
 

Finite-density Monte Carlo calculations on sign-optimized manifolds
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We present a general technique for addressing sign problems that arise in Monte Carlo simulations
of field theories. This method deforms the domain of the path integral to a manifold in complex field space
that maximizes the average sign (therefore reducing the sign problem) within a parametrized family of
manifolds. We presents results for the 1þ 1 dimensional Thirring model with Wilson fermions on lattice
sizes up to 40 × 10. This method reaches higher μ than previous techniques while substantially decreasing
the computational time required.
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I. INTRODUCTION

Monte Carlo methods are critical to the study of
field-theoretical and many-body systems. In particular,
they are the only general-purpose approach to address
strongly interacting field theories. The basic idea of all
Monte Carlo methods is simple: observables are formulated
as path integrals which, on a discretized spacetime, become
high dimensional integrals. Those are then estimated
stochastically by importance sampling. Importance sam-
pling relies on interpreting part of the integrand (typically
the exponential of the action) as a probability, which
makes sense only if this term is real and non-negative.
Unfortunately, many theories, even when formulated in
imaginary time (Euclidean space), have a negative or even
complex integrand. This so-called “sign problem” is a
major roadblock to the understanding of some of the most
important systems in physics. Many systems at finite
density (including QCD at finite baryon density) and
nonrelativistic systems lacking some special symmetry
between fermion species (as in the Hubbard model away
from half-filling or on nonbipartite lattices) suffer from
sign problems. Also, some real-time observables in thermal
equilibrium as well as truly nonequilibrium phenomena are
not amenable to imaginary time calculations and have a

particularly severe sign problem that renders most
Monte Carlo methods nonstarters. A simple, albeit not
very effective, way of dealing with the sign problem is to
choose a manifestly positive part of the integrand as the
statistical weight while moving the part with the fluctuating
sign or phase to the observable to be measured. This
“reweighting” is effective to the extent that the average
sign, that is, the average of the fluctuating sign on the
ensemble defined by the positive measure, is not too small.
However, in theories with sign problems, the average sign
typically decreases exponentially with the volume and the
inverse temperature of the system. Many techniques have
been proposed in the past to ameliorate the sign problem.
Among them are the complex Langevin method [1], the
density of states method [2], canonical methods [3,4],
reweighting methods [5], series expansion in the chemical
potential [6], fermion bags [7], dual variables [8], and
analytic continuation from imaginary chemical potentials
[9]. Each one has its successes and pitfalls. It is fair to say,
however, that the sign problems of field theories remain
largely unsolved.
More recently, the “thimble” method was proposed

[10,11]. The main idea is to complexify the domain of
the path integral. Instead of integrating over real values
of the fields, one deforms the manifold of integration
from RN ⊂ CN to some other N-dimensional manifold,
M ⊂ CN . A multidimensional generalization of Cauchy’s
theorem of complex analysis guarantees, under some
conditions on M, that the integral over M and RN of
any holomorphic integrand is the same. This allows one to
compute expectation values of observables O for which
Oe−S is holomorphic, if M is properly chosen. The key to
these methods is that the average sign he−iSIi is an integral
of a nonholomorphic function, and therefore depends upon
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the integration manifold, whereas the physical expectation
values do not. The manifoldM was originally suggested to
be the combination of thimbles, multidimensional gener-
alizations of the steepest descent/constant phase path
familiar from complex analysis. This method and its
associated algorithmic problems were pursued by several
groups [12–17,17–25]. Relevant analytical work, closely
connected to the “resurgent transseries” (for a recent review
see [26]) was also pursued in [27–31]. Experience with
actual simulations made evident some problems with the
thimble approach. The first is that thimbles are complicated
manifolds that have to be found “on the fly” by the
algorithm, and the lack of a local characterization of
thimbles makes this computationally expensive. Second,
theories where more than one thimble contributes to the
path integral significantly [28] are particularly difficult to
sample [17,21].
This led to some modifications of the method. In the

generalized thimble method [20,23,24] the manifold of
integrationM is chosen to be the deformation ofRN by the
holomorphic flow defined by the action. If RN is deformed
by the flow by an infinite amount of flow time, M
approaches the right combination of thimbles equivalent
to the original integration domain. If the flow is stopped at
some finite flow time, M is close, but not identical, to the
sum of appropriate thimbles. It is, however, a legitimate
manifold of integration in the sense that it gives exactly the
same result as the original manifold RN . The advantage
of the manifold M over the thimbles is that (1) less flow
corresponds to smaller computational cost and (2) M can
be algorithmically constructed during the simulation by
solving the flow equations, while finding the thimbles and
determining which ones contribute to the integral is a
difficult task in all but the simplest field theories.
This is not to say that the generalized method does not

have its own problems. Large flow times can improve the
sign problem but generate multimodal distributions diffi-
cult to sample. Shorter flow times avoid the multimodality
but improve the sign problem less, so the flow time has to
be carefully chosen; in fact, there is no guarantee that a
“middle ground” flow time can be found. (Multimodality
can also be dealt with by more sophisticated sampling
algorithms [25,32].) In addition, the computation of the
Jacobian arising from parametrizing M by the initial point
of the flow in RN is expensive. The proposal presented in
this paper drastically reduces the cost of the Jacobian. At
the same time, it provides more flexibility in the choice of
M while systematically improving the sign problem.
One step towards speeding up the costly calculations

involved in the generalized thimble method was given in
[22]. A feed-forward neural network was trained to
interpolate points in M obtained by the more expensive
holomorphic flow. The neural net was then used to quickly
generate more points inM. In the present paper we go one
step further and completely bypass the need to generate

points by flowing. Instead, we seek to flow directly toward
a manifold of maximum average sign, albeit in a restricted
family of manifoldsMλ which are parametrized by a finite
number of parameters λ. A similar proposal based on
maximizing the approximate average sign was pursued in
[33,34]. Our method produces a manifold M that can be
sampled as rapidly as RN via

hOi ¼
R
M Dϕ̃Oðϕ̃Þe−Sðϕ̃ÞR

M Dϕ̃e−Sðϕ̃Þ

¼
R
RN DϕO½ϕ̃ðϕÞ�e−S½ϕ̃ðϕÞ� det JðϕÞR

RN Dϕe−S½ϕ̃ðϕÞ� det JðϕÞ

≡
R
RN DϕO½ϕ̃ðϕÞ�e−SeffðϕÞR

RN Dϕe−SeffðϕÞ
; ð1Þ

where a point ϕ̃ in M is parametrized by a point ϕ in RN .
We present in Sec. II how the algorithm can be imple-
mented, with special emphasis on the gradient ascent
method we use to obtain the local maximum value of
average sign. Further, it is shown that the derivative of the
sign problem with respect to λ can be efficiently calculated
despite a potentially small sign.
The method of determining an optimal manifold for

integration, as well as the procedure for integrating along
that manifold, is detailed in Sec. II. In Sec. III, we define the
physical model we study with this algorithm, the Thirring
model. In Sec. IV, we present our results, and conclusions
are summarized in Sec. V.

II. THE METHOD

We start by specifying a family Mλ of submanifolds of
CN , parametrized by λ. The choice of this family is guided
by the ease of computation of the Jacobian and some
experience acquired with the generalized thimble method.
We then proceed to maximize the average sign among this
family of manifolds using a simple gradient ascent tech-
nique. On a manifold of integrationMλ, the average sign is

hσiλ ¼
R
RN Dϕe−Seff ½ϕ;λ�R

RN Dϕe−ReSeff ½ϕ;λ�
; ð2Þ

where ϕ are the fields in the theory and Seff ≡ S − ln det J
is the effective action. On this manifold, we compute a
vector proportional to the gradient of the magnitude of the
average sign, and then proceed to change λ by a small
amount along this vector,

λs − λs−1 ∝ η∇λjhσiλj: ð3Þ

Here the step size η determines how large each step along
the computed gradient should be. We initialize Mλ0 to
beRN . After a large number of steps, and if the step size η is
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small enough, we should arrive at a (local) maximum of the
average sign. Critically, the computation of the direction of
the gradient has no sign problem.
We now show how to compute the direction of the

gradient. The numerator of Eq. (2), being the integral of a
holomorphic function e−S alongM, does not depend on λ.
In contrast, since the integral of e−ReSeff cannot be written as
an integral of a holomorphic function, the denominator
will vary with λ. The gradient of the magnitude jhσiλj with
respect to the manifold parameters λ, then, is given by

∇λjhσiλj ¼ −jhσiλj
∇λ

R
RN Dϕe−ReSeff ½ϕ;λ�R

RN Dϕe−ReSeff ½ϕ;λ�

¼ jhσiλj
R
RN Dϕe−ReSeff ½ϕ;λ�½∇λSR − ReTrJ−1∇λJ�R

RN Dϕe−ReSeff ½ϕ;λ�
:

ð4Þ

From this, we see that the gradient factorizes into two
pieces: the average sign onMλ, and an expectation value of
an operator on that manifold. The second factor is an
expectation value with respect to e−ReSeff and therefore is
sign-problem free; the first is a scalar which does not affect
the direction. This allows us to compute (up to that overall
scalar) the gradient on a manifold reliably by a short
Monte Carlo simulation. For a gradient ascent method, an
overall magnitude like jhσiλj (even varying with λ) can be
safely neglected: it does not change the direction that the
gradient points in λ-space. This allows our method to be
efficient even when the average sign is statistically indis-
tinguishable from zero. Therefore, at each step s of the
gradient ascent, we update the manifold parameters λs
according to

λs − λs−1 ¼ ηh∇λSR − ReTrJ−1∇λJiReSeff : ð5Þ

In principle, one might use a more sophisticated stochastic
gradient ascent algorithm to both speed up the calculation
and avoid finding a suboptimal local maximum. For this
work, we found that a naive gradient ascent converges
adequately swiftly, and the stochastic nature of the
Monte Carlo simulation used to compute the gradient helps
to explore parameter space.
In a gradient ascent method, the parameter η must be

chosen to be small enough to avoid overshooting a
maximum, but not much smaller; otherwise it will oscillate
around the maximum but never converge. For our purposes,
there is one additional practical consideration restricting the
size of η. In calculating the expectation value of Eq. (5), we
would like to avoid needing to completely rethermalize the
Markov chain after every gradient ascent step. To this end,
we set the step size η to be sufficiently small that S½ϕ̃ðϕÞ�,
for any fixed ϕ, changes only slowly with s. The value of ϕ
at the end of one Monte Carlo run can then be used to seed

the next run on the new manifold, minimizing the necessary
thermalization time.
It should be stressed that lack of care in this process,

or in any other detail of the sign maximization process,
may reduce the average sign of the manifold ultimately
found and increase the computational time, but it does
not affect the correctness of physical observables on that
manifold. The “real-plane” integral is calculated as an
integral over compact variables, that is, an integral over
TN ¼ ðS1ÞN . The manifold Mλ is a submanifold of the
complexified N-torus ðS1 × RÞN . Cauchy’s integral theo-
rem guarantees that, provided the domain of integration
is compact (as TN is), the integral over Mλ will equal
that over TN if the manifold TN is continuously deform-
able to Mλ. For our purposes, this is guaranteed by
making the family Mλ continuous in the parameters λ,
and letting Mλ ¼ TN .
The determinant of the Jacobian J—which must be

computed during a Monte Carlo on M—is a potentially
expensive operation, with a cost approximately cubic in the
number of degrees of freedom. To avoid this, we will
choose an ansatz family Mλ for which the Jacobian is
diagonal. In particular, we write ϕ̃iðϕÞ ¼ ϕi þ ifiðϕiÞ, so
that Jij ¼ δijð1þ f0iðϕiÞÞ, which is the most general ansatz
possible satisfying our constraints. Relaxing this constraint
to a nondiagonal Jacobian should improve the sign problem
by allowing nonlocal correlations in the imaginary com-
ponents of ϕ, but this will come at a computational expense
and will be left to future work.

III. THIRRING MODEL

In order to make the ideas more concrete, we will phrase
our discussion in terms of a specific field theory model,
the 1þ 1D massive Thirring model with Wilson fermions.
The lattice action is given by

S¼
X
x;ν

NF

g2
ð1−cosAνðxÞÞþ

X
x;y

ψ̄aðxÞDW
xyðAÞψaðyÞ ð6Þ

with

DW
xy ¼ δxy − κ

X
ν¼0;1

½ð1 − γνÞeiAνðxÞþμδν0δxþν;y

þ ð1þ γνÞe−iAνðxÞ−μδν0δx;yþν�;

where ψ is a two-component Dirac spinor with the flavor
indices a taking values from 1;…; NF; g is the coupling; μ
is the fermion chemical potential; and κ ¼ 1=ð2mþ 4Þ,
where m is the bare mass of the fermions. Standard
universality arguments applied to this asymptotically free
theory indicate that, in the continuum limit, this action is
equivalent to the continuum action
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S ¼
Z

d2x

�
ψ̄að=∂ þ μγ0 þmÞψa þ g2

2NF
ψ̄aγμψ

aψ̄bγμψ
b

�
:

ð7Þ

The four-fermion interaction is generated when the bosonic
AμðxÞ auxiliary field is integrated over. The Thirring model
was chosen since other similar methods have been applied
to it; thus, it serves as a useful benchmark for our method.
The integration over the fermion fields results in the

action

Seff ¼ NF

�
1

g2
X
x;ν

ð1 − cosAνðxÞÞ − log detDðAÞ
�
: ð8Þ

In this work we take NF ¼ 2. For finite chemical potential
μ ≠ 0, the determinant detDðAÞ is not strictly real, and we
must address a sign problem.
In applying the method described in Sec. II, we enforce

three additional constraints on f, all coming from sym-
metries of the action Eq. (8). The action is 2π-periodic in
the fields A0, A1 and an even function; therefore, we require
the same of f. Finally, the action is invariant under
translations of the lattice. The lattice degrees of freedom
are divided into timelike links A0 and spatial links A1.
Translational invariance of the fi implies that the form of fi
can depend only on whether the index i refers to an A0 field
or an A1 field.
Consistent with these demands, we use a simple

two-parameter family with f0ðϕÞ ¼ λ0 þ λ1 cosϕ and
f1ðϕÞ ¼ 0, so that the manifold Mλ is defined by

Ã0ðA0; A1Þ ¼ A0 þ iðλ0 þ λ1 cosA0Þ
Ã1ðA0; A1Þ ¼ A1:

As discussed above, Cauchy’s theorem guarantees that
expectation values computed on Mλ are equal to those
computed on TN , provided that one manifold may be
continuously deformed to the other. To see that this is so,
note thatM0 ¼ TN and that Ã is a continuous function of λ.
One might consider using a larger class of manifolds. We
have investigated including a cos2 A0 term in Ã0ðA0; A1Þ
and a cosA1 in the Ã1ðA0; A1Þ, but in all cases, we found
negligible improvement in the average sign computed on
the resulting manifolds.
Once the manifold has been selected by a suitably long

gradient ascent, we perform a Monte Carlo calculation to
determine observables of interest via Eq. (1). The imagi-
nary part of both the action and the log of the Jacobian
determinant must be included in the reweighting. Since we
chose a manifold of integration for which the Jacobian is
diagonal, the Monte Carlo sampling proceeds as quickly as
it would for a standard Metropolis running on RN . There

are no constraints on the observables computed, aside from
the requirement that Oe−S be holomorphic.

IV. RESULTS

We choose bare parameters g and m of the action so
that the renormalized particle masses lie below the lattice
cutoff scale. We measure two particle masses—a fermion
mass amf and a boson mass amb—by fitting the large-time
behavior of correlators hOαðtÞOαð0Þ†i, where Of ¼ ψ1

and Ob ¼ ψ̄ iγ5ðτ3Þijψ j (the fermion subscripts denote
flavor). For simulations in this paper, we take g ¼ 1.0
and m ¼ −0.25, leading to renormalized masses of
amf¼0.30ð1Þ and amb¼0.44ð1Þ. We then havemb=mf ¼
1.5ð2Þ, corresponding to a strongly coupled theory since
the binding energy of the boson is comparable to the rest
mass of the constituent fermions.
We perform calculations on two lattice sizes: Nt × Nx ¼

20 × 10 and 40 × 10. The maximization of the sign average
is done using a step size η ¼ 10−4. This step size was
determined by starting with a large η, where the optimi-
zation process exhibited oscillatory behavior, and then
reducing it until the process becomes smooth. We only
tuned it on the most demanding ensemble, the 40 × 10
ensemble with the largest chemical potential, and used the
same value for all other ensembles. The optimization
process is stopped when the λ parameters converge, that
is, when the gradient in Eq. (5) becomes too small. The
manifold parameters determined by the optimization pro-
cedure are shown in Fig. 1. For both lattice sizes, the chosen
parameters appear to be nearly continuous functions of
μ=mf. This suggests a simple optimization going forward:
perform the gradient ascent at a small number of values of
μ, and interpolate to determine the manifold of integration
for all other desired chemical potentials. Another option
is to use, as a starting point for the optimization process,
the values determined for a “nearby” ensemble, one with
similar chemical potential.
The fact that the interpolated values of λ0, λ1 are

approximate and not strictly optimal affects only the
efficiency of the algorithm, not its correctness. For more
elaborate families of manifolds, with more parameters, the
gradient ascent phase becomes more time-consuming. This
optimization could be computationally expensive in such
cases, but optimizations along the lines suggested above are
likely to be available. We note that the discontinuities in
Fig. 1 are due to an early exit from the optimization loop.
We decided to keep these parameters to show that this
discontinuity is not reflected in the observables, as a further
check of the method.
With the parameters determined above, we performed

a Monte Carlo calculation generating of the order of
2000 to 10 000 independent configurations (except for a
few points discussed below). The average sign and mea-
surements of the average fermion density (per flavor) hni
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for 0 < μ=mf < 4 on a 20 × 10 lattice are shown in Fig. 2.
The real plane (RN) calculations are shown in black; data
points for which the average sign could not be distin-
guished from 0 at 2σ (indicating that no measured observ-
able will be meaningful) are grayed out. Calculations on the
tangent plane of the dominant Lefschetz thimble A0ðxÞ þ
iA are shown in red, and those of the machine-learned
learnifold LT from Ref. [22] are shown in blue. Finally, we
present calculations done on the sign-optimized manifold
MS in green. We see that the sign-optimized manifold finds
an average sign problem as good as or better than the
learnifold does, with the added benefits of being computa-
tionally faster and simpler to implement. These improve-
ments allow for us to compute the density with reduced
uncertainty and even reach higher values of μ=mf. As a
further check of our results, we show the result for
noninteracting fermions (with the same renormalized mass)
as a dotted line.
Similarly, results for a lattice size of 40 × 10 are shown

in Fig. 3. On this larger lattice, the relative performance of

the sign-optimized manifold is moderately improved. For
μ=mf > 1.83, neither the real plane calculation nor the
learnifold could resolve the sign problem. The sign-
optimized manifold has sufficiently large average signs
to allow us to measure the density up to μ=mf ¼ 2.50.
Furthermore, other methods had problems computing the
density near μ=mf ≈ 1.00, while using the sign-optimized
manifold, we compute the density at this point easily.
At both lattice sizes, we demonstrate that the sign-

optimized manifold method is capable of reproducing the
“Silver Blaze” phenomenon [35]: the μ-independence of
observables below the threshold chemical potential μ ≈mf.
To estimate the speedup given by the optimized manifold

over a naive calculation on RN , we performed two tests.
First, we used 72 000 decorrelated measurements at
μ=mf ¼ 3.33 on a 20 × 10 lattice. This number of mea-
surements is not enough to resolve the sign average from
zero, so we obtain only a lower bound on the speedup
attributable to usingMS. We find that the real plane has an
average sign of 0.002� 0.003, whereas the MS has an

FIG. 2. he−iSIþiIm log det Ji and hni=mf as a function of μ=mf for Wilson fermions on lattices of size 20 × 10. The dashed curve
represents the free fermion gas with the same mass.

FIG. 1. Manifold parameters as a function of chemical potential μ=mf , for both 20 × 10 and 40 × 10 lattices, with bare parameters
m ¼ −0.25 and g ¼ 1.
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average sign of 0.086� 0.007, which is larger by at least a
factor of 16. The number of measurements required to
obtain a fixed precision is proportional hσi−2; therefore, this
corresponds to a speedup greater than 250. The second test
computed 10 000 measurements on RN at μ=mf ¼ 1.00
on a 40 × 10 lattice (this value is of interest because it
corresponds to the first particle threshold). The real plane
was found to have an average sign of 0.005� 0.005, but an
average sign of 0.155� 0.007 on the optimized manifold,
which is larger by at least a factor of 15, giving a speedup
of 225.
The speedup given by this algorithm over the learnifold

procedure is more difficult to estimate; however, the
learnifold procedure requires evolving the holomorphic
flow equations many times to achieve at best the same
average sign asMS. According to Ref. [22], generating the
training set and training the neural network took 114 CPU
hours for a 20 × 10 lattice at μ=mf ¼ 3.83. The algorithm
described in this paper replaces that step with a gradient
ascent routine, which took approximately 24 CPU hours,
and is amenable to further optimization.

V. DISCUSSION AND PROSPECTS

We have exhibited an efficient method for reducing the
sign problem of the finite density Thirring model in 1þ 1
dimensions. Our method works with a predetermined
family of manifolds, seeking the manifold in that family
which has the largest average sign. Once such a manifold
has been found, a standard Metropolis calculation, with
reweighting, is performed on that manifold. Using this
method, we have increased the μ=mf range that can reliably
be computed. From the two lattice sizes computed here, it is
not possible to determine the large-volume scaling of this
method. It is important to stress that comparisons with other
methods of dealing with the sign problem must take into
account that the computational cost of the method pre-
sented here has both a fixed cost (independent of the

number of measurements made) and a variable one (that is
proportional to the number of measurements). The variable
cost compares very favorably with other methods, espe-
cially the generalized thimble method. Therefore, even
where the optimization step is found to be expensive,
one may determine the parameters of M roughly, so the
average sign is distinguishable from zero but not neces-
sarily particularly close to one. Then, a high number of
measurements can be made cheaply to reduce the
error bars.
This method is closely related to previous approaches

based on the complexification of lattice degrees of freedom,
but works without evolving a differential equation to
determine the manifold of integration. This makes it faster
as long as the parameters defining the manifold can be
determined quickly. The method has the drawback that it
requires the construction of a model-specific family of
manifolds, so physical insight is required. Nevertheless,
given such an ansatz, the method is very advantageous.
This suggests that theoretical effort should be put into
generating ansatze applicable to more interesting physical
theories, like gauge theories—where the set of reasonable
integration contours is dramatically constrained by sym-
metry considerations—and real-time (Minkowski space)
calculations of other models.
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FIG. 3. he−iSIþiIm log det Ji and hni=mf as a function of μ=mf for Wilson fermions on lattices of size 40 × 10. The dashed curve
represents the free fermion gas with the same mass.
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