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We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-
range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its
influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a
curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature
scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory
of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through
gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the
low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the
hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety
scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of
particle physics models.
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I. INTRODUCTION

Gravitational catalysis denotes the breaking of chiral
symmetry and subsequent fermionic mass generation
induced by a curved spacetime background. The phenome-
non is known to occur generically in fermionic systems of
any dimension for various negatively curved spacetimes
even at the weakest fermionic attraction [1–17].
Gravitational catalysis can be understood as a conse-

quence of dimensional reduction of the fluctuation spec-
trum. For instance in D-dimensional hyperbolic space, the
low-lying modes of the Dirac operator exhibit a reduction
from D to 1þ 1 dimensions [18]. Hence, the long-range
dynamics of any self-interaction of the fermions (be it
fundamental, effective or induced) involving a chiral
symmetry-breaking channel behaves like the corresponding
model in 1þ 1 dimensions, e.g., the Gross-Neveu or the
Nambu–Jona-Lasinio model, which both exhibit chiral
symmetry breaking and fermionic mass generation.
In this respect, gravitational catalysis is closely related to

magnetic catalysis [19–24] of chiral symmetry breaking in a
magnetic field where a dimensional reduction mechanism is
also visible in the fermionic fluctuation spectrum in the form

of the lowest Landau level. Consequently, also the combi-
nation of gravitational and gauge-field catalysis exhibits a
rich interplay [25–30]. Both phenomena can also be under-
stood within a renormalization group (RG) framework
[31,32], where an analysis of the RG flow reveals that the
chiral channels inevitably become relevant operators even in
higher dimensions, once the long-range flow is driven by the
low-lying modes of the fermion spectrum.
Unlike the case of magnetic catalysis, the relevance of

gravitational catalysis for real systems is less clear.While the
mechanism still works in negatively curved space (instead of
spacetime) such as on the Lobachevsky plane [14,32], an
estimate for the required curvature for inducing a chiral
transition in layered materials with Dirac fermionic excita-
tions, i.e., a Mott transition, results in large negative values
which seem difficult to achieve with current materials [32].
In the present work, we argue that gravitational catalysis

may play a malign role for the interplay of quantum
gravitational and fermionic matter degrees of freedom in
the high-energy regime near the Planck scale.As suggested in
[33], the observational fact of the existence of light chiral
fermions in our Universe puts implicit bounds on the
properties of the quantum gravitational interactions: if
quantum gravity near the Planck scale was such that it
triggered chiral symmetry breaking, the low-energy particle
sector of our Universe would generically be characterized by
massive fermions with Planck scale masses. As gravity
couples equally to all matter degrees of freedom, it thus
would seem difficult to understand the existence of light
chiral fermions.
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Despite the fact that gravity represents an attractive
interaction among particles, gravitational fluctuations in a
quantum-field theory setting surprisingly do not trigger
chiral symmetry breaking [33,34]. In this respect, gravity
differs substantially from gauge theories or Yukawa inter-
actions. Therefore, the existence of light fermions appears
compatible even with a high-energy regime of strongly
coupled gravity, as long as an effective field theory
description for quantum gravity is suitable. In particular,
the asymptotic safety scenario of quantum gravity [35–41]
passes this consistency test [42–52], also in conjunction
with further gauge interactions [53–56]. In asymptotic
safety, it is even possible to study the interplay of nonchiral
fermions and gravity [57], demonstrating that chiral fer-
mions are favored by simple asymptotic safety scenarios.
Certain asymptotically safe gravity-matter scenarios even
exhibit an enhanced predictive power [58–65].
Whereas most of these studies have essentially been

performed on flat space, with curvature-dependent calcu-
lations coming up only recently [66,67], the gravitational
catalysis mechanism is active on negatively curved space-
times. In this picture, the consistency of quantumgravity and
light fermions thus is not so much a matter of gravitational
fluctuations and their interplay with matter, but of the
effective spacetime resulting from quantum gravity itself.
In order to elucidate the mechanism by which gravita-

tional catalysis can affect the realization of quantum gravity
and its interplay with the particle content of Nature, we
perform a scale-dependent analysis of gravitational cataly-
sis. We introduce an infrared (IR) scale kIR that serves as a
coarse-graining scale for the fermionic long-range modes
that drive chiral symmetry breaking. Simultaneously, this
scale can be viewed as an inverse length scale of a local
patch of spacetime characterized by an averaged curvature.
The relevance or irrelevance of gravitational catalysis then
arises as a competition between the local curvature-induced
contributions and the screening of contributions from the
long-range modes. This results in bounds on the local
curvature measured in units of the coarse-graining scale: in
order to evade fermion mass generation and chiral sym-
metry breaking, the curvature bound has to be satisfied on
all scales kIR.
This statement may become particularly relevant for a

high-energy scale of quantum gravity, where kIR may be of
the order of the Planck scale. If a quantum gravity scenario
violates our curvature bound in the Planck regime, the
possible onset of gravitational catalysis can give rise to a
fermion mass spectrum of the corresponding particle
physics sector which is expected to be of Planck scale
as well. Hence, a violation of the bound can be indicative
for a tension between a quantum gravity scenario and the
existence and observation of light chiral fermions in our
Universe.
Our paper is organized as follows: Sec. II lays out the

general framework of our study in terms of a generic chiral

fermion theory in curved spacetime, which we analyze in a
local mean-field RG approach. We illustrate our approach
with the fully analytically accessible simplest case of
D ¼ 3 dimensional spacetime. The most relevant D ¼ 4
dimensional case is analyzed in Sec. III. Higher-
dimensional cases are studied in Sec. IV, where we find
that the curvature bound gets stronger with increasing
dimensionality. We illustrate the usefulness of the curvature
bound with the aid of the asymptotic safety scenario for
quantum gravity in a simple setting in Sec. V. In this
scenario, the curvature bound can, for instance, translate
into a bound on the admissible number of fermion flavors.
We conclude in Sec. VI.

II. FRAMEWORK

Let us start from a fermionic matter sector with a global
chiral symmetry group UðNfÞR ×UðNfÞL, with Nf being
the number of fermion species. This is reminiscent to the
fermionic sector of the standard model subject to the strong
interaction with Nf counting the number of flavors times
the number of colors. Even without any further gauge
interactions, gravitational fluctuations, say in the (trans-)
Planckian regime, will induce effective fermionic self-
interactions. With gravity preserving chiral symmetry,
the most general local fermionic self-interaction to
fourth-order in the fields is parametrized by the action
[33,68]

S½ψ̄ ;ψ � ¼
Z
x

�
ψ̄∇ψ

þ λ̄−
2
½ðψ̄aγμψ

aÞ2 þ ðψ̄aγμγ5ψ
aÞ2�

þ λ̄þ
2
½ðψ̄aγμψ

aÞ2 − ðψ̄aγμγ5ψ
aÞ2�
�
; ð1Þ

where the Latin indices represent different flavor species
and =∇ is the covariant Dirac operator. Denoting the vector
interaction channel term with ðVÞ ¼ ðψ̄γμψÞ2 and the axial
one with ðAÞ ¼ −ðψ̄γμγ5ψÞ2, we expect the transition to be
triggered by the ðVÞ þ ðAÞ term which is equivalent to

ðVÞ þ ðAÞ ¼ −2½ðSNÞ − ðPNÞ� ð2Þ

by means of a Fierz transformation. Here, ðSNÞ and ðPNÞ
denote the scalar and pseudo scalar channels in the space of
flavor nonsinglet terms,

ðSNÞ ¼ ðψ̄aψbÞ2 ¼ ðψ̄aψbÞðψ̄bψaÞ;
ðPNÞ ¼ ðψ̄aγ5ψ

bÞ2 ¼ ðψ̄aγ5ψ
bÞðψ̄bγ5ψ

aÞ: ð3Þ

In fact, the structure ðSNÞ − ðPNÞ is familiar from the
Nambu–Jona-Lasinio (NJL) model and further generic
models of chiral symmetry breaking. In such models, the
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onset of chiral symmetry breaking is signaled by this
channel becoming RG relevant. For instance, in the NJL
model, this onset is triggered by a choice of the four-
fermion coupling being larger than some critical value.
Hence, we concentrate in the following on the NJL channel
and ignore the ðVÞ − ðAÞ channel for the rest of the paper.
The latter is expected to stay RG irrelevant across a possible
phase transition, justifying to approximate λ− ≃ 0 for the
purpose of detecting the onset of symmetry breaking.
Using the projectors on the left and right chiral

components

PL ¼ 1 − γ5
2

; PR ¼ 1þ γ5
2

; 1 ¼ PL þ PR; ð4Þ

the NJL channel can also be written as the interaction part
of the Lagrangian

Lintðψ̄ ;ψÞ ¼ −2λ̄ðψ̄a
Lψ

b
RÞðψ̄b

Rψ
a
LÞ; λ̄ ¼ 2λ̄þ: ð5Þ

Here, the subscripts L, R represent the chiral projections of
the Dirac fermion. By means of a Hubbard-Stratonovich
transformation, the interaction term can also be expressed
in terms of a Yukawa interaction with an auxiliary scalar
field,

Lintðϕ; ψ̄ ;ψÞ ¼ ψ̄a½PLðϕ†Þab þ PRϕab�ψb þ 1

2λ̄
trðϕ†ϕÞ:

ð6Þ

The equivalence of Eq. (6) with Eq. (5) becomes obvious
with the help of the equations of motion for the chiral
matrix fields ϕ and ϕ†,

ϕab ¼ −2λ̄ψ̄b
Rψ

a
L;

ðϕ†Þab ¼ −2λ̄ψ̄b
Lψ

a
R: ð7Þ

From Eq. (6), it is obvious that the Dirac particles can
acquire a mass if chiral symmetry gets broken by a nonzero
expectation value of the field ϕab. The precise breaking
pattern is fixed by the nonzero components of hϕabi which
in turn is determined by the minima of the effective
potential for ϕ. In the following, we assume a diagonal
breaking pattern, ϕab ¼ ϕ0δab with constant order param-
eter ϕ0, which for jϕ0j > 0 breaks the chiral group down to
a residual vector symmetry familiar from QCD-like theo-
ries. In the form of Eq. (6) read together with the fermion
kinetic term, we can integrate out the fermionic degrees of
freedom and obtain the standard mean-field expression for
the effective potential of the order parameter

Uðϕ0Þ ¼
Nf

2λ̄
ϕ2
0 − Nf log detð=∇þ ϕ0Þ

¼ Nf

2λ̄
ϕ2
0 −

Nf

2
Tr logð−=∇2 þ ϕ2

0Þ; ð8Þ

where we have made use of γ5-Hermiticity of the Dirac
operator in the last step. Since we are considering a
homogeneous order parameter, the trace (as well as log
det) is understood to be already normalized by a spacetime
volume factor, such that we are considering local quantities
throughout the paper. Using the Schwinger proper time
representation, we write

UðϕÞ ¼ Nf

2λ̄
ϕ2
0 þ

Nf

2

Z
∞

0

dT
T

e−ϕ
2
0
TTr e∇2T; ð9Þ

where we encounter the trace of the heat kernel on the
manifold under consideration,

Tr e∇2T ¼ TrKðx; x0;TÞ≕KT:

The heat kernel Kðx; x0;TÞ satisfies

∂
∂T K ¼ ∇2K; lim

T→0þ
Kðx; x0;TÞ ¼ δðx − x0Þffiffiffi

g
p : ð10Þ

In our analysis, the information about the nature of
spacetime enters through the trace of the heat kernel of
the (squared) Dirac operator. As this trace parametrizes the
contributions of fermionic fluctuations on all scales, the
explicit evaluation of Eq. (9) would contain information
about both the local and global structure of spacetime.
Though the proper time integration has been introduced

as an auxiliary representation, the integrand can be inter-
preted as the result of a diffusion process of a fictitious
particle on the spacetime within propagation time T
[69,70]. The trace enforces that the diffusion path is closed.
For a finite proper time T, the fictitious particle traces out a
closed path in spacetime which is localized around a point x
under consideration. This path can be considered as the
spacetime path of a virtual fermionic fluctuation; this
perspective can also be made explicit by introducing a
Feynman path-integral representation of the heat kernel
(worldline formalism) [71–75]. For instance, the mean
average distance of the diffusing particle from its center of
mass in flat space is d ¼ ffiffiffiffiffiffiffiffi

T=6
p

[76], indicating that
ffiffiffiffi
T

p
can be considered as a typical length scale of the fluctua-
tions at a fixed value of T.
Aiming at a statement about spacetime in the (trans-)

Planckian regime, we do not want to make an assumption
about its global properties, but intend to consider only local
patches of spacetime. This is possible by means of an RG-
type analysis of Eq. (9). For this, we introduce a proper time
regulator function fk inside the proper time integral
[77,78],

fk ¼ e−ðk2TÞp : ð11Þ

Here, the power p > 0 is a parameter specifying the details
of the regularization and k corresponds to an IR momentum
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space regularization scale. For instance, for p → ∞, all
long-range contributions for length scales

ffiffiffiffi
T

p
> 1=k are

cut off sharply. For finite p, the length scale 1=k becomes a
smooth long-range cutoff. The case p ¼ 1 is special as it
corresponds precisely to a Callan-Symanzik regularization
scheme. In the limit k → 0, the insertion factor becomes
fk→0 ¼ 1 and the regularization is removed. Starting from
the bare potential UΛ at a high momentum scale k ¼ Λ, the
potential at any IR scale kIR can be constructed from

UkIR ¼ UΛ −
Z

Λ

kIR

dk∂kUk; UΛ ¼ Nf

2λ̄Λ
ϕ2
0; λ̄Λ ≡ λ̄;

ð12Þ

once the RG flow of the potential is known,

∂kUk ¼
Nf

2

Z
∞

0

dT
T

e−ϕ
2
0
T∂kfkKT: ð13Þ

In Eq. (12), we explicitly appended the subscript Λ to the
bare coupling λ̄ in order to highlight that the bare coupling
has to be fixed at the high scale in order to define the model.
Since ∂kfk ∼ Tp for small T, also the short-range

fluctuations are suppressed in Eq. (13), such that the
consequences of the fermionic fluctuations can be studied
in a Kadanoff-Wilson-spirit length scale by length scale.
The evaluation of one RG step ∼∂kUk, typically receives
contributions from length scales

ffiffiffiffi
T

p
∼ 1=k. This implies

that we do not have to know the global structure of the
spacetime, but our assumptions about the spacetime proper-
ties need to hold only over these covariant length scales.
More specifically, we assume below that the spacetime can
locally be approximated as maximally symmetric.
Though the analysis of the chiral interactions leading to

Eq. (1) has been performed in D ¼ 4 dimensional space-
time, the analysis of the flow of the order-parameter
potential in Eq. (13) can be performed in any D, though
the relation to the symmetry-breaking channel can be more
involved or not necessarily be unique in other dimensions;
see [79] for an analysis inD ¼ 3. In higher dimensions, the
perturbative nonrenormalizability of Yukawa theories sug-
gests that more relevant operators appear near the Gaussian
fixed point. The corresponding regularization of UV
divergencies may require higher values of p for a stronger
suppression of UV modes. Independently of these technical
complications, our analysis can in principle be performed
in any dimension.

A. D= 3

Let us begin with an analysis of the RG flow of the
potential for the case of D ¼ 3 spacetime dimensions. This
case is highly instructive from the viewpoint of the method:
it can be treated analytically in all detail, and does not
involve further relevant operators. Since gravitational

catalysis can occur for negative curvature, we consider
spacetimes that can locally be approximated by a hyper-
bolic space for Euclidean signature, corresponding to AdS
spacetime for a Lorentzian signature. The analysis could
similarly be performed for spacetimes with negative cur-
vature in the purely spatial part with quantitatively rather
similar results [14,32]. InD ¼ 3, the trace of the heat kernel
reads [80,81]

KT ¼ 1

8π
3
2T

3
2

�
1þ 1

2
κ2T

�
; ð14Þ

where

κ2 ¼ −
R

DðD − 1Þ ¼ −
R
6
≥ 0; ð15Þ

denotes the local curvature parameter related to the Ricci
scalar R. Further details of the heat kernels relevant for this
work are briefly reviewed in the Appendix.
Including the proper time regularization, this leads to an

effective, scale-dependent potential of the following form:

Uk ¼
Nf

2λ̄
ϕ2
0 þ

Nf

2ð4πÞ32
Z

∞

0

dT

T
5
2

e−ϕ
2
0
Tfk

�
1þ 1

2
κ2T

�
: ð16Þ

In D ¼ 3, the Callan-Symanzik regulator is known to be
sufficient to control the RG flow of our model. Thus, let us
first choose the exponent p ¼ 1 for fk for simplicity; the
result for general p will be given below. The regularized
flow of the potential with respect to the scale k then reads

∂kUkðϕÞ¼−
2kNf

2ð4πÞ32
�Z

∞

0

dT

T
3
2

e−k
2Tðe−ϕ2

0
T −1Þ

þκ2

2

Z
∞

0

dT

T
1
2

e−k
2Tðe−ϕ2

0
T −1Þ

�

¼Nf

4π

"
k2
 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þϕ2
0

k2

s
−1

!
−
κ2

4

 
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ2
0þk2

p −1

!#
:

ð17Þ

Upon insertion into Eq. (12), the effective potential at the
scale kIR can be computed, yielding

UkIR ¼ −
Nf

2
ϕ2
0

�
1

λ̄cr
−

1

λ̄Λ
−
kIR
4π

�

þ Nf

12π

�
ðϕ2

0 þ k2IRÞ
3
2 −

3

2
kIRϕ2

0 − k3IR

�

−
Nf

16π
κ2
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ2
0 þ k2IR

q
− kIR



; ð18Þ

where we have introduced the (scheme-dependent) critical
coupling λ̄cr ¼ 4π=Λ, and dropped terms of order Oð1=ΛÞ.
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The physics described by this effective potential can be
read off line by line: the first line describes the masslike
term in the potential. For subcritical coupling λ̄Λ < λ̄cr, the
masslike term remains positive for any kIR implying that the
system in flat space remains in the symmetric phase with a
minimum ϕ0 ¼ 0 and does not develop fermion masses.
For supercritical couplings λ̄Λ > λ̄cr, the masslike term
becomes negative below a certain critical IR scale kIR,
indicating that the potential develops a nontrivial minimum
ϕ2
0 > 0. The system hence exhibits chiral symmetry break-

ing and fermion mass generation already in flat space. The
second line does not contribute to the masslike term ∼ϕ2

0

upon Taylor expansion. For large ϕ0 it grows ∼þϕ3
0,

ensuring stability of the potential. The third line represents
the contribution due to nonzero curvature, being manifestly
negative. In the limit kIR → 0, it is linear in the field ϕ0

and thus dominates for small field amplitudes. In this
way, it induces a nonzero ϕ0 and inevitably drives the
system to chiral symmetry breaking and fermion mass
generation—the essence of gravitational catalysis [1–4,
6–18,26,27,29,30,32].
However, gravitational catalysis receives its relevant

contributions from the deep IR, i.e., the long-wavelength
modes. In order to dominate the mass spectrum, the
curvature has to be such that the hyperbolic space is an
adequate description also on large length scales. Within our
RG description, we make the less severe assumption that
the hyperbolic space is an adequate description only up to
lengths scales of order 1=kIR. Whether or not the potential
develops a nonzero minimum then is decided by the
competition between the first and the third line of Eq. (18).
Since we are interested in curvature-induced symmetry

breaking, we assume that the fermionic interactions are
subcritical, λ̄Λ ≤ λ̄cr, such that the masslike term in the first
line is bounded from below by

−
Nf

2
ϕ2
0

�
1

λ̄cr
−

1

λ̄Λ
−
kIR
4π

�
≥
NfkIR
8π

ϕ2
0: ð19Þ

The only other term contributing to the masslike term arises
from the curvature-dependent third line of Eq. (18):

−
Nf

16π
κ2
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ2
0 þ k2IR

q
− kIR



¼ −

NfkIR
32π

κ2

k2IR
ϕ2
0 þOðϕ4

0Þ:

ð20Þ

Comparing the last two equations tells us that gravitational
catalysis does not induce chiral symmetry breaking and
fermion mass generation as long as hyperbolic-curvature
parameter satisfies

κ2

k2IR
≤ 4: ð21Þ

In terms of the negative scalar (spacetime) curvature, this
implies

jRj ¼ 6κ2 ≤ 24k2IR ðfor R < 0Þ ð22Þ

inhibits the occurrence of the nontrivial minimum of the
effective potential and thus fermion mass generation
induced by a negative masslike term. Equation (22) rep-
resents our first example of a curvature bound from
gravitational catalysis: in line with our assumptions we
conclude that a fermionic particle-physics system will not
be plagued by curvature-induced chiral symmetry breaking,
as long as the local curvature of spacetime patches averaged
over the scale of 1=kIR satisfies the bound (22).
Some comments are in order: (i) from the derivation, it is

obvious that a study of the masslike term ∼ϕ2
0 is sufficient

to obtain a curvature bound. Of course, the global structure
of an effective potential could be such that a nontrivial
minimum exists even for a positive masslike term. In that
case, the true curvature bound would even be stronger
than the one derived from the masslike term. (In the
present D ¼ 3 dimensional system, this does not happen
at mean-field level.)
(ii) The curvature bound is independent of the self-

couplings, because of our estimate performed in Eq. (19).
The equal sign holds for bare couplings exactly tuned to
criticality, i.e., the maximum value of the self-coupling that
does not lead to chiral symmetry breaking in the IR.
Therefore, the bound limits the curvature and coupling
regime where the system is safe from fermion mass
generation through gravitational catalysis. Whether or
not fermion mass generation sets in if the bound is violated
depends on further details of the system such as the fermion
couplings.
(iii) The bound is naively scheme-dependent in the sense

that the prefactor (24 in the present case) depends on the
way the fluctuation averaging procedure is performed. In
the calculation so far, we used a Callan-Symanzik regulator
that suppresses long-wavelength modes beyond the scale
1=kIR exponentially. In fact, the calculation can straight-
forwardly be performed for the general regulator (11). For
general p, we obtain

κ2

k2IR
≤
2Γð1 − 1

2pÞ
Γð1þ 1

2pÞ
: ð23Þ

For p ¼ 1, we obtain (21) and (22) again, whereas we find
in the sharp cutoff limit p → ∞

jRj ≤ 12k2IR; ðfor p → ∞; R < 0Þ: ð24Þ

Comparing this to (22), the curvature bound naively seems
to be stronger for p → ∞. However, this simply reflects the
fact that the length scale of the fluctuations 1=kIR is
effectively shorter for the sharp cutoff than for the smooth
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exponential regulator, where the fluctuations extending
even further out are only suppressed but not cut off.
Hence, it is plausible to say that kIRjp→∞ is effectively
larger than kIRjp¼1. This goes hand in hand with the
inversely behaving prefactor. We consider this as an
indication that the curvature bound itself has a scheme-
independent meaning: the scheme dependence of the
prefactors in the bound should be viewed as a parametri-
zation of the fluctuation averaging process that has to be
matched with the procedure that determines the averaged
curvature.

III. D= 4 DIMENSIONAL SPACETIME

Let us now turn to the physically more relevant case of
D ¼ 4 dimensional spacetime. The analysis is conceptually
complicated by the appearance of two more relevant
operators coming along with physical couplings, and
technically more involved because of the structure of the
heat kernel. Nevertheless, it is possible to capture the
essential behavior analytically by making use asymptotic
heat-kernel expansions and a simple interpolation. The full
result is, of course, analyzed below by straightforward
numerical integration. We start with the representation of
the heat-kernel trace as a one-parameter integral [80,81]

KT ¼ 2

ð4πTÞ2
Z

∞

0

due−u
2

uðu2 þ κ2TÞ coth
�

πu

κ
ffiffiffiffi
T

p
�
: ð25Þ

Using the asymptotic expansions of the coth function,
cf. Eqs. (A13) and (A14), the weak and strong curvature
expansions of the heat kernel read

KT ¼ 2

ð4πTÞ2 ð1þ κ2T þ � � �Þ; κ2T ≪ 1; ð26Þ

KT ¼ 1

ð4πTÞ2
�
κ3T

3
2

π
þ 3þ π2

6
ffiffiffi
π

p κT
1
2 þ � � �

�
; κ2T ≫ 1:

ð27Þ
For a simple qualitative, still asymptotically exact estimate,
we use an interpolating approximation of the heat kernel
that allows for a fully analytical treatment,

KT ≃
2

ð4πTÞ2
�
1þ κ2T þ κ3T

3
2

π

�
: ð28Þ

Upon insertion of the heat kernel into Eqs. (12) and (13), a
first difference to the D ¼ 3 case is the occurrence of a
logarithmic UV divergence of the type ∼ϕ4

0 lnΛ. This is
expected as ϕ4 is a marginal operator in D ¼ 4, the
coupling of which corresponds to a new and independent
physical parameter. The proper definition of the particle
system requires to also define an initial condition for the
flow of this operator, i.e., to put a counterterm at the high
scale Λ. This is then fixed by demanding for a specific

physical renormalized value for the ϕ4 coupling in a long-
range experiment.
For our purposes, these details are, in fact, not relevant,

as the ϕ4 coupling cannot inhibit chiral symmetry breaking.
Once the masslike term ∼ϕ2

0 triggers the onset of a chiral
condensate, the ϕ4 coupling will take influence on the final
value of the condensate ϕ0; this is, however, irrelevant for
the curvature bound. For consistency, we only assume that
the renormalized ϕ4 coupling is such that the potential is
stable towards large fields.
As we have seen in the D ¼ 3 case, we can obtain a

curvature bound by solely studying the ϕ2
0 term of the

potential. Using the approximate form of the heat kernel
(28), we obtain the analytic estimate to this order:

UkIR

���
ϕ2
0

¼ −
Nfϕ

2
0

2

�
1

λ̄cr
−

1

λ̄Λ
− Γ
�
1 −

1

p

�
k2IR
ð4πÞ2

þ 2
κ3

kIR

Γð1þ 1
2pÞffiffiffi

π
p

�
−
Nfϕ

2
0

ð4πÞ2 κ
2 log

�
Λ
kIR

�
; ð29Þ

again dropping terms of order Oð1=ΛÞ. As before, the
diverging contribution coming from the flat part of the heat
kernel is indicative of the critical value of the coupling
constant,

λ̄cr ¼
ð4πÞ2

Λ2Γð1 − 1
pÞ
: ð30Þ

As a new feature in D ¼ 4, we observe a new logarithmi-
cally divergent term ∼ lnΛ in Eq. (29). This term corre-
sponds to a new, power-counting marginal operator of the
form ϕ2R, which again comes along with a new physical
parameter to be fixed by renormalization. Hence, we
introduce an initial condition for this operator at the high
scale with a bare coupling ξΛ:

UΛjϕ2R ¼ NfξΛϕ
2R:

Upon inclusion of Eq. (30), the effective potential at the
scale kIR receives an overall contribution of the form

UkIR jϕ2R ¼ −
�
ξΛNf þ

3Nf

4π2
log

�
Λ
kIR

��
ϕ2
0jRj

≡ −NfξkIRϕ
2
0jRj; ð31Þ

where we have made use of the relation κ2 ¼ jRj
12
, R < 0, in

D ¼ 4. Here we have introduced the long-range parameter
ξkIR that, in principle, has to be fixed by a physical
measurement. For our analysis, we will consider it as a
free parameter. As a consequence, the curvature bound
depends parametrically on this physical coupling.
Assuming again that the fermion self-interactions are
subcritical λ̄Λ ≤ λ̄cr, we obtain again a bound on the
curvature parameter for which no chiral symmetry breaking
occurs:
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κ3

k3IR
þ 4

3

π
5
2

Γð1þ 1
2pÞ

ξkIR
κ2

k2IR
≤

ffiffiffi
π

p
2

Γð1 − 1
pÞ

Γð1þ 1
2pÞ

: ð32Þ

The divergence of the right-hand side for p → 1, where the
bound seems to disappear, is an artifact of the Callan-
Symanzik regulator which is insufficient to control all UV
divergences in D ¼ 4. In order to stay away from this
artifact, we consider regulators in the range p ∈ ½2;∞�.
For a comparison with the D ¼ 3 case, let us first set

ξkIR ¼ 0 and consider limiting regulator values,

κ3

k3IR

����
p¼2

≤
ffiffiffi
π

p
2

Γð1
2
Þ

Γð5
4
Þ ;

κ3

k3IR

����
p→∞

≤
ffiffiffi
π

p
2

: ð33Þ

From (32), it is obvious that the bound gets stronger
(weaker) for positive (negative) coupling ξkIR . Most impor-
tantly, there is a nontrivial bound for any finite value of ξkIR .
While Eq. (33) has been derived analytically based on

the interpolating approximation (28) for the heat kernel, a
full calculation can be performed numerically. For this, we
first have to isolate the divergent pieces by hand, treat them
analytically as before. In fact, all divergent parts are related
to the small curvature expansion of the heat kernel, i.e., to
the expansion coefficients displayed in Eq. (26). Treating
them separately as before leaves us with a triple integral
over the heat kernel parameter u in Eq. (25), the propertime
T and the RG scale k. A transition to dimensionless
integration variables t ¼ κ2T and σ ¼ k=κ yields an inte-
gral representation depending only on the dimensionless
parameter ratio κ=kIR. The masslike term of the effective
potential then acquires the form

UkIR

���
ϕ2
0

¼ −
Nfϕ

2
0

2

�
1

λ̄cr
−

1

λ̄Λ
þ κ2A

�
κ

kIR
;p

��
− 12NfξkIRϕ

2
0κ

2; ð34Þ

with the function A to be evaluated by numerical integra-
tion. Assuming subcritical fermion interactions λ̄Λ ≤ λ̄cr,
the curvature bound can be expressed as

1

2
A
�

κ

kIR
;p

�
þ 12ξkIR ≥ 0; ð35Þ

in order to avoid fermion mass generation from gravita-
tional catalysis. The function A is plotted in Fig. 1 as a
function of kIR=κ for p ¼ 2 (solid line). For comparison,
the dashed line represents the result from the analytical
interpolation matching the full behavior qualitatively for all
curvatures. The strong and weak curvature asymptotics
matches very well: we have checked that the leading power
laws for both results are the same with coefficients agreeing
within an error below the 1% level. In the intermediate
curvature region, the deviations between the numerical
result and the analytical estimate are larger.

For ξkIR ¼ 0, the zero of the curve marks the curvature
bound, since positive values of A are compatible with the
absence of chiral symmetry breaking. From the numerical
analysis we obtain the curvature bound,

κ

kIR

����
p¼2

≤ 1.8998;
κ

kIR

����
p→∞

≤ 1.5757 ð36Þ

for the two limiting regulators, showing that the full
solutions deviate from the approximated ones by about
40%.
A finite ξkIR parameter corresponds to a linear vertical

shift of the graph in Fig. 1 and a corresponding shift of the
zero crossing marking the curvature bound. Figure 2 shows
the curvature of the effective potential at the origin

0.5 1.0 1.5

–0.08

–0.06

–0.04

–0.02

0.02

0.04

Analytical Numerics

2.0

FIG. 1. Scaling of the masslike term of the effective potential:
the function A, cf. Eq. (34), (solid line) as a function of the
inverse curvature parameter kIR=κ is compared to the analytical
approximation obtained, cf. Eq. (29), (dashed line) for the case
p ¼ 2. For the case of ξkIR ¼ 0, positive values of A are
compatible with the absence of chiral symmetry breaking and
the existence of chiral fermions at low energies. The zero crossing
corresponds to the curvature bound for gravitational catalysis.
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–150

–100
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50
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IR 2
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50

FIG. 2. Scaling behavior of the curvature of the effective
potential at the origin (normalized by Nfκ

2=2) as a function of
the curvature parameter κ=kIR for the case p ¼ 2 and different
values of the marginal coupling ξkIR . Positive values are com-
patible with the existence of light chiral fermions. The zero
crossing marks the curvature bound which is strengthened for
increasing values of ξkIR .
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(normalized by Nfκ
2=2) as a function of the curvature

parameter κ=kIR for various values of ξkIR . Positive values
are compatible with the existence of light chiral fermions.

IV. HIGHER DIMENSIONS

A. D= 6

It is instructive to also study curvature bounds in higher
dimensions. Perturbative nonrenormalizability implies that
further relevant operators and thus physical couplings have
to be accounted for; still, for any finite dimension, also the
number of additional couplings is finite at mean-field level.
As before, we have to pay attention only to those operators
that couple to the masslike term in the effective potential.
Other operators do not directly take influence on the
curvature bound for chiral symmetry.
In D ¼ 6 dimensional spacetime, one further divergence

of this type is encountered requiring to consider one more
physical parameter. As before, the divergences are in
correspondence with the small-proper-time expansion of
the heat kernel for which we need to retain only the 0-th
order of the hyperbolic cotangent expansion inside the heat
kernel,

Kdiv
T ¼ 1

ð4πTÞ3
Z

∞

0

due−u
2

uðu2 þ κ2TÞðu2 þ 4κ2TÞ

¼ 1

ð4πTÞ3
�
1þ 5

2
κ2T þ 2κ4T2

�
: ð37Þ

The divergencies associated with the curvature-dependent
terms are controlled by initial conditions for the two
operators

UΛjϕ2R;ϕ2R2 ¼ NfξΛϕ
2
0Rþ NfχΛϕ

2
0R

2: ð38Þ

Adding these two operators to the terms arising from
Eq. (37), yields the following contributions to the masslike
term in the effective potential:

Udiv
kIR
jϕ2

0
¼ −

Nfϕ
2
0

2

�
Λ4 − k4IR
2ð4πÞ3 Γ

�
1 −

2

p

�

þ κ2
�
60ξΛ þ 5

Λ2 − k2IR
2ð4πÞ3 Γ

�
1 −

1

p

��

þ κ4
�
−1800χΛ þ 4

ð4πÞ3 log
�
Λ
kIR

���

≡ −
Nfϕ

2
0

2

�
1

λ̄cr
−

k4IR
ð4πÞ3 Γ

�
1 −

2

p

�

− 2ξkIRR − 2χkIRR
2

�
: ð39Þ

Here, we have used that κ2 ¼ jRj
DðD−1Þ ¼ jRj

30
in D ¼ 6, and

identified the critical coupling

λ̄cr ¼
2ð4πÞ3

Λ4Γð1 − 2
pÞ
: ð40Þ

The parameter ξΛ has positive mass dimensions (½ξΛ� ¼ 2)
and thus the operator ϕ2

0R is now a power-counting
relevant operator, while ϕ2

0R
2 is marginal and the corre-

sponding coupling χΛ has vanishing mass dimensions. The
curvature-dependent terms in the last line of Eq. (39) are
finite and need to be fixed by a measurement. As before, the
divergence hidden in the critical coupling will be balanced
by the initial condition for the bare coupling λ̄Λ.
This concludes the analytical treatment of the divergent

parts. The remaining regular part of the effective potential
can then be integrated straightforwardly by numerical
means as in the D ¼ 4 case. In order to stay away from
regulator artifacts, we choose the regulator parameter in the
range p ∈ ½4;∞�. With the usual assumption of subcriti-
cality, the dependence of the resulting masslike term of the
effective potential (normalized by Nfκ

2=2) as a function of
the curvature parameter κ=kIR for the case p ¼ 4 and all
further couplings ξkIR ; χkIR set to zero is depicted in Fig. 3.
For a fair comparison of the curvature bounds for different

spacetime dimensions, two conditions need to be met: (1) the
physical parameters have to be chosen such that the relevant
operator content is comparable, (2) the same p parameter
needs to be employed for the regularization procedure.
For the first condition, we simply set all independent

scalar-curvature couplings to zero, ξkIR ¼ 0 ¼ χkIR . For the
second condition, we first check p ¼ 4 for numerical
simplicity. This results in

κ

kIR
≤ 1.7039; D ¼ 4; ξkIR ¼ 0;

κ

kIR
≤ 1.2763; D ¼ 6; ξkIR ¼ 0; χkIR ¼ 0:

ð41Þ

0.5

1.0

1.0 1.5 2.0

FIG. 3. D ¼ 6 scaling behavior of the curvature of the effective
potential at the origin (normalized by Nfκ

2=2) as a function of the
curvature parameter κ=kIR for the case p ¼ 4 and ξkIR ¼ 0 ¼ χkIR .
Positive values are compatible with the existence of light chiral
fermions. The zero crossing marks the curvature bound.
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The same analysis can be performed in the p → ∞
limit. This scenario can be implemented noticing that
the cutoff function reduces to a Heaviside θ function
centered in T ¼ 1

k2 and its derivative is therefore a Dirac
δ distribution. In six dimensions, we obtain

κ

kIR

����
p→∞

≤ 1.0561: ð42Þ

We observe that, for both values of p, the bound for the
dimensionless curvature parameter decreases with increas-
ing the spacetime dimensions [compare with Eq. (36)]. We
verify this circumstantial evidence in the next section for all
odd dimensions. A general discussion follows below.

B. Odd dimensions: D= 2n+ 1

The odd dimensional case is more easily analytically
accessible thanks to the absence of the hyperbolic cotan-
gent in the heat kernel [cf. (A11) and (A12)]. In line with
the preceding studies, we associate the curvature bound
with a possible sign change of the masslike term in the
effective potential. Thus, it suffices to focus on the ϕ2

0 order
of the effective potential. Inserting (A11) into (12) and
expanding in powers of the field, we obtain

UkIR

���
ϕ2
0

¼ UΛ

���
ϕ2
0

− Nfϕ
2
0

2

�
4pκD−2

ð4πÞD2ΓðD
2
Þ

×
Z Λ

κ

kIR
κ

dσ
Z

∞

0

dttp−
D
2σ2p−1e−ðσ2tÞp

×
Z

∞

0

due−u
2
YD2−1
j¼1

2

ðu2 þ j2tÞ
�
; ð43Þ

where we have defined the dimensionless integration
variable as σ ¼ k

κ and t ¼ κ2T. The effective potential
can be decomposed into the following building blocks:

UkIR ¼ UΛjκ¼0 þ UkIR jκ¼0 þ Ureg
kIR;κ

þ UΛjϕ2Rn þUkIR jϕ2Rn ;

ð44Þ

which we discuss separately in the following, concentrating
on the masslike term∼ϕ2

0. The first two terms correspond to
the contribution which is present in flat space. By renorm-
alizing the fermionic self-interaction, these terms exhibit
the balance between the bare coupling λ̄Λ and the leading
cutoff divergence. The latter arises from the monomial
containing the highest power of u in the product in Eq. (43)
∼uD−1, and can be summarized in the definition of the
critical coupling

λ̄cr ¼
ð4πÞD2ðD − 2Þ

2ΛD−2Γð1 − D
2p þ 1

pÞ
: ð45Þ

For the flat-space part, we thus obtain

UΛ

���
ϕ2
0
;κ¼0

þUkIR

���
ϕ2
0
;κ¼0

¼ Nfϕ
2
0

2

�
1

λ̄Λ
−

1

λ̄cr
þ
2Γð1 − D

2p þ 1
pÞ

ð4πÞD2ðD − 2Þ kD−2
IR

�
: ð46Þ

The only a priori UV-regular term in Eq. (43) comes from
the u-independent monomial arising from the product
inside the last integral. It contains the relevant curvature
dependence for gravitational catalysis:

Ureg
kIR;κ

���
ϕ2
0

¼ −
Nfϕ

2
0

2

4pκD−2

ð4πÞD2ΓðD
2
Þ

×
Z Λ

κ

kIR
κ

dσ
Z

∞

0

dttp−
D
2σ2p−1e−ðσ2tÞp

×
Z

∞

0

due−u
2 Γ2ðD

2
Þ

π
t
D−1
2

¼ −
Nfϕ

2
0

2

2ΓðD
2
ÞΓð1þ 1

2pÞ
ð4πÞD2 ffiffiffi

π
p κD−1

kIR
; ð47Þ

where we have taken the limit Λ → ∞ in the last line.
All other monomials in the product of Eq. (43) carry UV

divergencies, thus indicating the necessity to provide initial
conditions for further operators. In total, we need D−3

2

operators with scalar-curvature couplings and correspond-
ingly many physical parameters to be fixed by a measure-
ment. The required operators are of the form NfξΛ;mϕ

2Rn.
Here, we choose conventions such that the index m
corresponds to a specific monomial in the above expression
and ξΛ;m parametrizing the initial condition for the bare
coupling to be fixed. In order to analyze these contribu-
tions, we represent the polynomial part of the heat kernel as

YD2−1
j¼1

2

ðu2 þ j2tÞ ¼
XD−1

2

m¼0

Cmu2mt
D−1
2
−m; ð48Þ

where Cm denotes the numerical coefficients arising from
the product. The resulting curvature dependence for eachm
then results in a power Rn with n ¼ D−1

2
−m. The m ¼ 0

term corresponds to the regular monomial computed in
(47), while the m ¼ D−1

2
term equals the curvature-

independent part of the heat kernel, already dealt with in
Eq. (46). The remaining terms with 1 ≤ m ≤ ðD − 3Þ=2 in
combination with the additional bare scalar-curvature
operators thus make up for the last two terms in our
decomposition (44) of the effective potential, yielding
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UΛjϕ2
0
Rn þUkIR jϕ2

0
Rn ¼−Nfϕ

2
0

XD−3
2

m¼1

κD−1−2m

×

�
ð−1ÞD−1

2
−m−1ξΛ;m½DðD−1Þ�D−1

2
−m

þ
CmΓðmþ 1

2
ÞΓð1−m

pþ 1
2pÞ

ð4πÞD2ΓðD
2
Þð2m−1Þ

×ðΛ2m−1−k2m−1
IR Þ

�

≡−Nfϕ
2
0

XD−3
2

m¼1

ð−1ÞD−1
2
−m−1κD−1−2mξkIR;m:

ð49Þ

As before, the Λ-dependent terms combine with the bare
couplings such that the long-range couplings ξkIR;m are
formed; for a physical system, the latter are finite and have
to be fixed by a measurement. It is clear that possible
curvature bounds will depend on these couplings. For the
reason of comparing theories with different dimensionality,
we set all these couplings to zero ξkIR;m ¼ 0 at the scale kIR.
Let us study two cases explicitly.

1. D= 5

Inserting Eqs. (46) and (47) into Eq. (44) and using that
Eq. (49) gives a vanishing contribution for ξkIR;m ¼ 0, it is
straightforward to obtain the following result for the
masslike term of the scale-dependent effective potential
in D ¼ 5 dimensional spacetime:

UD¼5
kIR

���
ϕ2
0

¼ Nfϕ
2
0

2

�
1

λ̄Λ
−

1

λ̄cr
þ
Γð1 − 3

2pÞ
48π

5
2

k3IR

−
3Γð1þ 1

2pÞ
64π

5
2

κ4

kIR

�
:

Assuming again a subcritical coupling as initial condition
of the flow, we can identify the bound for the ratio between
the curvature parameter and the averaging scale, below
which symmetry breaking is not catalyzed gravitationally:�

κ

kIR

�
4

≤
4

9

Γð1 − 3
2pÞ

Γð1þ 1
2pÞ

: ð50Þ

In order to stay away from artifacts arising from insufficient
regulators, we choose p in the interval p ∈ ½2;∞�. For the
two extremal cases, we have

κ

kIR
≤

2ffiffiffi
3

p ≃ 1.154 for p ¼ 2; ð51Þ

κ

kIR
≤

ffiffiffi
2

3

r
≃ 0.816 for p ¼ ∞: ð52Þ

2. D= 7

Similarly, the masslike term of the effective potential in
D ¼ 7 dimensional spacetime reads

UD¼7
kIR

jϕ2
0
¼ Nfϕ

2
0

2

�
1

λ̄Λ
−

1

λ̄cr
þ
Γð1 − 5

2pÞ
320π

7
2

k5IR

−
15Γð1þ 1

2pÞ
512π

7
2

κ6

kIR

�
: ð53Þ

This time, a range of admissible regulators includes
p ∈ ½3;∞�. Assuming a subcritical coupling, we can again
read off the curvature bounds which for the extremal
regulators are given by

κ

kIR
≤ 0.928; for p ¼ 3; ð54Þ

κ

kIR
≤ 0.689; for p ¼ ∞: ð55Þ

3. Dimensional dependence

As is obvious from all these examples, the curvature
bound arises from a competition between the screening of
the long-range modes parametrized by the last term in
Eq. (46) and the dominant curvature term given by Eq. (47).
For general D, we need to use the regulator with p → ∞ to
ensure that we stay away from regularization artifacts in
anyD. In order to perform a meaningful comparison, we set
all possible nonzero scalar-curvature interactions terms
∼ξkIR;m to zero. For this, the curvature bound can be
expressed as follows:

κ

kIR
≤

1

σ0
≡
� ffiffiffi

π
p

ΓðD
2
ÞðD − 2Þ

� 1
D−1

; ð56Þ

exhibiting a monotonically decreasing behavior as is visible
in Fig. 4. Asymptotically, the bound decays as ∼1=

ffiffiffiffi
D

p
.

5 10 15 20
D

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FIG. 4. Curvature bound (56) as a function of the spacetime
dimensions in the odd-dimensional case for the regulator with
p → ∞.
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Of course, in the presence of further nonzero scalar-
curvature interaction terms ∼ξkIR;m, the bound can be
shifted in both directions depending on the precise param-
eter values.

V. APPLICATION: ASYMPTOTICALLY
SAFE GRAVITY

As an illustration for the application of our curvature
bound, we use a specific quantum gravity scenario in
D ¼ 4 dimensional spacetime: asymptotically safe gravity
[35–41,82]. In this scenario, Einstein’s gravity arises as
the low-energy limit of a quantum field theory of the
metric, the high-energy behavior of which is controlled by a
non-Gaussian fixed point in the space of relevant couplings.
For simplicity, we confine ourselves to the theory space
spanned by the Einstein-Hilbert action. A more compre-
hensive analysis suggests the existence of one further
relevant operator with an overlap with an R2-term in the
action [83–96]. For a first glance at the consequences of the
curvature bound, we also ignore the influence of the scalar-
curvature operator ∼ϕ2R, which is, in principle, calculable
within asymptotic safety from the fermionic operator
content, i.e., schematically ∼ðψ̄ψÞ2R.
In the modern functional renormalization group

approach [97] to asymptotically safe gravity [37], one
studies a scale-dependent effective action Γk governing the
dynamics of the expectation values of the field degrees of
freedom, typically using a background-field gauge with a
fiducial but arbitrary background metric. In the simple
Einstein-Hilbert truncation, the background metric itself
is a solution to the equation of motion derived from the
scale-dependent effective action [70],

RμνðhgikÞ ¼ Λ̄khgμνik; ð57Þ

where Λ̄k denotes the scale-dependent cosmological con-
stant, and k is the coarse-graining or resolution scale, at
which the spacetime is considered. Here, we have assumed
the absence of any explicit matter sources. The asymptotic
safety scenario provides us with a prediction for the RG
trajectories for the cosmological constant Λ̄k, as well as for
the UV fixed-point value limk→∞Λ̄k=k2 ¼ λ� being a finite
number. In the fixed-point regime, the solution to Eq. (57)
is given by

R
k2

¼ 4λ�: ð58Þ

This shows that the sign of the curvature in the fixed-
point regime is dictated by the sign of the fixed-point
value of the cosmological constant. Equation (58) exem-
plifies the self-similarity property of physical observables
in the fixed-point regime: the curvature is proportional to
the scale k at which the curvature is measured. While the
fixed-point value λ� comes out positive in pure-gravity

computations, it can change sign for an increasing number
of fermionic degrees of freedom. Hence, the spacetime
structure appears locally as negatively curved for large Nf .
The asymptotic safety scenario including matter degrees of
freedom hence predicts that a local patch of spacetime in
the (trans-Planckian) fixed-point regime satisfies

κ2

k2
¼ jλ�j

3
; for λ� < 0: ð59Þ

Now, the precise value of the fixed point λ� is scheme
dependent, see, e.g., [98–103] for comparative studies.
With regard to Eq. (58) this is natural, since the result of a
curvature measurement is expected to depend on the
coarse-graining procedure that is used to average over
metric fluctuations. This is precisely the type of scheme
dependence, we expect to cancel the scheme dependence of
our curvature bounds in order to arrive at a scheme-
independent answer to the question as to whether or not
there is gravitational catalysis in a given theory.
For the remainder of the section, we simply identify

the gravitational RG coarse-graining scale k with the scale
kIR used for our curvature bounds and use results obtained
in the asymptotic-safety literature. In fact, the typical fixed-
point scenario can already be discovered within a simple
one-loop calculation [41,99], yielding the fixed-point
values for the cosmological constant and the dimensionless
Newton constant

λ� ¼
3

4

2þ dλ
46 − dg

; g� ¼
12π

46 − dg
: ð60Þ

Here, we used the results obtained from a so-called type IIa
cutoff [41]. The two parameters dg and dλ are determined
by the number of (free) matter degrees of freedom,

dg ¼ NS − 4NV þ 2Nf ; dλ ¼ NS þ 2NV − 4Nf ; ð61Þ

where NS denotes the number of real scalar fields, NV the
number of gauge vector bosons and—as before—Nf the
number of Dirac fermion flavors.
For gravitational catalysis to be potentially active at all,

we need a negative fixed-point value λ� < 0, implying

Nf >
1

2
þ NS

4
þ NV

2
: ð62Þ

This criterion is satisfied for the standard model with
NS ¼ 4, NV ¼ 12 and Nf ¼ 45=2, as well as typical
generalizations with right-handed neutrino components,
axion or simple scalar dark matter models. It is also
generically satisfied for supersymmetric models; for in-
stance, for the minimal supersymmetric standard model
(MSSM) with two Higgs doublets, we have NS ¼ 53,
NV ¼ 12 and Nf ¼ 65=2. This exemplifies that the curva-
ture bound should be monitored in asymptotically safe
gravity-matter systems. However, the criterion (62) is
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typically not satisfied for GUT-like nonsupersymmetric
theories where the contribution from larger number of
gauge bosons and Higgs fields for the necessary symmetry
breaking exceeds that of the fermion flavors.
For a given number of scalars and vectors, increasing the

number of flavors drives the fixed point λ� towards more
negative values. Using Eq. (59) with k ¼ kIR, the averaged
curvature can eventually violate the curvature bound.
Hence, the curvature bound translates into an upper
bound Nf ≤ Nf;gc on the number of fermion flavors in
order not to be inflicted by chiral symmetry breaking from
gravitational catalysis. For instance, for a purely fermionic
matter content, NS ¼ 0 ¼ NV, we find Nf;gc ≃ 17.58 for
p → ∞, and Nf;gc ≃ 18.31 for p ¼ 2, cf. Eq. (36). The
scheme dependence of our curvature bound thus has only a
mild influence on the critical fermion number.
Similarly, fixing the bosonic matter content to that of the

standard model, NS ¼ 4, NV ¼ 12, the corresponding
critical fermion number is Nf;gc ≃ 35.97 for p → ∞.
This would still allow for a fourth generation of standard
model flavors, but exclude a fifth generation.
Interestingly, the MSSM with NS ¼ 53 and NV ¼ 12

would imply a critical flavor number of Nf;gc ≃ 20.3 far
below the fermionic content of the model Nf ¼ 65=2, thus
indicating a possible tension between asymptotically safe
gravity and a particle-physics matter content of that of the
MSSM because of gravitational catalysis.
This analysis based on a simple one-loop calculation on

the gravity side may be somewhat over-simplistic. In fact, a
number of more sophisticated analyses have been per-
formed for asymptotically safe gravity in conjunction with
matter systems. A first study on the consistency of
asymptotic safety with matter [46] was based on the
background-field approximation with some improvements
for the anomalous dimensions. Using their fixed-point
results, we find Nf;gc ≃ 8.21 for a purely fermionic model
(NS ¼ 0 ¼ NV), and Nf;gc ≃ 26.5 for the standard model
model with NS ¼ 4, NV ¼ 12 (and anomalous dimensions
set to zero). The latter result includes the standard-model
fermion content without and with right-handed neutrino
partners, but does not offer room for a fourth generation.
For the MSSM and other models there is not even a
gravitational fixed point according to [46]. Even if we
artificially reduce the number of fermion flavors, we do not
find a suitable fixed point above Nf ≃ 17. Here, λ� has
become negative but the curvature bound is still satisfied.
The fixed-point scenario found in [47,56] is different. The

calculation distinguishes between the background field and
the dynamical fluctuation field. The flow of the dynamical
couplingswhich is driven by the dynamical correlators [104]
is found to have a gravitationalUV fixed point for anymatter
content that has been accessible in this study. This scenario
hence does not rule out any particle-physics content from
the side of UV compatibility with quantum gravity. Still,
the predictions for the background-field couplings are

qualitatively similar to those of [46]. The fixed-point results
of [47] upon insertion into Eq. (59) and a comparison with
the curvature bound suggest Nf;gc ≃ 48.7 for p → ∞ for a
purely fermionic model with NS ¼ 0 ¼ NV; for p → 2, the
results of [47] lead to Nf;gc ≃ 50.9.
Recently, an analysis of gravity-matter systems was

performed in [51] using an ADM decomposition of the
gravitational degrees of freedom, yielding an RG flow on
foliated spacetimes. For both, gravitational as well as
matter degrees of freedom, a type I regulator was used.
As argued by the authors, the use of different regulators can
be viewed as yielding a different map of the number of
degrees of freedom NS, NV and Nf onto the parameters dg
and dλ; e.g., for the type I regulator, one gets [41,51]
dg ¼ NS − NV − Nf . It has been argued that the type II
regulator should be used for fermions in order to regulate
the fluctuation spectrum of the Dirac operator in a proper
fashion [41,105]. Hence, we use the flows of [51] but with a
definition of the parameters dg and dλ as in Eq. (61). To
leading order, this corresponds to a type I regularization of
the gravity fluctuations but a type II regulator for the matter
degrees of freedom.
In this case, the possible onset of gravitational catalysis

for a purely fermionic model with NS ¼ 0 ¼ NV occurs
at a critical flavor numberNf;gc ¼ 9.27 for p → ∞ (Nf;gc ¼
9.84 for p ¼ 2). For a standard-model like theory (NS ¼ 4,
NV ¼ 12), we have Nf;gc ¼ 27.67 p → ∞ (Nf;gc ¼ 28.71
for p ¼ 2). Finally, the minimally supersymmetric exten-
sion of the standard model would lead to Nf;gc ¼ 10.01 for
p → ∞ (Nf;gc ¼ 10.27 for p ¼ 2), if we artificially allow
Nf to vary independently in this model. Therefore the
MSSM in this approximation is an example for a model
where gravitational catalysis could lead to large-fermion-
mass generation in the trans-Planckian regime; in fact, if Nf
is set to the physical value Nf ¼ 65=2, the MSSM matter
content in this setting does not lead to a fixed point suitable
for asymptotically safe quantum gravity; see also [103].
We summarize the critical values for the fermion numbers

Nf;gc for p → ∞ for the possible onset of gravitational
catalysis derived within the various approximations for an
asymptotically safe quantum gravity scenario in Table I.
Whereas the standard model (e.g., also including right-
handed neutrinos) satisfies the bound from gravitational
catalysis in each of thee approximations, a standard model
with a fourth fermion generation could already be affected
by gravitational catalysis. Supersymmetric versions of the
standard model show already some tension with the bound
within asymptotically safe gravity.
Using the results of [51] as described above, we display

the various regions in the space of matter theories para-
metrized by dg and dλ; cf. Eq. (61), in Fig. 5. In the upper
orange-shaded region, the criterion analogous to (62) is not
satisfied (in the calculation of [51], it corresponds to dλ >
−16=3); here, we expect a spacetime in the fixed-point
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regime which is positively curved and thus not affected by
gravitational catalysis. The curvature bound translates into a
line in the dg, dλ plane, with the (white) region above that
line satisfying the bound. We observe that the lines for
different regulators p ∈ ½2;∞� are rather similar and deviate

significantly only for extreme particle numbers. The purely
fermionic model (PF) and the standard model are repre-
sented by dots in the plane. The lines attached to the dots
correspond to increasing the fermion number in these
models. The purely fermionic model starts at Nf ¼ 0, while
the standard-model starts at its physical value Nf ¼ 45=2.
TheMSSMwithNf ¼ 65=2would lie deep inside the black
region to the right where no fixed point suitable for
asymptotically safe gravity exists [51,103].
Let us close this section with two remarks: the first

remark concerns the regularization scheme dependence
which occurs at various places in this calculation. In case of
a fully consistent calculation this scheme dependence
would cancel in the final result for Nf;gc. However, since
different parts in the present estimates are performed with
different regulators, we observe various sources of scheme
dependence. Whereas the scheme dependence arising from
our mean-field RG calculation parametrized by p is rather
mild, a change of the regulator from type II to type I in the
asymptotic safety scenario can change the dependence on
the fermion flavor content significantly as studied in the
literature [41,105]. Since our fermionic mean-field RG
calculation corresponds to a type II regularization, we find
it reassuring that a consistent use of type II regulators for
the fermions leads to qualitatively and partly quantitatively
similar results in the various approximations.
Second, the asymptotic safety scenario suggests that at

least one further relevant operator of R2 type should be
included in the fixed-point regime. As this could take a
significant quantitative influence on the effective equation
of motion in the fixed-point regime, cf. Eq. (57), the
relevance of the curvature bound for the asymptotic safety
scenario may also change qualitatively. With these reser-
vations in mind, the present discussion should be viewed as
an example how the curvature bound from gravitational
catalysis could potentially be used to constrain combined
scenarios of quantum gravity and quantum matter.

VI. CONCLUSIONS

We have studied gravitational catalysis of chiral sym-
metry breaking and fermion mass generation on patches of
hyperbolic spaces, corresponding to negatively curved
patches of AdS spacetimes in a Lorentzian setting. The
general phenomenon of gravitationally catalyzed symmetry
breaking has long been known to be driven by long-range
modes and their sensitivity to the large-scale structure of
negatively curved spacetimes. In this work, we have
analyzed for the first time the competition between the
screening of these modes by a gauge-invariant IR averaging
scale kIR and the effect of the presence of an averaged
curvature on this scale. This competition leads to a bound
on the local curvature parameter κ ∼

ffiffiffiffiffiffijRjp
in units of the

averaging scale kIR. Gravitational catalysis does not set in
as long as the bound is satisfied.

TABLE I. Summary of the critical number of fermion species
Nf;gc below which particle theories are safe from chiral symmetry
breaking through gravitational catalysis, using the p → ∞
regulator. Results are shown for theories with a purely fermionic
matter content (PF), the standard model and the MSSM artifi-
cially varying the number of fermions (SMþ Nf , MSSMþ Nf ).
For an estimate of the UV properties of quantum spacetime, we
use various literature results obtained within the asymptotic
safety scenario of quantum gravity, see main text for details.

Nf;gc

PF SMþ Nf MSSMþ Nf

One-loop approx.
(type IIa) [41,99]

17.58 35.97 20.3

Background-field
approximation [46]

8.21 26.5 no FP

RG flow on foliated
spacetimes [51]

9.27 27.67 10.01

Dynamical FRG [47] 48.7

Gravitational catalysis

R>0

p=2

p=

SM+Nf

PF

–30 –20 –10 10 20 30
dg

–400

–300

–200

–100

100
d

FIG. 5. Relevance of gravitational catalysis in different regions
in the space of matter theories parametrized by dg and dλ,
cf. Eq. (61), using the results of [51] as an input from the
asymptotic safety scenario for quantum gravity. In the bright
orange region in the upper part, the criterion analogous to (62) is
not satisfied, indicating that gravitational catalysis does not occur
imposing no constraints. Our curvature bound results in a line
with the (white) region above that line satisfying the bound; we
observe a mild regulator dependence for different regulator
parameters p ∈ ½2;∞�. Further lines show the location of purely
fermionic particle models (PF) for an increasing number of
flavors (blue), as well as the standard model (red dot) with
additional flavor numbers (SMþ Nf ). The gray region at the
bottom indicates the region where chiral symmetry breaking and
fermion mass generation because of gravitational catalysis can
occur. The black region on the right does not have a non-Gaussian
fixed point suitable for asymptotic safety [51].
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Built on RG-type arguments, our analysis applies to local
patches of spacetime and hence does not require the whole
spacetime to be hyperbolic, negatively curved or uniform.
Rather the resulting bound applies to each patch of space or
spacetime with an averaged negative curvature. Fermion
modes in spacetime patches violating the bound can be
subject to gravitational catalysis. The precise location of the
onset of gravitational catalysis in parameter space depends
also on further induced or fundamental interactions of the
fermions. In case of chiral symmetry breaking through
gravitational catalysis, the fermions generically acquire
masses of the order of at least kIR or larger depending on the
relevance of further effective interactions.
An application of these findings to a possible high-

energy regime of quantum gravity results in the following
scenario: let us assume the existence of a, say Planck scale,
regime where a metric/field theory description is already
appropriate, but large curvature fluctuations are allowed to
occur. Our bound disfavors the occurrence of patches of
spacetime with large negative averaged curvature. In such
patches, the generation of fermion masses of the order of
kIR could be triggered. Since kIR itself can be of order
Planck scale in such a regime, the fermion masses would
generically be at the Planck scale upon onset of gravita-
tional catalysis. Even worse, gravitational catalysis would
naturally remove light fermions from the spectrum of
particle physics models on such spacetimes. Therefore,
we argue that our bounds apply to any quantum gravity
scenario satisfying these assumptions that aims to be
compatible with particle physics observations: if a quantum
gravity scenario satisfies the bound, it is safe from
gravitational catalysis in the matter sector; if not, the
details of the fermion interactions matter. In the latter case,
gravitational catalysis may still be avoided, if the inter-
actions remain sufficiently weak.
As the curvature bounds refer to an IR cutoff scalekIR, they

are naturally scheme dependent. In fact, this scheme depend-
ence in the first place parametrizes the details of how the
fermionic long-range modes are screened by the regulariza-
tion scale.We observe that a finite curvature bound exists for
any physically admissible regularization. Moreover, the
shifts of the bound due to a change of the propertime
regularization agrees with the behavior expected from the
underlying propertime diffusion process. We therefore claim
that the curvature bound has a scheme-independentmeaning.
A fully scheme-independent definition might eventually
need to take the prescription for defining the averaged
curvature of a local spacetime patch into account.
Having performed a mean-field-type RG analysis, our

bounds may receive corrections from further fluctuations
that may be relevant at the scale kIR including further
independent degrees of freedom or chiral-order-parameter
fluctuations. Such corrections can go into both directions:
finite magnetic fields or further interactions such as gauge
or Yukawa forces typically enhance the approach to chiral

symmetry breaking, whereas order-parameter fluctuations
can have the opposite effect. Also, thermal fluctuations can
inhibit the occurrence of a chiral condensate at sufficiently
high temperature. Effects that trigger symmetry breaking
can effectively be summarized in terms of finite bare
fermionic self-interactions λ̄Λ in our approach, whereas
thermal fluctuations can be understood as moving the
critical coupling to larger values [106,107].
We have been able to determine the curvature bound also

in D ¼ 3 as well as in higher dimensions. In general odd
dimensions, we have derived a simple closed form expres-
sion. Since different dimensions can exhibit a different
number of relevant scalar-curvature operators and thus a
different number of physical parameters, a meaningful
comparison of theories in different dimensions is not
straightforward. Assuming that all further physical param-
eters are essentially zero at the scale kIR, we observe that
the resulting curvature bound decreases with ∼1=

ffiffiffiffi
D

p
for

higher dimensions. This result inspires one to develop the
following scenario: Let us assume that some fundamental
theory of spacetime and matter can have a high-energy
phase of arbitrary dimension and allows for a regime where
a metric description applies. If the theory in addition
exhibits fluctuating values of curvature κ ∼Oð1Þ when
averaged over local patches, our results suggest that it is
unlikely to find higher-dimensional regions that admit
massless or light fermions in the long-range physics.
Upon the onset of gravitational catalysis, higher-dimen-
sional regions would then generically go along with a
massive fermionic particle content and without explicit
chiral symmetry.
Unfortunately, results from quantum gravity scenarios

that could be checked against our curvature bounds are
rather sparse. Many approaches focus on the gravitational
sector leaving matter, and fermions in particular, aside. One
of the most developed approaches in this respect is
asymptotically safe gravity. Concentrating on a simple
picture for the UV regime of gravity using the Einstein-
Hilbert action as the scaling action, our curvature bound
translates into a bound on the particle content of the matter
sector. In particular, the number of fermion flavors becomes
constrained in order to avoid gravitational catalysis. Our
simple estimates based on various literature studies of
asymptotically safe gravity with matter indicate that the
standard model is compatible with asymptotically safe
gravity and not affected by gravitational catalysis in the
trans-Planckian regime. This statement is nontrivial
insofar that the matter content together with the effective
Einstein equation suggest negatively curved local patches
of spacetime in the fixed-point regime. Still, the curvature
is sufficiently weak to satisfy our curvature bound. As
asymptotic freedom of the gauge interactions can be
enhanced by gravitational fluctuations [53–56], also
gauge-field induced catalysis is expected to play no
dominant role in this scenario. By contrast, our estimates
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suggest that the standard model with an additional fourth
flavor generation would not satisfy the curvature bound
within asymptotic safety. In order to obtain more reliable
estimates, the curvature dependence of correlation func-
tions and its interdependence with the matter sector in the
trans-Planckian fixed-point regime would be welcome.
This first application within a specific quantum gravity

scenario demonstrates that our curvature bound may be
usefully applicable also in the high-energy regime of other
quantum gravity scenarios.
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APPENDIX: HEAT KERNEL
ON HYPERBOLIC SPACES

For completeness, we summarize results for the heat
kernel on hyperbolic spaces in this appendix, as they are
needed for the present work. Following the derivation and
conventions of [80,81], we normalize the inverse radius κ of
the manifold to 1, and reinstate this curvature parameter
later. The heat kernel on a D-dimensional hyperbolic space
can be written as

Kðx; x0; TÞ ¼ Uðx; x0Þf̂NðdG; TÞ; ðA1Þ

f̂Nðy; TÞ ¼
2D−3ΓðD

2
Þ

π
D
2
þ1

Z
∞

0

φλðyÞe−Tλ2μðλÞdλ; ðA2Þ

where U represents a parallel transport, and f̂N is a scalar
function satisfying the following equation:

0 ¼
�
−

∂
∂T þ□D −

R
4
−
D − 1

4
tanh2ðyÞ

�
f̂NðyÞ ðA3Þ

≡
�
−

∂
∂T þ LD

�
f̂NðyÞ; ðA4Þ

with □D being the radial Laplacian. The eigenfunctions φλ

of the LD operator with eigenvalues −λ2 can be written as

LDφλ ¼ −λ2φλ;

φλðyÞ ¼ cosh
y
2 2F1

�
D
2
þ iλ;

D
2
− iλ;

D
2
;−sinh2

y
2

�
: ðA5Þ

Here, 2F1 denotes the hypergeometric function, while the
spectral measure μðλÞ reads

μðλÞ ¼ π

22D−4Γ2ðD
2
Þ

×

(QD
2
−1

j¼1
2

ðλ2 þ j2Þ; D odd

λ cothðπλÞQD
2
−1

j¼1ðλ2 þ j2Þ; D even:
ðA6Þ

In the main text, cf. Sec. II, we only need the equal point
limit of the heat kernel, with x0 → x and the geodesic
distance dG → 0 goes to zero, i.e., y → 0 in (A2). From
Eq. (A5), it is clear that the coincident points limit leads to

lim
y→0

φλðyÞ ¼ 1; ðA7Þ

while the U reduces to the identity. Thus, we end up with

KT ¼ 2D−3ΓðD
2
Þ

π
D
2
þ1

Z
∞

0

dλe−Tλ
2

μðλÞdλ: ðA8Þ

In order to reinstate the curvature parameter, we make
contact with the flat space limit of the heat kernel, starting
with the odd dimensional case. Plugging the definition of
μðλÞ into Eq. (A8), we get upon substitution

Kodd
T ¼ 2

ð4πÞD2ΓðD
2
Þ

Z
∞

0

dλe−Tλ
2
YD2−1
j¼1

2

ðλ2 þ j2Þ

¼ 2

ð4πTÞD2ΓðD
2
Þ

Z
∞

0

due−u
2
YD2−1
j¼1

2

ðu2 þ j2TÞ; ðA9Þ

and similarly for an even dimensional background

Keven
T ¼ 2

ð4πTÞD2ΓðD
2
Þ

Z
∞

0

due−u
2

u coth

�
π

uffiffiffiffi
T

p
�

×
YD2−1
j¼1

ðu2 þ j2TÞ: ðA10Þ

Recalling that in flat spacetime the heat kernel in the
coincident points limit reads KT ¼ ð4πTÞ−1 with T carry-
ing mass dimension ½T� ¼ −2, we obtain the correct limit
by rescaling the proper time inside the integrals by a
sufficient power of the curvature parameter with ½κ� ¼ 1;
note that the integration variables has to remain dimension-
less, ½u� ¼ 0. We finally obtain

Kodd
T ¼ 2

ð4πTÞD2ΓðD
2
Þ

Z
∞

0

due−u
2
YD2−1
j¼1

2

ðu2 þ j2κ2TÞ; ðA11Þ

Keven
T ¼ 2

ð4πTÞD2ΓðD
2
Þ

Z
∞

0

due−u
2

u coth

�
π

u

κ
ffiffiffiffi
T

p
�

×
YD2−1
j¼1

ðu2 þ j2κ2TÞ: ðA12Þ

CURVATURE BOUND FROM GRAVITATIONAL CATALYSIS PHYS. REV. D 97, 085017 (2018)

085017-15



For an analytical approximation in even dimensions, the
expansion of the integrand in the two limits T ≈ 0 and
T ≈∞ are useful. For small T, we rewrite the hyperbolic
cotangent as

coth

�
π

u

κ
ffiffiffiffi
T

p
�

¼ 1þ 2
X∞
n¼1

e−2
πnu
κ
ffiffi
T

p
: ðA13Þ

The large T regime corresponds to the small u approxi-
mation of the hyperbolic cotangent, thus, it suffices to
consider the first few terms in the Laurent expansion of

cothðπ u
κ
ffiffiffi
T

p Þ in order to capture the behavior of KT for T

around infinity,

coth

�
π

u

κ
ffiffiffiffi
T

p
�

¼ κ
ffiffiffiffi
T

p

πu
þ πu

3κ
ffiffiffiffi
T

p þOðu3Þ: ðA14Þ

These two approximations are combined in Sec. III to
identify an analytic approximation for the heat-kernel trace
in four dimensions.
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