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Chiral effects exhibit peculiar universality in idealized theoretical limits. However, they are known to be
infrared sensitive and get modified in more realistic settings. In this work we study how the corresponding
conductivities vary with the constituent mass. We concentrate on a pionic realization of chiral effects which
provides a better control over infrared properties of the theory. The pionic medium is considered at finite
vector and axial isospin chemical potentials in the presence of an external magnetic field. This system
supports electric and axial isospin currents along the magnetic field which correspond to chiral magnetic
and chiral separation effects. We show that these currents are sensitive to the finite mass of the constituents
but the conductivities follow a simple scaling with the corresponding charge densities as one would expect
for polarization effects. It is argued that this relation can capture the dependence of chiral effects on other
infrared parameters. Finally, we briefly comment on the realization of the ’t Hooft matching condition in
pionic media at finite densities.
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I. INTRODUCTION

The axial anomaly is a one-loop-exact nonperturbative
phenomenon closely tied with topological properties of the
gauge field configuration. Inside a chiral medium anomaly
may result in additional transports known as chiral effects
which partially retain the anomalous universality: the
corresponding conductivities have the same form in a wide
variety of setups. For instance, chiral effects take the same
form in a noninteracting fermion gas [1,2] and in the
opposite limit of hydrodynamics [3], for a recent review see
[4] and references therein. However, this is not the case
away from the exact chiral limit, the anomalous transport is
argued to have a strong dependence on the mass of the
medium constituents and is infrared (IR) dependent in
general, see e.g. [5–13]. Recent experimental progress in
the search for the anomalous transport in condensed matter
system [14,15] and the ongoing activity in heavy-ion
experiments [4] require further extension of the theoretical
picture to more realistic setups incorporating various IR
parameters and, particularly, the finite mass of constituents.

Commonly chiral effects are discussed in the context of a
chiral plasma made of massless Dirac fermions. In this
medium at finite vector and axial chemical potentials μ; μ5
an external magnetic field results in electric and axial
currents J ¼ μ5

2π2
B; J5 ¼ μ

2π2
B known as chiral magnetic

and chiral separation effects (CME and CSE correspond-
ingly). In the strong field limit, one can count the
contributions of different Landau levels to the transport
[16] and the average axial current density is given by

Ji5 ¼
1

2π
nðT; μÞBi; ð1Þ

where nðT; μÞ is the fermion number density in the lowest
Landau level (LLL). At zero temperature and nonzero m,
the density has a simple analytic form resulting in

Ji5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
2π2

Bi ⟶
m→0

J5 ¼
μ

2π2
B

and in the massless limit one finds the standard expression
for the CSE current. It should be mentioned that at m ≠ 0
the diagrammatic relation of the CSE with the triangle
anomaly is less direct. However, the CSE current is still
saturated by LLL and is, in this sense, anomalous.
There is a particularly interesting observation to be

pointed out: according to (1) the corresponding conduc-
tivity follows a simple linear scaling with the fermion
density as one would expect for a spin polarization [16].
Thus, the CSE mass dependence is fixed by the mass
dependence of the density but it is unclear to what extent
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this relation could be generalized. For instance, in the case
of a QCD medium it is known that both CME and CSE can
take place not only in the high temperature limit of quark-
gluon plasma, but also in the confined phase represented
by a pionic medium at finite densities. The latter setup is
considerably different from the one discussed above
due to strong interactions which modifies IR properties
of the theory.
The anomalous transport in a pionic medium was studied

previously, see e.g. [17–19], and we extend those consid-
erations to the presence of a finite pion mass. The pionic
medium has a rich phase diagram [20–22] and provides a
toy model to study chiral effects in distinct regimes. Such
setup is additionally interesting due to recent proposals to
search for polarization effects in hadronic products of
heavy-ion collisions which can be generated in part by
anomalous dynamics, see e.g. [23–27] and references
therein. We show that in pionic media CME and CSE
depend on the pion mass only through the corresponding
charge densities similarly to the case of free fermions. In
particular, we show that the mass dependence of CSE is
captured by the mass dependence of the isospin density
even in the condensed phase of isospin superfluidity.
Finally, we comment on the realization of the ’t Hooft
matching condition in chiral media.

II. PION CONDENSATION

In this section we briefly review the behavior of the
chiral theory of pions in the presence of finite densities but
with no anomalous dynamics involved. The corresponding
low-energy effective field theory is well known and
governed by the chiral Lagrangian

L ¼ 1

4
f2πTr½∇μU∇μU† − 2ReTrU�; ð2Þ

whereU ∈ SUð2Þ is the pion field andwe introduce chemical
potentials as zero components of vector and (auxiliary) axial
gauge fields ∇0U ¼ ∂0U − ið½μV; U� − fμA; UgÞ.
To illustrate the effects of finite density, we concentrate

on the case of nonzero isospin charge taking both chemical
potentials in the τ3-direction, μVðAÞ ¼ 1

2
μI;VðAÞτ3. In the

massless limit, the effective potential describing the vac-
uum state of the system takes the form

Veff ¼
f2π
8
½ðμ2I;V −μ2I;AÞTrðτ3Uτ3U†Þ−2ðμ2I;V þμ2I;AÞ�: ð3Þ

The minimum of the potential (3) defines the vacuum
alignment: if μ2I;V < μ2I;A the vacuum solution lies in
ðI; τ3Þ-plane and Uvac ¼ eiαðI cos β þ iτ3 sin βÞ, otherwise
it is shifted to the ðτ1; τ2Þ-plane and Uvac ¼
eiαðτ1 cos β þ iτ2 sin βÞ. Isospin densities in the ground state
are given by the variation of (3) with respect to the chemical
potentials

ρI;V ¼ −
f2π
4
ðμI;VTrðτ3Uτ3U†Þ − 2μI;VÞ

ρI;A ¼ −
f2π
4
ð−μI;ATrðτ3Uτ3U†Þ − 2μI;AÞ ð4Þ

and one can note that for U in ðI; τ3Þ-plane ρI;V ¼ 0; ρI;A ¼
f2πμI;A while for U in ðτ1; τ2Þ-plane ρI;V ¼ f2πμI;V; ρI;A ¼ 0,
see e.g. [21].
At finite mass, the axial subgroup is explicitly broken

and one cannot introduce the axial chemical potential since
the charge is not conserved. Moreover, there is an addi-
tional scale in the problem and, if chemical potential μI;V is
much smaller than the mass, one expects the system to stay
in the trivial vacuum stateU ¼ I while in the massless limit
any μI;V results in a rotation of the vacuum. Indeed, for
jμI;V j < mπ there are no particles in the vacuum, the isospin
density is zero and the corresponding solution has to be
trivial Uvac ¼ I. On the other hand, in the limit jμI;V ≫ mπ

the system is expected to behave as in the massless case.
This picture can be checked explicitly by studying the static
limit of the chiral Lagrangian for m ≠ 0. The ground state
should minimize the potential energy

Veff ¼
f2π
8
μ2I;VTr½τ3Uτ3U† − 1� − f2πm2

π

2
ReTrU:

The pion filed minimizing (5) can be parametrized as U ¼
cos αþ iðτ1 cosϕþ τ2 sinϕÞ sin α at arbitrary μI;V reduc-
ing the previous expression to

Veff ¼
f2π
4
μ2I;Vðcos 2α − 1Þ − f2πm2

π cos α:

Following the discussion in [20], one finds that the
minimum of this potential with respect to α corresponds

to cos α ¼ m2
π

μ2I;V
which turns into Uvac ¼ I for jμI;V j < mπ.

This vacuum rotation corresponds to a condensation of π�
for jμI;V j > mπ and the ground state can be seen as a pionic
superfluid. Note that the new minimum of the potential is
degenerate with respect to ϕ which corresponds to a
Goldstone mode of the spontaneously broken isospin
symmetry. The isospin density in the ground state is
nonzero only if jμI;V j > mπ , the expression (4) is unmodi-
fied by mass and one finds

ρI;V ¼ f2πμI;V

�
1 −

m4
π

μ4I;V

�
; ð5Þ

which goes to zero for jμI;V j → mπ. This is a natural result
since for jμI;V j < mπ there are no pions in the system at
zero temperature. Note that naively one may consider μI;A
to be an effective interaction ignoring the fact that the axial
isospin charge is not conserved in the presence of the mass.
In this case the system seemingly stays in the same vacuum
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even in the regime jμI;V j > mπ . However, the nonconserved
isospin axial charge is still well defined and one expects a
state aligned with the τ3-direction due to finite density
of π0.

III. CHIRAL MAGNETIC AND
SEPARATION EFFECTS

Let us now consider anomalous transport in a pionic
medium including the effect of the pion mass. The chiral
Lagrangian should be modified to include the axial
anomaly which is captured by the famous Wess-Zumino-
Witten (WZW) term in this effective theory. In the case of
SUð2Þ, the WZW term can be written in a particularly
compact form [28,29]

LWZW ¼ −
Nc

32π2
ϵμνρσ

�
tr½U†r̂μUl̂ν − r̂μl̂ν

þ iΣμðU†r̂νU þ l̂νÞ�tr½vρσ� þ
2

3
tr½ΣμΣνΣρ�tr½vσ�

�
;

ð6Þ

and the chemical potentials are included into the vector and
axial fields. Here we use the standard notations

DμU ¼ ∂μU − irμU þ iUlμ; Σα ¼ U†∂αU;

rμ ¼ vμ þ aμ; lμ ¼ vμ − aμ; ð7Þ

and f̂ ¼ f − 1
2
trf is the traceless part of f.

We are interested in currents sourced by (6) which are
expected to reproduce CSE and CME in the presence of
the finite densities and an external magnetic field. Varying
the action with respect to the axial field aa;μ, one can
find the leading contribution to the axial current which is
given by

JμA;a

���
WZW

¼ −
Nc

32π2
ϵμνρσtr½U†τaUv̂ν þ U†v̂νUτa − 2τav̂ν

− iΣνðU†τaU − τaÞ�trvρσ: ð8Þ

The background solution Uvac is static since the chemical
potentials μVðAÞ are explicitly taken into account in the
definition of the covariant derivatives and one can omit the
derivative term with Σμ, then

JiA;a

���
WZW

¼ −
NctrQ
16π2

tr½U†τaUμV þ U†μVUτa − 2τaμV �Bi:

ð9Þ

This expression resembles the axial isospin density (4) and
a direct substitution shows that the vacuum axial current is
proportional to it

Jia
���
WZW

¼ NctrQ
4π2f2π

ρI;VBi: ð10Þ

This is in analogy1 with the strong field limit in the
fermionic case (1) and the finite mass effects are incorpo-
rated similarly being accounted through the vacuum
solution Uvac which defines the ground state density.
Note that the leading corrections to the background current
due to perturbations around Uvac are also captured by (10)
if the corresponding terms are taken into account in the
density expression.
An interesting illustration to this relation can be found in

the phase of the pionic superfluidity which requires non-
zero jμI;V j > mπ . The condensation results in a nontrivial
Uvac which corresponds to nonzero isospin density in the
ground state even at zero temperature. Then there is a
vacuum axial current in the isospin component which reads

JiA;3

���
WZW

¼ NctrQ
4π2

μI;V

�
1 −

m4
π

μ4I;V

�
Bi; ð11Þ

and the current disappears in the limit ðjμI;V j −mπÞ → 0

along with the density. We can see that the IR dependence
of the CSE current is indeed captured by the corresponding
charge density even in the presence of the condensate.
In the phase of the pionic superfluidity, one has to be

careful treating magnetic field effects since the ground state
possesses some electric charge density unless it is removed
by an external charge added to the system. Therefore it is
instructive to consider the relation (10) in a physically
simpler setup involving no charge in the ground state. For
μ2 < m2

π the vacuum solution is trivial, in this setup
Ji3jWZW ¼ 0 at zero temperature following to (10).
However, as mentioned above, corrections to the isospin
density at finite temperature should result in a nonzero
isospin axial current. In the high temperature limit T ≫ mπ ,
one can ignore the mass of constituents and the leading
contribution to JiA;3 is given by

JiA;3

���
WZW

¼ NcμI;V
4π2

π21 þ π22
f2π

Bi ¼ NcμI;V
24π2

T2

f2π
Bi; ð12Þ

where we use the thermal expectation of the pion field
hπ2i ¼ T2

12
(c.f. [17,19]).

In the massless limit, the axial charge is classically
conserved and one can derive the CME current within the
same procedure introducing the axial chemical potential
μI;A ≠ 0. We concentrate on the isospin component of
the axial charge which is nonanomalous with respect to the
strong interaction. The anomalous contribution to the

1The similarity in the structure of the CSE current and its IR
dependence, however, cannot be used for a direct comparison of
the responses in the two regimes at least within the current
consideration.
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electric current can be obtained by varying the WZWaction
(modified by the shift of the axial charge) with respect to
the electric component of the vector field vμ, then

JiV jWZW¼NctrQ
16π2

tr½U†Q̂UμAþU†μAUQ̂þ2Q̂μA�Bi; ð13Þ

where Q̂ ¼ τ3 is the traceless part of the electric charge.
Comparing (13) with (4), one finds that the CVE current is
proportional to the axial isospin density JiV jWZW ∼
1
f2π
tr½ρAQ̂�Bi. We substitute the isospin component of the

axial chemical potential to (13) and take Uvac ¼ I then the
CME current takes the form

JiV jWZW ¼ NctrQ
4π2

μI;ABi ð14Þ

which agrees with the previous considerations, see e.g.
[18,19]. The finite mass effects explicitly violate conser-
vation of all axial charge components and one has to be
careful analyzing this regime. However, one expects that
the relation JiV jWZW ∼ 1

f2π
tr½ρAQ̂�Bi survives even in this

regime at least as a leading contribution at small pion mass.

IV. ’T HOOFT MATCHING CONDITION

It is worth emphasizing that the infrared sensitivity of the
matrix elements of the currents in the medium which we
find is in actually sharp contrast with more familiar
examples from elementary particle physics. Consider first
matrix element of the axial current over heavy states
jhii; jhfi. In the exact chiral limit:

hhfjj5αjhii ¼ fπ

�
qαqβ
q2

− δαβ

�
hhfjj̃5αjhii; ð15Þ

where qα is the 4-momentum carried in by the current j5α
and j̃5α is the axial current with the contribution of the
Goldstone particle (pion) removed. The pole in the matrix
element (15) is due to a virtual pion. Introduction of a finite
pion mass mπ results in the shift in the position of the pole,

1=q2 → 1=ðq2 þm2
πÞ:

This shift of the pole is responsible for the whole of m2
π

dependence in the infrared region.
Note that the matrix element (15) of the axial current

contains a pole and is infrared sensitive at small q2. The
matrix element of the divergence of the current ∂αj5α on the
other hand reduces to a polynomial and is not infrared
sensitive. Beginning with the seminal paper [3], the chiral
effects are treated as higher order terms in the hydro-
dynamic expansion in derivatives. Thus, one could expect
that the matrix elements of the currents are sensitive to
specific hydrodynamic excitations [30]. Now we can check

these expectations in the case of pionic superfluidity. We
will see that the pattern of the infrared sensitivity is very
different in fact from the elementary-particle case.
For the pion medium, there are real pions present and, as

we have mentioned a few times, axial current itself is
proportional to the density of pions ρπ. In the limit of exact
symmetry, the matrix element of the axial current over the
pion medium is given by:

hmediumjj5αjmediumi ≈ fπ∂απ ¼ ρπuα; ð16Þ

Obviously, in this case there is no pole due to the pion in the
matrix element of the axial current. What is changed with
introduction of a finite pion mass is the expression for the
pion density ρπ.
Proceeding to loop effects, the matrix element associated

with the anomalous triangle graph perturbatively is given by:

h0jj5αjγγipert ¼
qα
q2

αel
2π

ðQ2
u −Q2

dÞNcFαβF̃αβ; ð17Þ

where Qu, Qd are charges of the light quarks, Nc is the
number of colors. Note that higher orders in perturbation
theory vanish due to the Adler-Bardeen theorem [31].
Phenomenologically, at small q2 the same matrix element
is given by

h0jj5αjγγiphen ¼
qα
q2

fπfπ0→γγFαβF̃αβ; ð18Þ

where fπγγ is the constant of the π0 → γγ decay,
FF̃ ¼ ð1=2ÞϵαβγδFαβFγδ, and Fαβ is the electromagnetic
field strength tensor. Equating (17) and (18) reproduces the
’t Hooft matching condition [32] which fixes the product
fπfπγγ in terms of αel.
Now we have a field theoretic language for the inter-

action of pions with heavy states and are, therefore, in
position to evaluate loop corrections to (16). To this end we
couple heavy states entering the matrix element (15) to the
electromagnetic fields through loop graphs. These loop
graphs are convergent at distances of order of inverse
nucleon mass (as far as the nucleon is a “typical ” heavy
state). Moreover, such graphs have been extensively
studied in connection with pion decay into two photons.
All such graphs produce an effective action:

δS ¼ fπ0→γγπ
0FαβF̃αβ: ð19Þ

Varying this effective action with respect to the electro-
magnetic potential Aα one finds a contribution to the
electromagnetic current (known as the Wilzcek-Goldstone
current: [33]),

jelα ¼ 4fπ0→γγϵαβγδ∂βπ0∂γAδ ð20Þ
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and, upon substitution ∂0π0 ¼ fπμ5, we reproduce the
current responsible for the chiral magnetic effect. The
reason is that the interaction of pions with electromagnetic
fields (19) satisfies constraints due to the anomaly, or the
original ’t Hooft matching condition, see above.
It is worth emphasizing that in the case of pionic

superfluidity the chiral magnetic effect does not reduce
to higher orders in the hydrodynamic expansion. Indeed,
the basic quantity determining the hydrodynamic expan-
sion is the free-path length which is limited by collisions of
constituents of the fluid. The current (20), on the other
hand, is determined by the dynamics of heavy, virtual
particles which are not constituents of the fluid, see also
[34]. Thus, the chiral magnetic effect is associated in the
considered model with the short distances, r ∼m−1

N , and
corresponds to a polynomial in the effective action (19). It
is not sensitive to the infrared physics at smaller scales.
Therefore, in the case of the hydrodynamic chiral

magnetic effect the ’t Hooft matching condition reduces
in fact to its original form. In the case of the chiral vortical
effect, the divergence of the corresponding piece in the
axial current does not vanish on pure algebraic grounds but
is rather proportional to

∂αðμ2ϵαβγδuβ∂γuδÞ ∼ μ2ðΩ⃗ · a⃗Þ; ð21Þ

where Ω⃗ is the angular velocity and a⃗ is acceleration of the
fluid [5]. However, as is well known, introduction of the
chemical potential μ cannot modify the divergence of
the anomalous axial current. Therefore, the extra term (21)
is to vanish because of the equation of motion of the fluid,
for further details see [35]. This constraint can be consid-
ered as a specific realization of the ’t Hooft matching
condition in hydrodynamics.

V. DISCUSSIONS

Chiral effects are known to be IR sensitive and,
particularly, one has to carefully study their behavior
away from the exact massless limit. While the anomalous
transport is commonly discussed in a weakly interacting
fermionic system corresponding to the deconfined phase
of QCD, it is also known that chiral effects can be
generalized to a pionic medium. The two setups are
considerably different in the IR limit but due to the
universality of the anomaly one expects the anomalous
transport to be similar. We compare these realizations of
chiral effects to gain further insights into their IR
sensitivity.
In this paper, we focus on the mass dependence of the

CME and CSE currents in a pionic medium extending the
previous considerations [17–19] beyond the exact chiral

limit. It is known that in the deconfined phase the CSE
current depends on the fermion mass only through the a
certain fermion number density (1). We show that it is also
the case for the pionic realization of the anomalous trans-
port. The CME and CSE conductivities depend on the pion
mass only through the corresponding densities and the
currents simply scale with them in full analogy with the
anomalous transport in the deconfined phase. In particular,
we show that the mass dependence of CSE in the isospin
axial current is captured by the mass dependence of the
vector isospin density even in the condensed phase of
isospin superfluidity [20–22]. In the massless limit, our
results agree with the previous considerations of the
anomalous transport in pionic media [17–19].
The replacement described above of the quark mass by

the pion mass in CME and CSE conductivities is well
expected. Indeed, the two masses are related and, moreover,
pions are the only low energy degrees of freedom present in
the system below the phase transition. On the other hand,
the conductivities could, in principle, gain radiative cor-
rections due to the strong interaction and in this sense the
same form of the relation between the currents and the
corresponding densities in deconfined and confined phases
is a nontrivial result. One should also note that the
transition to the pion mass makes the chiral effect less
IR sensitive. Indeed, the anomalous transport is shown to
be factorized to a density and an anomalous process. The
triangle diagram for quarks in the deconfined phase
depends on the photon virtuality of order m2

q while the
dependence of the π → γγ decay appears at order k2=m2

ρ.
Thus, the IR sensitivity of the anomalous transport is
considerably weaker within the pionic realization corre-
sponding to its polynomial nature.
Finally, we comment on the realization of the ’t Hooft

matching condition in chiral media. The vortical contribu-
tion to the divergence of the axial current seemingly
modifies the axial anomaly. We argue that the ‘t Hooft
matching condition (18) has to stay unmodified in the
hydrodynamic setup and one has to require the vortical
contributions in the divergence to be zero (21). We stress
that it is the case in the ideal hydrodynamics which is the
proper description of a pionic medium in the hydrody-
namic limit.
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