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We compute the largeN critical exponents η, ηϕ and 1=ν in d dimensions in the chiral Heisenberg Gross-
Neveu model to several orders in powers of 1=N. For instance, the large N conformal bootstrap method is
used to determine η at Oð1=N3Þ while the other exponents are computed to Oð1=N2Þ. Estimates of the
exponents for a phase transition in graphene are given which are shown to be commensurate with other
approaches. In particular the behavior of the exponents in 2 < d < 4 is in qualitative agreement with a
functional renormalization group analysis. The ϵ expansion of each exponent near four dimensions is in
exact agreement with recent four loop perturbation theory.
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I. INTRODUCTION

One of the more remarkable fundamental quantum field
theories is the Gross-Neveu or Ashkin-Teller model, [1,2].
It is a purely fermionic theory with a sole quartic self-
interaction. In some sense it is the parallel to the more
widely studied purely scalar quartic field theory which is
renormalizable in four spacetime dimensions. The sponta-
neous symmetry breaking phase in that model is the basis
for the Higgs mechanism of the Standard Model. By
contrast the OðNÞ Gross-Neveu model is asymptotically
free [1] but appears to have little physical application since
it is only renormalizable in two dimensions. Put another
way prior to the discovery of theW and Z vector bosons of
the Standard Model the physics of the weak interactions
was described by an effective field theory involving 4-point
fermion interactions. The restriction to being effective
meant that such interactions could only be reliable as a
model of Nature up to a specific momentum scale.
However, the general Gross-Neveu class of quantum field
theories, several of which were introduced in [1], have
enjoyed a renaissance over recent years. This is in the main
due to the fact that certain phase transitions in graphene
can be described by specific universality classes based on
the Gross-Neveu model [1] where the classes derive from
the underlying symmetry of the transition. For instance,
stretching a graphene sheet can bring about a transition
from a conductor to a Mott-insulating phase [3,4]. It has

been suggested that the physics of this transition can be
described by what is termed the chiral Heisenberg Gross-
Neveu model [5–9]. Therefore there has been activity in
computing and estimating the fundamental critical expo-
nents of the transition in this model. Prior to 2014 there
were virtually no deep computations where the theoretical
status can be appreciated in the right panels of Figs. 1, 2
and 3 given in [9].
More specifically in [9] the critical exponents η, ηϕ and

1=ν were estimated in spacetime dimension d where 2 <
d < 4 using functional renormalization group techniques.
Hence values were given for the three dimensional case of
physical interest to graphene. By contrast, at that time only
two loop ϵ expansion results from four dimensions were
available to compare with [10,11]. Since then this four
dimensional perturbative work has been extended to three
and four loops respectively in [1,12–14]. The situation can
be compared to the more widely studied Ising Gross-Neveu
model which was given in the left panels of Figs. 1, 2 and 3
of [9]. By contrast with the chiral Heisenberg Gross-Neveu
model in the Ising case there are now two dimensional ϵ
expansion estimates to four loops [15], as well as four loop
four dimensional perturbative information [11]. These
higher loop results postdate the lower loop results of
[1,16–21] which were the state of the art at the time
of [9] for the Ising Gross-Neveu universality class. On top
of this, Monte Carlo data [11], as well as estimates from
several orders in the large N expansion [22–28], were
available to give independent analyses of the three dimen-
sional exponents. Overall there was solid agreement for the
exponents ηϕ and 1=ν from all these methods as well as the
functional renormalization group analysis itself which was
given in [9]. However those from the ϵ expansions near two
and four dimensions for η were not in close agreement with
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the other methods [9]. One simple reason for this is clear
from the plot for η in Fig. 1 of [9]. It is because η has to
vanish in the limits down to two and up to four dimensions
separately. So significantly higher orders in ϵ as well as
knowledge of the asymptotic behavior of the series would
be required even to get close to the three dimensional
estimates from the other methods.
A deeper underlying reason for this rests in the various

theories which populate a universality class. Viewing the
class as driven by a fundamental interaction at the Wilson-
Fisher fixed point in d dimensions, in the neighborhood
of an even spacetime dimension there is a quantum field
theory which is renormalizable at that critical (even)
dimension. Clearly it would not be renormalizable at
another critical dimension. However a different theory
would be relevant at that critical dimension but which will
have the same fundamental interaction. In the case of the
Ising Gross-Neveu universality class, the theory which is
renormalizable in two dimensions is the Gross-Neveu
model of [1]. By contrast, in four dimensions the next
theory in the tower of theories at the Wilson-Fisher fixed
point is what is termed the Gross-Neveu-Yukawa model
[29]. The respective Lagrangians differ only in the terms
involving a scalar field. While we noted earlier that the
Gross-Neveu model is purely fermionic, the quartic self-
interaction can be rewritten via a scalar auxiliary field σ to
produce a σψ̄ iψ i interaction where ψ i are the fermions.
This interaction is common to the Gross-Neveu-Yukawa
model but the σ field now has a canonical kinetic term and a
scalar quartic self-interaction [29]. It is this field σ which
has anomalous dimension ηϕ. Structurally the Gross-
Neveu-Yukawa model has many similarities to the weak
sector of the Standard Model itself. As noted in [9], for
instance, this has led to the hope that certain phase
transitions in graphene could mimic various symmetry
breakings in the Standard Model itself such as chiral or
spontaneous symmetry breaking. Currently experimental
data from such graphene transitions are far from being
available but the potential to have a simple laboratory to test
Standard Model related phase transitions is a fascinating
prospect. Other variations of the Gross-Neveu universality
class are therefore becoming important to study so that
precise theoretical predictions will be available.
Given the current sparsity of theoretical critical exponent

estimates for the chiral Heisenberg Gross-Neveu model, it
is crucial to bring the analysis up to the same level of
precision as that of the Ising Gross-Neveu universality
class. By this we mean that the amount of precise data of
the two classes as represented in Figs. 1, 2 and 3 of [9]
should be the same for the different techniques used. This is
the purpose of this article where we will compute the
critical exponents η, ηϕ and 1=ν to the same order in the
large N expansion as those in the Ising universality class.
This will be achieved by applying the critical point large N
formalism developed by Vasiliev et al. in [30–32] for the

OðNÞ nonlinear σ model or equivalently the OðNÞ ϕ4

theory. Both these theories lie in the same universality class
and the exponents of [30–32] are expressed as functions of
d. That original approach was later extended to the Ising
Gross-Neveu universality class in a series of articles
[22–28], and it is on a subset of these papers that the large
N computations presented here are based. For instance, for
the most part we will analyze the basic 2-point functions of
the chiral Heisenberg Gross-Neveu theory by solving the
skeleton Schwinger-Dyson equations algebraically in the
limit as one approaches the d-dimensional Wilson-Fisher
fixed point. While this will determine η, ηϕ and 1=ν to
Oð1=N2Þ, the original method given in [32] pointed the
way to determining η atOð1=N3Þ. This was extended to the
Ising Gross-Neveu class in [24] and independently in [28].
Therefore, we will apply what we now term the large N
conformal bootstrap method to the chiral Heisenberg
Gross-Neveu universality class. Given modern usage of
the term conformal bootstrap method to mean a largely
numerical technique based on solving the crossing sym-
metric n-point functions with manifest conformal sym-
metry, we have appended the term large N to the naming of
the earlier technique given in [32]. The work of [32] was
inspired by the direct three dimensional conformal boot-
strap construction of Parisi [33], upon which the modern
bootstrap [34–37] is also based.
The advantage of the approach of [30–32] is that the

expression for η at Oð1=N3Þ as well as the other exponents
at Oð1=N2Þ are determined as exact functions of d. It is
important to appreciate that this arbitrary spacetime dimen-
sion is not the same as the one used for dimensional
regularization in perturbation theory. In [30–32] the skel-
eton Schwinger-Dyson equations are analytically and not
dimensionally regularized. Therefore the exponents derived
in the large N method correspond to the exponents of the
true theory at the Wilson-Fisher fixed point in arbitrary
(noninteger) dimensions. Having said this, the ϵ expansion
of the large N exponents around two or four dimensions are
in exact agreement with the ϵ expansion of the perturbative
critical renormalization group functions, evaluated at the
fixed point, of the underlying theory with a critical
dimension of two or four respectively. One benefit of
having the exponents as functions of d is that we will be
able to plot their behavior in 2 < d < 4 dimensions which
will provide an independent insight into whether the
dependence on d is consistent with that given by the
functional renormalization group approach of [9] which
used a sharp regulator. While three dimensional estimates
are clearly and ultimately of physical interest, the non-
integer dimension structure of a field theory in effect is
indicating the properties of the underlying universality
class. In the context of the Standard Model, these simple
Ising Gross-Neveu and chiral Heisenberg Gross-Neveu
classes may be pointing us to a novel way of viewing
four dimensional physics. For instance, the observation that
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supersymmetry can emerge at a fixed point in a multi-
coupling quantum field theory [38–40] may be directing us
to a new era of beyond the Standard Model analyses. In
other words, the couplings of the relevant operators with
Standard Model symmetries may flow to a fixed point
which is accessed by an effective quantum field theory in
the short term. However, this could be superseded by a new
one in much the same way as the Lagrangian introducing
the W and Z vector bosons was eventually constructed.
Therefore, exploring this new chiral Heisenberg Gross-
Neveu universality class and understanding it in the
graphene context offers new exciting avenues to explore.
The article is organized as follows. The following section

introduces the chiral Heisenberg Gross-Neveu universality
class together with the basic large N formalism which will
be used to extract the critical exponents to several orders in
d dimensions. In Sec. III, the exponent η is determined at
Oð1=N2Þ and the evaluation of ηϕ and 1=ν to the same
order are provided in Secs. IV and V, respectively. While
these computations in essence follow the same critical
point approach using the skeleton Schwinger-Dyson equa-
tions, the computation of η at Oð1=N3Þ uses the large N
conformal bootstrap method which is outlined in Sec. VI.
The analysis of our results is given in Sec. VII where
estimates are shown for the case of graphene and plots of
the large N exponents in d dimensions are given for the
Ising, XY and chiral Heisenberg Gross-Neveu models.
Finally, we give our conclusions in Sec. VIII.

II. BACKGROUND

The chiral Heisenberg Gross-Neveu model (cHGN) is a
generalization of the original two dimensional OðNÞ or
SUðNÞ Gross-Neveu model of [1] but where the 4-point
interaction is modified to include the three SUð2Þ Pauli spin
matrices σa where a ¼ 1, 2 and 3. The Lagrangian is

LcHGN ¼ iψ̄ i=∂ψ i þ g2

2
ðψ̄ iσaψ iÞ2 ð2:1Þ

where 1 ≤ i ≤ N and g is the dimensionless coupling
constant. Throughout our large N computations we will
use the spinor trace convention that TrI ¼ 2 rather than 4
which is ordinarily used when extending four dimensional
perturbation theory to three dimensions. In other words,
to circumvent this convention we can rewrite our definition
of N using

N ¼ 1

2
dγN ð2:2Þ

where dγ corresponds to the trace convention of the γ
matrices, [9]. The theory (2.1) is only perturbatively
renormalizable in two dimensions. In four dimensions a
quartic fermion interaction is nonrenormalizable but (2.1)
can be reformulated in terms of an auxiliary field π̃a

LcHGN ¼ iψ̄ i=∂ψ i þ gπ̃aψ̄ iσaψ i −
1

2
π̃aπ̃a: ð2:3Þ

In this formulation one can connect the original quartic
interaction in the two dimensional theory with one in four
dimensions which we will term the chiral Heisenberg
Gross-Neveu-Yukawa (cHGNY) theory which has the
Lagrangian

LcHGNY ¼ iψ̄ i=∂ψ i þ 1

2
∂μπ̃

a∂μπ̃a þ g1π̃aψ̄ iσaψ i

þ 1

24
g22ðπ̃aπ̃aÞ2: ð2:4Þ

The sharing of the common Yukawa interaction in (2.3) and
(2.4) is related to the fact that these theories are in the same
universality class at their respective Wilson-Fisher fixed
points. The bosonic sectors are different but they play a role
in ensuring each Lagrangian is renormalizable in their
respective critical dimensions. While both theories lie in the
same universality class there is an underlying universal
theory within which one can carry out computations in the
large N expansion. Specifically d-dimensional critical
exponents can be determined to several orders in 1=N,
when N is large, using methods based on [30–32]. These
exponents encode all orders perturbative information on
renormalization group functions in d dimensions and hence
contain information on all theories, such as (2.3) and (2.4),
in the universality class in their critical dimension. The
Lagrangian for the application of the large N method to the
underlying universal theory is

L ¼ iψ̄ i=∂ψ i þ πaψ̄ iσaψ i −
1

2g
πaπa ð2:5Þ

where the field π̃a has been rescaled so that there is no
coupling constant in the interaction. The method developed
in [30–32] relies on the fact that at criticality it is the
interaction which drives the dynamics at all scales. In
comparison to (2.4) there is no quartic interaction. This is
not an issue since the structure of the universal theory as
such generates the requisite information corresponding to
the critical renormalization group functions of (2.4) via πa

4-point subgraphs in Feynman diagrams. This has been
elucidated in [40] in the context of the large Nf expansion
of quantum chromodynamics (QCD) where Nf is the
number of massless quark flavors. Equally for other
theories in the tower of this universality class the higher
πa n-point subgraphs will contain the vertex structure of
the higher n-point interactions relevant to the theory in a
particular higher critical dimension.
The large N critical point formalism of [30–32] exploits

properties of the renormalization group at criticality to
provide a method of solving the Schwinger-Dyson equa-
tions algebraically. In particular in the approach to a fixed
point there is no scale aside from the correlation length. So,
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for instance, the propagators take an asymptotic scaling
form whose behavior is governed solely by the full
dimension of the field. Specifically in coordinate space
the scaling forms of the fermion and boson fields of (2.5)
are [22]

ψðxÞ ∼ A=x
ðx2Þα ; πðxÞ ∼ C

ðx2Þγ ð2:6Þ

at leading order in the limit as x → 0 where we use the name
of the field for each form. The quantities A and C are
x-independent amplitudes and α and γ are the full dimen-
sions of the actual fields in the d-dimensional Lagrangian.
These comprise the canonical dimension and the anoma-
lous dimension. The former is deduced from ensuring that
the dimension of each term in the Lagrangian is consistent
with the action being dimensionless and we define

α ¼ μþ 1

2
η; γ ¼ 1 − η − χπ ð2:7Þ

in parallel with [22] where η is the anomalous critical
exponent of the fermion. The anomalous dimension of πa

includes η and is derived from the Yukawa interaction
where χπ is the anomalous dimension of the Yukawa vertex
itself. Here we use the convention of [30,31] that the
spacetime dimension d is written as d ¼ 2μ for shorthand.
In order to be able to compare with the critical exponent of
the analogous bosonic field of [12,14] we note that the
corresponding exponent, ηϕ, is related to that of the πa field
here by

ηϕ ¼ 4 − 2μ − 2ðηþ χπÞ: ð2:8Þ

In terms of the connection with the renormalization group
functions, η corresponds to the fermion anomalous dimen-
sion evaluated at the Wilson-Fisher fixed point. As there is
only one interaction, the amplitudes A and C always appear
in the same combination which we will denote by y ¼ A2C.
It, like all the critical exponents, will only depend on μ and
N at criticality. Hence they can be expanded in powers of
1=N via

ηðμÞ ¼
X∞
n¼1

ηnðμÞ
Nn ; yðμÞ ¼

X∞
n¼1

ynðμÞ
Nn ð2:9Þ

and a similar notation will be used for other exponents. In
(2.9) and similar expressions one can restore other spinor
trace conventions by replacing N with the definition (2.2).
As we will be providing various critical exponents, we need
to recall the background formalism for those. While (2.6)
gives the dominant behavior of the propagators in the
approach to criticality, corrections to scaling can be
included and for the propagators these take the form [22]

ψðxÞ ∼ A=x
ðx2Þα ½1þ A0ðx2Þλ�; πðxÞ ∼ C

ðx2Þγ ½1þ C0ðx2Þλ�

ð2:10Þ

where an independent exponent λ governs the scaling of
the correction with A0 and C0 the respective associated
x-independent amplitudes. In principle λ can be any
exponent but for the moment we will let it correspond to
the critical slope of the β function of the theory whose
critical dimension in this universality class is two and hence
corresponds to (2.1) or (2.3). The connection with the
exponents of [14] is that 1=ν ¼ 2λ and we note that the
leading order canonical dimension of λ is λ0 ¼ μ − 1.
One of the main methods to determine the explicit values

of the exponents to several orders in 1=N is to systemati-
cally solve order by order the skeleton Schwinger-Dyson
2-point function for both fields in the approach to criti-
cality. This will also include the corrections to scaling. In
order to do this one needs the asymptotic scaling forms
of the respective 2-point functions. These are derived from
the propagator forms by inverting the momentum space
propagators. To do this we use the Fourier transform given
in [30,31] which is

1

ðx2Þα ¼
aðαÞ
22α

Z
k

eikx

ðk2Þμ−α ð2:11Þ

where

aðαÞ ¼ Γðμ − αÞ
ΓðαÞ : ð2:12Þ

This produces the coordinate space 2-point function
asymptotic scaling forms

ψ−1ðxÞ ∼ rðα − 1Þ=x
Aðx2Þ2μ−αþ1

½1 − A0sðα − 1Þðx2Þλ�;

π−1ðxÞ ∼ pðγÞ
Cðx2Þ2μ−γ ½1 − C0qðγÞðx2Þλ� ð2:13Þ

which include the scaling corrections. The amplitudes
differ from the respective ones in the propagator forms
and the various functions of the exponents are given by

pðγÞ ¼ aðγ − μÞ
aðγÞ ; rðαÞ ¼ αpðαÞ

ðμ − αÞ

qðγÞ ¼ aðγ − μþ λÞaðγ − λÞ
aðγ − μÞaðγÞ ;

sðαÞ ¼ αðα − μÞqðαÞ
ðα − μþ λÞðα − λÞ : ð2:14Þ

In summary we have introduced the basic structure of the
propagators and 2-point functions for the large N critical
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point analysis. This is sufficient to solve the skeleton
Schwinger-Dyson equation at Oð1=N2Þ and determine
d-dimensional expressions for η1, η2, χπ1, λ1 and λ2. The
values of χπ2 and η3 are deduced from solving 3-point
functions at criticality and the formalism for each will be
discussed later.

III. EVALUATION OF η2

As aspects of the solution of the 2- and 3-point functions
for each of the various exponents are common, we illustrate
these features in more detail for the derivation of η2. The
first stage for this is to represent the skeleton Schwinger-
Dyson 2-point functions of Fig. 1 as algebraic equations. In
coordinate space to Oð1=N2Þ, which is sufficient to deduce
η1 and η2, we have

0 ¼ rðα − 1Þ þ 3yZ2
Vðx2ÞχπþΔ − 3y2Z4

VΣ1ðx2Þ2χπþ2Δ

þO

�
1

N3

�
;

0 ¼ pðγÞ þ 2NyZ2
Vðx2ÞχπþΔ þ Ny2Z4

VΠ1ðx2Þ2χπþ2Δ

þO

�
1

N2

�
ð3:1Þ

where we have substituted for the asymptotic scaling forms
of the inverse propagators. The values of the respective two
loop integrals Σ1 and Π1 are present and these not only
depend on N through the presence of the exponents on the
internal lines but also on the regularization Δ. This is
introduced into the critical theory by shifting the anomalous
dimension of the vertex via [30,31]

χπ → χπ þ Δ ð3:2Þ

corresponding to an analytic regularization. Both graphs
are divergent and can be represented by

Σ1 ¼
K1

Δ
þ Σ0

1; Π1 ¼
L1

Δ
þ Π0

1 ð3:3Þ

where the OðΔÞ terms of the integrals would only become
relevant for the η3 derivation using this approach. As
discussed in [30,31,41], the core vertex is renormalized
and this feature is present via the vertex renormalization

constant ZV which also depends on N and Δ. It can be
written as a double expansion via

ZV ¼ 1þ
X∞
l¼1

Xl

n¼1

mln

Δn ð3:4Þ

where the counterterms mln are then expanded in powers
of 1=N

mln ¼
X∞
i¼1

mln;i

Ni : ð3:5Þ

Next an overall common factor of the length of the
position vector x2 has cancelled in (3.1). However, from the
dimensionality of the Feynman graphs there is a remnant x2

dependence deriving from the vertex anomalous dimension
and the regularization. As it stands (3.1) is a formal
representation of Fig. 1 but is not applicable in the scaling
region, given by x2 → 0, where it ought to be independent
of the length scale x2. Equally the renormalization constant
has to be determined as well as χπ . It turns out that all these
issues are resolved together. To achieve this we formally
substitute (3.3) and expand the factors involving x2 to the
appropriate orders in 1=N andΔ neglecting termsOð1=N3Þ
and OðΔÞ respectively. To ensure that the algebraic
Schwinger-Dyson equation is finite when the regularization
is removed leads to

m11;1 ¼ −
1

4
y1L1 ð3:6Þ

and the absence of ln x2 terms requires

χπ1 ¼ −
1

2
y1L1: ð3:7Þ

We have expressed these conditions in terms of the simple
pole of the graph Π1 rather than Σ1. However similar
relations emerge from the ψ i Schwinger-Dyson equation
and these are not inconsistent since from explicit compu-
tation we have

K1 ¼ −
1

2
L1 ð3:8Þ

which ensures there are no ambiguous expressions for the
vertex counterterm and χπ . The resulting Schwinger-Dyson
equations

0 ¼ rðα − 1Þ þ 3y − 3y2Σ0
1 þO

�
1

N3

�
;

0 ¼ pðγÞ þ 2Nyþ Ny2Π0
1 þO

�
1

N2

�
ð3:9ÞFIG. 1. Oð1=N2Þ corrections to the skeleton Schwinger-Dyson

2-point functions used to determine η1 and η2.
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are now finite and independent of x2 to the order in 1=N
necessary to deduce η1 and η2.
To proceed one first concentrates on the leading order

terms of both equations and eliminates y1 to produce

pðγÞ ¼ 2

3
Nrðα − 1Þ: ð3:10Þ

Setting the leading order value for γ and α ¼ μþ η1=N
produces

η1 ¼ −
3Γð2μ − 1Þ

μΓð1 − μÞΓðμ − 1ÞΓ2ðμÞ : ð3:11Þ

With this value established as well as that for the amplitude
combination y1 then η2 is deduced by including the values
of the finite parts of the two loop graphs and eliminating the
unknown y2. First, with

L1 ¼
4

ðμ − 1ÞΓ2ðμÞ ð3:12Þ

from [22] we find

χπ1 ¼ −
μ

3ðμ − 1Þ η1 ð3:13Þ

which is needed for the next term in the expansion of pðγÞ.
Then using

Π0
1 ¼ −

4

ðμ − 1Þ2Γ2ðμÞ ð3:14Þ

from [22], where Σ0
1 satisfies the same ratio with Π0

1 as
(3.8), we find

η2 ¼
�ð2μ − 3Þ
3ðμ − 1ÞΨðμÞ þ

ð4μ2 − 6μþ 1Þ
2μðμ − 1Þ2

�
η21 ð3:15Þ

where we use the shorthand notation

ΨðμÞ ¼ ψð2μ − 1Þ − ψð1Þ þ ψð2 − μÞ − ψðμÞ ð3:16Þ

and ψðzÞ ¼ d lnΓðzÞ=dz is the Euler ψ function.

IV. EVALUATION OF χ π2

With the determination of the exponents of the last
section we have obtained the critical behavior of the ψ i

field to Oð1=N2Þ and that of πa to Oð1=NÞ. Since the
asymptotic scaling forms of the inverse scaling functions,
when there is correction to scaling, involve γ then in order
to find λ atOð1=N2Þwe need to find χπ2 first. One way is to
determine the corrections to the skeleton 2-point functions
at next order in 1=N. However this would involve a large
amount of computation which would not be necessary since

there is an alternative. The extraction of χπ1 from ensuring
there are no terms involving ln x2 in the limit to criticality is
reminiscent of a similar way of extracting the renormaliza-
tion constant for a mass m by renormalizing that part of a
2-point function in conventional perturbation theory which
corresponds to the wave function renormalization. By this
we mean that in a renormalizable theory the one loop mass
counterterm can be deduced from the two loop 2-point
wave function computation by ensuring that there are no
nonrenormalizable terms involving lnm2. While this is not
the conventional way to extract such a one loop counter-
term from a two loop evaluation, it can be regarded in one
way as a useful shortcut but more importantly as being
consistent with the underlying renormalizability. The same
process has in effect been played out in finding χπ at
Oð1=NÞ through the computation of η at Oð1=N2Þ. While
our discussion in the previous section followed the original
algorithm outlined in [30,31], the critical point large N
formalism was subsequently put in a parallel context to
conventional perturbation theory in [41,42]. The core
aspects of perturbation theory are an ordering of the
diagrams constituting a Green’s function and a regulariza-
tion to facilitate their evaluation. With the ordering, such as
the power of the coupling constant, the renormalization
constants are introduced by multiplicative rescaling and
determined with respect to a subtraction criterion. The
situation developed in [41,42] is completely parallel.
Graphs are ordered with respect to the counting given
by the power of 1=N with the regularization introduced
by shifting the vertex anomalous dimension [30,31]. One
major difference is that the residues of the poles in the
renormalization constants are functions of the spacetime
dimension d which does not play a regularizing role. In this
process the critical exponents are directly extracted in a
renormalization group invariant way. In introducing the
vertex renormalization constant ZV previously we were in
effect following the 1=N renormalization formalism devel-
oped in [41,42] which demonstrated that the ordering of
graphs with a suitable regularization in effect was a
complete parallel to conventional perturbation theory.
Moreover it was shown in [41,42] that the vertex anoma-
lous dimensions, as well as operator renormalization, could
be extracted from the critical point evaluation of n-point
functions for n ≥ 3. Therefore to deduce χπ2 we follow that
approach.
The first stage is to reproduce the value of χπ1 which

requires the evaluation of the graph of Fig. 2. In this
instance we use the momentum space asymptotic scaling
forms for the propagators which are

ψðpÞ ∼ Ã=p
ðp2Þμ−αþ1

; πðpÞ ∼ C̃
ðp2Þμ−γ ð4:1Þ

where p is the momentum and Ã and C̃ are the amplitudes
in momentum space. However the combination ỹ ¼ Ã2C̃
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will always arise in the graphs. ItsOð1=N2Þ value is known
via the Fourier transform (2.11) and we already have

ỹ1 ¼ −
y1

ðμ− 1ÞΓðμÞ ; ỹ2 ¼ −
1

ðμ− 1ÞΓðμÞ
�
y2 −

y1η1
ðμ− 1Þ

�

ð4:2Þ

where from earlier calculations we can deduce

y1 ¼
μ

6
Γ2ðμÞη1;

y2 ¼
�
μð2μ − 3Þ
18ðμ − 1ÞΨðμÞ þ

μð5μ − 6Þ
18ðμ − 1Þ2

�
Γ2ðμÞη21: ð4:3Þ

The approach to find the corrections to χπ is similar to
that of the 2-point function. Once the graphs have been
evaluated in momentum space to the finite part in Δ the
contribution to the respective term of the exponent in 1=N
is given by the coefficient of the lnp2 part. Such terms
have to be absent in the limit to the critical point which then
fixes the unknown exponent. Therefore following the
prescription given in [41] we find the same expression
for χπ1 as before.
The computation to deduce χπ2 is more involved. The

main part is the inclusion of the Oð1=N2Þ graphs of Fig. 3.
These were evaluated in [23] for the parallel calculation
of the vertex critical exponent in the OðNÞ Gross-Neveu
model. So for (2.5) the values of the master integrals are
appended with the corresponding group theory factor. In
addition there are next order contributions from the one
loop graph of Fig. 2. This is because of the presence of η

and χπ in the power of each of the propagators. In addition
there are vertex counterterms from ZV for each vertex
which have to be included in the same graph. They relate to
the subgraph divergences arising from the first three graphs
of the top row in Fig. 3. Piecing all the relevant contribu-
tions together and isolating the lnp2 part we find

χπ2 ¼
�
−
μð2μ − 3Þ
9ðμ − 1Þ2 ΨðμÞ −

μ2

3μðμ − 1ÞΘðμÞ

−
½14μ3 − 37μ2 þ 31μ − 3�

9ðμ − 1Þ2
�
η21 ð4:4Þ

where

ΘðμÞ ¼ ψ 0ðμÞ − ψ 0ð1Þ: ð4:5Þ

Equipped with χπ2 then both field anomalous dimensions
are now available to the same order in 1=N.

V. EVALUATION OF λ2

The next stage in the evaluation of the large N critical
exponents again mimics that of conventional perturbation
theory in that with the wave function anomalous dimen-
sions at Oð1=N2Þ one can establish the β function to the
same order. As noted earlier this is achieved by considering
corrections to scaling and evaluating the corresponding
2-point Schwinger-Dyson equations of Fig. 1 to the next
order. There are various aspects of extracting the expansion
for λ which is not straightforward. Basic features are best
illustrated by considering the equation for ψ i which can be
represented by

0 ¼ rðα − 1Þ½1 − A0sðα − 1Þðx2Þλ�
þ 3yZ2

Vðx2ÞχπþΔ½1þ ðA0 þ C0Þðx2Þλ�
− 3y2Z4

Vðx2Þ2χπþ2Δ½Σ1 þ ðΣ1AA0 þ Σ1CC0Þðx2Þλ�

þO

�
1

N3

�
ð5:1Þ

prior to renormalization. The two loop graph denoted by Σ1

in Fig. 1 has been expanded to include the values where
there is a correction to scaling in the ψ i and πa fields. These
are Σ1A and Σ1C respectively and their values have been
computed in [27]. The key difference with the inclusion
of the corrections is that terms do not have the same
dependence on x2. This means that the equation decouples
into two pieces. One is the piece which contributes to the
determination of η while the other involves the unknown λ
and is

0¼−rðα− 1Þsðα− 1ÞA0 þ 3yZ2
Vðx2ÞχπþΔ½A0 þC0�

− 3y2Z4
Vðx2Þ2χπþ2Δ½Σ1AA0 þΣ1CC0� þO

�
1

N3

�
: ð5:2Þ

FIG. 2. Oð1=NÞ graph to determine χπ1.

FIG. 3. Oð1=N2Þ graphs to determine χπ2.
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Unlike the equation which determines η the associated
correction amplitudes are present linearly. If one ignores
the contribution from the two loop graphs then the first two
terms are the relevant ones for finding the value of λ1.
However there is a new feature in comparison with the
corresponding equation to determine η. This is to do with
the large N dependence in that the first term is Oð1Þ while
the second one is Oð1=NÞ which has an impact on the
structure for the πa Schwinger-Dyson equation contributing
to λ.
Turning to the second equation of Fig. 1 we can represent

it in a similar way to that of the first equation and have

0¼ pðγÞ½1−C0qðγÞðx2Þλ� þ 2NyZ2
Vðx2ÞχπþΔ½1þ 2A0ðx2Þλ�

þNy2Z4
Vðx2Þ2χπþ2Δ½Π1 þ ðΠ1AA0 þΠ1CC0Þðx2Þλ�

þO

�
1

N2

�
: ð5:3Þ

The values of the two loop graphs with corrections to
scaling on the ψ i and πa lines are Π1A and Π1C respectively.
Again the equation decouples into that which determines η
and

0¼−pðγÞqðγÞC0 þ4NyZ2
Vðx2ÞχπþΔA0

þNy2Z4
Vðx2Þ2χπþ2Δ½Π1AA0 þΠ1CC0�þO

�
1

N2

�
ð5:4Þ

which is formally similar to (5.2) and also includes the
correction amplitudes A0 and C0. Between these two
equations at leading order the only unknown is λ1. The
consistency equation which is formed to solve for it is
deduced by first representing (5.2) and (5.4) as a matrixM
given by

M ¼
�−rðα − 1Þsðα − 1Þ 3y

4Ny −pðγÞqðγÞ þ Ny2Π0
1C

�

ð5:5Þ

after renormalization where 0 indicates the finite part of
Π1C with respect to Δ. It is worth noting that we have not
retained all the terms in the Schwinger-Dyson equations in
the matrix. This is because we want to concentrate on
finding the value for λ1 initially. Therefore we have retained
the leading terms except for Π0

1C which would ordinarily be
regarded as next order in the sameway that the parent graph
only contributed to η2 and not η1. The reason why this
graph cannot be omitted resides in the powers of N in the
matrix [27] and the fact that the consistency equation is
given by requiring detðMÞ ¼ 0. Therefore in computing
the determinant the two resultant terms have to be the same
order in 1=N. The complication arises from the scaling
functions since

rðα−1Þsðα−1Þ¼Oð1Þ; pðγÞqðγÞ¼O

�
1

N

�
: ð5:6Þ

Therefore both terms of the (22) element are the same order
in 1=N and the omission of Π0

1C would lead to an incorrect
value of λ1. Therefore setting

Π0
1C ¼ Π0

1C1 þ Π0
1C2

1

N
þO

�
1

N2

�
ð5:7Þ

we have the leading order consistency equation

12y21−rðα−1Þsðα−1Þ½NpðγÞqðγÞ−y21Π1C1�¼0 ð5:8Þ

where

qðγÞ ¼ 1

2ðμ − 1ÞN ½λ1 − η1 − χπ1� þO

�
1

N2

�
ð5:9Þ

to leading order. With [27]

Π0
1C1 ¼

2

ðμ − 1Þ2Γ2ðμÞ ð5:10Þ

we find

λ1 ¼ −ð2μ − 1Þη1: ð5:11Þ
Having outlined in detail the formalism and issues behind

the derivation of the leading order consistency equation for
λ1 we extend the analysis to the next order in 1=N. Virtually
all aspects of the Schwinger-Dyson equations discussed so
far are sufficient to formally deduce the correction to the
consistency equation defined by detðMÞ ¼ 0. For instance,
the contributions from the two loop graph of the ψ i equation
in Fig. 1 need to be included. However, for the πa equation
there are twomain additions. The first is that the appearance
ofΠ1C at leading ordermeans that the next term in its largeN
expansion needs to be included as noted in (5.7) and the
correction has the value [27]

Π0
1C2 ¼

2

ðμ − 1Þ2Γ2ðμÞ
�
3

2
ðμ − 1Þ½η1 − χπ1 − λ1�

×

�
ΘðμÞ þ 1

ðμ − 1Þ2
�
−

2

ðμ − 1Þ η1
�
: ð5:12Þ

Also as another direct consequence of the presence ofΠ1C at
leading order, theOð1=N2Þ corrections to the πa Schwinger-
Dyson equation have to be included. These are illustrated in
Fig. 4 where the dot on a πa line denotes which line has the
correction to scaling term. The values of the integrals were
given in [27] but in this case the group factors have to be
appended. We use a labeling of the graphs which is parallel
to that used in [27]. Moreover their contribution has to be
included in the extension of (5.4). If we denote the sumof the
contributions from the graphs of Fig. 4 by Π2C then the
extension of (5.5) is
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M ¼
�−rðα − 1Þsðα − 1Þ þ 3y 3y − 3y2Σ0

1C

4Nyþ Ny2Π0
1A −pðγÞqðγÞ þ Ny2Π0

1C þ ΠC2

�
: ð5:13Þ

Summing all the explicit contributions to ΠC2 we have

ΠC2 ¼
�
2μ½8μ2 − 16μþ 7�
3ðμ − 1Þ2ðμ − 2Þ2η1

−
μ2½44μ3 − 192μ2 þ 287μ − 151�

18ðμ − 1Þ4ðμ − 2Þ2 −
μ2½2μ − 3�

3ðμ − 1Þ2ðμ − 2Þ ½ΦðμÞ þ Ψ2ðμÞ�

þ μ2½8μ − 11�
3ðμ − 1Þ2ðμ − 2ÞΘðμÞ þ

μ2½16μ3 − 82μ2 þ 151μ − 95�
9ðμ − 1Þ3ðμ − 2Þ2

�
y1η21: ð5:14Þ

With this value together with the corrections to the asymptotic scaling functions it is straightforward to solve detðMÞ ¼ 0
at Oð1=N2Þ and find

λ2 ¼
�
μ2½6μ2 − 3μ − 8�
6ðμ − 1Þðμ − 2Þ ΘðμÞ −

2μ2ð2μ − 3Þ
3ðμ − 1Þðμ − 2Þ ½ΦðμÞ þ Ψ2ðμÞ� þ 2μ½8μ2 − 16μþ 7�

3ðμ − 1Þðμ − 2Þ2η1
þ ½72μ8 − 604μ7 þ 1960μ6 − 3060μ5 þ 2151μ4 − 146μ3 − 621μ2 þ 288μ − 36�

18μðμ − 1Þ3ðμ − 2Þ2

−
ð2μ − 3Þ½18μ5 − 95μ4 þ 161μ3 − 86μ2 − 20μþ 12�

9ðμ − 1Þ2ðμ − 2Þ2 ΨðμÞ
�
η21 ð5:15Þ

where

ΦðμÞ ¼ ψ 0ð2μ − 1Þ − ψ 0ð2 − μÞ − ψ 0ðμÞ þ ψ 0ð1Þ: ð5:16Þ

We note that the coefficients in the Taylor expansion of this
function near two dimensions, together with ΨðμÞ and

ΘðμÞ, all involve ζn for integer n ≥ 3 where ζz is the
Riemann zeta function.
Finally we close this section by briefly mentioning that

we have repeated the procedure at leading order to find the
critical exponent which relates to one part of the β functions
of (2.4). To do this instead of using the correction to scaling
of (2.10) we use the alternative correction

ψðxÞ ∼ A=x
ðx2Þα ½1þ A0ðx2Þω�; πðxÞ ∼ C

ðx2Þγ ½1þ C0ðx2Þω�

ð5:17Þ

where ω0 ¼ μ − 2. The consistency equation for ω1 is
formally the same as that for λ1 except that λ is replaced
by ω. The same reordering at leading order occurs and the
analogous value to Π0

1C1 is required. Denoting this by
Π0

1C1ω we note that [43]

Π0
1C1ω ¼ −

2ðμ2 − 4μþ 2Þ
ðμ − 1Þ2ðμ − 2ÞΓ2ðμÞ ð5:18Þ

and find

ω1 ¼ −
2ð2μ − 1Þð2μ − 3Þðμ − 2Þ

3ðμ − 1Þ η1: ð5:19Þ

As in [43] this corresponds to one of the eigen-critical
exponents of the 2 × 2 matrix of derivatives of the two β
functions of (2.4). While the Oð1=N2Þ corrections are
known to the (2.4) β functions [44], the method used in that

FIG. 4. Graphs for Oð1=N2Þ correction to the πa skeleton
Schwinger-Dyson 2-point function to determine λ2.
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approach differed from that used here. Specifically the
relevant critical exponents were determined by examining
3-point functions. So the values of the master integrals
computed in [44] cannot be immediately translated to the
extension of our 2-point Schwinger-Dyson equation to next
order in 1=N.

VI. LARGE N CONFORMAL BOOTSTRAP

The provision of λ2 completes the evaluation of the three
basic exponents η, ηϕ and 1=ν to Oð1=N2Þ in the large N
expansion. The next stage is to proceed to Oð1=N3Þ which
is possible in the case of η. However this is not by the
evaluation of the two 2-point function Schwinger-Dyson
equations. While in principle one should be able to extend
the η2 calculation, it transpires that the evaluation of the
higher order graphs is not straightforward. Instead we
follow the method developed in [32] based on the earlier
work of [33] which we will term the large N conformal
bootstrap method. In this approach one analyzes the
skeleton Schwinger-Dyson equation for the 3-point vertex
using the dressed propagators (2.6) but with additionally no
vertex subgraphs. The focus therefore is on what would be
called the primitive graphs in the 3-point function. These
are illustrated in Fig. 5 where there is a difference in the
representation of the vertices in comparison with the earlier
figures. The dot at each vertex represents what is termed a
conformal triangle [32,33]. In other words the original
vertex is replaced by a one loop triangle graph where the
exponents of the new internal edges are at this stage
arbitrary. Their values are fixed by the criterion that each
new vertex in the triangle is unique. A vertex is said to be
unique if the sum of the exponents of the lines joining a
3-point vertex is equal to the spacetime dimension d. The
concept of uniqueness was introduced in three dimensions
in [45] and extended to d dimensions in [30,31]. One
consequence of uniqueness is that in applying a conformal
transformation to any of the graphs of Fig. 5 immediately

reduces it to a 2-point function. While this means that as
these graphs stand they can be computed, the question still
remains as to how to extract η3.
The original procedure to carry this out for the nonlinear

σ model in d dimensions was given in [32] and involved
extending the work of [33] which was specific to three
dimensions. The first stage is to construct the consistency
equations whose solution gives η3. This has been given in
[24,25,46] for the OðNÞ Gross-Neveu model and that
construction straightforwardly translates to the case of
(2.5). The only major difference aside from the different
labeling of the exponents is to append the factors deriving
from the Pauli matrices in the vertex. Therefore we focus on
outlining the formalism. The key ingredient is the vertex
function which is denoted by Vðy; α; γ; δ; δ0Þ. Here y is the
same combination of amplitudes as before and the function
depends on two regularizing parameters δ and δ0. These are
required since in the derivation of the equation for η given
in [24,25,32,46] there are divergent 2-point functions. The
divergences arise in the same context as those in the earlier
2-point function analyses which required the introduction
of the analytic regularization controlled by Δ. As the
conformal bootstrap also is a perturbative expansion in
the vertex anomalous dimension, the vertices of the graphs
with conformal triangles also have to regularized. This is
achieved by requiring that the external πa and one of the
external ψ i legs of the graphs in Fig. 5 have their dimension
shifted by δ and δ0 respectively [24,25,46].
Having outlined features of the vertex function, the

formalism presented in [24,25,46] leads to the consistency
equations. First thevertex functionVðy; α; γ; δ; δ0Þ is defined
by the sum of δ-regularized graphs given in Fig. 5. The basic
equation which in effect determines the hidden amplitude
of the vertex order by order in large N is

1 ¼ Vðy; α; γ; 0; 0Þ: ð6:1Þ

In other words the sum of all the graphs is unity and it turns
out that each graph is finite when evaluated after applying
conformal techniques. Therefore the regularization for this
was unnecessary [24,25,46]. However, the graphs which
contribute to the value of η3 and equally to the lower order
exponents are divergent which means the regularization
cannot be neglected in their determination. Consequently
the second consistency equation of the set is

2Nrðα − 1Þ
3pðγÞ ¼ ½1þ 2χπ

∂
∂δ0 Vðy; α; γ; δ; δ0Þ�

½1þ 2χπ
∂
∂δVðy; α; γ; δ; δ0Þ�

����
δ¼δ0¼0

ð6:2Þ

where the same scaling functions as before are present. At
leading order the right-hand side is unity which means that
the same value for η1 is recovered as expected. At next order
the one loop graph of Fig. 5 has to be included. However, it
has to be evaluatedwith the regularized external vertices and
conformal triangles. In order to illustrate the earlier points

FIG. 5. Graphs contributing to the vertex function which
determines η3 using the large N conformal bootstrap method.
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about the graphs in the large N conformal bootstrap
construction, we have given the explicit allocation of
exponents on the lines in Fig. 6 for the full graph corre-
sponding to the one loop graph of Fig. 5. There for space
considerations we have set

χπ ¼ 2Δ̃π: ð6:3Þ

It is clear that there is a nonzero sum of the exponents at the
top and bottom left vertices which are proportional to δ and
δ0 respectively. Equally the sum of all the exponents at
internal vertices are unique. The value of the graph in Fig. 6
has been determined in the context of the usual Gross-Neveu
model as a function of the exponents of that model [46]. So
that formal expression can be adapted to this computation as
the group factor is separate for the graph in Fig. 6. Exporting
that function and inserting it into (6.1) and (6.2) we recover
the earlier value of η2 which provides a useful check on our
conformal bootstrap construction.
The final stage is to include the remaining graphs of

Fig. 5 in the two consistency equations. Again the values of
the contributing integrals have been computed in [28] in the
context of the usual Gross-Neveu model. So those master
integral values need only be decorated with the group
factors for the specific case we are interested in. Unlike
the one loop graph of Fig. 5 some of the higher order

δ-regularized graphs cannot be evaluated completely.
However for these cases it transpires that the difference

� ∂
∂δ0 Vðy; α; γ; δ; δ

0Þ − ∂
∂δVðy; α; γ; δ; δ

0Þ
�����

δ¼δ0¼0

ð6:4Þ

can be determined. This is all that is necessary since this
difference for the higher order graphs is sufficient to deduce
η3 in the 1=N expansion of the right-hand side of (6.2). If
we denote the contributions to the right-hand side of (6.2)
from all the graphs in Fig. 5 except the one loop triangle by
V2 then

V2 ¼
�
μ2ð14μ2 − 37μþ 28Þ

18ðμ − 1Þ3 ΨðμÞ

−
μ2ð2μ − 5Þð7μ2 − 18μþ 16Þ

18ðμ − 1Þ4 −
μ2ðμ − 16Þ
36ðμ − 1Þ2 ΘðμÞ

−
μ2

6ðμ − 1ÞΞðμÞ
�
ΘðμÞ þ 1

ðμ − 1Þ2
��

η21: ð6:5Þ

This involves a new function ΞðμÞ which is related to a
particular two loop graph introduced in [32] and denoted
there by IðμÞ. In terms of IðμÞ we have

IðμÞ ¼ −
2

3ðμ − 1Þ þ ΞðμÞ ð6:6Þ

so that the expansion of ΞðμÞ near two dimensions only
involves multiple zeta values [47]. For instance, the first
few terms are

Ξð1 − ϵÞ ¼ 2

3
ζ3ϵ

2 þ ζ4ϵ
3 þ 13

3
ζ5ϵ

4 þOðϵ5Þ: ð6:7Þ

In three dimensions the integral IðμÞ is known exactly [32]
since

I

�
3

2

�
¼ 2 ln 2þ 3ψ 00ð1

2
Þ

2π2
ð6:8Þ

which will be needed for our three dimensional estimates
later. Finally including V2 in (6.2) and expanding the one
loop contribution from Fig. 6 to Oð1=N2Þ we find that

η3 ¼
� ð2μ − 3Þ
18ðμ − 1Þ2 ½ΦðμÞ þ 3Ψ2ðμÞ� − ½μ3 þ 18μ2 − 21μþ 9�

36ðμ − 1Þ2 ΘðμÞ − μ2

3ðμ − 1ÞΘðμÞΨðμÞ

−
μ2

6ðμ − 1Þ3 ΞðμÞ −
½14μ7 − 15μ6 − 26μ5 − 77μ4 þ 324μ3 − 297μ2 þ 90μ − 9�

18μ2ðμ − 1Þ4

−
½14μ5 − 37μ4 − 50μ3 þ 228μ2 − 183μþ 27�

18μðμ − 1Þ3 ΨðμÞ − μ2

6ðμ − 1ÞΞðμÞΘðμÞ
�
η31 ð6:9Þ

which completes the evaluation of all the critical exponents. To assist with analyses, see the Supplemental Material [48]
where electronic versions of all the exponents computed here are given.

FIG. 6. Regularized leading order graph for conformal boot-
strap construction.
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VII. RESULTS

We devote this section to discussing our results and give estimates of critical exponents in three dimensions. As a first
stage we must indicate that all the expressions derived here are consistent with known perturbation theory near four
dimensions. Recently the three and four loop renormalization group functions have been provided for the chiral Heisenberg
Gross-Neveu-Yukawa theory [12,14], which built on the early loop work of [10,11]. Setting d ¼ 4 − 2ϵ in the
d-dimensional exponents we find

ηjd¼4−2ϵ ¼
�
3ϵ −

9

2
ϵ2 −

9

4
ϵ3 þ 3

8
½16ζ3 − 3�ϵ4 þ 9

16
½16ζ4 − 16ζ3 − 1�ϵ5

�
1

N

þ
�
−3ϵþ 99

4
ϵ2 −

303

8
ϵ3 −

3

2
½16ζ3 þ 13�ϵ4 þ 3½49ζ3 − 12ζ4 þ 3�ϵ5

�
1

N2

þ
�
3ϵ −

153

4
ϵ2 þ

�
72ζ3 −

51

4

�
ϵ3 þ 3

16
½576ζ4 þ 3337 − 2104ζ3�ϵ4

þ 3

32
½1536ζ5 − 10645 − 6312ζ4 þ 2104ζ3�ϵ5

�
1

N3
þO

�
ϵ6;

1

N4

�

ηϕjd¼4−2ϵ ¼ 2ϵþ
�
−2ϵþ 5ϵ2 þ 1

2
ϵ3 þ

�
−
7

4
− 4ζ3

�
ϵ4 þ 1

8
½80ζ3 − 48ζ4 − 23�ϵ5

�
1

N

þ
�
2ϵþ 69

2
ϵ2 þ

�
48ζ3 −

625

4

�
ϵ3 þ ½155 − 128ζ3 þ 72ζ4�ϵ4

þ 2½73ζ3 − 96ζ4 þ 48ζ5 þ 18�ϵ5
�

1

N2
þO

�
ϵ6;

1

N3

�

1

ν

����
d¼4−2ϵ

¼ 2 − 2ϵþ
�
−18ϵþ 39ϵ2 −

9

2
ϵ3 þ

�
−
9

4
− 36ζ3

�
ϵ4 þ 3

8
½208ζ3 − 144ζ4 − 3�ϵ5

�
1

N

þ
�
438ϵ −

3005

2
ϵ2 þ

�
3721

4
− 552ζ3

�
ϵ3 þ ½744þ 3608ζ3 − 828ζ4 þ 1360ζ5�ϵ4

þ 1

2
½1760ζ23 − 16532ζ3 þ 10824ζ4 − 17728ζ5 þ 6800ζ6 − 365�ϵ5

�
1

N2
þO

�
ϵ6;

1

N3

�
: ð7:1Þ

Comparing with the results of [10,12,13,14] and allowing for the different ϵ expansion convention, we find exact agreement
with the exponents of [10,12,13,14]. For future five loop computations we have also given the Oðϵ5Þ terms. We have also
checked that the ϵ expansion of ω1 near four dimensions is in agreement with one of the eigen-critical exponents of the
Hessian defined by the derivatives of the two β functions of [14]. This check is similar to that carried out in the Ising Gross-
Neveu model [43]. For similar reasons we give the ϵ expansion of the exponents in d ¼ 2 − 2ϵ to the same order. We have

ηjd¼2−2ϵ ¼ ½3ϵ2 þ 3ϵ3 þ 3ϵ4 þ ½3þ 6ζ3�ϵ5�
1

N
þ
�
−
9

2
ϵ2 −

45

2
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�
1
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þ
�
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�
396 −

111

2
ζ3

�
ϵ5
�

1

N3
þO

�
ϵ6;

1

N4

�

ηϕjd¼2−2ϵ ¼ 2þ 2ϵþ ½−2ϵ − 6ϵ2 − 6ϵ3 þ ½−6 − 4ζ3�ϵ4 þ ½−12ζ3 − 6ζ4 − 6�ϵ5� 1
N

þ ½−10ϵ − 3ϵ2 þ 23ϵ3 þ ½78 − 44ζ3�ϵ4 þ ½36ζ3 − 66ζ4 þ 96�ϵ5� 1

N2
þO

�
ϵ6;

1

N3

�

1

ν

����
d¼2−2ϵ

¼ −2ϵþ ½−6ϵ2 þ 6ϵ3 þ 6ϵ4 þ ½6 − 12ζ3�ϵ5�
1

N
þ ½8ϵ2 þ 9ϵ3 þ ½67þ 90ζ3�ϵ4 þ ½240ζ3 þ 135ζ4 − 178�ϵ5� 1

N2

þO

�
ϵ6;

1

N3

�
: ð7:2Þ

Having established the consistency of our d-dimensional critical exponents with known four dimensional perturbation
theory, it is a simple exercise to determine the values in three dimensions. We have
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TABLE I. Comparison of large N Padé estimates with other
methods forN ¼ 4 for the chiral Heisenberg Gross-Neveu model.

1=ν ηϕ η ν

ϵ expansion [2,2]
Padé [14]

0.6426 0.9985 0.1833

ϵ expansion [3, 1]
Padé [14]

0.6447 0.9563 0.1560 1.2352

Functional RG [49] 0.795 1.032 0.071 1.26
Monte Carlo [50] (0.98) 0.20(2) 1.02(1)
Monte Carlo [51] (1.19) 0.70(15) 0.84(4)
Large N 0.8458 1.1849 0.1051 1.1823

TABLE II. Comparison of large N Padé estimates with
other methods for N ¼ 4 for the chiral XY Gross-Neveu
model.

1=ν ηϕ η

ϵ expansion [2, 2] Padé [14] 0.840 0.810 0.117
ϵ expansion [3, 1] Padé [14] 0.841 0.788 0.108
Functional RG [52] 0.862 0.88 0.062
Monte Carlo [53] 1.06(5) 0.71(3)
Large N 0.9026 0.9023 0.0872

.

FIG. 7. Dependence of Padé approximants to critical exponents η, ηϕ and 1=ν for the chiral Heisenberg Gross-Neveu model
when N ¼ 4. In the η plot the open circle is the [2,1] Padé approximant using η at Oð1=N3Þ and the solid circle is the [1,2] Padé
approximant.
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ηjd¼3 ¼
4

π2N
þ 64

3π4N2
þ 8½378ζ3 − 36π2 lnð2Þ − 45π2 − 332�

9π6N3
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�
1
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�
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�
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where the Oð1=NÞ correction to ηϕ is zero or

ηjd¼3 ¼
0.4052845

N
þ 0.219008

N2
−
0.525197

N3
þO

�
1

N4

�

ηϕjd¼3
¼ 1þ 2.497169
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�
1

N3

�
;

1
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����
d¼3

¼ 1 −
1.621139

N
þ 10.557615

N2
þO

�
1

N3

�
ð7:4Þ

numerically.

FIG. 8. Dependence of Padé approximants to critical exponents η, ηϕ and 1=ν for the Gross-Neveu XY model when N ¼ 4.
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Equipped with these three dimensional expressions we
can now provide estimates for the exponents in the case
which is of interest to graphene problems. Therefore
recalling our convention for the spinor trace (2.2), the
value of N we use in order to compare with the numerical
estimates of critical exponents of other methods for (2.5) is
N ¼ 4. Given this we have determined numerical estimates
for the three critical exponents using Padé approximants.
These are given in the last line of Table I together with
results quoted in [14] by other approaches for comparison.
In the table bracketed values for 1=ν represent the value
derived from ν which was computed directly. For the large
N estimates we have quoted the [1,2], [0,2] and [1,1] Padé
approximants for η, ηϕ and 1=ν respectively. In general the
values for large N are similar but larger than those of the
functional renormalization group values of [49] for ηϕ and
1=ν. For η the situation is much different with virtually no

overlap for any of the different analyses. As [14] also
considered the XY Gross-Neveu model, we have also
provided the parallel results for N ¼ 4 in Table II in order
to compare results for the same methods in a different
context. Again it is the case that the estimates for ηϕ and
1=ν are slightly larger than those of the functional renorm-
alization group values in [14] with again no clear consensus
for η. Although, it is worth noting that the large N estimate
for η is a [1,1] Padé since the value of η3 for that model has
not been computed.
Perhaps a more instructive way of viewing the situation

with the exponent estimates is to use a graphical repre-
sentation motivated by the functional renormalization
group approach [9]. One aspect of that method is that it
is not limited to a discrete spacetime dimension. In other
words the critical exponents can be determined as functions
of d and plots of the three exponents in 2 < d < 4 were

FIG. 9. Dependence of Padé approximants to critical exponents η, ηϕ and 1=ν for the Ising Gross-Neveu model when N ¼ 8.

LARGE N CRITICAL EXPONENTS FOR THE CHIRAL … PHYS. REV. D 97, 105009 (2018)

105009-15



given in [9]. As our expansion parameter, 1=N, is dimen-
sionless in d dimensions it is possible to provide similar
plots for the same exponents. By this we mean that we can
plot the various Padé approximants used to obtain the
estimates in Table I for the chiral Heisenberg Gross-Neveu
model as functions of d. These are given in Fig. 7 forN ¼ 4
except that the [1,1] Padé is used for η. This is because we
do not have a closed analytic form for the ΞðμÞ as a
function of μ. Instead we have used the first two terms of η.
However in the plot of η we have included the [2,1] Padé
estimate, indicated by an open circle, and the [1,2] estimate
indicated by a solid circle. These are meant to guide
roughly where the d-dimensional line would intersect if
η3 was known as an analytic function in d dimensions. One
interesting aspect of the three curves in Fig. 7 is that they
are in good qualitative agreement with those of the right-
hand panels of Figs. 1–3 of [9]. By this we mean that the
shape in terms of concavity and convexity for ηϕ and 1=ν
are very similar as well as the offset of the peak for η which
is not in the neighborhood of d ¼ 3. Finally, in order to
assist this comparison we have included similar plots for
the XY Gross-Neveu model when N ¼ 4 and the ordinary
or Ising Gross-Neveu model for N ¼ 8 in Figs. 8 and 9
respectively. The latter value of N in that case is the parallel
one to compare with [9]. In Fig. 8 only the first two terms of
η were available which is why the Padé estimate lies on the
line. While the shapes of the plots for the Ising Gross-
Neveu model are also qualitatively similar to those of [9], it
is worth noting that the one for ηϕ differs in concavity to
that for the chiral Heisenberg Gross-Neveu model which
is consistent with the functional renormalization group
approach.

VIII. DISCUSSION

We have completed the evaluation of the three core
critical exponents η, ηϕ and 1=ν to several orders in the
large N expansion as a function of the spacetime dimension
d for the chiral Heisenberg Gross-Neveu universality class.
The ϵ expansion of the expressions near four dimensions
agrees exactly with the recent explicit four loop renorm-
alization group functions of (2.4) at the Wilson-Fisher fixed
point, given in [14]. Indeed our large N results are an
important independent check on that work. Moreover we

have provided the next terms in the series as a future check
for any five loop renormalization of (2.4). As the exponents
depend on d, plots of the Padé approximant of each
exponent in dimensions 2 < d < 4 have been given in
order to compare with the functional renormalization group
approach of [9] where a sharp regulator was used. All the
large N plots for not only the chiral Heisenberg Gross-
Neveu universality class but the Ising and XY Gross-Neveu
classes in d dimensions are in good qualitative agreement
with [9]. Again this consistency provides independent
evidence that these methods are capturing the proper and
general behavior of the exponents of the universality class
across the dimensions. At the outset we drew attention to
Figs. 1–3 of [9] in relation to the status of results available
for the Ising and chiral Heisenberg Gross-Neveu univer-
sality classes. In addition to the three and four loop results
of [12–14], the results here are now edging towards the
latter class having commensurate data with the former.
What is lacking is Monte Carlo results and higher order two
dimensional perturbative renormalization group functions.
The latter should be possible to obtain to four loops with
the recent derivation of the β function for the Ising Gross-
Neveu model in two dimensions, [15]. This is not as
straightforward a computation as that for the four dimen-
sional case [12–14]. In two dimensions quartic fermion
self-interactions are not multiplicatively renormalizable
when the Lagrangian is dimensionally regularized.
Instead additional evanescent quartic interactions are gen-
erated and their presence means that one has to be careful in
extracting the true renormalization group functions after the
regularization is lifted. Aside from this technical issue it
should be possible in the future to add this extra informa-
tion to the analysis of the chiral Heisenberg universal-
ity class.
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