direct calculation, in the case

of classical scattering and bremsstrahlung, that indeed
T̃μνðkÞ matches the radiation fields in dilaton gravity
coupled to point particles, with Lagrangian

Sg ¼ −2md−2
Pl

Z
ddx

ffiffiffi
g

p ½R − ðd − 2Þgμν∂μϕ∂νϕ�

−
X
α

mα

Z
dτeϕ: ð40Þ

As shown in [13], Eq. (35) also captures the radiation fields
of dilaton gravity for more general perturbative orbits,
including nonrelativistic bound systems.
In the case of spinning particles, it is natural to apply the

same color-to-kinematics replacements, as well as the
mapping Sμνα ↦ Sμνα . This now yields an effective source
T̃μνðkÞ which has the same form as in Eq. (35), where at
linear order in the spins Aμ

s and Aμ
a are given in Eqs. (32),

(33). In the spinning case, T̃μνðkÞ is no longer symmetric.
Even though it satisfies kμT̃μνðkÞ ¼ 0, for generic values of
the chromomagnetic parameters κα, the spin-dependent
source has kνT̃μνðkÞ ≠ 0, so it does not yet define a
consistent radiating solution in a theory of gravity coupled
to other massless fields. By simple inspection, kνT̃μνðkÞ
contains a term whose integrand is of the form

1

2
ðpα · pβÞðl2

α − l2
βÞ
ð1þ καÞ2

m2
α

l2
α

×

�
ðk · pαÞ

�
ðSα ∧ pβÞμ −

ðk ∧ pβÞα
k · pα

pμ
α

�

þ ðpα · pβÞ
�
ðSα ∧ lβÞμ −

ðlα ∧ lβÞα
k · pα

pμ
α

��
; ð41Þ

which, for generic κα, is not cancelled by other terms in
kνT̃μνðkÞ. Thus a necessary condition for consistency of the
double copy is that the chromomagnetic coupling of each
particle takes on the specific value4

3We choose normalization conventions in which the canonically
normalized graviton emission amplitude is Ag ¼−ϵμνðkÞT̃μνðkÞ=
ð2mðd−2Þ=2

Pl Þ.

4Reference [25] noticed, in d ¼ 4, a similar factorization of
graviton Compton scattering off massive particles with spin
s ¼ 1=2; 1. For the special case in which the particles have
κ ¼ −1 or gyromagnetic ratio g ¼ 2, graviton scattering factor-
izes into two copies of photon scattering.
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κα ¼ −1: ð42Þ

Once this choice is made, there are additional nontrivial
cancellations among terms proportional to κα and κ2α that
ensure kμT̃μνðkÞ ¼ kνT̃μνðkÞ ¼ 0 for k2 ¼ 0. It follows that
for the specific choice κα ¼ −1, the double copy rules define
a consistent radiation field that includes, as before, graviton
and scalar channels. Because T̃μνðkÞ ≠ T̃νμðkÞ, this theory
also describes radiation into an antisymmetric mode, with
amplitude

AB ¼ −
1

2mðd−2Þ=2
Pl

a�μνðkÞT̃μνðkÞ; ð43Þ

where the (normalized) polarization tensor aμνðkÞ¼
−aνμðkÞ, kμaμνðkÞ ¼ 0, is defined up to gauge transforma-
tions aμνðkÞ→ aμνðkÞþkμζνðkÞ−kνζμðkÞ. Turning on the
particle spins, we can now probe the entire spectrum of
the gravitational double copy, consisting of hμν, ϕ as well
as the Kalb-Ramond [15] axion (two-form gauge field)
BμνðxÞ ¼ −BνμðxÞ. As in the non-spinning case, this theory
is local. In particular, the double pole in T̃μνðkÞ at
l2
α ¼ l2

β ¼ 0, which encodes the trilinear interactions of
the fields in the gravitational sector, is analytic in momenta.
The form of the theory containing ðhμν;ϕ; BμνÞ fields is

largely fixed by general covariance and by the two-form
gauge invariance ½δBðxÞ�μν ¼ ½dζðxÞ�μν, with one-form
gauge parameter ζμ. At the two-derivative level, the most
general bulk Lagrangian is

Sg ¼ −2md−2
Pl

Z
ddx

ffiffiffi
g

p �
R − ðd − 2Þgμν∂μϕ∂νϕ

þ 1

12
fðϕÞHμνσHμνσ

�
; ð44Þ

where Hμνσ ¼ ðdBÞμνσ and fðϕÞ ¼ 1þ f0ð0Þϕþ � � � is a
function that, to linear order in ϕ, we will fix below by
comparing to the double copy prediction. Because there is
radiation in the axion channel, there must be a linear
interactionwith the point particle sources. If the point particles
carry no worldline d.o.f. other than momentum and spin, the
unique possibility at leading order in a derivative expansion is

Spp ¼
Z

dxμκ̃ðϕÞHμνσSνσ; ð45Þ

for some dilaton dependent function κ̃ðϕÞ ¼ κ̃ þ κ̃0ϕþ � � �,
which we also determine to linear order in ϕ.
To fix the form of the dilaton couplings in Eqs. (44),

(45), we directly compute the on-shell axion current
J̃μνðxÞ ¼ −J̃νμðxÞ, to linear order in both spin and the
couplings κ̃α. This current is defined such that the axion
equations of motion take the form

□BμνðxÞ ¼ 1

md−2
Pl

J̃μνðxÞ; ð46Þ

which is a flat space wave equation, with □ ¼ ∂μ∂μ and
index raising/lowering with the flat metric. We write this
equation in the gauge ∂μBμν ¼ 0, so that our current by
definition obeys the Ward identity ∂μJ̃μνðxÞ ¼ 0. Given our
normalization conventions, the amplitude for axion emis-

sion is then AB ¼ a�μνðkÞJ̃μν=mðd−2Þ=2
Pl .

The expansion of the current J̃μνðxÞ is depicted by the
graphs in Fig 2. The diagram in Fig. 2(a), corresponding to
direct emission from the particle worldlines, only contrib-
utes to radiation if the sources are time-dependent, and
yields a contribution to theKalb-Ramond current of the form

J̃μνðkÞ
			
Fig:2ðaÞ

¼ i
X
α

Z
dsκ̃αeik·xα ½ðk · vαÞSμνα

þ vμαðSα ∧ kÞν − vναðSα ∧ kÞμ�: ð47Þ
To calculate this explicitly, we need to insert the solution
to the Oðκ̃0αÞ equations of motion for the orbital and spin
d.o.f. To linear order in spin, these are just the geodesic
equation for pμ¼ _xμþOðS2Þ in the conformally scaled
metric g̃μν ¼ e2ϕgμν, as well as the equation v · ∇̃Sμν ≈ 0,

where ∇̃λg̃μν¼0. Note that in Eq. (45), we implicitly defined
Sμν to be the spinmeasuredwith respect to g̃μν. It is related to
the spin in the Einstein frame by Sμν ¼ e−2ϕSμνE . See the
Appendix for details. Inserting the leading order metric
g̃μν ¼ ημν þ h̃μν,

h̃μνðxÞ ¼
1

2md−2
Pl

X
α

Z
dτα

ddl
ð2πÞd

e−il·ðx−xαÞ

l2
pμ
αpν

α; ð48Þ

the equations of motion take the form

(a) (b)

(d)(c)

FIG. 2. Perturbative corrections to axion emission. Dashed
lines, wavy lines, and curly lines denote respectively scalar,
graviton, and axion propagators. Diagrams (a) and (b) represent
axion radiation emitted off the worldline. Diagrams (c) and (d)
correspond to axion radiation via 3-point vertices involving the
graviton and dilaton respectively.
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_pμ
α ¼ −

1

4md−2
Pl

X
β

Z
dτβ

ddl
ð2πÞd

e−il·ðxαβÞ

l2
½ðpα · pβÞ2lμ − 2ðpα · pβÞðl · pαÞpμ

β� ð49Þ

(from Ref. [12]), and

_Sμνα ¼ i
4md−2

Pl

X
β

Z
dτβ

ddl
ð2πÞd

e−il·ðxαβÞ

l2
½ðpα ·lÞpμ

βðSα∧pβÞν−ðpα ·pβÞpμ
βðSα∧lÞν−ðpα ·pβÞlμðSα∧pβÞν−ðμ↔νÞ�: ð50Þ

Using these results, the direct emission term in Fig. 2(a) becomes

J̃μνðkÞjFig:2ðaÞ ¼
1

4md−2
Pl

X
αβ

κ̃α

Z
dμαβðkÞl2

α

�
−
ðpα · pβÞ
k · pα

ððk · pαÞpν
β − ðk · pβÞpν

αÞ
�
ðSα ∧ lαÞμ −

ðk ∧ lαÞα
k · pα

pμ
α

�

þ
�
ðk · pαÞpν

β − ðk · pβÞpν
α þ ðpα · pβÞ

�
lν
α −

k · lα

k · pα
pν
α

����
ðSα ∧ pβÞμ −

ðk ∧ pβÞα
k · pα

pμ
α

�

þ ðpα · pβÞ
k · pα

ðSα ∧ kÞμÞ − ðμ ↔ νÞ
�
: ð51Þ

The contribution of the diagram Fig. 2(b) is given by

J̃μνðkÞjFig:2ðbÞ ¼ −
1

4md−2
Pl

X
αβ

Z
dμαβðkÞ

m2
βκ̃

0
α

d − 2
l2
α½ðk · pαÞSμνα þ pμ

αðSα ∧ kÞν − pν
αðSα ∧ kÞμ�: ð52Þ

Finally, to compute Figs. 2(c) and 2(d), we need the B-field propagator in the gauge ∂μBμν ¼ 0,

hBμνðkÞBρσð−kÞi ¼
i

2mðd−2Þ
Pl k2

½ημρηνσ − ημσηνρ�: ð53Þ

We then find that the relevant diagrams contributing to the axion current are

J̃μνðkÞjFig:2ðcÞþðdÞ ¼
1

2md−2
Pl

X
αβ

κ̃α

Z
dμαβðkÞ

�
m2

βð4þ f0ð0ÞÞ
2ðd − 2Þ ðk · pαÞ

�
lν
α −

k · lα

k · pα
pν
α

��
ðSα ∧ lαÞμ −

ðk ∧ lαÞα
k · pα

pμ
α

�

þ ðk · pβÞ
�
ðk · pβÞpν

α − ðk · pαÞpν
β − ðpα · pβÞ

�
lν
α −

k · lα

k · pβ
pν
β

���
ðSα ∧ lαÞμ −

ðk ∧ lαÞα
k · pβ

pμ
β

�

þ ðlα ∧ pβÞαððk · pβÞpν
α − ðk · pαÞpν

βÞ
�
lμ
α −

k · lα

k · pα
pμ
α

�
− ðμ ↔ νÞ

�
: ð54Þ

We can now compare the gravity result with the double copy prediction. We see from Eqs. (52), (54) that cancelling the
explicit dependence on the dimension d of the gravity Feynman rules requires the choice of parameters

f0ð0Þ ¼ −4; κ̃0α ¼ 0: ð55Þ
We also find, by brute force calculation, cancellations only for the special case in which the particles have universal axion
couplings

κ̃α ¼
1

4
: ð56Þ

For this choice of parameters, the difference between the antisymmetric double copy amplitude, AB ¼
−aμνðkÞT̃μνðkÞ=ð2mðd−2Þ=2

Pl Þ and the axion emission amplitude computed directly using Eq. (44) takes the form

aμνðkÞ
�
J̃μνðkÞ − 1

2
T̃ ½μν�ðkÞ

�
¼ aμνðkÞ

4md−2
Pl

X
αβ

Z
dμαβðkÞ½ðpα · pβÞfl2

βp
ν
βðSα ∧ lαÞμ − l2

αpν
αðSβ ∧ lβÞμÞ − ðμ ↔ νÞg

− ðl2
βðlα ∧ pβÞα þ l2

αðlβ ∧ pαÞβÞðpμ
αpν

β − pν
αp

μ
βÞ�; ð57Þ
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after dropping contributions that vanish when k2 ¼ 0, or
when dotted into the on-shell polarization tensor aμνðkÞ.
The integrand is anti-symmetric under label exchange
α ↔ β, while the measure

P
αβ

R
dμαβðkÞ is symmetric.

We therefore find precise agreement between the double
copy and the axion emission amplitude computed directly
in the gravity theory.
Note that the agreement between the two results is only

operative for specific parameter choices. On the gauge
theory side, the chromomagnetic coupling must take on the
value κα ¼ −1. Otherwise, the double copy amplitude
obtained by applying the rules in Eq. (34) is not consistent
with gravitational Ward identities. Once this choice is
made, the gravity theory must have couplings among ϕ,
Bμν and the graviton that ensure the cancellation of any
explicit dependence on spacetime dimensionality d intro-
duced by the graviton propagator. The couplings we found
are consistent with the bulk gravity action in Eq. (3), and
point-particle interactions

Spp ¼ 1

4

Z
dxμHμνσSνσ: ð58Þ

written in terms of the “string frame” spin. In particular,
Eq. (3) is equivalent, after Weyl rescaling to the string
frame, to the action for the massless bosonic gravitational
sector of noncritical string theory (ignoring the gauge field
and OðℏÞ contributions to the dilaton potential). As
discussed in [16] (see also Ref. [17]), the form of these
couplings ensures the cancellation of explicit d-dependence
in scattering amplitudes computed using Eq. (3). Of course,
to check the consistency of the linear spin-dependent terms
in the double copy, it is also important to verify that
radiation in the graviton and scalar channels agrees with the
prediction of Eq. (3). This is indeed the case, and the details
of those results will be presented elsewhere [19].

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have extended the perturbative double
copy to the case of spinning particles. The same color-to-
kinematics replacement rules introduced in [12], and
generalized in [13], map the long-distance field produced
by a collection of spinning color charges to a corresponding
classical solution in the gravity theory of coupled scalar,
axion, and graviton modes. One novel aspect of the
calculation is that, unlike the case of spinless particles,
the double copy map only yields a consistent solution that
satisfies gravitational Ward identities if the sources on the
gauge theory side have specific values of the chromomag-
netic dipole interaction. In d ¼ 4, this corresponds to the
“natural” [24] Dirac value g ¼ 2 of the gyromagnetic ratio.
Once this choice is made, the theory on the gravity side is
consistent with the action of string gravity. This action,
which also arises as the BCJ double copy of pure Yang-
Mills, has the form [17] of an Einstein-Hilbert type action

Sg ¼ −2md−2
Pl

R
ddx

ffiffiffĩ
g

p
Rðg̃; ∇̂Þ with a non-Riemannian

connection whose torsion is related to the axion field
strength Hμ

ρσ.
The double copy also fixes the strength of the spin-axion

interaction on the gravity side. It would be interesting to see
if these point-particle interactions arise as limits of more
fundamental classical extended objects on either side of the
correspondence5 On the gravity side, the extended objects
in question are presumably spinning black holes, or
perhaps naked singularities [18], with nonzero dilaton
monopole and axion dipole charges. While vacuum sol-
utions to Eq. (3) with these exact properties are not known,
Ref. [27] constructed spinning, axion-dilaton solutions of
d ¼ 4 massless string theory, with axion and dilaton “hair”
sourced byOðα0Þ string corrections to the action in Eq. (3).
Further constraints on the structure of the objects that arise

from the double copy would result by including, for
instance, higher order spin corrections to the results pre-
sented here. In particular, to get a consistent double copy at
OðS2Þ, it may be necessary to includeworldline couplings to
gravity of the schematic form

R
dτRμνρσSμνSρσ, which

encodes the quadrupole moment induced by the rotation
(with definite coefficients [28] for a d ¼ 4Kerr black hole).
Also, applying the double copy to classical scattering
solutions with gluon radiation in the initial state would test
possible worldline terms of the schematic form

R
dτR2

μνρσ,R
dτH2

μνρ that encapsulate the “tidal” responses of the
extended object in the point particle limit. Finally, the spin
results here can also be extended in the direction of the
classical double copy [9,29,30] between Yang-Mills sol-
utions and the bi-adjoint scalar theory of [31]. We hope to
address some of these questions in future work.
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APPENDIX: FORMALISM FOR CLASSICAL
SPINNING PARTICLES

In this Appendix, we provide a self-contained review of
the spin formalism used in this paper. The approach we
follow is equivalent to the one introduced in [28,32–34] in
the context of worldline effective theories of gravity [35],
which itself is based on the classic papers [36–38].

1. The free spinning particle

We begin with free particles moving in flat space, and
define the system in terms of a worldline xμðsÞ (with s an
arbitrary parameter) and an einbein eðsÞ to enforce world-
line reparametrization invariance, s→s0ðsÞ, e0ðs0Þds0¼
eðsÞds. In addition we introduce [38] an orthonormal
reference frame eIμðsÞ moving along with the particle, as
well as its inverse eμI ðsÞ. These are related by the constraints

ηIJeIμeJν ¼ ημνημνe
μ
I e

ν
J ¼ ηIJ: ðA1Þ

The rotation of the particle relative to fixed inertial frames
is then encoded in the angular velocity

ΩIJ ¼ ημνeIμ
d
ds

eJν ¼ −ΩJI: ðA2Þ

Finally, we also introduce worldline d.o.f. pIðsÞ and SIJðsÞ
corresponding to momentum and spin (which can be
regarded as conjugate variables to xμðsÞ and ΩIJ.
The system of variables ðxμ; e; eIμ; pI; SIJÞ is redundant,

and constraints must be imposed to reduce the number of
independent d.o.f. down to the physical number implied by
Poincaré invariance. A common choice in the literature
(which we follow) is to impose the constraint

SIJpJ ¼ 0; ðA3Þ
sometimes referred to as the “covariant spin supplementary
condition.” As discussed in Refs. [32,33], the variational
principle is essentially fixed by worldline reparametrization
and Lorentz invariance to be of the form δSpp ¼ 0, where

Spp¼−
Z

dxμeIμpIþ
1

2

Z
dsSIJΩIJ

þ1

2

Z
dseðpIpI−m2ðSÞþ���Þþ

Z
dseλISIJpJ:

ðA4Þ
Here we have introduced a Lagrange multiplier λI to
enforce the constraint in Eq. (A3). The equations of
motion follow from the variation of Spp with respect to
ðxμ; e; eIμ; pI; SIJ; λIÞ. Varying with respect to xμ yields

d
ds

pμ ¼ d
ds

ðeμI pIÞ ¼ 0; ðA5Þ

while varying with respect to pI implies

e−1 _xμ ¼ pμ − λνSμν; ðA6Þ

with _xμ ¼ dxμ=ds.
The variation with respect to eIμ must be performed in a

way that is consistent with the orthonormality constraint
Eq. (A1), so we introduce

θIJ ¼ ημνeIμδeJν ¼ −θJI: ðA7Þ

The vanishing of the coefficient of θIJ in the variation of
Spp then implies

d
ds

SIJ ¼ ΩI
KSKJ − ΩJ

KSKI þ eJμ _xμpI − eIμ _xμpJ: ðA8Þ

This equation simplifies if expressed in terms of the spin
measured in the inertial frame, Sμν ¼ eμI e

ν
JS

IJ, which
becomes

d
ds

Sμν ¼ _xνpμ − _xμpν: ðA9Þ

Variation with respect to SIJ provides the relation
between spin and angular velocity

e−1ΩIJ ¼ λJpI − λIpJ þ ∂
∂SIJ m

2ðSÞ: ðA10Þ

In general this is amodel-dependent relationwhich is sensitive
to the specific choice of “Regge trajectory” m2ðSÞ. By
definition, a spherically symmetric particle is one in which
m2ðSÞ is a function of the Lorentz invariants6 constructed
from SIJ. The functionm2ðSÞ is not predicted by the effective
point particle theory, but is determined bymatching to the full
UV theory of the extended object. We assume m2ðSÞ is an
analytic function about SIJ ¼ 0, so that the action can be
expanded in powers of the polynomial invariants of SIJ. Note
that if we treat xμ,pμ andSμν as the fundamental variables, the
equations of motion can be formulated without specific
knowledge of this UV function m2ðSÞ.
Finally, variation with respect to the Lagrange multipliers

e; λI reproduces the constraints SIJpJ¼0 and pIpI ¼
m2ðSÞ. From these constraints, we find that pμpμ ¼
m2ðSÞ and SμνSμν are constants of the motion. Demanding

6In generic dimension d, a basis of such invariants consist of a
finite set of traces of the antisymmetric matrix SIJ . More
generally, if the particle is not spherically symmetric, m2 can
also depend on additional structure, fore instance the inertia
tensor IIJ defined in the frame of the particle. See [39] for a coset
space formulation of the action for extended objects without
rotational symmetry.
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consistency of the time evolution with the constraint
Sμνpν ¼ 0 gives

0 ¼ d
ds

ðSμνpνÞ ¼ p2 _xμ − ð_x · pÞpμ: ðA11Þ

Thus in the absence of external fields,pμ is collinear with the
vector _xμ tangent to the worldline. In light of Eq. (A6), _x ·
p ¼ ep2 and we find

pμ ¼ e−1 _xμ: ðA12Þ

Thus, _Sμν ¼ 0, and the free particle moves in a straight line
with constant momentum pμ and constant spin Sμν.

2. Coupling to pure gravity

To include gravity, we covariantize the action Eq. (A4) to
allow for general spacetime diffeomorphisms. First, replace
ΩIJ with

ΩIJ →ΩIJ ¼ gμνeIμvσ∇σeJν ¼ gμνeIμð_eJν −vσΓλ
σνeJλÞ; ðA13Þ

and promote the constraints on eIμ to

ηIJeIμeJν ¼ gμνðxðsÞÞ gμνðxðsÞÞeμI eνJ ¼ ηIJ: ðA14Þ

Even in problems without gravity, the advantage of
turning on a background metric is that it allows one to
define a symmetric energy-momentum tensor

TμνðxÞ ¼ −
2ffiffiffi
g

p δ

δgμνðxÞ
Spp; ðA15Þ

which in the presence of gravity is conserved∇νTμνðxÞ ¼ 0
as a consequence of the Einstein equations. It is well known
[36,37] that the dynamics of the spinning point particle
follow model-independently from the conservation of the
distributional energy-momentum tensor defined by Spp.
To obtain the spinning particle energy-momentum tensor

we vary Spp, taking into account the dependence on gμν in
Eq. (A14),

δeIμ ¼
1

2
eIαgαβδgβμ; ðA16Þ

as well as the variation of the connection

gσλδΓλ
μν ¼

1

2
ð∇μδgσν þ∇νδgσμ −∇σδgμνÞ: ðA17Þ

From these formulas, we get SIJδΩIJ ¼ −Sμνvσ∇½μδgν�σ,
and the spinning particle energy-momentum tensor is

Tμν
ppðxÞ¼

Z
dxðμpνÞδðx−xðsÞÞffiffiffi

g
p þ

Z
dxðμSνÞα∇α

δðx−xðsÞÞffiffiffi
g

p ;

ðA18Þ

The meaning of the covariant derivative on the Dirac delta
function is more fully explained in Refs. [37,40,41]. Here,
we only need to know that it can be integrated by parts
covariantly against an arbitrary test vector field XμðxÞ,Z

ddx
ffiffiffi
g

p
XλðxÞ∇λ

�
δðx − zÞffiffiffi

g
p

�
¼ −∇λXλðzÞ: ðA19Þ

As explained in Refs. [37,40,41] the form of Tμν gives
physical meaning to the variables pμ ¼ eIμpI and Sμν

obeying the constraint Sμνpν ¼ 0. For instance, turning
off gravity and defining the total momentum and angular
momentum measured in a fixed frame by

Pμ ¼
Z

d3xT0μðx; x0Þ; ðA20Þ

Jμν ¼
Z

d3xx½μT0ν�ðx; x0Þ; ðA21Þ

yields Pμ ¼ pμ and Jμν ¼ xμpν − xνpμ þ Sμν. More gen-
erally, in a curved background, Pμ and Jμν can be defined as
integrals over an observer dependent spacelike hypersur-
face, see [41]. These relations give the interpretation of xμ

as the “center-of-mass” worldline and Sμν, with Sμνpν ¼ 0,
as the particle spin relative to the center of mass.
We now obtain the spinning particle equations of motion

by averaging ∇μT
μν
pp ¼ 0 against the test vector XμðxÞ:

Z
ddx

ffiffiffi
g

p
Xμ∇νT

μν
pp

¼−
Z

dxðμpνÞ∇νXμðxðsÞÞþ
Z

dxðμSνÞρ∇ρ∇νXμðxðsÞÞ

ðA22Þ

Shuffling terms around using ½∇μ;∇ν�Xρ ¼ −XσRσρμν and
the Bianchi identities for the Riemann tensor then gives

Z
ddx

ffiffiffi
g

p
Xμ∇νT

μν
pp ¼

Z
dsXμ

�
_x ·∇pμ þ 1

2
_xσSλρRμ

σλρ

�

−
Z

ds∇νXμ

�
_x½μpν� þ 1

2
_x ·∇Sμν

�
:

ðA23Þ

Since the test vector field XμðxÞ is arbitrary, the conserva-
tion of Tμν

pp implies that the coefficients of XμðsÞ and
∇νXμðsÞ vanish independently in the above expression,

ð_x ·∇Þpμ ¼ −
1

2
_xσSλρRμ

σλρ; ðA24Þ

ð_x ·∇ÞSμν ¼ pμ _xν − pν _xμ; ðA25Þ

which are the Papapetrou-Mathison-Dixon equations of
motion. These equations together with the constraint
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Sμνpν ¼ 0 determine the dynamics. It follows in particular
that SμνSμν and m2 ¼ pμpμ are constants of the motion.
Note that in general _xμ and pμ are not collinear. Rather,

epμ ¼ _xμ þ 1

2m2
_xσRνσλρSμνSλρ ðA26Þ

after using the constraints [including _x · p ¼ ep2 from
Eq. (A6)] and the above equations of motion.

3. Dilaton gravity

When the dilaton ϕ is included, the point particle action
Eq. (A4), is modified in such a way that every term picks up
an arbitrary coefficient function ofϕ. However, it is possible
to perform dilaton-dependent redefinitions of the worldline
variables ðeIμ; pI; SIJ;ΩIJ; λIÞ such that the most general
action takes the same form as in Eq. (A4)

Spp¼−
Z

dxμeIμpI þ
1

2

Z
dsSIJΩIJ

þ1

2

Z
dseðpIpI −m2ðS;ϕÞþ �� �Þþ

Z
dseλISIJpJ;

ðA27Þ
where now the Regge function m2ðS;ϕÞ becomes dilaton-
dependent, and the eIμ now satisfy the constraint ηIJeIμeJν ¼
g̃μν ¼ e2ϕgμν. It follows immediately that the equations of
motion for pμ and Sμν are again of the form

ð_x · ∇̃Þpμ ¼ −
1

2
_xσSλρR̃μ

σλρ; ðA28Þ

ð_x · ∇̃ÞSμν ¼ pμ _xν − pν _xμ; ðA29Þ

where now ∇̃μ and R̃μ
σλρ are the covariant derivative and

Riemann tensor corresponding to the conformal metric g̃μν.
The relation between pμ and the velocity is now

epμ ¼ _xμ þ 1

2m2
_xσR̃νσλρSμνSλρ: ðA30Þ

4. Gauge interactions

The interactions of the spin with a dynamical gauge field
are accomplished by modifying the action in Eq. (A4) to

Spp → Spp − gs

Z
dxμcaAa

μ þ
gsκ
2

Z
dsecaSμνFa

μν þ � � � ;

ðA31Þ

where caðsÞ is a color d.o.f. (“color charge”) carried by the
particle, gs is the gauge coupling constant, and κ controls
the strength of the chromo-magnetic dipole interaction.
As in the gravitational case, the dynamics follows from
conservation laws

DμJ
μ
a ¼ 0; ðA32Þ

∇μðTμν
YM þ Tμν

ppÞ ¼ 0: ðA33Þ

Here, Dμ ¼ ∇μ þ igsTaAa
μ is the gauge covariant deriva-

tive. The color current is given by

JμaðxÞ¼−
1

gs

δ

δAa
μðxÞ

Spp

¼
Z

dxμca
δðx−xðsÞÞffiffiffi

g
p −κ

Z
dseSμαDα

�
ca
δðx−xðsÞÞffiffiffi

g
p

�
;

ðA34Þ

and the Yang-Mills equations of motion are DνF
νμ
a ¼ gsJ

μ
a.

By considering the integral 0 ¼ R
ddx

ffiffiffi
g

p
XaDμJ

μ
a for XaðxÞ

an arbitrary Lorentz scalar in the adjoint representation,
we obtain

e−1ð_x ·DÞca ¼ −
1

2
gsκSμνfabcFb

μνcc ¼
i
2
gsκ½SμνFμν; c�a:

ðA35Þ

Unlike the case of spinless particles, the color charge is no
longer parallel transported along the particle. However, it is
still true that the gauge invariant caca is a constant of the
motion.
The orbital equations of motion are obtained by includ-

ing the coupling of the gauge field to the spin in Tμν
pp. Using

δSμν ¼ 1
2
Sμλδgλν − 1

2
Sνλδgλμ, the correction to Tμν

pp is

Tμν
pp → Tμν

pp − κgs

Z
dse

δðx − xðsÞÞffiffiffi
g

p caFa
α
ðμSνÞα: ðA36Þ

From the Yang-Mills equations of motion ∇νT
μν
YM¼

−gsFaμνJaν , and thus by the same method as in gravity

Z
ddx

ffiffiffi
g

p
Xμð∇νT

μν
pp − gsFaμνJaνÞ

¼
Z

dsXμ

�
_x ·∇pμ þ 1

2
_xσSλρRμ

σλρ − gscaF
μν
a _xν

þ 1

2
κgsecaSαβDμFa

αβ

�

−
Z

ds∇νXμ

�
_x½μpν� þ 1

2
_x ·∇Sμν þ gsκecaF

α½μ
a Sαν�

�
;

ðA37Þ

after using the Bianchi identity, DμFαβ þ cyclic ¼ 0. A
nontrivial check is that the coefficient of ∇νXμ is auto-
matically anti-symmetric, as a result of a cancellation
between terms in Tμν

pp and Jμa. Turning off gravity for
simplicity, we arrive at
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d
ds

pμ ¼ gscaF
μν
a _xν −

e
2
κgscaSαβDμFa

αβ; ðA38Þ

d
ds

Sμν ¼ pμ _xν − pν _xμ − 2κgsecaF
α½μ
a Sαν�: ðA39Þ

It is straightforward to check that these equations also
follow via variation of the action with respect to
ðxμ; eIμ; e; pI; SIJ; λIÞ directly in flat space. Using the same

type of argument as in Ref. [40], one can show that these
equations imply that SμνSμν is conserved along the world-
line. In addition we have the conservation law

d
ds

ðpμpμ þ gsκcaSμνFa
μνÞ ¼ 0; ðA40Þ

so thatm2 ¼ pμpμ þ gsκcaSμνFa
μν plays the role of a (field-

dependent) invariant mass.
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