
 

Five-dimensional Myers-Perry black holes cannot be overspun
in gedanken experiments
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We apply the new version of a gedanken experiment designed recently by Sorce and Wald to overspin
the five-dimensional Myers-Perry black holes. As a result, the extremal black holes cannot be overspun at
the linear order. On the other hand, although the nearly extremal black holes could be overspun at the linear
order, this process is shown to be prohibited by the quadratic order correction. Thus, no violation of the
weak cosmic censorship conjecture occurs around the five-dimensional Myers-Perry black holes.
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I. INTRODUCTION

When a singularity is not hidden behind a black hole
horizon, so as to be seen by a distant observer, then it is
called a naked singularity. The weak cosmic censorship
conjecture (WCC) claims that a naked singularity cannot
be formed generically through gravitational collapse with
physically reasonable matter [1]. Even though there is
still no general proof for this conjecture for the four-
dimensional asymptotically flat spacetime, the supporting
evidence has been accumulated and discussed for a few
decades [2]. Particularly, in 1974, Wald suggested a
gedanken experiment to test WCC by examining whether
the black hole horizon could be destroyed by injecting a
point particle [3]. As a result, such a gedanken experiment
turns out to be in favor of WCC.
However, there are two crucial assumptions underlying the

aforementioned gedanken experiment. First, the black hole
in consideration is extremal in its initial state. Second, the
analysis is performed only at linear order of the point
particle’s energy, angular moment, and charge. The violation
of WCC occurs when one releases either of these two
assumptions. In particular, as initiated by Hubeny in 1999
[4], one can show that a nearly extremal Kerr-Newman
black hole can be both over charged and overspun [5–9].

In addition, when one takes into account the higher order
terms in the energy, angular momentum, and charge of the
test particle, an extremal Kerr-Newman black hole can even
be destroyed [10]. Nevertheless, these results may not
indicate a true violation of WCC. Instead, in all of these
situations, the test particle assumption may not be valid any
more, soWCCmaybe restoredwhen one carefully takes into
consideration the self-force and finite-size effects [11–15].
Motivated by this, Sorce and Wald have recently

designed a new version of this gedanken experiment
[16]. Rather than analyzing the motion of the particle
matter to obtain the condition for it to be absorbed by the
black hole, they apply Iyer-Wald formalism to completely
general matter and obtain the first order variational inequal-
ity for the mass of the black hole by simply requiring the
null energy condition on the horizon for the general matter,
which reduces to that obtained in the old version of the
gedanken experiment when one regards the particle matter
as the limiting case of the general matter.1 Moreover, when
the initial black hole is nonextremal, they also obtain a
lower bound for the second order variation of the mass of
the black hole, which somehow incorporates both the self-
force and finite-size effects and can be used to prove that no
violation of the Hubeny type can ever occur. This result
further strengthens the belief in the validity of WCC in
four-dimensional asymptotically flat spacetime.
Nevertheless, four-dimensional black holes have a lot

of remarkable properties. It is natural to ask whether these
properties are general features of black holes or whether
they are unique to the world being four dimensional. For
example, neither the uniqueness theorem nor the spherical
topology of the horizon persists for black holes in higher
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1The similar first order variational inequality is also obtained
in [17].

PHYSICAL REVIEW D 97, 104007 (2018)

2470-0010=2018=97(10)=104007(9) 104007-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.104007&domain=pdf&date_stamp=2018-05-07
https://doi.org/10.1103/PhysRevD.97.104007
https://doi.org/10.1103/PhysRevD.97.104007
https://doi.org/10.1103/PhysRevD.97.104007
https://doi.org/10.1103/PhysRevD.97.104007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


dimensions [18–20]. Regarding WCC, fully nonlinear
numerical simulation has indicated that not only the
five-dimensional black strings and black rings but also
the six-dimensional Myers-Perry black holes can be
destroyed by perturbations, with the horizons pinching
into a generic formation of a naked singularity [21–23].
However, to the best of our knowledge, so far there has
been no numerical evidence for the similar formation of a
naked singularity by the perturbation of five-dimensional
Myers-Perry black holes. This leads naturally to a restricted
version of WCC in five-dimensional asymptotically flat
spacetime, namely that the generic perturbations around
five-dimensional Myers-Perry black holes give rise to no
formation of a naked singularity. Note that the gedanken
experiment, no matter whether it is the new version or the
old one, does not appeal to the sophisticated full-blown
numerical relativity, so it is rewarding to check the validity
of our restricted version of WCC by gedanken experiments.
Indeed, it has been shown in [24] that five-dimensional
Myers-Perry black holes can not be overspun in the old
gedanken experiment. But to obtain the above result
analytically, not only does the scenario considered in
[24] restrict into either singly rotating or equally rotating
black holes, but it also focuses exclusively on the test
particle falling in along the equator. As alluded to before,
compared to the old experiment, the new gedanken experi-
ment does not require us to analyze the motion of bodies to
determine what kind of trajectories will or will not be
captured by the black hole horizon, so it is desirable to
check the validity of such a WCC around five-dimensional
Myers-Perry black holes in a more general circumstance
by performing a new gedanken experiment. This is the
purpose of the current paper. As a result, five-dimensional
general Myers-Perry black holes cannot be overspun by
a generic matter perturbation; thus, our restricted version
of WCC holds in five-dimensional asymptotically flat
spacetime.
The structure of this paper is organized as follows. In

Sec. II, we shall review the well-established Iyer-Wald
formalism for any diffeomorphism covariant theory in any
dimension, in particular, the first and second order varia-
tional identities. In Sec. III, we restrict ourselves to the
five-dimensional Einstein theory and introduce five-
dimensional Myers-Perry black holes. Here, taking into
account that the relevant quantities for five-dimensional
Myers-Perry black holes are presented in the previous
literature without an explicit derivation, we relegate such a
derivation to Appendixes A and B. In addition, we also
rewrite these quantities in a convenient way for later
calculation. Then, in Sec. IV, we follow the idea in [16] to
present the setup for the new version of the gedanken
experiment, in particular, the first order perturbation inequal-
ity, as well as the second order perturbation inequality for the
optimal first order perturbation of nonextremal black holes.
With the above preparation, we conduct such a gedanken

experiment to overspin the extremal and nearly extremal five-
dimensionalMyers-Perry black holes in Sec.V.We conclude
our paper in the last section with some discussions.

II. IYER-WALD FORMALISM AND
VARIATIONAL IDENTITIES

Compared to the ordinary Lagrangian scalar L con-
structed locally out of the metric gab, its Riemann curva-
ture, and other matter fields ψ as well as their symmetrized
covariant derivatives, we prefer to start from a diffeo-
morphism covariant theory in an n-dimensional spacetime
M with a Lagrangian n form L ¼ Lϵa1a2…an , where
ϵa1a2…an is the canonical volume element associated with
the metric gab [25]. If we denote ϕ ¼ ðgab;ψÞ as all
dynamical fields, then the variation of the Lagrangian
gives rise to

δL ¼ Eδϕþ dΘðϕ; δϕÞ; ð1Þ
where the equations of motion read E ¼ 0, and the (n − 1)
form Θ is called the symplectic potential form. The
symplectic current (n − 1) form is defined in terms of a
second variation of Θ as

ωðϕ; δ1ϕ; δ2ϕÞ ¼ δ1Θðϕ; δ2ϕÞ − δ2Θðϕ; δ1ϕÞ: ð2Þ
Associated with an arbitrary vector field χa on the space-
time M, one can further define a Noether current (n − 1)
form as

Jχ ¼ Θðϕ;LχϕÞ − χ ·L: ð3Þ
A straightforward calculation gives

dJχ ¼ −ELχϕ; ð4Þ
which indicates Jχ is closed when the equations of motion
are satisfied. Furthermore, it is shown in [26] that the
Noether current can always be expressed as

Jχ ¼ dQχ þCχ ; ð5Þ
where Qχ is called the Noether charge and Cχ ¼ χaCa is
called the constraint of the theory, which vanishes when the
equations of motion are satisfied.
Now, by keeping χa fixed and comparing the variations

of (3) and (5), we end up with

d½δQχ − χ ·Θðϕ; δϕÞ� ¼ ωðϕ; δϕ;LχϕÞ − χ · Eδϕ − δCχ :

ð6Þ
In what follows, we shall focus exclusively on the case in

which ϕ represents the exterior solution of a stationary
black hole with ξa the horizon Killing field,

ξa ¼
� ∂
∂t
�

a
þΩI

� ∂
∂φI

�
a
; ð7Þ

satisfying Lξϕ ¼ 0, where ð ∂
∂φIÞa are Killing vector fields

with closed orbits and ΩI are the corresponding angular
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velocities of the horizon. Then the variation of (6) gives
rise to

d½δ2Qξ − ξ · δΘðϕ; δϕÞ�
¼ ωðϕ; δϕ;LξδϕÞ − ξ · δEδϕ − δ2Cξ: ð8Þ

Suppose that Σ is a hypersurface with a cross section B of
the horizon and the spacial infinity as its boundaries, then it
follows from (6) that

δM −ΩIδJI ¼
Z
B
½δQξ − ξ ·Θðϕ; δϕÞ� −

Z
Σ
δCξ; ð9Þ

where we have resorted to the fact that the variation of the
Arnowitt-Deser-Misner (ADM) conserved quantity Hχ

conjugate to an asymptotic Killing vector field χa if it
exists is given by

δHχ ¼
Z
∞
½δQχ − χ ·Θðϕ; δϕÞ� ð10Þ

with M the ADM mass conjugate to ð ∂∂tÞa and JI the ADM
angular momenta conjugate to ð ∂

∂φIÞa. Similarly, it follows

from (8) that

δ2M −ΩIδ2JI ¼
Z
B
½δ2Qξ − ξ · δΘðϕ; δϕÞ� −

Z
Σ
ξ · δEδϕ

−
Z
Σ
δ2Cξ þ EΣðϕ; δϕÞ; ð11Þ

where we have used the definition of the canonical energy
of the perturbation δϕ on Σ,

EΣðϕ; δϕÞ ¼
Z
Σ
ωðϕ; δϕ;LξδϕÞ: ð12Þ

III. FIVE-DIMENSIONAL EINSTEIN THEORY
AND MYERS-PERRY BLACK HOLES

For our purpose, we now specialize to the five-
dimensional Einstein theory, i.e.,

L ¼ 1

16π
Rϵ: ð13Þ

Whence we have

Eab ¼ −
1

16π
Gabϵ ð14Þ

with Gab Einstein tensor, and the symplectic potential
4-form

Θabcd ¼
1

16π
ϵeabcdgefghið∇iδgfh −∇fδghiÞ: ð15Þ

The corresponding symplectic current reads

ωabcd ¼
1

16π
ϵeabcdwe; ð16Þ

where

wa ¼ Pabcdefðδ2gbc∇dδ1gef − δ1gbc∇dδ2gefÞ ð17Þ

with

Pabcdef ¼ gaegfbgcd −
1

2
gadgbegfc −

1

2
gabgcdgef

−
1

2
gbcgaegfd þ 1

2
gbcgadgef: ð18Þ

Taking Lχgab ¼ ∇aχb þ∇bχa into consideration and by a
straightforward calculation, we can further obtain the
Noether current as

ðJχÞabcd ¼
1

8π
ϵeabcd∇fð∇½fχe�Þ þ 1

8π
ϵeabcdGefχf: ð19Þ

By comparing it with (5), one can readily identify the
Noether charge

ðQχÞabc ¼ −
1

16π
ϵabcde∇dχe; ð20Þ

and

ðCfÞabcd ¼
1

8π
ϵeabcdGe

f: ð21Þ

As to a five-dimensional spacetime which is asymptoti-
cally flat in the sense that in a Lorentzian coordinate system
fxg of flat metric ηab, the metric behaves as

gμν ¼ ημν þO
�
1

r2

�
; ∂ρgμν ¼ O

�
1

r3

�
ð22Þ

near the spatial infinity, one can show there exists a 4-form
B such that the ADM mass is given by

M ¼
Z
∞
Q ∂∂t

−
∂
∂t ·B

¼ 1

16π

Z
∞
dSrkδijð∂ihkj − ∂khijÞ

¼ 1

16π

Z
∞
dSrkð∂ihki − ∂khÞ; ð23Þ

where ra ¼ ð ∂∂rÞa and hij is the spatial metric with the index
raised and the tensor traced both by the background
Euclidean metric δij. On the other hand, it is easy to see
that the ADM angular momentum is given simply by

JI ¼ −
Z
∞
Q ∂

∂φI
: ð24Þ

The higher dimensional generalization of the asymptoti-
cally flat stationary Kerr black hole solution to the vacuum
Einstein equation was first obtained by Myers and Perry
[27], and its five-dimensional version reads
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ds2 ¼ −dt2 þ μ

Ξ
ðdt − a1 sin2 θdφ1 − a2 cos2 θdφ2Þ2

þ r2Ξ
Π − μr2

dr2 þ Ξdθ2 þ ðr2 þ a21Þ sin2 θðdφ1Þ2

þ ðr2 þ a22Þ cos2 θðdφ2Þ2 ð25Þ
with

Ξ ¼ r2 þ a21cos
2θ þ a22sin

2θ;

Π ¼ ðr2 þ a21Þðr2 þ a22Þ; ð26Þ
where φI ∈ ½0; 2π� and θ ∈ ½0; π

2
�. As shown in Appendix A,

the parameters μ and aI are related to the ADM mass and
angular momenta, respectively, as

M ¼ 3πμ

8
; JI ¼

πμaI
4

: ð27Þ
Without loss of generality, we shall constrain aI to be non-
negative in later discussions.
The spacetime singularity is located at Ξ ¼ 0 as the

squared Riemann tensor is given by

RabcdRabcd ¼ 24μ2

Ξ6
ð4r2 − 3ΞÞð4r2 − ΞÞ: ð28Þ

At the same time, Π − μr2 ¼ 0 is simply the coordinate
singularity, and its roots can be expressed as follows

r ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ − ða1 þ a2Þ2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ − ða1 − a2Þ2

p
2

; ð29Þ
which are real if and only if

μ ≥ ða1 þ a2Þ2; ð30Þ
where the largest root rH designates the black hole event
horizon with the area

A ¼ 2π2μrH: ð31Þ
As calculated out in Appendix B, the corresponding
angular velocity and surface gravity of the horizon are
given by

ΩI ¼ aI
r2H þ a2I

; κ ¼ 2r2H þ a21 þ a22 − μ

μrH
: ð32Þ

In particular,

μ ¼ ða1 þ a2Þ2 ð33Þ
corresponds to the extremal Myers-Perry black holes.2

On the other hand, for

μ < ða1 þ a2Þ2; ð34Þ
the Myers-Perry metric describes a naked singularity.
For our later convenience, we would like to rewrite the

condition for the existence of the horizon in terms of the
ADM mass and angular momenta as

32M3 − 27πðJ1 þ J2Þ2 ≥ 0: ð35Þ
By the same token, the relevant quantities associated with
the horizon can be expressed as

A ¼ 4
ffiffiffi
π

p ðαþ βÞ
3
ffiffiffi
3

p ;

ΩI ¼ 72πMJI
ðαþ βÞ2 þ 108πJ2I

;

κ ¼
ffiffiffiffiffiffi
3π

p
αβ

8M2ðαþ βÞ ; ð36Þ

where

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32M3 − 27πðJ1 þ J2Þ2

q
;

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32M3 − 27πðJ1 − J2Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 108πJ1J2

q
: ð37Þ

Obviously, α → 0 corresponds to the near extremal limit.

IV. NULL ENERGY CONDITION AND
PERTURBATION INEQUALITIES

As in the new gedanken experiment designed in [16],
the situation we plan to investigate is what happens to the
above Myers-Perry black holes when they are perturbed by
a one-parameter family of the matter source according to
Einstein equation

GabðλÞ ¼ 8πTabðλÞ ð38Þ
around λ ¼ 0 with Tabð0Þ ¼ 0. Without loss of generality
but for simplicity, we shall assume all the matter goes into
the black hole through a finite portion of the future horizon.
With this in mind, we can always choose a hypersurface
Σ ¼ H ∪ Σ1 such that it starts from the very early cross
section of the unperturbed horizon B1 where the perturba-
tion vanishes, continues up the horizon through the portion
H till the very late cross section B2 where the matter source
vanishes, then becomes spacelike as Σ1 to approach the
spatial infinity. In addition, we would like to work with the
Gaussian null coordinates near the unperturbed horizon as

gabðλÞ¼2ðduÞða½ðdvÞbÞ−v2ρðλÞðduÞbÞ þvπbÞðλÞ�þqabðλÞ;
ð39Þ

where v ¼ 0 denotes the location of the unperturbed
horizon, u is the affine parameter of future directed null
geodesic generators of v ¼ 0 surface for any metric in the
family, and πa and qab are orthogonal to ka ¼ ð ∂

∂uÞa and
la ¼ ð ∂

∂vÞa. As one can show, this choice of coordinates
follows [29] Z

B1

QξðλÞ ¼
κ

8π
AB1

ðλÞ ð40Þ2When one of the angular momenta vanishes, then the horizon
disappears and the resulting spacetime is a naked singularity [28].
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if we further choose the bifurcate surface of the unperturbed
horizon as B1 in what follows when the black hole in
consideration is nonextremal.
With the above preparation, (9) reduces to

δM − ΩIδJI ¼ −
Z
Σ
δCξ

¼ −
Z
H
ϵeabcdδTefξf

¼
Z
H
ϵ̃δTabkaξb; ð41Þ

where ϵ̃ is the induced volume element on the horizon,
satisfying ϵeabcd ¼ −5k½eϵ̃abcd�. Now if the null energy

condition is satisfied such that δTabkakbjH ≥ 0, we have
the first order perturbation inequality as

δM − ΩIδJI ≥ 0: ð42Þ
When the first order perturbation is optimal, namely
saturating the above inequality, it obviously requires
δTabkakb ¼ 0.3 Whence the first order perturbation of
the Raychaudhuri equation

dϑðλÞ
du

¼ −
1

3
ϑðλÞ2 − σabðλÞσabðλÞ − RabðλÞkakb ð43Þ

tells us that δϑ ¼ 0 on the horizon if we choose a gauge in
which the first order perturbed horizon coincides with the
unperturbed one. Then it follows from (11) that

δ2M−ΩIδ2JI ¼−
Z
H
ξ ·δEδϕ−

Z
H
δ2CξþEHðϕ;δϕÞþEΣ1

ðϕ;δϕÞ

¼
Z
H
ϵ̃δ2TabkaξbþEHðϕ;δϕÞþEΣ1

ðϕ;δϕÞ

¼
Z
H
ϵ̃δ2Tabkaξbþ

1

4π

Z
H
ϵ̃δσcdδσcdξa∇auþ

1

16π

�Z
B2

ϵ̂δgcdδσcdξa∇au−
Z
B1

ϵ̂δgcdδσcdξa∇au

�
þEΣ1

ðϕ;δϕÞ

¼
Z
H
ϵ̃δ2Tabkaξbþ

1

4π

Z
H
ϵ̃δσcdδσcdξa∇auþEΣ1

ðϕ;δϕÞ≥ EΣ1
ðϕ;δϕÞ: ð44Þ

Here ϵ̂abc ¼ kdϵ̃dabc is the induced area volume on the cross
section of the horizon. In addition, we have employed
keδgefjH ¼ 0 in the second step, borrowed the result from
[29] for EHðϕ; δϕÞ in the third step, and used the reasonable
assumption that our black hole is linearly stable in the
fourth step [30], such that the first order perturbation will
drive the system towards another Myers-Perry black hole at
sufficiently late times, leading to the vanishing δσcd at B2.
In the last step, we have again resorted to the null energy
condition for the second order perturbation of the matter
source on the horizon. Now we are left out to calculate
EΣ1

ðϕ; δϕÞ. To achieve this, we follow the trick invented in
[16], and write EΣ1

ðϕ; δϕÞ ¼ EΣ1
ðϕ; δϕMPÞ, where δϕMP is

induced by the variation of a family of Myers-Perry black
holes,

MMPðλÞ ¼ M þ λδM; JMP
I ðλÞ ¼ JI þ λδJI; ð45Þ

with δM and δJI chosen to be in agreement with the
first order variation of the above optimal perturbation by
the matter source. Note that for this family, we have
δ2M ¼ δ2JI ¼ δE ¼ δ2Cξ ¼ EHðϕ; δϕMPÞ ¼ 0. Thus, ap-
plying (11) to this family, we have

EΣ1
ðϕ; δϕMPÞ ¼ −

Z
B1

½δ2Qξ − ξ · δΘðϕ; δϕMPÞ�: ð46Þ

Note that ξa ¼ 0 at the bifurcation surface B1 of a
nonextremal black hole; thus, we can further employ
(40) to obtain

EΣ1
ðϕ; δϕMPÞ ¼ −

κ

8π
δ2AMP

B1
; ð47Þ

where

δ2AMP ¼ 4
ffiffiffi
π

p

3
ffiffiffi
3

p
�
X
α3

þ Y
β3

�
ð48Þ

with

X ¼ 96Mf27πMðJ1 þ J2ÞðδJ1 þ δJ2ÞδM − 9πM2ðδJ1 þ δJ2Þ2 þ ½8M3 − 27πðJ1 þ J2Þ2�ðδMÞ2g;
Y ¼ 96Mf27πMðJ1 − J2ÞðδJ1 − δJ2ÞδM − 9πM2ðδJ1 − δJ2Þ2 þ ½8M3 − 27πðJ1 − J2Þ2�ðδMÞ2g: ð49Þ

3As pointed out in [16], this optimal first order perturbation is achievable, for instance, by lowering the matter to the horizon. In
particular, it is easy to see that the first order perturbation is always optimal for Klein-Gordon and Maxwell fields.
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Therefore, we end up with our second order perturbation
inequality

δ2M−ΩIδ2JI ≥−
κ

8π
δ2AMP

B1
¼−

1

48M2ðαþβÞ
�
Xβ
α2

þYα
β2

�
;

ð50Þ

which, as demonstrated in [16], has incorporated the
self-force and finite-size effects.

V. GEDANKEN EXPERIMENTS TO
OVERSPIN A FIVE-DIMENSIONAL

MYERS-PERRY BLACK HOLE

In this section, we will explore the gedanken experiments
to overspin both an extremal black hole and a nearly extremal
black hole by the physical process described above.
For an extremal black hole, the inequality (35) is

saturated, i.e.,

32M3 − 27πðJ1 þ J2Þ2 ¼ 0: ð51Þ
Equation (35) will be violated if we can perturb the black
hole so that

δM −
9πðJ1 þ J2Þ

16M2
ðδJ1 þ δJ2Þ < 0: ð52Þ

However, when the black hole is extremal, the angular
velocity becomes

ΩI ¼ Ω≡ 2M
3ðJ1 þ J2Þ

¼ 9πðJ1 þ J2Þ
16M2

: ð53Þ

Then our first order perturbation inequality tells us that (52)
cannot be satisfied; thus, an extremal five-dimensional
Myers-Perry black hole cannot be overspun in our
gedanken experiment.
Now let us turn to the nearly extremal Myers-Perry black

hole, which is characterized by the small α compared toffiffiffiffiffiffiffiffiffiffiffiffi
32M3

p
. To proceed, we define a function of λ as

fðλÞ ¼ 32MðλÞ3 − 27π½J1ðλÞ þ J2ðλÞ�2 ð54Þ
for the aforementioned one-parameter family of perturba-
tion by our gedanken experiment with fð0Þ ¼ α2. If we can
find an appropriate small value of λ so that fðλÞ < 0, then
our nearly extremal black hole will be overspun. We shall
assume the first order perturbation is optimal, i.e.,

δM ¼ ΩIδJI ¼ ΩðδJ1 þ δJ2Þ −
αΩ

3
ffiffiffiffiffiffi
3π

p ðJ1 þ J2Þ

 ffiffiffiffiffi
J2
J1

s
δJ1 þ

ffiffiffiffiffi
J1
J2

s
δJ2

!
þOðα2Þ; ð55Þ

and expand fðλÞ to the quadratic order in both λ and α as

fðλÞ ¼ α2 þ γ1λþ γ2λ
2 þOðλ3; λ2α; λα2; α3Þ; ð56Þ

where

γ1 ¼ 96M2δM − 54πðJ1 þ J2ÞðδJ1 þ δJ2Þ ¼ 96M2δM −
81πðJ1 þ J2Þ2

M
ΩðδJ1 þ δJ2Þ

¼ 81πðJ1 þ J2Þ2
M

½δM −ΩðδJ1 þ δJ2Þ� þOðα2Þ ¼ −6
ffiffiffiffiffiffi
3π

p  ffiffiffiffiffi
J2
J1

s
δJ1 þ

ffiffiffiffiffi
J1
J2

s
δJ2

!
αþOðα2Þ; ð57Þ

and

γ2 ¼ 48M2½δ2M −Ωðδ2J1 þ δ2J2Þ� þ 96MðδMÞ2 − 27πðδJ1 þ δJ2Þ2 þOðα2Þ
¼ 48M2ðδ2M −ΩIδ2JIÞ þ 96MΩ2ðδJ1 þ δJ2Þ2 − 27πðδJ1 þ δJ2Þ2 þOðαÞ
¼ 48M2ðδ2M −ΩIδ2JIÞ þ 9πðδJ1 þ δJ2Þ2 þOðαÞ

≥ −
48M2κ

8π
δ2AMP

B1
þ 9πðδJ1 þ δJ2Þ2 þOðαÞ

¼ −
X
α2

þ 9πðδJ1 þ δJ2Þ2 þOðαÞ ¼ 27π

 ffiffiffiffiffi
J2
J1

s
δJ1 þ

ffiffiffiffiffi
J1
J2

s
δJ2

!
2

þOðαÞ: ð58Þ

If the Oðλ2Þ term is ignored, then it is not hard to see that it is possible to make fðλÞ < 0 such that our black hole can be
overspun. However, if we take into account the Oðλ2Þ term, then miraculously we have

fðλÞ ≥
"
α − 3

ffiffiffiffiffiffi
3π

p  ffiffiffiffiffi
J2
J1

s
δJ1 þ

ffiffiffiffiffi
J1
J2

s
δJ2

!
λ

#
2

þOðλ3; λ2α; λα2; α3Þ ð59Þ
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for the optimal first order perturbation. Thus we can
conclude that when the second order correction is taken
into consideration, a nearly extremal five-dimensional
Myers-Perry black hole cannot be overspun either.

VI. CONCLUSION

We have performed the new version of a gedanken
experiment to check the restricted version of WCC in five-
dimensional asymptotically flat spacetime by trying to
overspin the five-dimensional Myers-Perry black holes.
As a result, no violation of such a WCC is found at the
linear order for an extremal five-dimensional Myers-Perry
black hole. While for a nearly extremal five-dimensional
Myers-Perry black hole, we find that a violation of Hubeny
type occurs most dangerously under the optimal first order
perturbation, but our WCC is restored miraculously by the
second order perturbation inequality. Our result indicates
that five-dimensional Myers-Perry black holes, once
formed, will never be overspun classically.
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APPENDIX A: ADM MASS AND ANGULAR
MOMENTA FOR FIVE-DIMENSIONAL

MYERS-PERRY BLACK HOLES

In this appendix, we would like to calculate the
ADM mass and angular momenta explicitly for our five-
dimensional Meyers-Perry black holes.
First, in order to obtain the ADM mass in an efficient

way, we can think of the ordinary derivative in the
Lorentzian coordinate system as the covariant derivative
compatible with the background flat metric, where the

spatial derivative can also be regarded as the covariant
derivative compatible with the background Euclidean
metric. With this in mind, now we can proceed to calculate
the ADM mass directly in the same coordinate system as
that used in (25), where the Euclidean metric reads

ds2E ¼ dr2 þ r2dθ2 þ r2 sin2 θðdφ1Þ2 þ r2 cos2 θðdφ2Þ2:
ðA1Þ

The nonvanishing components of the corresponding
Christoffel symbols can be obtained as follows:

Γr
θθ ¼ −r; Γr

φ1φ1 ¼ −rsin2θ; Γr
φ2φ2 ¼ −rcos2θ;

Γθ
rθ ¼ Γφ1

rφ1 ¼ Γφ2

rφ2 ¼ 1

r
;

Γθ
φ1φ1 ¼ −Γθ

φ2φ2 ¼ − sinθ cosθ;

Γφ1

θφ1 ¼ cotθ; Γφ2

θφ2 ¼ tanθ: ðA2Þ

A straightforward calculation further gives

rkð∂ihki − ∂khÞ ¼
3μþ 2ða21 − a22Þ cos 2θ

r3
þO

�
1

r4

�
:

ðA3Þ

Note that the three-sphere volume dS ¼
r3 sin θ cos θdθdφ1dφ2; then (23) follows the ADM mass

M ¼ 3πμ

8
: ðA4Þ

On the other hand, according to (24), one can write the
ADM angular momenta as

JI ¼ −
1

16π

Z
∞
dSðgtt∂rgtφI þ gtφ

I∂rgφIφIÞ: ðA5Þ

By plugging the involved metric components into the above
expression, we arrive at

JI ¼
πμaI
4

: ðA6Þ

APPENDIX B: ANGULAR VELOCITY AND
SURFACE GRAVITY OF FIVE-DIMENSIONAL

MYERS-PERRY BLACK HOLES

In this appendix, we shall provide an explicit calculation
for the angular velocity and surface gravity of our five-
dimensional Myers-Perry black hole horizon.
The strategy to calculate the angular velocity of the

horizon is first to choose a new coordinate system

φI ¼ φ0I þ ωIðr; θÞt ðB1Þ
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with the other coordinates unchanged such that the metric
has no spatial-temporal cross component. This gives us a
pair of algebraic equations for ωI as

gtφI þ gφIφJωJ ¼ 0: ðB2Þ

Then the angular velocity of the horizon can be obtained by
plugging the involved metric components into the above
equations and solving ωI at the horizon as

ΩI ¼ ωIjH ¼ −ðg−1ÞφIφJ
gtφJ jH ¼ aI

r2H þ a2I
: ðB3Þ

A few lines of algebra reveal

ξaξ
a ¼ gabξaξb

¼ gφIφJðωI −ΩIÞðωJ−ΩJÞþgtt−gtφIðg−1ÞφIφJ
gtφJ

¼ gφIφJðωI −ΩIÞðωJ−ΩJÞ− ΞðΠ−μr2Þ
ΞðΠ−μr2ÞþΠμ

;

ðB4Þ

which means that our horizon is a Killing horizon. The
surface gravity of the horizon can be calculated by the
following formula:

−2κξa ¼ ∇aðξbξbÞ ¼ −
ΞðΠ0 − 2μrÞ

Πμ
ðdrÞa ðB5Þ

on the horizon. To obtain the surface gravity, we are
obviously required to write down ξa explicitly. But the
coordinate system used in (25) is ill-defined on the horizon.

So we would like to choose an ingoing coordinate system
such that

dt ¼ dt0 −
Π

Π − μr2
dr;

dφ1 ¼ dφ01 −
a1Π

ðΠ − μr2Þðr2 þ a21Þ
dr;

dφ2 ¼ dφ02 −
a2Π

ðΠ − μr2Þðr2 þ a22Þ
dr: ðB6Þ

In this new coordinate system, the metric reads

ds2 ¼ −dt02 þ μ

Ξ
ðdt0 − a1sin2θdφ01 − a2cos2θdφ02Þ2

þ 2ðdt0 − a1sin2θdφ01 − a2cos2θdφ02Þdr
þ Ξdθ2 þ ðr2 þ a21Þsin2θðdφ01Þ2
þ ðr2 þ a22Þcos2θðdφ02Þ2; ðB7Þ

which is well behaved on the horizon, and yields

ξa ¼
Π − μr2

Π
½−ðdt0Þa þ a1 sin2 θðdφ01Þa

þ a2 cos2 θðdφ02Þa� þ
r2Ξ
Π

ðdrÞa: ðB8Þ

Plugging its value on the horizon into (B5), we end up with

κ ¼ Π0 − 2μr
2μr2

����
H
¼ 2r2H þ a21 þ a22 − μ

μrH
: ðB9Þ
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