
 

Causality violations in Lovelock theories

Ram Brustein* and Yotam Sherf†

Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel

(Received 5 December 2017; published 16 April 2018)

Higher-derivative gravity theories, such as Lovelock theories, generalize Einstein’s general relativity
(GR). Modifications to GR are expected when curvatures are near Planckian and appear in string theory or
supergravity. But can such theories describe gravity on length scales much larger than the Planck cutoff
length scale? Here we find causality constraints on Lovelock theories that arise from the requirement that
the equations of motion (EOM) of perturbations be hyperbolic. We find a general expression for the
“effective metric” in field space when Lovelock theories are perturbed around some symmetric background
solution. In particular, we calculate explicitly the effective metric for a general Lovelock theory perturbed
around cosmological Friedman-Robertson-Walker backgrounds and for some specific cases when
perturbed around Schwarzschild-like solutions. For the EOM to be hyperbolic, the effective metric needs
to be Lorentzian. We find that, unlike for GR, the effective metric is generically not Lorentzian when the
Lovelock modifications are significant. So, we conclude that Lovelock theories can only be considered as
perturbative extensions of GR and not as truly modified theories of gravity. We compare our results to those
in the literature and find that they agree with and reproduce the results of previous studies.
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I. INTRODUCTION

General relativity (GR) is a successful theory of gravity
at large distance scales. At short distances one expects
higher-derivative corrections to GR in the form of deriv-
atives and higher powers of curvature tensors as well as
other modifications [1]. Unique among the generalizations
of GR, the equations of motion (EOM) of Lovelock gravity
include at most second time derivatives [2] (see [3] for a
review) as do the Einstein equations. General relativity in
four spacetime dimensions can be viewed, from this
perspective, as a special case of Lovelock gravity. The
significance of having EOM which include at most second
time derivatives and its relation to unitarity is explained
in [4].
Lovelock theories are relevant in several contexts. The

quadratic Gauss-Bonnet (GB) theory appears in the low
energy limit of string theory [5,6] and in the study of higher
dimensional black hole (BH) solutions [7–10] and cosmo-
logical solutions [10,11]. More general terms were recently
considered in [12,13]. Studies of BH properties in the

framework of the ADS/CFT correspondence also involve
Lovelock gravity [9,14,15].
Here we would like to examine the possibility that

Lovelock theories can introduce significant modification
to GR also on large distance scales, so they can be viewed
as truly modified theories of gravity rather than provide just
a small insignificant correction to GR [16,17]. Therefore,
we will consider the case in which the coefficients of the
higher derivative terms can be large, making the magnitude
of the correction terms comparable to or larger than that of
the Einstein term. We investigate the occurrence of cau-
sality violations in Lovelock theories by studying the
hyperbolicity of the EOM of perturbations, as we explain
in detail below.
A more general, related, method for determining cau-

sality violations in Lovelock theories is the method of
characteristics that uses the existence of well-posed initial-
value data to determine whether perturbations propagate in
a causal way. This method was used in [18,19] and more
recently in [20,21] and in [22]. Previously, some related
results were reviewed in [23]. In [20] this method was used
by Papallo and Reall to show that the effective metric for
Schwarzschild-like solutions can change its signature near
the horizon in the background of small black holes.
Previously, similar results were also obtained in [24–29]
by using a different method. Our results are consistent with
the existing results in the literature and our method allows
us to find explicit numerical factors with ease. In [22]
Papallo and Reall discussed the hyperbolicity of perturba-
tion equations for Lovelock theories in the background of
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cosmological solutions and found the conditions for vio-
lations of hyperbolicity. We reproduce their results using
the simpler method of calculating the effective metric.
Before addressing causality in Lovelock theories, we

recall some simple higher-derivative scalar field models.
There, hyperbolicity of the EOM is equivalent to having a
Lorentzian effective metric in field space. Then, after
reviewing the results in the case of the scalar field models,
we formulate along similar lines a general method to study
causality in Lovelock theories by calculating the effective
metric in field space. This method is implemented for
Lovelock theories expanded around cosmological
Friedman-Robertson-Walker (FRW) backgrounds and
around spherically symmetric BH solutions. The con-
straints indicate that the EOM of perturbations are not
always hyperbolic when the Lovelock terms are significant.

A. Review of causality constraints for scalar fields

Causality constraints were extensively discussed, start-
ing with [30] and later in [31–35]. To begin, we start by
considering the addition of higher powers of derivatives to
the lowest order scalar field Lagrangian in flat spacetime,

L ¼ 1

2
gμν∇νϕ∇μϕ −

1

2
m2ϕ2 þ

X
n¼2

1

2n
λnðgμν∇νϕ∇μϕÞn;

ð1:1Þ

where λn are dimensionful coupling constants and ∇μ are
covariant derivatives with respect to the background metric
gμν and its associated Levi-Cività connection. This form is
chosen so the EOM contain at most second time derivatives.
Defining PðϕÞ¼gμν∇νϕ∇μϕ, and FðPÞ¼P

n¼1
1
nλnP

n, the
Lagrangian takes the form L ¼ 1

2
ðFðPÞ −m2ϕ2Þ.

The EOM are given by

ð2F00∇αϕ∇βϕþ F0gαβÞ∇α∇βϕ −m2ϕ ¼ 0; ð1:2Þ

which can be expressed as

Gαβ∇α∇βϕ −m2ϕ ¼ 0: ð1:3Þ

The effective metric in field space is given by

Gαβ ¼ 2F00∇αϕ∇βϕþ F0gαβ: ð1:4Þ

When the higher-derivative terms are absent, Gαβ ¼ gαβ.
Since gαβ is a Lorentzian metric, the EOM are hyperbolic.
However, when the higher derivative terms are included and
when hPðϕÞi is nonvanishing, hyperbolicity is no longer
automatic. We will encounter a similar phenomenon when
discussing hyperbolicity of the EOM of Lovelock theories.
The hyperbolicity of the EOM is controlled by the

effective metric Gαβ. In general, a necessary condition

for the hyperbolicity of the EOM is the Lorentzian structure
of Gαβ, which means that the effective metric has one
negative eigenvalue for the time component and D − 1
positive eigenvalues for the spatial components, or vice
versa.
Obviously, when all eigenvalues are of the same sign,

two successive events may be spacelike separated and the
traditional GR concepts of absolute future and past are not
well defined. The evolution of solutions is said to be
noncausal, which mathematically states that the Cauchy
problem is not well posed.
Similarly, when the signs of the eigenvalues deviate from

the standard pattern, the local causal structure is modified.
In extreme cases the contribution of the higher derivative
terms may lead to the appearance of closed timelike curves.
Since the lowest order effective metric is Lorentzian,
the issue is whether the higher-order terms modify the
effective metric in a substantial way. In particular, in
Eq. (1.4), the terms which are not necessarily proportional
to the Lorentzian spacetime metric are proportional
to F00 ¼ P

n¼2ðn − 1ÞλnPn−2.
The couplings λn in the Lagrangian (1.1) are dimen-

sionful. So, for the higher order terms to make a significant
contribution, the expectation value of hPðϕÞi has to be
large, such that the product λnhPni is large enough. In
general, we expect terms of the form Pn and also terms with
more derivatives, such as ð∇α∇βϕÞn, to be significant at
length scales near the cutoff length scale of the theory. At
such scales, the hyperbolicity of the EOM is not a relevant
concept because the semiclassical approximation breaks
down. So to be viewed as a truly higher-derivative theory,
the corrections λnPn have to be large at length scales much
larger than the cutoff length scale of the theory. Similar
considerations will also apply to Lovelock theories.

II. CAUSALITY VIOLATION IN
LOVELOCK THEORIES

We will discuss Lovelock theories along the same lines of
the discussion of the scalar field models. The analog of
∇αϕ∇βϕ for the case of Lovelock theories is the Riemann
tensor. The main complication in comparison to the scalar
field models is the index structure and the gauge-redundancy
in the Lovelock theories. We overcome these complications
by (a) using a formalism in which the EOM are written
explicitly in terms of the Riemann tensor [36,37] and
(b) studying gauge-invariant tensor perturbations around
spherically symmetric spaces.

A. Lovelock gravity

Lovelock Lagrangians are defined as follows:

L ¼
Xkmax

k¼0

λkLk; ð2:1Þ
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where the sum runs up to kmax ≤ D−1
2
, Lk are the

D dimensional Euler densities of order k,1

Lk ¼
1

2k
δaba1b1���akbkcdc1d1���ckdk Rab

cdRa1b1
c1d1 � � �Rakbk

ckdk : ð2:2Þ

The tensors Ra1b1
c1d1 are the background Riemann tensors

and the tensor δ in Eq. (2.2) is fully antisymmetric in its
upper and lower indices and has the same symmetry
properties of the Riemann tensor in each set of four indices.
This tensor can be expressed as the following product of
Kronecker deltas:

δa1b1a2b2c1d1c2d2
� � �akbkckdk

¼ δ½a1c1 δ
b1
d1
� � � δakckδak�ck ¼ δa1½c1δ

b1
d1
� � � δakckδakck�:

ð2:3Þ

The variation of a single Lk generalizes the Einstein tensor,

ðGp
qÞk ¼ −

1

2kþ1
δpaba1b1���akbkqcdc1d1���ckdk Rab

cdRa1b1
c1d1 � � �Rakbk

ckdk :

ð2:4Þ

One can check that the k ¼ 1 term gives the standard
Einstein tensor,

ðGp
qÞ1 ¼ −

1

4
δpabqcdRab

cd

¼ −
1

4
ðδpqδabcd − δpc δabqd þ δpdδ

ab
qcÞRab

cd

¼ Rp
q −

1

2
δpqR: ð2:5Þ

The full generalized Einstein tensor is given by

Gp
q ¼

X
k

λkðGp
qÞk: ð2:6Þ

The coefficients λk are generically dimensionful. They
can be expressed, in units in which λ1 ¼ 1, as λk ¼
λ̃kðlkÞ2ðk−1Þ for k ≥ 2 and λ̃k are dimensionless numerical
coefficients of order unity. The parameters lk have the
dimension of length, and they determine at which length
scales the corrections are important. Without any tuning the
dominant contribution of the correction terms becomes
significant when approaching the ultraviolet length scale.
To act as truly modified theories of gravity, the coupling of
the higher-order terms have to be anomalously large, or
alternatively, the length scales lk have to be anomalously
large, so that the higher-order terms can affect the solutions
of the EOM at length scales much larger than the cutoff
length scale around the Lorentz-invariant vacuum.

We would like to show that when the higher-order
couplings are large, the EOM are no longer guaranteed
to be hyperbolic. So, the theory cannot be viewed as a
consistent theory.

B. Effective metric for propagation of perturbations

The purpose of this section is to find the effective metric
in field space for Lovelock theories. We later require that
the metric be Lorentzian, so the EOM of perturbations is
hyperbolic. This metric is also sometimes called the
“acoustic metric" [35].
We start by expanding the metric gab about the back-

ground ḡab,

gab ¼ ḡab þ hab; ð2:7Þ

and then we expand the generalized Einstein tensor in
Eq. (2.6) to first order in hab. We identify the effective
metric by finding all the kinetic terms—terms of the
form ∇∇h.
A straightforward naive variation of Eq. (2.6) is not

sufficient, since, as we shall see below, mass terms may be
disguised as kinetic terms. Therefore we must identify and
isolate these mass terms in the expansion of Eq. (2.6).
Fortunately, in Lovelock theories the identification of the
kinetic terms is made easier by expressing ðGpqÞk as
follows [36]:

Gpq ¼ XpabcRq
abc −

1

2
gpqL: ð2:8Þ

The tensor Xpabc ≡ ∂L
∂Rpabc

has the symmetry properties of

the Riemann tensor and is given by a sum X ¼ P
kλkXk,

with

ðXkÞpqrs ¼
k
2k

δpqa2b2rsc2d2
� � �akbkckdk

Ra2b2
c2d2 � � �Rakbk

ckdk : ð2:9Þ

The tensor Gpq contains a term proportional to the back-
ground metric gpq which does not contribute to the effective
metric. The variation of this term, for some graviton
polarizations, could sometime result in a mass term which
is disguised as a kinetic term. But, as we show below, these
mass terms can be systematically removed when specific
graviton polarizations are considered.
The tensorXR contains second derivatives of the metric,

and we will show below that its variation will allow us to
identify the effective metric. Technically, due to symmetry
considerations, it is easier to extract the effective metric
from the combination Gp

q þ 1
2
δpqL rather than from

XpabcRqabc directly.
We begin by defining some useful relations. The first

order expansion of the Riemann tensor is given by1In this paper we set λ0 ¼ 0 and choose units in which λ1 ¼ 1.
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δRð1Þ
abcd ¼

1

2
ð∇a∇chbdþ∇b∇dhac−∇a∇dhbc−∇b∇chadÞ:

ð2:10Þ

The commutation relations of covariant derivatives are
expressed in terms of the Riemann tensor,

½∇c;∇p�hcq ¼ −Rc
pc

αh
α
q −Rc

p
q
αhcα: ð2:11Þ

Here hcq is a symmetric tensor which later will be viewed as
the tensor perturbation around some background solution.
The contraction of the delta tensor with δRð1Þ yields the

useful relation

δaba1b1���akbkcdc1d1���ckdk δRab
cd ¼ 2δaba1b1���akbkcdc1d1���ckdk ∇b∇dhca: ð2:12Þ

The contribution of the order-k Lovelock term to the
kinetic part—the part which contains terms of the form
∇∇h—is obtained by varying ðGp

q þ 1
2
δpqLÞk,

δðGp
q þ

1

2
δpqLÞk ¼ −

k
2k

�
δpaba1b1���akbkqcdc1d1���ckdk − δpqδ

aba1b1���akbk
cdc1d1���ckdk

�

×Ra1b1
c1d1 � � �Rakbk

ckdk∇b∇dhca:

ð2:13Þ

Now, let us define the following tensor:

ðT pab
qcdÞk ¼

k
2k

δpaba1b1���akbkqcdc1d1���ckdk Ra1b1
c1d1 � � �Rakbk

ckdk ;

ð2:14Þ
then, using Eq. (2.9), the kinetic part becomes

δ

�
Gp

qþ
1

2
δpqL

�
¼−

Xkmax

k¼1

λkðT pab
qcd−δpqXab

cdÞk∇b∇dhca:

ð2:15Þ

We evaluate the effective metric here for tensor perturba-
tions around spherically symmetric solutions of the EOM.
Wedo so for simplicity and to facilitate the comparison toGR
[38]. Similar equations can also be obtained for scalar and
vector perturbations. Gauge-invariant tensor perturbations
around spherically symmetric backgrounds are transverse
and traceless,

hii; ∇ihij ¼ 0: ð2:16Þ
The ability to choose transverse-traceless (TT) perturbations
about maximally symmetric subspaces relies on the geo-
metric properties of these spaces and not on the gravitational
action. This is discussed, for example, in [39], where it
is shown that tensor perturbations about a maximally
symmetric subspace can always be defined as TT.
We first show how this process works in the simplest

case of GR, corresponding to the k ¼ 1 term in Eq. (2.15).

Then, we repeat the process for the GB theory. We extract
the relevant kinetic part by using the commutation relations
in Eq. (2.11). Finally, we write the explicit expression for
the effective metric for tensor perturbations for the general
Lovelock theory.
We start by expressing the delta tensor in terms of lower-

order delta tensors,

ðT pab
qcd − δpqXab

cdÞ1∇b∇dhca

¼ 1

2
ðδpabqcd − δpqδabcdÞ∇b∇dhca

¼ 1

2
ðδaqδpbcd − δacδ

pb
qd þ δadδ

pb
qc − δpqδabcdÞ∇b∇dhca: ð2:17Þ

For tensor perturbations, using the commutation relations,

ðT pab
qcd − δpqXab

cdÞ1∇b∇dhca

¼ 1

2
ðδaqδpc gbd∇b∇dhca −∇c∇phcqÞ

¼ 1

2
ðδaqδpc gbd∇b∇dhca þRc

pc
αhαq þRc

p
q
αhcαÞ: ð2:18Þ

In this form, kinetic terms and mass terms can be
separated. Now, dismissing mass terms while keeping
the kinetic terms, we obtain

ðT pab
qcd − δpqXab

cdÞ1 ¼
1

2
δaqδ

p
c gbd∇b∇dhca þmass terms:

ð2:19Þ
Next, we need to collect all contributions for a specific

graviton polarization hca. We choose the polarization by
fixing a and c, which implies that these indices are not
summed over. To avoid confusion we label them as ã and c̃.
In general, one has to diagonalize the effective metric.
However, if the background solution has enough symmetry,
the effective metric is already diagonal, as is the case
in Eq. (2.19).
Now, the effective metric can be identified in a covariant

form,

½Gbd�ãc̃ ¼
1

2
δãqδ

p
c̃g

bd ¼ 1

2
gbd: ð2:20Þ

So, for GR, the effective metric for all polarizations is
equal to the spacetime metric Gbd ¼ gbd. Hence, Gbd is a
Lorentzian metric. This results in hyperbolic EOM for any
choice of graviton polarization.
When considering general Lovelock theories, the effec-

tive metric can be different for different graviton polar-
izations. This happens because higher order terms (k ≥ 2)
include explicitly the Riemann tensor. For example, a term
like δãqR

pb
c̃d can have a polarization-dependent contribution

if different components of the Riemann tensor take on
different background values.
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Next, we demonstrate our method for the Gauss-Bonnet
term, k ¼ 2. We evaluate the effective metric (using X’act
and X’pert Mathematica package [40]), repeating the
process described previously, where the contribution of
the second order Lovelock term together with the Einstein
term is Eq. (2.15),

X
k¼1;2

λk
k
2k

ðT pab
qcd − δpqXab

cdÞk∇b∇dhca ¼
1

2
½ðδpabqcd − δpqδabcdÞ

þλ2ðδpaba1b1qcdc1d1
Ra1b1

c1d1 − δpqδ
aba1b1
cdc1d1

Ra1b1
c1d1Þ�∇b∇dhca:

ð2:21Þ

Choosing tensor perturbations, using commutation rela-
tions of covariant derivatives to dispose of mass terms, and
fixing the indices a and c, we find the effective metric
½Gb

d�ãc̃,

½Gb
d�ãc̃∇b∇dhc̃ã

¼ 1

2
½ðδãqδpc̃δbdÞ þ 2λ2δ

ã
qðδbdðRδpc̃ − 2Rp

c̃ Þ
þ 2δpdR

b
c̃ − δpc̃R

b
d þRpb

c̃dÞ þ 2ðδbdðRpã
qc̃ − δpqRã

c̃ÞÞ
þ δbqR

pã
c̃d þ δpdðδbqRã

c̃ þRãb
qc̃Þ

þ δpc̃ ðδbdRã
q − δbqRã

d −Rãb
qbÞ þ δpqRab

c̃d

− δpqðRãb
c̃d − δbdR

ã
c̃Þ�∇b∇dhc̃ã: ð2:22Þ

Recall that we are considering background solutions in
which the effective metric is diagonal. Then, p ¼ c̃ and
q ¼ ã.
We can now determine whether the metric Gbd is

Lorentzian. If the Riemann tensor is nonvanishing on a
solution, then, in general, Gbd will not be proportional to
the spacetime metric gbd and therefore the hyperbolicity of
the EOM for a specific choice of polarization is not
guaranteed.
In summary, the extraction of the effective metric is as

follows. Start from Eq. (2.15). Express the higher Lovelock
terms in terms of delta tensors. The result is the following:

−
Xkmax

k¼1

λkðT pab
qcd − δpqXab

cdÞk∇b∇dhca

¼ −
Xkmax

k¼1

λk
k
2k

�
δpaba1b1���akbkqcdc1d1���ckdk Ra1b1

c1d1 � � �Rakbk
ckdk

− δpqδ
aba2b2
cdc2d2

� � �akbkckdk
Ra2b2

c2d2 � � �Rakbk
ckdk

�
∇b∇dhca:

ð2:23Þ
Then, we choose tensor perturbations and use the commu-
tation relations of covariant derivatives in order to isolate
the kinetic terms, dropping the mass terms. Third, choose
the polarization ã and c̃. Since the Einstein result (k ¼ 1) is
known to be δbd,

½Gb
d�ãc̃∇b∇dhc̃ã ¼

�
δbd −

Xkmax

k¼2

λk
k
2k

�
δpãba1b1���akbkqc̃dc1d1���ckdk Ra1b1

c1d1 � � �Rakbk
ckdk

− δpqδ
ãba2b2
c̃dc2d2

� � �akbkckdk
Ra2b2

c2d2 � � �Rakbk
ckdk

��
∇b∇dhc̃ã: ð2:24Þ

Finally, set p ¼ c̃ and q ¼ ã. Now, the effective metric can
be read off as the symmetric tensor contracting the second
derivative terms acting on hc̃ã. The complexity of the
expression increases rapidly with k, which means that, in
practice, getting the explicit expressions is quite complicated.
The general expression for the effective metric will be a

polynomial of a higher degree in the various curvature
tensors, or alternatively, a multinomial in the metric
components and their first and second derivatives.
(Higher than second derivatives do not appear.) When
the background curvature vanishes, or is perturbatively
small (in a sense that will be clarified shortly), then the
higher order terms add a small correction to the leading
Lorentzian Einstein term. However, when the higher order
terms are as important as the Einstein term, the Lorentzian
nature of the metric is no longer guaranteed. In general,
only under very special circumstances, is the metric indeed
Lorentzian. We show this explicitly by studying the

expansion of the higher order Lovelock theories around
some nontrivial background solutions in the next section.

III. EXPLICIT CALCULATIONS
OF THE EFFECTIVE METRIC

A. Effective metric in a cosmological
Friedman-Robertson-Walker spacetime

Consider the case of a D-dimensional homogeneous and
isotropic FRW spacetime whose line element is given by

ds2 ¼ −dt2 þ aðtÞ2γijdxidxj; ð3:1Þ

where i; j ¼ 1; 2;…; D − 1 denote spatial components.
Here we choose for simplicity γij ¼ δij. This type of
spacetime solves the Lovelock EOM in the presence of
matter [10,11]. We will not need the detailed descriptions
of the solutions for a general Lovelock theory which can be
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found in [11], nor will we need the detailed description of
the matter sources, which can also be found there.
We just need to know that the solutions exist and the

sources are physical. Particularly relevant is the existence
of solutions that describe a universe undergoing decelerated
expansion, similar to matter-dominated or radiation-
dominated solutions of Einstein’s equations. We restrict
our attention to dimensions higher than four for simplicity.
It would be interesting to study the hyperbolicity of these
cosmological solutions upon compactification to four
dimensions. Dimensional reduction of Lovelock theories
was discussed in detail in [41,42] and more recently in [43].
In some cases such dimensional reduction may lead to a
scalar-graviton coupling. A detailed discussion of the
conditions of hyperbolicity in various compactification
schemes is outside the scope of this paper.
The nonvanishing components of the Riemann tensor are

the following:

Rij
kl ¼ H2δijkl; ð3:2Þ

Rti
tj ¼ δij

ä
a
¼ δijðH2 þ _HÞ; ð3:3Þ

where i; j; k; l ¼ 1; 2;…; D − 1 denote, again, the spatial
components, H2 ¼ ð _a=aÞ2 is the Hubble parameter, and
ä=a ¼ H2 þ _H. Here, a dot represents a time derivative.
The tensor perturbations are defined as follows:

hii ¼ 0; ð3:4aÞ

hit ¼ 0; ð3:4bÞ

∇ihij ¼ 0: ð3:4cÞ

We now wish to explain how to evaluate the effective
metric for perturbations around an FRW solution, for a
general Lovelock theory. To illustrate the procedure, we
first evaluate the metric for the Gauss-Bonnet term (k ¼ 2)
and then calculate the general expression for the metric.
The contribution of the GB term to the metric is the

following:

1

2
λ2ðT pab

qcd − δpqXab
cdÞ2

¼ 1

2
λ2ðδpaba1b1qcdc1d1

Ra1b1
c1d1 − δpqδ

aba1b1
cdc1d1

Ra1b1
c1d1Þ: ð3:5Þ

The computation of the effective metric is carried out by
using the following identities:

δa1b1���akbkakþ1bkþ1���anbn
c1d1���ckdkakþ1bkþ1���anbn ¼ ðD − kÞ!

ðD − 2nÞ! δ
a1b1���akbk
c1d1���ckdk ; ð3:6Þ

δtpaa1b1���akbktqcc1d1���ckdk ¼ δp̄ ā ā1 b̄1���āk b̄k
q̄ c̄ c̄1 d̄1���c̄k d̄k ; ð3:7Þ

where barred indices p̄; q̄ ¼ 1; 2;…; D − 1, etc., denote
spatial components. The notation employed in Eq. (3.7)
indicates that the left-hand side vanishes unless all but the
t-indices are spatial.

We begin by computing Gt
t, setting b; d ¼ t in Eq. (3.5),

�
δpata1b1qctc1d1

− δpqδ
ata1b1
ctc1d1

�
Ra1b1

c1d1 ¼
�
δp̄ ā ā1 b̄1
q̄ c̄ c̄1 d̄1

− δpqδ
ā ā1 b̄1
c̄ c̄1 d̄1

�
Rā1 b̄1

c̄1 d̄1

¼ 2H2ðD − 3Þ½δp̄ ā
q̄ c̄ ðD − 4Þ − δpqδāc̄ðD − 2Þ�: ð3:8Þ

For the spatial components Gp̄
q̄, we have contributions from the two nonvanishing Riemann components. The contribution

from the purely spatial components of the Riemann Eq. (3.2) is given by

h
δp̄iji1j1q̄klk1l1

− δpqδ
iji1j1
klk1l1

i
Ri1j1

k1l1 ¼ 2H2ðD − 4Þ½δp̄ijq̄klðD − 5Þ − δpqδ
ij
klðD − 3Þ�; ð3:9Þ

and the contribution of the mixed time-space components in Eq. (3.3) reads

4ðδp̄ijtj1q̄kltl1
− δpqδ

ijtj1
kltl1

ÞRtj̄1
tl1 ¼ 4ðH2 þ _HÞ½δp̄ijq̄klðD − 4Þ − δpqδ

ij
klðD − 3Þ�: ð3:10Þ

The total spatial contribution comes from combining Eqs. (3.9) and (3.10).
We proceed in evaluating the spatial part of the effective metric. We add the Einstein term contribution from Eq. (2.17) to

that of Eq. (3.5), and then impose the gauge conditions and use the commutation relations of covariant derivatives, subtract
the mass terms, and fix the polarization indices ĩ; j̃. The result is

½Gtt�ĩ
j̃
¼ gtt½1þ 2λ2H2ðD − 3ÞðD − 4Þ�; ð3:11Þ
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½Gb̄ d̄�ĩ
j̃

¼
XD
p;q¼1

δĩq̄δ
p̄
j̃
gb̄ d̄½1þ λ2ð2H2ðD − 4ÞðD − 5Þ þ 4ðH2 þ _HÞðD − 4ÞÞ�

¼ gb̄ d̄
�
1þ 2λ2H2ðD − 3ÞðD − 4Þ

�
1þ 2

D − 3

_H
H2

��
: ð3:12Þ

Symmetry leads to the same effective metric for all polar-
izations. We also note that in this case the effective metric is
not proportional to the spacetime metric gμν. Rather the
time-time component and the space-space component are
proportional to the respective spacetime metric components
with different proportionality factors.
As previously mentioned, a necessary condition for

hyperbolic EOM is that the effective metric be Lorentzian.
Thus, our interest is in the conditions under which the metric

½Gμν�ĩ
j̃

is either Lorentzian or non-Lorentzian. To be

Lorentzian, the factor multiplying gtt in Eq. (3.11) and the
factor multiplying gb̄ d̄ in Eq. (3.12) have to have the same
sign. Conversely, if these factors have a different sign, then
the effective metric will not be Lorentzian.
Let us first assume that λ2 is positive. (The case in which

λ2 is negative is problematic as we explain below.) Then,
the time-time component of the metric Gtt is always
negative. So, the determining factor is the sign of Gb̄ d̄.

When 2λ2H2ðD − 3ÞðD − 4Þð1þ 2
D−3

_H
H2Þ < −1, the metric

is not Lorentzian. This happens under two conditions:

(i) that λ2H2 is large, λ2H2 ≳ 1, and (ii) that _H
H2 is negative,

such that 1þ 2
D−3

_H
H2 < 0.

To understand the significance of the conditions,
let us consider a solution of decelerated expansion of the
form aðtÞ ∼ tα with 0 < α < 1. In this case, _H ¼ −H2=α.
So, the effective metric is not Lorentzian when
1þ 2λ2H2ðD − 3ÞðD − 4Þð1 − 2

ðD−3ÞαÞ < 0. This condition

(when λ2H2 ≳ 1) rules out most of the parameter space of
decelerated expanding isotropic solutions found in [44].
For example, for a radiation-dominated universe in D

dimensions, α ¼ 2=D and a matter domination universe
corresponds to α ¼ 2=ðD − 1Þ. The exact numerical con-
ditions involve additional D-dependent factors which can
be worked out for any desired specific case. For example,
for D ¼ 5, the effective metric is not Lorentzian for the
whole range 0 < α < 1 when the correction terms are
significant λ2H2 ≳ 1. We will not list here all the cases,
as it is by now clear that the effective metric is non-
Lorentzian for many of them.
Away to interpret our results is the following. To ensure

hyperbolicity one can simply demand that λ2H2 < 1. This
means that the cutoff scale of the theory is set by the
correction term such that it is subdominant. Alternatively,
one can allow λ2H2 to be large, but then one has to impose

conditions on _H, which again can be interpreted as
imposing a cutoff on the theory such that some part of
the corrections is subdominant.
The case λ2 < 0 is problematic from several perspec-

tives. When one considers black hole solutions, as we
discuss later, one finds that negative λ2 can lead to naked
singularities [6]. From our perspective, a negative λ2 means
that ifH is small,Gtt is negative; while ifH is large enough,
Gtt is positive. This suggests that for consistency and
to allow solutions with small H, one needs to impose
jλ2H2j < 1=ð2ðD − 3ÞðD − 4ÞÞ, which effectively sets the
cutoff of the theory at this scale. Setting these issues aside,
we can analyze the case λ2 < 0 along the same lines
as we did in the case λ2 > 0. Here if jλ2jH2 ≳ 1 and
1þ 2

D−3
_H
H2 < 0, we find that the effective metric is non-

Lorentzian.
We now turn to discuss the results for the effective metric

for general Lovelock theories.
The effective metric components for an arbitrary

Lovelock theory are obtained using similar methods to
those used in the previous examples (recall that
kmax ¼ D−1

2
),

½Gtt�ãc̃ ¼ gtt
�
1þ

Xkmax

k¼2

ðD − 3Þ!
ðD − 2k − 1Þ! λkð2H

2Þk−1
�
; ð3:13Þ

½Gb̄ d̄�ãc̃ ¼ gb̄ d̄
�
1þ

Xkmax

k¼2

ðD − 3Þ!
ðD − 2k − 1Þ! λkð2H

2Þk−1

×

�
1þ 2ðk − 1Þ

D − 3

_H
H2

��
: ð3:14Þ

We can now see what are the conditions that determine
whether Gμν is Lorentzian. If the factor multiplying gtt in
Eq. (3.13) is positive, for example if λk > 0 for all k, then
the conditions are similar to the ones found in the previous
discussion. The metric can become non-Lorentzian
when the λkH2 is large for at least some λk and the factor

1þ 2ðk−1Þ
D−3

_H
H2 is negative. A simple example is provided by

the case when λkmax
> 0 is the dominant coupling and all the

rest are small. Then if H2 þ _H < 0, the effective metric is
non-Lorentzian. This condition means that for solutions of
the form aðtÞ ∼ tα, all the range of decelerated expansion
0 < α < 1 leads to a non-Lorentzian metric.
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Since for violations of hyperbolicity one needs both _H
and H to be large, it follows that H needs to change rapidly
in time; therefore at some late time, one expects that H
becomes small and then the correction terms are no longer
significant. Alternatively, H becomes so large that the
semiclassical approximation breaks down.
Our interpretation of the results is that Lovelock theories

cannot be viewed as consistent theories of modified gravity.

B. Spherically symmetric black holes

In this subsection we only discuss simple examples to
illustrate the applicability of the method also for static
solutions and in order to expose the similarities and
differences with respect to the discussion of cosmological
backgrounds. This will enable us to compare our results to
the results obtained by other methods. So, we perform the
calculation for the simplest cases, GB in five dimensions
(5D) and six dimensions (6D) for static BH solutions.
Extending the calculations to more complicated cases is
straightforward.
The static spherically symmetric BH solutions for

Lovelock theories take the standard form [7,9,10]

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
D−2; ð3:15Þ

where dΩ2
D−2 is the standard metric of the D − 2 unit

sphere. The metric is a solution of the EOM when FðrÞ ¼
−fðrÞ=r2 is the solution of the polynomial equation [8],

Xkmax

n¼2

�
λn

�Y2n−2
l¼1

ðD − l − 2Þ
�
FðrÞn

�
þ FðrÞ ¼ M

rD−1 : ð3:16Þ

Here we set Λ ¼ 0, 16πG ¼ 1 and the parameter M is
referred to as the black hole mass.
The nonvanishing components of the Riemann compo-

nents are the following:

Rtr
tr ¼ −

f00ðrÞ
2

; ð3:17Þ

Rij
kl ¼ −

fðrÞ
r2

δijkl; ð3:18Þ

Rαi
αj ¼ −

f0ðrÞ
2r

δij: ð3:19Þ

The indices i; j; k; l ¼ 1; 2;…; D − 2 denote angular coor-
dinates and α ¼ t, r. The main difference compared to the
FRW case is that there are three different kinds of non-
vanishing Riemann tensor components as compared to two
nonvanishing components in the FRW case. Since the
Riemann tensor components only depend on f, f0, and f00

but not on higher derivatives of f, the effective metric will
be a multinomial in these quantities.
Gauge-invariant tensor perturbations are defined in the

standard way by

hαβ ¼ 0; ð3:20aÞ

hαi ¼ 0; ð3:20bÞ

hii ¼ 0; ð3:20cÞ

∇ihij ¼ 0: ð3:20dÞ

Recall that such tensor perturbations can always bedefined
when expanding about a maximally symmetric space.
For the 5D GB, the solution can be found using

Eq. (3.16),

f5ðrÞ ¼ 1þ r2

4λ2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16λ2M

r4

r �
: ð3:21Þ

As mentioned previously, negative λ2 is problematic for the
following reason. The GB term is significant when
16λ2M
r4 ≳ 1. But, when λ2 < 0, the metric has a branch cut

at 16jλ2jM=r4 ¼ 1. So the metric makes sense only for
cases when the GB term is subdominant. This makes this
case uninteresting, since we know that when the GB term is
subdominant to the Einstein term, the effective metric for
perturbation is Lorentzian. So, we will focus on the case
that λ2 > 0.
The calculation of the effective metric is carried out in a

similar way to the one performed in the previous FRW
examples. The effective metric components are given by

½Gαα�ĩ
j̃
¼ gαα

�
1 − 2λ2

f05ðrÞ
r

�
; ð3:22Þ

½Gkk�ĩ
j̃
¼ gkkð1 − 2λ2f005ðrÞÞ: ð3:23Þ

As in the FRW case, symmetry results in an equal effective
metric for all polarizations.
For the effective metric Gμν not to be Lorentzian several

conditions have to be satisfied. First, it is clear that for any
value of λ2, for large enough values of r, the metric is
approximately that of a Schwarzschild solution of
Einstein’s equations, so the effective metric will be
Lorentzian in this region of large r. Therefore, the effective
metric can have a non-Lorentzian signature only for smaller
values of r. This signature is determined by the sign of the
factor in parentheses in Eq. (3.23). We therefore conclude
that, for the effective metric not to have a genuinely
Lorentzian signature, the corrections have to be large
and such that 2λ2f005ðrÞ > 1.
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The following picture emerges: There could be some
range in r where the corrections due to the GB term are
large. In this range, the signature of the effective metric is
governed by the higher order terms. Additional conditions
must be imposed such that the effective metric is indeed
Lorentzian. Therefore, generically, we do not expect a
Lorentzian effective metric in this limited range. However,
for the 5D case, it turns out that for the solution Eq. (3.21),
the corrections due to the GB term are never large enough
and so the effective metric is Lorentzian everywhere
outside the horizon.
We proceed by considering the 6D solution,

f6ðrÞ ¼ 1þ r2

6λ2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 20λ2M

r5

r �
: ð3:24Þ

Similar to the 5D example, the case λ2 < 0 is uninteresting,
so we focus on the case λ2 > 0.
The effective metric components in this case are

½Gαα�ĩ
j̃
¼ gαα

�
1 − 4λ2

rf06ðrÞ þ f6ðrÞ − 1

r2

�
; ð3:25Þ

½Gkk�ĩ
j̃
¼ gkk

�
1 − λ2

2rf006ðrÞ þ 4f06ðrÞ
r

�
; ð3:26Þ

and the hyperbolicity condition reads

λ2
2rf006ðrÞ þ 4f06ðrÞ

r
< 1: ð3:27Þ

The six-dimensional f6ðrÞ satisfies f006ðrÞ < 0, f06ðrÞ > 0,
f6ðrÞ > 0. Thus, the effective metric is non-Lorentzian
for certain values of λ2 depending on the r and M. Here
the range in which the metric is non-Lorentzian is
r≲ ð2.26Mλ2Þ1=5. In order to have r ≈ ð2.26Mλ2Þ1=5 out-
side the horizon λ2 has to be large enough, λ2 ≳ ð5.6MÞ2=3.
In this case there is a region which extends from the horizon
to some maximal radius in which the Einstein solution is
substantially modified and in which the effective metric is
not Lorentzian. One can also view this constraint as setting
an effective cutoff length scale such that the corrections are
subdominant.

IV. SUMMARY AND CONCLUSION

In this paper we addressed the question whether
Lovelock gravity can constitute a truly modified theory
of gravity. We found that it cannot. Our conclusion is based
on analyzing the hyperbolicity of the EOM of perturbations
around solutions of Lovelock gravity. We found that,
generically, if the Lovelock correction terms are compa-
rable to or larger than the Einstein term, then the EOM of
perturbations are not hyperbolic and therefore the EOM are
not causal in this case. When the Lovelock terms are small

and therefore provide only a perturbative correction to the
Einstein term, then the EOM are hyperbolic because they
are hyperbolic for GR.
We calculated the effective metric in field space for

Lovelock theories by generalizing the method for such
calculations in scalar field models. The new formalism
developed in Sec. (II B) enabled us to identify the effective
metric for Lovelock theories and determine the conditions
for hyperbolicity of the perturbed EOM about different
backgrounds.
Then, we performed explicit calculations of the effective

metric in some examples. First, we considered FRW
cosmological solutions in Sec. (III A). We found that the
hyperbolicity of the effective metric is governed by the
magnitude of λ2H2 and the sign of _H. The result is that
when λ2H2 is large and _H is negative, the effective metric is
not Lorentzian. Specifically, when the highest Lovelock
term is dominant, the whole range of decelerated expansion
aðtÞ ∼ tα, 0 < α < 1 leads to a non-Lorentzian effective
metric. Our results reproduce the results of Papallo and
Reall [22] that were obtained by the more general method
of characteristics. It follows that the cutoff scale of the
theory is not set by the Planck scale or some other
independent high scale; rather it is set by the correction
terms, ensuring that the correction terms are subdominant.
If the correction terms are subdominant, the EOM of
perturbations are hyperbolic because the EOM of pertur-
bations in GR are hyperbolic.
Our discussion endedwith an investigation of some simple

spherically symmetric BH solutions. This was performed to
show that one can apply our formalism also to this case. We
considered only the Einstein-Gauss-Bonnet theory in 5D and
6D. The effective metric is found to be non-Lorentzian only
in 6D over the range r≲ ð2.26Mλ2Þ1=5 which is located
outside the horizonwhen λ2 ≳ ð5.6MÞ2=3, in agreement with
[20]. Our results indicate that Lovelock theories lead to EOM
for perturbation which are not hyperbolic and thus imply
causality violations in agreement with the results of [17,21].
Again, the conclusion is that the cutoff scale of the theory is
set by the correction terms, ensuring that the correction
terms are subdominant and the EOM of perturbations are
hyperbolic.
Looking ahead, the effective metric approach for study-

ing causality violations can also be implemented for
modified gravity theories other than Lovelock, such as
FðRÞ, k-essence.
Another interesting direction is to investigate the relation

between the hyperbolicity of the EOM to the conditions
under which one can have a perturbative treatment of
Lovelock theory [45,46] and define a Hamiltonian for
higher-derivative gravity theories [47,48]. These are found
to be closely connected for scalar field models as shown in
[30] and so are expected to be related also for Lovelock
theories.

CAUSALITY VIOLATIONS IN LOVELOCK THEORIES PHYS. REV. D 97, 084019 (2018)

084019-9



ACKNOWLEDGMENTS

We would like to thank Gary Gibbons for discussions, Alex Vikman for many valuable comments on the manuscript,
Giuseppe Papallo for help with comparison to [22], and especially Harvey Real for useful discussions, comments, and
suggestions. The research was supported by the Israel Science Foundation Grant No. 1294/16.

[1] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Modified
gravity theories on a nutshell: Inflation, bounce and late-
time evolution, Phys. Rep. 692, 1 (2017).

[2] D. Lovelock, The Einstein tensor and its generalizations, J.
Math. Phys. (N.Y.) 12, 498 (1971).

[3] T. Padmanabhan and D. Kothawala, Lanczos-Lovelock
models of gravity, Phys. Rep. 531, 115 (2013).

[4] R. Brustein and A. J. M. Medved, Graviton n-point func-
tions for UV-complete theories in anti–de Sitter space, Phys.
Rev. D 85, 084028 (2012).

[5] D. J. Gross and E. Witten, Superstring modifications of
Einstein’s equations, Nucl. Phys. B277, 1 (1986).

[6] B. Zwiebach, Curvature squared terms and string theories,
Phys. Lett. 156B, 315 (1985).

[7] D. G. Boulware and S. Deser, String Generated Gravity
Models, Phys. Rev. Lett. 55, 2656 (1985).

[8] R. C. Myers and J. Z. Simon, Black hole thermodynamics in
Lovelock gravity, Phys. Rev. D 38, 2434 (1988).

[9] R. G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys.
Rev. D 65, 084014 (2002).

[10] J. T. Wheeler, Symmetric solutions to the Gauss-Bonnet
extended Einstein equations, Nucl. Phys. B268, 737 (1986).

[11] N. Deruelle and L. Farina-Busto, The Lovelock gravitational
field equations in cosmology, Phys. Rev. D 41, 3696 (1990).

[12] D. Ciupke, J. Louis, and A. Westphal, Higher-derivative
supergravity and moduli stabilization, J. High Energy Phys.
10 (2015) 094.

[13] F. Farakos, S. Ferrara, A. Kehagias, and D. Lust, Non-linear
realizations and higher curvature supergravity, Fortschr.
Phys. 65, 1700073 (2017).

[14] X. O. Camanho and J. D. Edelstein, Causality constraints in
AdS=CFT from conformal collider physics and Gauss-
Bonnet gravity, J. High Energy Phys. 04 (2010) 007.

[15] C. Garraffo and G. Giribet, The Lovelock black holes, Mod.
Phys. Lett. A 23, 1801 (2008).

[16] C. Kiefer, Quantum gravity: General introduction and recent
developments, Ann. Phys. (Berlin) 15, 129 (2006).

[17] X. O. Camanho, J. D. Edelstein, J. Maldacena, and A. Zhi-
boedov, Causality constraints on corrections to the graviton
three-point coupling, J. High Energy Phys. 02 (2016) 020.

[18] K. Izumi, Causal structures in Gauss-Bonnet gravity, Phys.
Rev. D 90, 044037 (2014).

[19] H. Reall, N. Tanahashi, and B. Way, Causality and hyper-
bolicity of Lovelock theories, Classical Quantum Gravity
31, 205005 (2014).

[20] G. Papallo and H. S. Reall, Graviton time delay and a speed
limit for small black holes in Einstein-Gauss-Bonnet theory,
J. High Energy Phys. 11 (2015) 109.

[21] K. Benakli, S. Chapman, L. Darm, and Y. Oz, Superluminal
graviton propagation, Phys. Rev. D 94, 084026 (2016).

[22] G. Papallo and H. S. Reall, On the local well-posedness of
Lovelock and Horndeski theories, Phys. Rev. D 96, 044019
(2017).

[23] N. Deruelle and J. Madore, On the quasilinearity of the
Einstein- “Gauss-Bonnet”, gravity field equations, arXiv:
gr-qc/0305004.

[24] G. Dotti and R. J. Gleiser, Gravitational instability of
Einstein-Gauss-Bonnet black holes under tensor mode
perturbations, Classical Quantum Gravity 22, L1 (2005).

[25] G. Dotti and R. J. Gleiser, Linear stability of Einstein-
Gauss-Bonnet static spacetimes. Part I. Tensor perturba-
tions, Phys. Rev. D 72, 044018 (2005).

[26] T. Takahashi and J. Soda, Stability of Lovelock black
holes under tensor perturbations, Phys. Rev. D 79,
104025 (2009).

[27] T. Takahashi and J. Soda, Instability of small Lovelock
black holes in even-dimensions, Phys. Rev. D 80, 104021
(2009).

[28] T. Takahashi and J. Soda, Master equations for gravitational
perturbations of static Lovelock black holes in higher
dimensions, Prog. Theor. Phys. 124, 911 (2010).

[29] T. Takahashi and J. Soda, Catastrophic instability of small
Lovelock black holes, Prog. Theor. Phys. 124, 711 (2010).

[30] Y. Aharonov, A. Komar, and L. Susskind, Superluminal
behavior, causality, and instability, Phys. Rev. 182, 1400
(1969).

[31] C. Armendariz-Picon and E. A. Lim, Haloes of k-essence, J.
Cosmol. Astropart. Phys. 08 (2005) 007.

[32] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis, and
R. Rattazzi, Causality, analyticity and an IR obstruction to
UV completion, J. High Energy Phys. 10 (2006) 014.

[33] J. P. Bruneton, On causality and superluminal behavior in
classical field theories: Applications to k-essence theories
and MOND-like theories of gravity, Phys. Rev. D 75,
085013 (2007).

[34] G. Ellis, R. Maartens, and M. A. H. MacCallum, Causality
and the speed of sound,Gen. Relativ. Gravit. 39, 1651 (2007).

[35] E. Babichev, V. Mukhanov, and A. Vikman, k-Essence,
superluminal propagation, causality and emergent geom-
etry, J. High Energy Phys. 02 (2008) 101.

[36] V. Iyer and R. M. Wald, Some properties of Noether charge
and a proposal for dynamical black hole entropy, Phys. Rev.
D 50, 846 (1994).

[37] R. Brustein, D. Gorbonos, M. Hadad, and A. J. M. Medved,
Evaluating the Wald entropy from two-derivative terms in
quadratic actions, Phys. Rev. D 84, 064011 (2011).

RAM BRUSTEIN and YOTAM SHERF PHYS. REV. D 97, 084019 (2018)

084019-10

https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1063/1.1665613
https://doi.org/10.1063/1.1665613
https://doi.org/10.1016/j.physrep.2013.05.007
https://doi.org/10.1103/PhysRevD.85.084028
https://doi.org/10.1103/PhysRevD.85.084028
https://doi.org/10.1016/0550-3213(86)90429-3
https://doi.org/10.1016/0370-2693(85)91616-8
https://doi.org/10.1103/PhysRevLett.55.2656
https://doi.org/10.1103/PhysRevD.38.2434
https://doi.org/10.1103/PhysRevD.65.084014
https://doi.org/10.1103/PhysRevD.65.084014
https://doi.org/10.1016/0550-3213(86)90268-3
https://doi.org/10.1103/PhysRevD.41.3696
https://doi.org/10.1007/JHEP10(2015)094
https://doi.org/10.1007/JHEP10(2015)094
https://doi.org/10.1002/prop.201700073
https://doi.org/10.1002/prop.201700073
https://doi.org/10.1007/JHEP04(2010)007
https://doi.org/10.1142/S0217732308027497
https://doi.org/10.1142/S0217732308027497
https://doi.org/10.1002/andp.200510175
https://doi.org/10.1007/JHEP02(2016)020
https://doi.org/10.1103/PhysRevD.90.044037
https://doi.org/10.1103/PhysRevD.90.044037
https://doi.org/10.1088/0264-9381/31/20/205005
https://doi.org/10.1088/0264-9381/31/20/205005
https://doi.org/10.1007/JHEP11(2015)109
https://doi.org/10.1103/PhysRevD.94.084026
https://doi.org/10.1103/PhysRevD.96.044019
https://doi.org/10.1103/PhysRevD.96.044019
http://arXiv.org/abs/gr-qc/0305004
http://arXiv.org/abs/gr-qc/0305004
https://doi.org/10.1088/0264-9381/22/1/L01
https://doi.org/10.1103/PhysRevD.72.044018
https://doi.org/10.1103/PhysRevD.79.104025
https://doi.org/10.1103/PhysRevD.79.104025
https://doi.org/10.1103/PhysRevD.80.104021
https://doi.org/10.1103/PhysRevD.80.104021
https://doi.org/10.1143/PTP.124.911
https://doi.org/10.1143/PTP.124.711
https://doi.org/10.1103/PhysRev.182.1400
https://doi.org/10.1103/PhysRev.182.1400
https://doi.org/10.1088/1475-7516/2005/08/007
https://doi.org/10.1088/1475-7516/2005/08/007
https://doi.org/10.1088/1126-6708/2006/10/014
https://doi.org/10.1103/PhysRevD.75.085013
https://doi.org/10.1103/PhysRevD.75.085013
https://doi.org/10.1007/s10714-007-0479-2
https://doi.org/10.1088/1126-6708/2008/02/101
https://doi.org/10.1103/PhysRevD.50.846
https://doi.org/10.1103/PhysRevD.50.846
https://doi.org/10.1103/PhysRevD.84.064011


[38] G. Gibbons and S. A. Hartnoll, Gravitational instability in
higher dimensions, Phys. Rev. D 66, 064024 (2002).

[39] A. Higuchi, Symmetric tensor spherical harmonics on the N
sphere and their application to the de Sitter group SOðN; 1Þ,
J. Math. Phys. (N.Y.) 28, 1553 (1987); Erratum, J. Math.
Phys. (N.Y.) 43, 6385(E) (2002).

[40] D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan,
xPert: Computer algebra for metric perturbation theory,
Gen. Relativ. Gravit. 41, 2415 (2009).

[41] F. Mueller-Hoissen, Gravity actions, boundary terms and
second order field equations, Nucl. Phys. B337, 709 (1990).

[42] F. Mueller-Hoissen, Spontaneous compactification with
quadratic and cubic curvature terms, Phys. Lett. 163B, 106
(1985).

[43] K. Van Acoleyen and J. Van Doorsselaere, Galileons from
Lovelock actions, Phys. Rev. D 83, 084025 (2011).

[44] X. O. Camanho, N. Dadhich, and A. Molina, Pure Lovelock
Kasner metrics, Classical Quantum Gravity 32, 175016
(2015).

[45] G. A. Mena Marugan, Classical and quantum Lovelock
cosmology, Phys. Rev. D 42, 2607 (1990).

[46] J. Z. Simon, Higher derivative Lagrangians, nonlocality,
problems and solutions, Phys. Rev. D 41, 3720 (1990).

[47] C. Teitelboim and J. Zanelli, Dimensionally continued
topological gravitation theory in Hamiltonian form,
Classical Quantum Gravity 4, L125 (1987).

[48] G. A. Mena Marugan, Perturbative formalism of Lovelock
gravity, Phys. Rev. D 46, 4320 (1992).

CAUSALITY VIOLATIONS IN LOVELOCK THEORIES PHYS. REV. D 97, 084019 (2018)

084019-11

https://doi.org/10.1103/PhysRevD.66.064024
https://doi.org/10.1063/1.527513
https://doi.org/10.1063/1.1515382
https://doi.org/10.1063/1.1515382
https://doi.org/10.1007/s10714-009-0773-2
https://doi.org/10.1016/0550-3213(90)90513-D
https://doi.org/10.1016/0370-2693(85)90202-3
https://doi.org/10.1016/0370-2693(85)90202-3
https://doi.org/10.1103/PhysRevD.83.084025
https://doi.org/10.1088/0264-9381/32/17/175016
https://doi.org/10.1088/0264-9381/32/17/175016
https://doi.org/10.1103/PhysRevD.42.2607
https://doi.org/10.1103/PhysRevD.41.3720
https://doi.org/10.1088/0264-9381/4/4/010
https://doi.org/10.1103/PhysRevD.46.4320

