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The three-particle Nππ state contribution to the QCD two-point function of standard
nucleon interpolating fields is computed to leading order in chiral perturbation theory. Using the
experimental values for two low-energy coefficients, the impact of this contribution on lattice QCD
calculations of the nucleon mass is estimated. The impact is found to be at the per mille level at most and
negligible in practice.
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I. INTRODUCTION

In a recent paper [1] (see also [2,3]), Cè, Giusti and
Schaefer proposed a factorization of the gauge field
dependence of the fermion determinant in lattice QCD.
Together with the factorization of the propagator [4] this
allows the use of multi-level Monte-Carlo sampling meth-
ods in the calculation of correlation functions that suffer
from large statistical uncertainties due to the signal-to-noise
problem [5,6]. First tests of this proposal are encouraging
[1], and one can expect significantly reduced statistical
errors in lattice computations of many phenomenologically
interesting observables.
Smaller statistical errors imply that more sources of

systematic uncertainty need to be considered that used to
be negligible before. An example is the excited state
contamination in correlation functions that are measured
to calculate physical observables. With the up and down
quark masses at their physical value multiparticle states
with additional pions are a non-negligible source of
systematic uncertainty. Recent calculations [7,8] in chiral
perturbation theory (ChPT) [9–11] suggest a 5%–10%
overestimation of various nucleon observables (nucleon
charges, moments of structure functions) by lattice
calculations, caused by the two-particle nucleon-pion
(Nπ) state contribution to three-point (pt) correlation
functions.
The Nπ contribution can be expected to be the dominant

multi-hadron state contribution at large time separations,
but there are other contributions as well. The Δπ contri-
bution to the effective nucleon mass and the axial charge

was calculated within heavy baryon ChPT in Refs. [12,13]
and found to be significantly smaller then the Nπ con-
tribution. Also theNππ contribution is expected to be much
smaller since it is a three-particle-state contribution.
However, it is unknown how large it actually is, and simple
estimates based on the expected Oð1=L6Þ suppression of
the finite volume matrix elements can be quite misleading.
The multiparticle-state contribution is not a finite volume
effect that vanishes in the infinite volume limit; it is a
nonvanishing cumulative contribution caused by a large
number of states even in volumes of moderate size with
MπL ¼ 4, for instance.
Here we report the results of a ChPT calculation of the

Nππ contribution to the nucleon 2-pt function and the
nucleon effective mass. The computation is analogous to
the calculation of theNπ contribution in Ref. [14]. To LO in
the chiral expansion the Nππ contribution depends on two
LO low-energy coefficients (LECs) only, the nucleon axial
charge and the pion decay constant. Taking the known
experimental values as input the impact of the Nππ
contribution on lattice calculations of the nucleon mass
can be estimated. We find it to be at the per mille level for
source-sink separations of 1.2 fm and larger. This is indeed
very small and lattice data with statistical error at
sub per mille level are needed to be sensitive to the Nππ
contribution. Since statistical errors at present are much
larger the Nππ contribution can be safely ignored.
Although here we consider the two-pt function only it
seems safe to assume that the Nππ contribution to nucleon
three-pt functions is similarly suppressed and negligible
too.
The calculation of the Nππ contribution is very similar to

the analogous one in Ref. [14] of the Nπ contribution. We
also refer to recent reviews [15,16] for the general strategy
and setup of this kind of calculations. Here we will be brief
and focus on the particular aspects of the three-particleNππ
contribution.
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II. Nππ CONTRIBUTION TO THE NUCLEON
TWO-PT FUNCTION

A. Setup

We consider QCD with equal up and down quark
masses. The spatial volume is assumed to be finite with
spatial extent L, and periodic boundary conditions are
imposed in each direction. The euclidean time extent is
taken infinite, for simplicity.
We are interested in the two-pt function of nucleon

interpolating fields N, N̄ with positive parity,

G2ptðtÞ ¼
Z

d3 xΓαβhNβðx⃗; tÞN̄αð0⃗; 0Þi; ð2:1Þ

with Γ ¼ ð1þ γ0Þ=4. We assume N, N̄ to be given by the
standard local 3-quark operators without derivatives [17].
We can also allow for smeared quark fields provided (a) the
smearing method is compatible with chiral symmetry1 and
(b) the “size” of the smeared interpolating fields is much
smaller than the Compton wavelength of the pion. If that is
the case smeared interpolating fields are mapped to the
same pointlike expressions in ChPT as their local counter-
parts [14,22].
Performing the usual spectral decomposition in (2.1) for

large euclidean times t ≫ 0 the dominant contribution
stems from the single-nucleon state jNðp⃗ ¼ 0Þi describing
the nucleon at rest,

GN
2ptðtÞ ¼

1

2MN
jh0jNð0ÞjNðp⃗ ¼ 0Þij2e−MNt; ð2:2Þ

dropping off with the nucleon mass MN . The interpolating
field excites other states with the quantum numbers of the
nucleon as well. For small physical pion masses the
dominant multi-hadron states are those containing the
nucleon and additional light pions. For the three-particle
Nππ state contribution we find

GNππ
2pt ðtÞ ¼

1

L6

X
q⃗;r⃗

1

8EN;p⃗Eπ;q⃗Eπ;r⃗

× jh0jNð0ÞjNðp⃗Þπðq⃗Þπðr⃗Þij2e−Etott: ð2:3Þ

The spatial momenta q⃗, r⃗ refer to the momenta of the two
pions, the nucleon momentum p⃗ is fixed by momentum
conservation, p⃗ ¼ −q⃗ − r⃗. The energy Etot denotes the total
energy of the three-particle state. For weakly interacting
pions it approximately equals the sum of the individual
hadron energies. The sum in (2.3) runs over all momenta
compatible with the periodic boundary conditions that we
have assumed to be imposed, i.e.

q⃗ ¼ 2π

L
n⃗q; r⃗ ¼ 2π

L
n⃗r; ð2:4Þ

with the two vectors n⃗q, n⃗r having integer valued compo-
nents. The absolute values of the pion momenta can be
labelled by integers nq, nr, defined according to

jq⃗j ¼ 2π

L
ffiffiffiffiffi
nq

p
; nq ¼ n2q;x þ n2q;y þ n2q;z; ð2:5Þ

and analogously for r⃗.

B. Chiral Perturbation Theory

Correlation functions like the two-pt function of the
previous section can be computed perturbatively in ChPT,
provided the time separation t is sufficiently large such that
the correlation function is dominated by the light pions.
Here we employ the covariant formulation of SU(2) Baryon
ChPT (BChPT) to leading order in the chiral expansion
[23,24]. To this order the effective Lagrangian is the sum of

two parts, Leff ¼ Lð1Þ
Nπ þ Lð2Þ

ππ . The latter one, L
ð2Þ
ππ , denotes

the two-flavor mesonic chiral Lagrangian to LO [25]. The

first part, Lð1Þ
Nπ , contains the nucleon fields and their

coupling to the pions. We assume isospin symmetry, thus
the effective theory contains three mass degenerate pions
πa, a ¼ 1, 2, 3, and the nucleon doublet Ψ ¼ ðp; nÞT with
the fields for the mass degenerate proton and neutron.
Expanding the chiral effective Lagrangian and keeping
interaction terms with up to two pion fields we find the
interaction Lagrangian to be given by2

Lint ¼
igA
2f

Ψ̄γμγ5σaΨ∂μπ
a −

i
4f2

ϵabcπa∂μπ
bΨ̄γμσcΨ:

ð2:6Þ
It involves the LO LECs gA and f, the chiral limit values of
the axial charge and the pion decay constant. Since we
work to LO it is consistent to replace these by their
experimental values. With our conventions these are gA ¼
1.2727 and fπ ¼ 92.4 MeV.
In a similar fashion, we expand the ChPTexpressions for

the nucleon interpolating fields derived in Ref. [26]. To LO
and up to two pion fields, we obtain

N ¼ α̃

�
Ψþ i

2f
πaσaγ5Ψ −

1

8f2
πaπaΨ

�
; ð2:7Þ

N̄ ¼ β̃�
�
Ψ̄þ i

2f
Ψ̄γ5σaπa −

1

8f2
Ψ̄πaπa

�
: ð2:8Þ

Here α̃, β̃ are the LECs associated with the interpolating
fields. If the same interpolating fields are used at source and
sink the LECs are the same, α̃ ¼ β̃.

1Familiar examples are Gaussian or exponential smearing [18–
20] and the gradient flow [21], for instance. 2We work in Euclidean space time.
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The expressions in (2.7), (2.8) are the effective fields for
both pointlike and smeared fields provided the smearing
procedure is compatible with chiral symmetry and “smear-
ing radii” small compared to the pion Compton wave-
length. Any differences between pointlike and smeared
interpolating fields are encoded in different values for the
LECs α̃, β̃ only. For physical pion masses the pion
Compton wavelength is about 1.4 fm, thus one expects
the expressions in (2.7) to be valid for smearing radii of a
few tenths of a fermi.

C. The Nππ contribution in the two-pt function

With the expressions (2.6)–(2.8), it is straightforward to
compute the two-pt function perturbatively. The first
contribution stems from the Feynman diagram in Fig. 1.
It is essentially the nucleon propagator and leads to the

leading single-nucleon-state contribution in the two-pt
function,

GN
2pt ¼ α̃β̃�e−MNt: ð2:9Þ

In the case of the same interpolating fields at the source and
sink, we can compare this expression with Eq. (2.2) and
find the relation between the LEC jα̃j and the matrix
element in (2.2).
The leading contribution to the three-particle Nππ

contribution GNππ
2pt stems from the diagrams in Fig. 2.

Although two-loop diagrams, their Nππ contribution does
not involve any summation over some undetermined loop
momentum, so we essentially perform a tree-level
calculation.
In order to present the results, we introduce some useful

notation. The Nππ contribution to the two-pt function is of
the following general form:

CNππ
2pt ðtÞ ¼ α̃β̃�

X
q⃗;r⃗

cq⃗;r⃗e−Etott: ð2:10Þ

To the order we are working the energy Etot is just the sum
of the individual hadron energies,

FIG. 1. Leading Feynman diagram with a single-nucleon-state
contribution to the two-pt function. Squares represent the nucleon
interpolating fields at times t and 0 and the solid line depicts the
nucleon propagator.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s)

FIG. 2. Feynman diagrams for the two-pt function with an Nππ contribution. Circles represent a vertex insertion at an intermediate
spacetime point, and an integration over this point is implicitly assumed. The dashed lines represent a pion propagator.
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Etot ¼ EN;p⃗ þ Eπ;q⃗ þ Eπ;r⃗;

EN;p⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

N

q
;

Eπ;q⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þM2

π

q
: ð2:11Þ

The coefficients cq⃗;r⃗ in (2.10) are the nontrivial result of the
calculation presented here. It is convenient to write them as
a product of some universal factor and some “reduced”
coefficients Cq⃗;r⃗,

cq⃗;r⃗ ¼
3

128ðfLÞ4ðEπ;q⃗LÞðEπ;r⃗LÞ
Cq⃗;r⃗: ð2:12Þ

The fraction on the right-hand side contains the expected
1=L6 dependence of a three-particle state in a finite spatial
volume, cf. Eq. (2.3). The inverse mass dimensions
combine with the pion decay constant f4 and the pion
energies to the dimensionless combination in the denom-
inator. The factor 3 in the numerator simply counts the
number of pions in the 2-flavor theory. The numerical
factor 128 in the denominator is chosen such that the
reduced coefficient C0;0 of the state with all three particles
at rest is equal to one in the infinite nucleon mass limit,
see below.
The reduced coefficients are dimensionless and depend

on (ratios of) the momenta, energies and masses of the
pions and the nucleon. In addition, they depend on the
dimensionless LEC gA. The results for the coefficients Cq⃗;r⃗
are quite cumbersome except for some special cases where
one or all three particles are at rest. For this reason we
perform the nonrelativistic expansion of the nucleon energy
and keep only the first two terms in this expansion. The
truncation error caused by this expansion is expected to
be much smaller than the higher order corrections to our
LO results, so for our purposes this nonrelativistic approxi-
mation should be more than sufficient. Explicitly, we
expand

EN;p⃗ ¼ MN þ p⃗2

2MN
þ O

�
1

M2
N

�
ð2:13Þ

in the coefficients Cq⃗;r⃗ and drop all contributions of
Oð1=M2

NÞ and higher. The results we obtain this way are
given according to

Cq⃗;r⃗ ¼ C∞
q⃗;r⃗ þ

Eπ;q⃗ þ Eπ;r⃗

MN
Ccorr
q⃗;r⃗ : ð2:14Þ

The coefficients C∞
q⃗;r⃗, C

corr
q⃗;r⃗ depend only on the momenta,

energies and mass of the pion, and on the LEC gA. Thus
they are finite in the limitMN → ∞, and C∞

q⃗;r⃗ is the infinite-
nucleon-mass limit of the coefficients.
For later reference we quote the result for the simplest

case separately, namely the one with all three particles at

rest. This state has the lowest energy of all Nππ states, and
for this contribution we find

C∞
0;0 ¼ 1; Ccorr

0;0 ¼ g2A
2
− gA: ð2:15Þ

As mentioned earlier, the result C∞
0;0 ¼ 1 is a consequence

of the particular normalization in (2.12), i.e. the presence of
the numerical prefactor 3=128 in the universal factor. This
definition ensures that the reduced coefficients are of O(1).3

Rotation invariance implies that the result for the general
case with nonvanishing pion momenta q⃗ and r⃗ can depend
only on q2 ¼ q⃗ · q⃗, r2 ¼ r⃗ · r⃗ and q⃗ · r⃗ [the pion energies
are determined by Eq. (2.11)]. In terms of these variables,
we find the result

C∞
q⃗;r⃗ ¼ 1þ 2

�
Eπ;q⃗ − Eπ;r⃗

Eπ;q⃗ þ Eπ;r⃗

�
2

− 2g2A
E2
π;q⃗ − 6Eπ;q⃗Eπ;r⃗ þ E2

π;r⃗

ðEπ;q⃗ þ Eπ;r⃗Þ2
q⃗ · r⃗

Eπ;q⃗Eπ;r⃗

− 4g4A
Eπ;q⃗Eπ;r⃗

ðEπ;q⃗ þ Eπ;r⃗Þ2
�

q⃗ · r⃗
Eπ;q⃗Eπ;r⃗

�
2

þ g4A
3E2

π;q⃗ þ 2Eπ;q⃗Eπ;r⃗ þ 3E2
π;r⃗

ðEπ;q⃗ þ Eπ;r⃗Þ2
q2r2

E2
π;q⃗E

2
π;r⃗

: ð2:16Þ

Setting both pion momenta equal to zero Eq. (2.16)
reproduces C∞

0;0 in (2.15).
The result for the Oð1=MNÞ correction Ccorr

q⃗;r⃗ is somewhat
lengthier and given in Appendix A. We will see in the next
section that it amounts to a thirty percent correction to the
leading result based on the coefficients (2.16).
The nonrelativistic expansion in (2.14) simplifies sig-

nificantly the calculation and the results for the coefficients
Cq⃗;r⃗. In particular, diagrams (k)–(r) in Fig. 2 start contrib-
uting at Oð1=MNÞ only. These diagrams have a single Nπ-
vertex from the interpolating fields in common. This vertex
involves a single γ5 matrix, thus it is Oð1=MNÞ suppressed
[28]. Diagram (s) involves two of these vertices. It is found
to be of Oð1=M2

NÞ and does not contribute to the order we
are working here.

D. Impact on lattice calculations

Let us estimate the impact of the Nππ state contribution
on lattice calculations of the nucleon mass. The nucleon
mass is usually obtained from the effective mass, the
negative time derivative of lnG2ptðtÞ. With (2.9) and
(2.10), we obtain

3In Ref. [27], the three-particle πππ contribution in the two-pt
function of the pseudoscalar density was computed. In that case,
the prefactor equals 45=512. This is about 4 times larger than
3=128, but the overall size of the three-particle-state contributions
is comparable.

OLIVER BÄR PHYS. REV. D 97, 094507 (2018)

094507-4



Meff ðtÞ ¼ MN

�
1þ

X
q⃗;r⃗

dq⃗;r⃗e−ðEtot−MNÞt
�
; ð2:17Þ

with the coefficients dq⃗;r⃗ being related to the previously
defined ones according to

dq⃗;r⃗ ¼ cq⃗;r⃗

�
Etot

MN
− 1

�
: ð2:18Þ

Note that the effective mass does not depend on the LO
LECs α̃, β̃ associated with the nucleon interpolating fields.
These are overall factors in the two-pt function and drop out
in the effective mass. Thus, the Nππ contribution with
coefficients dq⃗;r⃗ to LO is the universal contribution valid for
both local and smeared interpolating fields. This univer-
sality property will be lost only at higher order in the chiral
expansion where additional LECs will enter the chiral
expressions for the nucleon interpolating fields and the
final result for the effective mass.
To LO, the Nππ contribution depends on the pion and

nucleon masses, the spatial extent L, and on the LECs gA
and fπ . These LECs are experimentally very well known
[29]. Using the experimental values 1.27 and 93 MeV as
input in the ChPT result we can estimate the impact of the
three-particle Nππ states in lattice calculations of the
nucleon mass. The only free parameter we need to fix is
L. If not specified otherwise, we do this by choosing the
common value MπL ¼ 4 for physical pion mass Mπ ¼
140 MeV. The nucleon mass is given by MN ¼ 940 MeV.
Figure 3 shows the ratio MeffðtÞ=MN as a function of

euclidean time t. Without any excited state contribution this
ratio would be constant and equal to 1. The figure shows the
deviations from 1 due to the Nππ contribution with various
upper bounds for the two pion momenta. Displayed are the
results for nq, nr ≤ nmax for nmax ¼ 1 (gray curve) up to
nmax ¼ 8 (purple curve).4 These numbers can be translated
into values for the expansion parameter pn=Λχ of finite
volume ChPT, with Λχ being the chiral scale usually
identified with 4πfπ ≈ 1.2 GeV [30]. For MπL ¼ 4 the
values nmax ¼ 2 and 5 correspond to pnmax

=Λχ ≈ 0.3 and
0.45, respectively [14].
For ChPT to give trustworthy results, the time separation

t needs to be sufficiently large such that the low-momentum
Nππ contribution dominates the high-momentum contri-
bution which is not well captured by ChPT. In that case, the
latter can be ignored with a small truncation error. Looking
at Fig. 3, one can expect this to be the case for t about
1.2 fm and larger. There is no need to be more precise here,
since the Nππ contribution is of order 10−4 for these times.
Even if we allow for a generous factor of 2 due to the higher
momentum states and an additional factor of 2 for the
higher order chiral corrections the Nππ contribution to the

effective mass is 10−3 at most. Consequently, the Nππ
contribution can be safely neglected unless lattice data with
statistical errors at the sub per mille level are available.
The two-particle Nπ contribution was observed to be

essentially independent of the spatial volume provided the
number of states taken into account is appropriately
adjusted as L is changed. The same holds for the three-
particle Nππ contribution, as Fig. 4 shows. The Nππ
contribution is displayed for various spatial volumes:
MπL ¼ 2.5 (long-dashed lines), MπL ¼ 3 (dotted lines),
MπL ¼ 4 (solid lines) and MπL ¼ 5 (short-dashed lines).
The upper bounds for the pion momenta correspond to
nmax ¼ 1 and 2, nmax ¼ 1 and 3, nmax ¼ 2 and 5 and
nmax ¼ 4 and 8, respectively. These different values cor-
respond to approximately the same bounds for the
momenta in physical units, namely the values pnmax

=Λχ ¼
0.3 and 0.45.5 While there is still some FV dependence
visible for the smaller momentum bound (black lines), the
differences between curves for the larger momentum bound
(blue lines) are very small. Comparing the results for the
largest two volumes the differences are barely visible and
we may conclude that the results for volumes with MπL ¼
4 capture the infinite-volume result already very well. Note,
however, that the weak volume dependence will be lost if
nmax is kept fixed as the volume is changed. In that case, a
strong volume dependence, stemming essentially from the
1=L6 dependence in the coefficients cq⃗;r⃗, is clearly visible
in the Nππ contribution when L is changed.
Although small, the Nππ contribution is much larger

than naive estimates may suggest. For example, the con-
tribution (2.15) of the lowest Nππ state with all three
particles at rest results in a mere 1.37 × 10−6 to the ratio
MeffðtÞ=MN at t ¼ 1.2 fm for MπL ¼ 4. This is a factor of
90 times smaller than the total contribution of allNππ states

FIG. 3. The ratio MeffðtÞ=MN for seven lower bounds, starting
from nmax ¼ 1 (gray line) to nmax ¼ 8 (purple line). The spatial
extent satisfies MπL ¼ 4.

4See Appendix B for some details. 5See also Table 1 in Ref. [15].
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with nmax ¼ 5 (cf. solid blue line in Fig. 4). The contri-
bution of the single Nππ state drops even further to 3.59 ×
10−7 for MπL ¼ 5, and the factor of 90 increases to about
350. These substantial factors stem from the large number
of Nππ states that contribute significantly to the sum in
(2.10) already at moderatly large spatial volumes.
Figure 5 illustrates the size of the Oð1=MNÞ correction in

our results. Plotted are, forMπL ¼ 4, the Nππ contribution
with (solid lines) and without (dashed lines) the correction
term Ccorr

q⃗;r⃗ in the coefficients, cf. (2.14). The results are
shown for two different upper momentum bounds, nmax ¼
2 (black lines) and nmax ¼ 5 (blue lines). The Oð1=MNÞ

correction amounts in an approximately 30% decrease of
the infinite-nucleon-mass result. The size of this correction
agrees with naive expectations, but the sign of the correc-
tion is a priori not known.
In this paper, we are mainly interested in the total Nππ

state contamination in the nucleon two-pt function, which
is the cumulative contribution of a substantial number of
low-momentum Nππ states. However, it is worth mention-
ing that the generalized eigenvalue method [31] allows to
determine ratios of matrix elements with individual Nππ
states and the single nucleon state, and these ratios can be
directly compared with the ChPT results for the coefficients
cq⃗;r⃗ in (2.10).
In a recent paper [32], a correlation matrix involving five

interpolating fields was computed and analyzed. The
calculation is based on the PACS-CS ensemble of gauge
configurations with Mπ ≈ 156 MeV and L ≈ 2.9 fm [33],
and the numerical result

ffiffiffiffiffiffiffi
cLat0;0

q
¼ 0.07� 0.04 ð2:19Þ

is found [34].6 The ChPT result (2.12), (2.15) gives

ffiffiffiffiffiffiffiffiffiffiffi
cChPT0;0

q
¼ 0.036 ð2:20Þ

and agrees with (2.19) within the large numerical error.
Although encouraging the comparison is not unproblematic
in this particular case: The smearing radii of the smeared
interpolating fields used in [32] exceed 0.5 fm and are
uncomfortably large, while the value MπL ≈ 2.2 is rather
small for ChPT to be in the p-regime. Thus, one would not
be too surprised to see a sizable discrepancy between the
numerical and the ChPT result if the statistical error were
smaller.

III. CONCLUSIONS

The LO ChPT results for the Nππ contribution to the
nucleon two-pt function are very small. Unless lattice data
with sub per mille precision are available the Nππ con-
tribution to the effective nucleon mass can be safely
ignored. The only contribution relevant in practice will
be the two-particle Nπ contribution [13,14]. Although
small as well it is about a hundred times larger than the
Nππ contribution and affects the effective mass at the
percent level.
Based on the results shown here we can expect the Nππ

contribution to nucleon three-pt functions to be small and
negligible as well. The two-particle Nπ contribution in the
determination of various nucleon charges and moments of
structure functions was shown to be at the 5%–10% level
for source-sink separations of 2 fm [7,8]. If we assume the

FIG. 4. The ratioMeffðtÞ=MN for four different spatial volumes:
MπL ¼ 2.5 (long-dashed), MπL ¼ 3 (dotted), MπL ¼ 4 (solid)
and MπL ¼ 5 (short-dashed). The upper bounds on the pion
momenta are nmax ¼ 1, 1, 2 and 4 (black) and nmax ¼ 2, 3, 5 and
8 (blue), respectively. These values correspond to approximately
the same bounds for the momenta in physical units. For the larger
of the two bounds the Nππ contribution is essentially volume
independent.

FIG. 5. The ratio MeffðtÞ=MN for MπL ¼ 4 and upper bounds
nmax ¼ 2 (black) and nmax ¼ 5 (blue). Shown are the results for
the Nππ correction with (solid lines) and without (dashed lines)
the Oð1=MNÞ correction Ccorr

q⃗;r⃗ .
6With the notation of Ref. [32] we find jZn¼2

i¼6 =Z
n¼1
i¼6 j2 ¼ cLat0;0 .
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same suppression factor that we found in the two-pt
function we can estimate the Nππ contribution in calcu-
lations of the nucleon charges and moments to be at the
per mille level. Once again this is completely negligible in
practice at the moment.
The excited-state contribution in the plateau estimate of

the axial charge is rather peculiar. Existing lattice data
underestimate the experimental value for source-sink
separations less than about 1.5 fm, while for 2 fm and
larger the LO ChPT result for the Nπ contribution predicts
an overestimation by lattice calculations. This behavior is
not seen for other observables like the average quark
momentum fraction or the helicity moment [15,16]. The
most likely explanation are excited states other than the
two-particle Nπ states that provide an additional negative
excited-state contribution to the plateau estimate. Whether
this is correct and, if correct, which states these are is
unknown to date, but based on the results presented here the

three-particle Nππ states can essentially be ruled out as
potential candidates.
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APPENDIX A: THE Oð1=MNÞ TERM IN THE
REDUCED COEFFICIENT

The Oð1=MNÞ correction Ccorr
q⃗;r⃗ is defined in (2.14). It

depends on the absolute values of the pion momenta, q2, r2

and the scalar product q⃗ · r⃗. The pion energies Eπ;q⃗, Eπ;r⃗ are
given in terms of these according to (2.11). The calculation
of the diagrams in Fig. 2 yields the following result7:

Ccorr
q⃗;r⃗ ¼ c0 þ cq2

q2

E2
π;q⃗

þ cr2
r2

E2
π;r⃗

þ cqr
q⃗ · r⃗

Eπ;q⃗Eπ;r⃗

þ cq2r2
q2

E2
π;q⃗

r2

E2
π;r⃗

þ cq2qr
q2

E2
π;q⃗

q⃗ · r⃗
Eπ;q⃗Eπ;r⃗

þ cr2qr
r2

E2
π;r⃗

q⃗ · r⃗
Eπ;q⃗Eπ;r⃗

þ cðqrÞ2
ðq⃗ · r⃗Þ2
E2
π;q⃗E

2
π;r⃗

þ cq4r2
q4

E4
π;q⃗

r2

E2
π;r⃗

þ cq2r4
q2

E2
π;q⃗

r4

E4
π;q⃗

þ cq2r2qr
q2

E2
π;q⃗

r2

E2
π;r⃗

q⃗ · r⃗
Eπ;q⃗Eπ;r⃗

þ cq2ðqrÞ2
q2

E2
π;q⃗

ðq⃗ · r⃗Þ2
E2
π;q⃗E

2
π;r⃗

þ cr2ðqrÞ2
r2

E2
π;r⃗

ðq⃗ · r⃗Þ2
E2
π;q⃗E

2
π;r⃗

þ cðqrÞ3
ðq⃗ · r⃗Þ3
E3
π;q⃗E

3
π;r⃗

; ðA1Þ

where the newly introduced coefficients read

c0 ¼ −
gAð3E2

π;q⃗ − 2Eπ;q⃗Eπ;r⃗ðgA þ 1Þ þ 3E2
π;r⃗Þ

ðEπ;q⃗ þ Eπ;r⃗Þ2
ðA2Þ

cq2 ¼ −
2E2

π;q⃗ðE2
π;q⃗g

2
A − 2Eπ;q⃗Eπ;r⃗ðg2A þ 1Þ þ E2

π;r⃗ð2 − 3g2AÞÞ
ðEπ;q⃗ þ Eπ;r⃗Þ4

ðA3Þ

cr2 ¼
2E2

π;r⃗ðE2
π;q⃗ð3g2A − 2Þ þ 2Eπ;q⃗Eπ;r⃗ðg2A þ 1Þ − E2

π;r⃗g
2
AÞ

ðEπ;q⃗ þ Eπ;r⃗Þ4
ðA4Þ

cqr ¼
ðE4

π;q⃗ þ E4
π;r⃗ÞgAðg2A − gA þ 1Þ þ 2ðE3

π;q⃗Eπ;r⃗ þ Eπ;q⃗E3
π;r⃗Þðg4A − 2g3A þ 2g2A − 2gA − 2Þ

ðEπ;q⃗ þ Eπ;r⃗Þ4

þ
2E2

π;q⃗E
2
π;r⃗ð2g4A − 5g3A þ 5g2A − 5gA þ 4Þ

ðEπ;q⃗ þ Eπ;r⃗Þ4
ðA5Þ

cq2r2 ¼
3ðE2

π;q⃗ þ E2
π;r⃗ÞðgA − 1Þg3A þ 2Eπ;q⃗Eπ;r⃗ðg2A − gA − 2Þg2A

ðEπ;q⃗ þ Eπ;r⃗Þ2
ðA6Þ

7Instead of q⃗ · r⃗, the nucleon momentum p2 can be used as an alternative variable, but the final result for Ccorr
q⃗;r⃗ does not simplify for

this choice.
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cq2qr ¼
Eπ;q⃗g2AðE3

π;q⃗ð6g2A þ 1Þ þ E2
π;q⃗Eπ;r⃗ð4g2A − 13Þ þ Eπ;q⃗E2

π;r⃗ð3 − 2g2AÞ þ E3
π;r⃗Þ

ðEπ;q⃗ þ Eπ;r⃗Þ4
ðA7Þ

cr2qr ¼
Eπ;r⃗g2AðE3

π;q⃗ þ E2
π;q⃗Eπ;r⃗ð3 − 2g2AÞ þ Eπ;q⃗E2

π;r⃗ð4g2A − 13Þ þ E3
π;r⃗ð6g2A þ 1ÞÞ

ðEπ;q⃗ þ Eπ;r⃗Þ4
ðA8Þ

cðqrÞ2 ¼
2g2AðE4

π;q⃗ þ E4
π;r⃗ − ðE3

π;q⃗Eπ;r⃗ þ Eπ;q⃗E3
π;r⃗Þð2g2A − 2gA − 3Þ − 4E2

π;q⃗E
2
π;r⃗ðg2A − gA þ 3ÞÞ

ðEπ;q⃗ þ Eπ;r⃗Þ4
ðA9Þ

cq4r2 ¼ −
Eπ;q⃗g4Að3E3

π;q⃗ þ 3E2
π;q⃗Eπ;r⃗ þ 7Eπ;q⃗E2

π;r⃗ þ 3E3
π;r⃗Þ

ðEπ;q⃗ þ Eπ;r⃗Þ4
ðA10Þ

cq2r4 ¼ −
Eπ;r⃗g4Að3E3

π;q⃗ þ 7E2
π;q⃗Eπ;r⃗ þ 3Eπ;q⃗E2

π;r⃗ þ 3E3
π;r⃗Þ

ðEπ;q⃗ þ Eπ;r⃗Þ4
ðA11Þ

cq2r2qr ¼ −
2g4Að3E4

π;q⃗ þ 7E3
π;q⃗Eπ;r⃗ þ 4E2

π;q⃗E
2
π;r⃗ þ 7Eπ;q⃗E3

π;r⃗ þ 3E4
π;r⃗Þ

ðEπ;q⃗ þ Eπ;r⃗Þ4
ðA12Þ

cq2ðqrÞ2 ¼
2E2

π;q⃗Eπ;r⃗g4Að3Eπ;q⃗ þ Eπ;r⃗Þ
ðEπ;q⃗ þ Eπ;r⃗Þ4

ðA13Þ

cr2ðqrÞ2 ¼
2Eπ;q⃗E2

π;r⃗g
4
AðEπ;q⃗ þ 3Eπ;r⃗Þ

ðEπ;q⃗ þ Eπ;r⃗Þ4
ðA14Þ

cðqrÞ3 ¼
4Eπ;q⃗Eπ;r⃗g4AðE2

π;q⃗ þ 4Eπ;q⃗Eπ;r⃗ þ E2
π;r⃗Þ

ðEπ;q⃗ þ Eπ;r⃗Þ4
: ðA15Þ

The result simplifies significantly for some special cases.
If both pions are at rest, only the c0 term contributes
to Ccorr

0;0 , and we obtain the simple result given in (2.15). If
at least one pion is at rest, only two terms (proportional
to c0 and either cq2 or cr2) provide a nonvanishing
contribution.

APPENDIX B: DEGENERACIES OF THE
LOWEST THREE-PARTICLE STATES

The sum in (2.17) runs over the two pion momenta q⃗, r⃗
that are allowed by the spatial boundary conditions. In case
of periodic boundary conditions, these are given in (2.4)
with integer-valued vectors n⃗q, n⃗r. To get a sum over a
finite number of low-momentum pion states we impose an
upper bound Λmax on the absolute values of the pion
momenta. Once the spatial extent L is fixed this is done by
imposing a bound nmax on the integers nq and nr, defined
in (2.5).
Symmetry under the O3 group implies that the sum over

the pion momenta q⃗, r⃗ simplifies to a 3-fold sum over the
discrete values for jq⃗j, jr⃗j and the scalar product q⃗ · r⃗. Since

the nucleon momentum p⃗ is fixed by momentum con-
servation, p⃗ ¼ −q⃗ − r⃗, the scalar product can be replaced
by jp⃗j. In that representation, the momentum sum in (2.17)
is replaced by

XΛmax

q⃗;r⃗

¼
Xnmax

nq;nr

X
np

mðnpÞ: ðB1Þ

Here np runs over a finite number of allowed integers,
determined by

np ¼ nq þ nr þ 2n⃗q · n⃗r: ðB2Þ

mðnpÞ gives the multiplicities of the particular three-
particle state with given values nq, nr and np, i.e. it counts
the number of ways one can find three integer-valued
vectors n⃗p, n⃗q, n⃗r with given values np, nq, nr that add up to
zero, n⃗p þ n⃗q þ n⃗r ¼ 0.
As long as nq, nr are sufficiently small np andmðnpÞ are

straightforwardly computed by explicit calculations of
(B2). The results are summarized for 1 ≤ nq, nr ≤ 8 in

OLIVER BÄR PHYS. REV. D 97, 094507 (2018)

094507-8



TABLE I. Possible values for the nucleon momentum integer
np and the multiplicities mðnpÞ as a function of nq, nr.

nq nr np mðnpÞ
1 1 0 6

2 24
4 6

2 1 24
3 24
5 24

3 2 24
6 24

4 1 6
5 24
9 6

5 2 24
4 24
6 48
8 24

10 24
6 3 24

5 48
9 48

11 24
8 5 24

9 24
13 24

2 2 0 12
2 48
4 24
6 48
8 12

3 1 24
5 48
9 24

4 2 24
6 24

10 24
5 1 24

3 48
4 24
5 48
9 72

11 48
13 24

6 2 48
4 24
6 48
8 48

10 48
12 24
14 48

8 2 12
6 48

10 24
14 48
18 12

3 3 0 8

(Table continued)

TABLE I. (Continued)

nq nr np mðnpÞ
4 24
8 24
12 8

4 3 24
11 24

5 2 48
6 48
10 48
14 48

6 1 24
5 48
9 48
13 48
17 24

8 7 24
11 48
15 24

4 4 0 6
8 24
16 6

5 1 24
5 24
9 48
13 24
17 24

6 2 24
6 48
14 48
18 24

8 8 24
12 24
16 24

TABLE II. Possible values for the nucleon momentum integer
np and the multiplicities mðnpÞ as a function of nq, nr (cont.)

nq nr np mðnpÞ
5 5 0 24

2 72
4 24
6 96
8 48

10 48
12 48
14 96
16 24
18 72
20 24

6 1 48
3 48
5 96
9 48

(Table continued)
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Tables I and II (note that no vector with nq, nr ¼ 7 exists).
In case either nq or nr equals zero, one of the pions is at rest
and the nucleon momentum is opposite to the nonzero pion
momentum. The multiplicities for these special cases are

the same as for the Nπ contribution and are listed in
Ref. [14], for example. The state with vanishing momenta
for both pions is the state with all three particles at rest,
which is nondegenerate.
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