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We study scale invariance at the quantum level in a perturbative approach. For a scale-invariant classical
theory, the scalar potential is computed at a three-loop level while keeping manifest this symmetry.
Spontaneous scale symmetry breaking is transmitted at a quantum level to the visible sector (of ϕ) by the
associated Goldstone mode (dilaton σ), which enables a scale-invariant regularization and whose vacuum
expectation value hσi generates the subtraction scale (μ). While the hidden (σ) and visible sector (ϕ) are
classically decoupled in d ¼ 4 due to an enhanced Poincaré symmetry, they interact through (a series of)
evanescent couplings ∝ ϵ, dictated by the scale invariance of the action in d ¼ 4 − 2ϵ. At the quantum
level, these couplings generate new corrections to the potential, as scale-invariant nonpolynomial effective
operators ϕ2nþ4=σ2n. These are comparable in size to “standard” loop corrections and are important for
values of ϕ close to hσi. For n ¼ 1, 2, the beta functions of their coefficient are computed at three loops. In
the IR limit, dilaton fluctuations decouple, the effective operators are suppressed by large hσi, and the
effective potential becomes that of a renormalizable theory with explicit scale symmetry breaking by the
DR scheme (of μ ¼ constant).
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I. INTRODUCTION

It is a common view that the Standard Model (SM) is
only a low-energy effective theory and “new physics” could
arise at some scale below MPlanck. The scale of “new
physics” can be the vacuum expectation value (vev) of a
scalar field σ present beyond the SM spectrum. It is then
natural to ask how the Higgs mass is protected from large
quantum corrections associated with hσi.1 One long-held
answer is TeV supersymmetry.2

Scale invariance may also protect the Higgs mass against
large quantum corrections. This starts from the observation
that for a vanishing Higgs mass parameter, SM has an
increased symmetry: it is scale invariant. This means that
the classical action is invariant under a transformation: x →
ρ−1x;ϕ → ρdϕϕ (dϕ is the mass dimension of ϕ). Scale
symmetry was noticed to play a role in protecting the
electroweak scale [3–6] with classically scale-invariant
extensions of the SM considered in [7–26]. But to address

the mass hierarchy problem, one must go beyond the
classical scale symmetry, since the counterterms are
actually dictated by the quantum symmetry. This could
naturally protect [27] the Higgs mass from large quantum
corrections [28] associated with a high scale hσi of “new
physics”. For studies of quantum scale invariance (broken
spontaneously) and applications to SM, see [29–38].
Our goal is to further study models in which the classical

scale symmetry is extended at the quantum level and is
broken spontaneously.3 In such a theory, all scales are
generated by the fields’ vev’s. Such a theory can predict
ratios of scales (vev’s) only, in terms of ratios of dimen-
sionless couplings. A hierarchy of physical mass scales can
then be generated by a hierarchy of such couplings. The
latter is easier to protect by a symmetry (e.g., an enhanced
Poincaré symmetry [39]) and is more fundamental than a
hierarchy of (dimensionful) physical scales. Indeed, in a
fundamental theory, any physical scale should ultimately be
determined in terms of dimensionless couplings and
fields vev’s.
Since scale symmetry is broken in the real world, we

assume it is broken spontaneously. A flat direction exists,
and the spectrum contains the associated Goldstone boson
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1In the absence of “new physics” below MPlanck and ignoring
gravity, SM has no hierarchy problem.

2TeV-SUSY models have large fine-tuning [1], which cannot
coexist with a good data fit χ2=dof ≈ 1 [2].

3Classical scale symmetry is often broken by quantum calcu-
lations since the UV regulator breaks it explicitly. The classical
flat direction is then lifted, and a light pseudo-Goldstone boson
exists. See, for example, [5]. We do not follow this approach and
implement instead a quantum scale symmetry.
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(dilaton, hereafter σ) beyond the spectrum of the initial
model. The subtraction scale μ (used in loop calculations)
that would break quantum scale symmetry explicitly, is
replaced by the field σ which thus maintains the scale
symmetry at a quantum level and after spontaneous break-
ing generates μ ∼ hσi, see Englert et al. [29]. This gives a
scale-invariant regularization (SR).4

In this paper, we discuss further consequences of the
original idea of Englert et al. [29]. The SR scheme can be
applied to any gauge theory, although we restrict our study
to a scalar theory. We study more quantum effects in this
scheme and stress the role of symmetries. In d ¼ 4, the
hidden sector (of the dilaton σ) is classically decoupled
from the visible sector (of Higgs-like ϕ) by invoking an
enhanced Poincaré symmetry Pv × Ph of these two sectors
[39]. At the quantum level, the manifest scale symmetry of
the action in d ¼ 4 − 2ϵ introduces evanescent couplings
∝ ϵσ̃=hσi of the hidden to the visible sector5 (σ̃: dilaton
fluctuations). The SR scheme is thus reformulated into an
ordinary DR scheme of μ ¼ constant (∝ hσi) plus an
additional field (σ) with an infinite series of evanescent
couplings to the visible sector.
At the quantum level, such evanescent couplings have

physical effects. When these couplings multiply poles of
momentum integrals, they generate new (finite or infinite)
counterterms, all scale invariant. For example, one finds
nonpolynomial operators generated radiatively, such as
ϕ2nþ4=σ2n, n ≥ 1 (but also higher derivative operators sup-
pressed by σ). They can transmit scale symmetry breaking to
the visible sector. Such operators can be understood via their
Taylor expansion about σ ¼ hσi þ σ̃, when they become
polynomial. Scale symmetry acts at the quantum level as an
organizing principle that resums the polynomial ones. We
shall study closer these operators, since they are important at
large ϕ. Because of their presence, the quantum scale
invariant theory is nonrenormalizable.
We compute in a manifest scale invariant way, the

quantum corrections to the scalar potential in a two-loop
order (diagrammatically) and three-loop (via Callan-
Symanzik equation) for a scale-invariant classical theory.
The two-loop (three-loop) potential contains effective
operators as finite (infinite) counterterms, respectively. In
the infrared (IR) decoupling limit of the dilaton (large hσi),
effective operators vanish; one then recovers the effective
potential and trace anomaly of a renormalizable theory (if
classical theory was so) with only classical scale invariance
and explicit scale symmetry breaking (SSB) by DR with
μ ¼ constant. The combined role of quantum scale invari-
ance and enhanced Poincaré symmetry in protecting the
scalar mass at large hσi is also reviewed.

SinceMPlanck breaks scale symmetry, this analysis is valid
for field values well below this scale. One should extend this
study to a Brans-Dicke-Jordan theory of gravity with non-
minimal coupling where the dilaton vev hσi spontaneously
fixes MPlanck. We restrict the analysis to a perturbative
(quantum) scale symmetry. At very high momentum scales,
some couplings (e.g., hypercharge) may become nonpertur-
bative, but such a scale is above MPlanck, where flat space-
time description used here fails anyway.

II. FROM CLASSICAL TO QUANTUM
SCALE INVARIANCE

A. Implementing quantum scale invariance

Consider a classical scale invariant action, e.g., a toy
model or the SM with vanishing Higgs mass parameter,
extended by the dilaton σ. We assume that there is no
classical interaction between the visible sector (of fields ϕj)
and the hidden sector (of dilaton σ). Then

S ¼
Z

d4xLvðϕj; ∂ϕjÞ þ
Z

d4yLhðσ; ∂σÞ: ð1Þ

The action in d ¼ 4 has an enhanced Poincaré symmetry
(Pv × Ph) associated with both sectors, which forbids a
classical coupling λmϕ2

jσ
2. Such a coupling can be naturally

set to λm ¼ 0 and remains so at the quantum level.6

“protected” by this symmetry [39].
Below we work with the canonical dilaton σ related

to the actual Goldstone by σ ¼ hσieτ, so that it transforms
in a “standard” way under scaling while τ transforms with
a shift

x → ρ−1x; σ → ρσ; τ → τ þ ln ρ: ð2Þ

The most general potential for σ allowed by scale invari-
ance in d ¼ 4 is then κ0e4τ ∼ λσσ

4. But Poincaré symmetry
in the dilaton sector demands a flat potential, so λσ ¼ 0
[40]. Demanding spontaneous scale symmetry breaking
hσi ≠ 0 means “we live” along a flat direction. Ultimately
this is a tuning of the cosmological constant and is present
anyway in, e.g., TeV supersymmetry. The details of how σ
acquires a vev are not relevant below.
At the quantum level, it is natural to use the dilaton to

generate dynamically the subtraction scale ∝ hσi in order to
preserve scale symmetry during quantum calculations [29].
We use DR in d ¼ 4 − 2ϵ, then the only possibility dictated
by dimensional arguments7 is

μ ¼ zσ2=ðd−2Þ; ð3Þ
4Versions of this scheme were used in [30–37] (in some cases,

classical Higgs-dilaton mixing was present which concealed the
enhanced Poincaré symmetry and the effects discussed below).

5By evanescent coupling, we understand a coupling that is
nonzero in d ¼ 4 − 2ϵ and is vanishing in d ¼ 4.

6Technically, βλm ∝ λm at two loop [36].
7μ has a mass dimension one, while σ and hσi have a

dimension ðd − 2Þ=2.
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with z is an arbitrary dimensionless parameter (scaling
factor); it keeps track of the vev of σ after SSB. The d ¼ 4
potential VðϕjÞ of the visible sector is then analytically
continued to d ¼ 4 − 2ϵ, into μ2ϵVðϕjÞ. Therefore, the
potential in d ¼ 4 − 2ϵ is actually

Ṽðϕj; σÞ ¼ ½zσ2=ðd−2Þ�4−dVðϕjÞ ð4Þ
and becomes a function of σ.. This ensures the d ¼ 4
couplings remain dimensionless in d ¼ 4 − 2ϵ and can be
used for perturbative calculations. Therefore, the visible
(ϕj) and hidden (σ) sectors have evanescent couplings
dictated by the scale symmetry alone of the (regularized)
action in d ¼ 4 − 2ϵ. To see these couplings, expand (4) in
powers of ϵ (loops) and then in terms of fluctuations σ̃
about the vev hσi of σ,

Ṽðϕj;σÞ¼ μ2ϵ0

�
1þ2ϵ

�
η−

1

2
η2þ1

3
η3þOðη4Þ

�

þ ϵ2
�
2ηþη2−

4

3
η3þOðη4Þ

�
þOðϵ3Þ

�
VðϕjÞ;

ð5Þ

where

μ0 ¼ zhσi 1
1−ϵ; σ ¼ hσi þ σ̃; η ¼ σ̃

hσi : ð6Þ

A scale invariant regularization is then reexpressed as an
ordinary DR schemewith μ ¼ μ0 plus an extra field (σ) with
(infinitely many) evanescent couplings Eq. (5). Since the lhs
is scale invariant, so is the rhs if one does not truncate the
expansion in field fluctuations. In practice, one can still use a
truncated expansion (see below). From Eq. (5), one can read
the new vertices of evanescent interactions ∝ ϵn (n ≥ 1),
between σ̃ and ϕj and the Feynman rules of the scale
invariant quantum theory.8 While these interactions vanish
in d ¼ 4 or in the dilaton decoupling limit (η → 0), at the
loop level have physical effects.
At the quantum level, a coupling proportional to ϵn,

(n ≥ 1) in an amplitude can bring new corrections to it
when multiplying the poles 1=ϵk of the integrals over loop
momenta. One generates finite quantum corrections (if
n ¼ k) or new poles/counterterms (n < k) beyond those of
the theory with μ ¼ constant. If n ¼ k, a scattering ampli-
tude that involves the dilaton depends only on the couplings
of the initial d ¼ 4 theory, without new parameters needed
(counterterm couplings). This can be used to set strong
lower bounds on the scale hσi.
Since the new couplings are suppressed, η ∼ 1=hσi, the

counterterms are higher dimensional. They must however
respect the scale symmetry of the lhs of Eq. (5); one can

then “restore” this symmetry “broken” by working with the
truncation of the rhs expression, by simply replacing
1=hσi → 1=σ in their expression. Therefore, the new
counterterms of the theory are suppressed by powers of
σ and are nonpolynomial in fields; log terms in σ are also
possible, however (see later).
For example, for VðϕÞ ¼ λϕ4=4!, a first counterterm is

found by inserting a single internal line of σ̃ in an
amplitude, which brings a factor (ϵ=hσiÞ2; if this multiplies
a 1=ϵ3 pole from a three-loop momentum integral, it
generates a 1=ϵ pole and a corresponding counterterm
ϕ6=σ2 for the six-point amplitude (ϕ6) [37]. By the same
argument, finite quantum corrections appear at two loops
(if due to dynamics of σ) or even one loop (due to scale
symmetry alone).
Since the theory is scale invariant and so it has no

dimensionful couplings, diagrams that would otherwise be
proportional to masses automatically vanish. Then the only
possibility to construct scale invariant d ¼ 4 counterterms
that are suppressed by powers of σ is to involve appropriate
powers ϕn, n > 4 and higher derivatives of ϕ and σ̃.
Therefore, the new counterterms are found on dimensional
grounds as

X
n;m≥0

amn
∂2nαmþ4

σ2nþm ; α ¼ ϕ; σ; ð7Þ

where the derivatives act in all possible ways in the
numerator. This includes the dilaton-dilaton scattering
ð∂μσÞ4=σ4 (see a-theorem [41]) which emerges at
three loops.
We see that quantum scale-invariant theories are non-

renormalizable [37], unlike their counterpart with μ ¼
constant which is not quantum scale invariant but is
renormalizable (if initial d ¼ 4 action was so). The latter
case is recovered in the limit of a large hσi, when
fluctuations σ̃ decouple, see Eq. (5). This picture also
applies to gauge theories.

B. One-loop potential

Let us first review the quantum corrections to the
potential in a scale invariant toy model at one loop, before
going to higher loops. Consider L below in d ¼ 4 for a
scalar ϕ

L¼ 1

2
ð∂μϕÞ2þ

1

2
ð∂μσÞ2−VðϕÞ; VðϕÞ¼ λ

4!
ϕ4: ð8Þ

In d ¼ 4 − 2ϵ, the potential becomes Ṽ of Eq. (4) with V
above, so ϕ and σ do interact as dictated by the scale
symmetry of analytically continued L. The one-loop
potential is then

8Field-dependent masses and propagators also acquire ϵ shifts,
relevant at loop level.
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V1 ¼ Ṽ −
i
2

Z
ddp
ð2πÞd Tr ln½p

2 − Ṽαβ þ iε�

¼ Ṽ þ 1

4κ

X
s¼ϕ;σ

M̃4
s

�
−1
ϵ

þ ln
M̃2

s

c0

�
;

κ ¼ ð4πÞ2; ð9Þ

where c0 ¼ 4πe3=2−γE . M̃2
s are field-dependent ðmassesÞ2,

eigenvalues of the second derivatives matrix Ṽαβ, with
α; β ¼ ϕ; σ. One eigenvalue M̃4

σ ∝ ϵ2; thus, it cannot
generate counterterms at one loop. Then

V1 ¼ Ṽ þ μ2ϵ
V2
ϕϕ

4κ

�
−
1

ϵ
þ
�
ln

Vϕϕ

ðzσÞ2 −
1

2

��
;

with Vϕϕ ¼ 1

2
λϕ2; ð10Þ

with lnA≡ lnA=ð4πe1−γEÞ. It is important to note that the
factor μ2ϵ is a function of σ [see Eq. (3)] and maintains scale
invariance9 in d ¼ 4 − 2ϵ. Here, we work in the minimal
subtraction scheme (MS). Thus, the (scale-invariant) coun-
terterm is

δL1¼−μ2ϵ
1

4!
δð1Þλ λϕ4 with δð1Þλ ≡Zλ−1¼ 3λ

2κϵ
: ð11Þ

Then the one-loop potential in d ¼ 4 is

U ¼ VðϕÞ þ 1

4κ
V2
ϕϕ

�
ln

Vϕϕ

ðzσÞ2 −
1

2

�
ð12Þ

and is indeed scale invariant. Since dimensionless z keeps
track of the presence of hσi, the one-loop beta function

βð1Þλ is found by demanding the bare coupling λB ¼
μðσÞ2ϵλZλZ−2

ϕ be independent of scaling parameter z,

dλB

d ln z
¼ 0 ⇒ βð1Þλ ¼ dλ

d ln z
¼ 3

κ
λ2; ð13Þ

which is identical to the result for the case μ ¼ constant.10

The Callan-Symanzik (CS) equation for a scale-invariant
theory [33] is easily verified,

dU
d ln z

¼
� ∂
∂ ln zþ βð1Þλ

∂
∂λ

�
U ¼ Oðλ3Þ: ð14Þ

Consider now the limit when the dilaton decouples. For
this, Taylor expand the potential for σ ¼ hσi þ σ̃ where σ̃
are field fluctuations. The result is

U ¼ VðϕÞ þ 1

4κ
V2
ϕϕ

�
ln

Vϕϕ

ðzhσiÞ2 −
1

2

�
þ ΔU; ð15Þ

with

ΔU ¼ 1

4κ
V2
ϕϕ

�
−

σ̃

hσi þ
1

2

σ̃2

hσi2 þ � � �
�
: ð16Þ

For σ̃ ≪ hσi, ΔU ¼ 0, and we recover the Coleman-
Weinberg result of a d ¼ 4 renormalizable theory obtained
in the DR scheme with μ ¼ constant (¼ zhσi), with explicit
SSB. Obviously, the CS equation is still respected. One can
then proceed to impose boundary conditions, to define the
quartic self-coupling at ϕ ¼ hσi: λhσi ¼ ∂4U=∂ϕ4jϕ¼hσi,
as usual.
The analysis is similar if more fields ϕj are present, of

potential VðϕjÞ. The result is found from Eqs. (15) and (16)
by replacing Vϕϕ by the eigenvalues of matrix Vij ¼
∂2V=∂ϕi∂ϕj and summing over them. Again the dilaton
does not contribute directly at one loop, but enforces the
scale invariance of U. The second term in the CS equation
in (14) is now a sum over all quartic couplings in V.
Including fermions and gauge bosons is immediate by
extending the sum over field dependent masses, with
appropriate factors.

C. Two-loop potential

The two-loop correction to the potential of ϕ can be
written as

V2 ¼ Va
2 þ Vb

2 þ Vc
2; ð17Þ

with the diagrams below computed from the background
field method11

ð18Þ

The vertices and propagators in these diagrams receive
evanescent corrections from the dilaton field, as seen from
the background field expansion. We Taylor expand

Ṽðϕþ δϕ; σ þ δσÞ ¼ Ṽðϕ; σÞ þ Ṽαsα þ
1

2
Ṽαβsαsβ

þ 1

3!
Ṽαβγsαsβsγ þ

1

4!
Ṽαβγρsαsβsγsρ

þ � � � ; ð19Þ

where sα ¼ δϕ; δσ are the actual field fluctuations.
The vertices Ṽαβ…¼∂Ṽ=∂α∂β…. (α; β;… ¼ ϕ; σ) contain

9This can also be relevant if one wanted to define and use
instead a nonminimal subtraction scheme.

10Unlike in theories with no dilaton (with explicit SSB by
quantum corrections), βλ ¼ 0 is not a necessary condition for
having scale symmetry in our case here [32,33] since the spectrum
is extended to include a dilaton (spontaneous SSB); thus, a nonzero
βλ does not mean the theory cannot be scale invariant.

11We use the approach of [36] but without a classical coupling
λmϕ

2σ2.
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terms proportional to powers of ϵ, e.g., Ṽϕϕσ ¼
λðϕ2=σÞϵþOðϵ2Þ. The propagators, obtained from
the inverse of the matrix ðp2δαβ − ṼαβÞ, also acquire
ϵ-dependent shifts. We retain all these corrections up to
and including Oðϵ2Þ; these can multiply the poles of the
loop integrals (1=ϵ2 or 1=ϵ) to generate finite quantum
corrections,12 as discussed in Sec. II A. Here, we shall
identify these corrections. One finds

V2 ¼ μ2ϵ
λ3ϕ4

32κ2

�
−

3

ϵ2
þ 2

ϵ
þOðϵ0Þ

�
; ð20Þ

with μ2ϵ a function of σ which ensures the scale invariance
in d ¼ 4 − 2ϵ, see Eq. (3). The counterterm is scale
invariant, and in the MS scheme is given by

δL2 ¼
1

2
ð∂μϕÞ2δð2Þϕ − μ2ϵ

1

4!
λϕ4δð2Þλ ð21Þ

and

δð2Þλ ¼ λ2

κ2

�
9

4ϵ2
−

3

2ϵ

�
; δð2Þϕ ¼ −λ2

24κ2ϵ
: ð22Þ

From these and with the coefficients Zλ ¼ 1þ δλ, Zϕ ¼
1þ δϕ and since λB ¼ μ2ϵλZλZ−2

ϕ , dλB=dðln zÞ ¼ 0, one
obtains the two-loop corrected beta function

βλ ¼
3

κ
λ2 −

17

3κ2
λ3: ð23Þ

βλ is identical to that of the ϕ4 theory with μ ¼ constant (no
dilaton) [42–44]. No new poles (i.e., counterterms) are
generated at two loop beyond those of the theory
with μ ¼ constant.
The two-loop potential we find is

U ¼ λ

4!
ϕ4

�
1þ 3λ

2κ

�
ln

Vϕϕ

ðzσÞ2 −
1

2

�

þ 3λ2

4κ2

�
4þ A0 − 4ln

Vϕϕ

ðzσÞ2 þ 3ln2
Vϕϕ

ðzσÞ2
�

þ 5λ2

κ2
ϕ2

σ2
þ 7λ2

24κ2
ϕ4

σ4

�
; ð24Þ

where13 A0 ¼ −ð8=3Þ ffiffiffi
3

p
Cl2ðπ=3Þ ≈ −4.688 � � �.

Equation (24) is an interesting result. First, U is scale
invariant. The last two terms in U are new, finite two-loop
corrections in the form of nonpolynomial operators
(ϕ6=σ2;ϕ8=σ4; ...) and cannot be removed by a different
subtraction scheme. These terms are independent of the
dimensionless subtraction parameter z and bring

corrections beyond those obtained for μ ¼ constant (of
explicit SSB). Their presence is easily understood in the
light of the discussion in Sec. II A. The field-dependent
masses entering the loop calculation, as eigenvalues of the
second derivative matrix Ṽαβ, contain terms suppressed by
μ2 ∼ σ2, since the sole dependence on σ is Ṽ ∼ σϵ. This
explains the presence of positive powers of σ only in
the denominators of the nonpolynomial terms. Even the
simplest quantum scale invariant theory is then nonrenor-
malizable (unlike the case with μ ¼ constant which is
renormalizable but not quantum scale invariant).
The one-loop terms which are Oðλ=κÞ (for log∼1)

dominate the new two-loop nonpolynomial terms if

λ

κ

ϕn

σn
< 1; n ¼ 2; 4: ð25Þ

The nonpolynomial terms can be larger than the “standard”
two-loop correction; they are comparable in size for ϕ ∼ σ.
Higher loops are expected to generate more such operators
of larger powers and with new couplings (if they are
counterterms14). They are relevant if one is interested in the
stability of the potential at large field values ϕ ∼ hσi. The
nonpolynomial terms vanish in the limit ϕ ≪ σ.
The result in Eq. (24) can be Taylor expanded about the

vev of σ using σ ¼ hσi þ σ̃. Retaining only the leading
term corresponds to decoupling the dilaton. Then

U ¼ λ

4!
ϕ4

�
1þ 3λ

2κ

�
ln

Vϕϕ

hzσi2 −
1

2

�

þ 3λ2

4κ2

�
4þ A0 − 4ln

Vϕϕ

hzσi2 þ 3ln2
Vϕϕ

hzσi2
��

þO
�

1

hσi
�
: ð26Þ

Ignoring Oð1=hσiÞ terms, Eq. (26) is the “standard” two-
loop result obtained for μ ¼ constant (no dilaton, explicit
SSB) in the MS scheme [45], more exactly for μ ¼ zhσi.
The difference between Eqs. (24) and (26) is made of
higher dimensional operators suppressed by large hσi; these
suppressed terms are responsible for maintaining manifest
scale invariance of (24).
The generic form of the Callan-Symanzik equation is [33]

� ∂
∂ ln zþ βλj

∂
∂λj þ ϕγϕ

∂
∂ϕþ σγσ

∂
∂σ

�
Uðϕj; σ; λj; zÞ ¼ 0;

ð27Þ

and we use it to check the result of (24). Here1512New 1=ϵ poles from ðϵ − shiftsÞ × 1=ϵ2 do not emerge here,
unless a classical mixing ϕ − σ exists.

13The Clausen function Cl2 is defined as Cl2½x� ¼
−
R
x
0 dθ ln j2 sin θ=2j.

14This is discussed in the next section.
15At two loop, γϕ is γð2Þϕ ¼ −λ2=ð12κ2Þ, from Eq. (22).
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γϕ ¼ d lnϕ
d ln z

¼ −1
2

d lnZϕ

d ln z
: ð28Þ

To check Eq. (27), first use Eq. (24) to introduce a decom-
position U ¼ V þ Vð1Þ þ Vð2Þ þ Vð2;nÞ to denote the tree
level (V), one loop (Vð1Þ), the “usual” two-loop correction
with μ → zσ (Vð2Þ), and finally, the new finite two-loop
correction (Vð2;nÞ) of the nonpolynomial operators [the sumof
the last two terms in (24)]. Equation (27) is decomposed into
three equations,

∂Vð1Þ

∂ ln z þ βð1Þλ

∂V
∂λ ¼ Oðλ3Þ ð29Þ

∂Vð2Þ

∂ ln z þ
�
βð2Þλ

∂
∂λþ γð2Þϕ ϕ

∂
∂ϕþ γð2Þσ σ

∂
∂σ

�
V þ βð1Þλ

∂Vð1Þ

∂λ
¼ Oðλ4Þ ð30Þ

∂Vð2;nÞ

∂ ln z ¼ Oðλ4Þ; ð31Þ

where βðkÞλ , k ¼ 1; 2; :: denote the k-loop correction to the

beta function of λ (similar for γð2Þϕ;σ). We verified that
Eqs. (29)–(31) are respected. This is a consistency check
of Eq. (24).
The Callan-Symanzik equation is also respected in the

non-scale-invariant case, Eq. (26), where μ ¼ constant
(μ ¼ zhσi, explicit SSB). This is obvious from the above
check because z is tracking exactly this scale, and the
nonpolynomial terms in (24) are z independent.16

D. Three-loop potential

In this section, we use the three-loop Callan-Symanzik
equation for the scalar potential to identify the three-loop
correction to the potential without doing the diagrammatic
calculation. As in the two-loop case, this correction is a sum
of two terms Vð3Þ þ Vð3;nÞ. Vð3Þ is the “usual” three-loop
correction obtained with μ ¼ constant [45,46], but with the
formal replacement μ → zσ; Vð3;nÞ is a new correction that
contains nonpolynomial terms. To find these, we use the
three-loop counterterms for this theory nicely computed
in [37]

δL3 ¼
1

2
δð3Þϕ ð∂μϕÞ2

− μ2ϵ
�
1

4!
δð3Þλ λϕ4 þ 1

6
δð3Þλ6

λ6
ϕ6

σ2
þ 1

8
δð3Þλ8

λ8
ϕ8

σ4

�
: ð32Þ

δL3 is scale invariant in d ¼ 4 − 2ϵ (as it should) because μ
depends on σ, Eq. (3). The terms ϕ6=σ2 and ϕ8=σ4 are
expected since they were present as finite operators at two
loop; also,

δð3Þϕ ¼ −
λ3

4κ3

�
1

6ϵ2
−

1

12ϵ

�
ð33Þ

in the MS scheme, giving γð3Þϕ ¼ λ3=ð16κ3Þ and

δð3Þλ6
¼ 3

2

λ4

λ6κ
3ϵ
; δð3Þλ8

¼ 275

864

λ4

λ8κ
3ϵ
: ð34Þ

With λB6 ¼ μ2ϵðσÞλ6Zλ6Z
−3
ϕ Zσ , etc., and with

ðd=d ln zÞλB6 ¼ 0, we find

βλ6 ¼
λ2λ6
2κ2

þ λ3

κ3

�
9λ −

3

8
λ6

�

βλ8 ¼
2λ2λ8
3κ2

þ λ3

4κ3

�
275

36
λ − 2λ8

�
: ð35Þ

Both beta functions have a two-loop part (hereafter denoted

βð2;nÞλ6;8
∼ 1=κ2) that is absent if λ6;8 ¼ 0 in the classical

Lagrangian, which is our case here17; then the three-loop

part (hereafter βð3;nÞλ6;8
∼ 1=κ3) is induced by λ alone. These

beta functions enter in the CS equations in the presence of
λ6 and λ8, due to their associated counterterms. In their
presence, Eq. (29) is unaffected, but Eq. (30) is modified
such as V is now replaced by

V → V þ ΔV; ΔV ¼ λ6
6

ϕ6

σ2
þ λ8

8

ϕ8

σ4
; ð36Þ

and βð2;nÞλ6;8
are also included in the first term under the big

bracket of (30). Using these and the “new” V above, one
immediately sees that (30) is verified for nonzero λ6;8.
Further, there is a CS equation at order λ4 for

ðVð3Þ þ Vð3;nÞÞ, which we divide into two CS equations,
Eqs. (37) and (40) below. One equation is for the “usual”
correction Vð3Þ and is identical to that obtained for μ ¼
constant (¼ zhσi)
∂Vð3Þ

∂ ln z þ βð1Þλ

∂Vð2Þ

∂λ þ βð2Þλ

∂Vð1Þ

∂λ þ βð3Þλ

∂V
∂λ þ γð2Þϕ

∂Vð1Þ

∂ lnϕ
þ γð3Þϕ

∂V
∂ lnϕ ¼ Oðλ5jÞ: ð37Þ

We integrate (37) to find Vð3Þ up to an unknown
“constant” of integration term ∝ Q

Vð3Þ ¼ λ4ϕ4

κ3

�
Qþ

�
97

128
þ 9

64
A0 þ

ζ½3�
4

�
ln

Vϕϕ

ðzσÞ2

−
31

96
ln2

Vϕϕ

ðzσÞ2 þ
9

64
ln3

Vϕϕ

ðzσÞ2
�
: ð38Þ

16This changes at three loops, see Vð3;nÞ in the next section.

17Otherwise, the terms ϕ6=σ2 and ϕ8=σ4 would have been
counterterms already at two loop, in Eq. (24).
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Q can be read from the “usual” three-loop computation at
μ ¼ constant [45] in the MS scheme,

Q≡ 1

288

�
−1673

8
þ 9

4
A0ðA0 − 4Þ þ 34π4

15
þ 8π2ln22

− 8ln42 − 192Li4

�
1

2

�
þ 72ζ½3�

�
: ð39Þ

A0 is defined after Eq. (24), Li4½x� is the polylogarithm, and
ζ½x� is the Riemann Zeta function.
Finally, there is one last three-loop CS equation, similar

to (31), that involves Vð3;nÞ

∂Vð3;nÞ

∂ ln z þ βð1Þλj

∂Vð2;nÞ

∂λj þ βð3;nÞλj

∂V
∂λj ¼ Oðλ5jÞ;

λj ¼ λ; λ6; λ8; ð40Þ

where βð3;nÞλ denotes possible three-loop corrections beyond

βð3Þλ . Equation (40) is actually a field-dependent condition.
As usual Vð3;nÞ only involves new field operators beyond
Vð3Þ, suppressed by σ, e.g.,ϕ6=σ2, etc. The last term in the lhs
with λj → λ would bring a term ∝ ϕ4 which cannot be
cancelled, being the only one of this structure. Then the only
way to respect the above field-dependent condition is that

βð3;nÞλ ¼ 0. This is also seen from (40) in the decoupling limit
of large hσi. Therefore, the three-loop beta function in the
quantum scale invariant effective theory is just that of the
theory with μ ¼ constant.18,19 We then integrate Eq. (40)
using the replacement ln z → ð−1=2ÞlnðVϕϕ=ðzσÞ2Þ which
fixes the “constant” of integration in a scale invariant way.
We find20

Vð3;nÞ ¼ λ3

2κ3
ϕ4

��
27λ −

λ6
2

�
ϕ2

8σ2
þ
�
401λ

72
− λ8

�
ϕ4

16σ4

�

× ln
Vϕϕ

ðzσÞ2 : ð41Þ

Vð3;nÞ is correct up to a possible additional presence of a scale
invariant z-independent three-loop finite (nonpolynomial)
term ðλ4=κ3Þϕ10=σ6 that cannot be captured by the CS
differential equation but only in the diagrammatic approach.
In the limit of a large field σ and similar to Vð2;nÞ at two loop,
Vð3;nÞ → 0, leaving “usual” Vð3Þ as the sole three-loop
correction to the potential, with only a log dependence on σ.
To conclude, quantum scale invariance demands the

presence of nonpolynomial operators. This symmetry

arranges them in a series expansion in powers of ϕ=σ that
contributes to the scalar potential. Each of these operators is
actually an infinite sum of polynomial operators (in fields),
after a Taylor expansion about σ ¼ hσi þ σ̃. Vð2;nÞ, Vð3;nÞ,
ΔV are relevant for the behavior of the potential at large
ϕ ∼ σ and are suppressed at ϕ ≪ σ.

E. More operators

Having seen the scale invariant nonpolynomial operators
generated at loop level, it is of interest to see their role if they
are included in the action already at classical level, as in

V ¼ λ

4!
ϕ4 þ λ6

6

ϕ6

σ2
þ � � � ; ð42Þ

where we ignore similar higher order terms. The last term
breaks the enhanced Poincaré symmetry (Pv × Ph) only
mildly, since this symmetry is restored at large σ. In a
consistent setup like the Brans-Dicke-Jordan theory of
gravity, this operator suppressed by hσi ∼MPlanck could
mediate gravitational interactions of the two sectors. Such
an operator is also generated when going from the Jordan to
Einstein frame, after a conformal transformation.21

The one-loop computation of the potential proceeds as
before and has three contributions, all scale invariant. First,
there is a one-loop contribution similar to that in Eq. (12)
with Vϕϕ replaced by the (two) field-dependent ðmassesÞ2
which are eigenvalues of the matrix of second derivatives of
V above with respect to ϕ and σ, then sum over these.
A second contribution to the potential exists. The two

field-dependent masses derived from Ṽ of Eq. (4) with V as
above have a correction OðϵÞ induced by λ6; when this
multiplies 1=ϵ of Eq. (9), it generates a finite correction
Vð1;nÞ ∝ λ6 already at one loop

Vð1;nÞ ¼ λ6
6κ

ϕ4

�
4λ

ϕ4

σ4
þ 24λ6

ϕ6

σ6
þ 5λ6

ϕ8

σ8

�
: ð43Þ

Finally, there are also one-loop counterterms, of the form
ðZλp − 1Þλpϕp=ðpσp−4Þ, where p ¼ 6, 8, 10, 12 and where
Zλp ¼ 1þ γλp=ðκϵÞ and γλ6 ¼ 9λ, γλ8 ¼ 56λ6=λ8, γλ10 ¼
20λ26=λ10, γλ12 ¼ 3λ26=λ12. Therefore, the potential has a
third contribution

ΔV ¼
X
p

λp
p

ϕp

σp−4
; p ¼ 6; 8; 10; 12: ð44Þ

Vð1;nÞ and ΔV are similar to Vð2;nÞ, Vð3;nÞ, ΔV found in the
previous section, except that they are generated at one loop,
due to nonzero λ6. The one-loop beta functions of λp are

βð1Þλp
¼ 2

κ
λpγλp ; ð45Þ

18Therefore, we have βð3Þλ ¼ λ4=κ3ð145=8þ 12ζ½3�Þ [42–44].
19This is also consistent with Zσ ¼ 1 at three loops. A three-

loop wave function correction to σ generated by a coupling ϵσϕ4

would then be proportional to ∝ ϵ2 × ð1=ϵ2Þ, so no new poles
emerge in this order.

20“Constants” of integration ϕ6=σ2, ϕ8=σ4, ϕ4 are not allowed,
being “fixed” in (32), [(38), (39) for ϕ4]. 21We ignore here the effect of ϕ on the vev of σ.
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with p as above, and they vanish if λ6 ¼ 0. We checked that
the one-loop CS equation is again verified in the presence
of these operators. For large hσi, dilaton fluctuations are
suppressed and the above corrections to the potential
vanish, to leave the “usual” result (first contribution above),
obtained in the renormalizable theory with μconstant
(¼ zhσi). The generalization to more operators in the
classical action is immediate.

F. Symmetries, regularizations, and mass hierarchy

From the above examples, we see that a combination of
quantum scale invariance and enhanced Poincaré symmetry
[39] of the two sectors can ensure a protection of the mass
corrections to ϕ against a quadratic dependence on the scale
of symmetry breaking hσi (the only UV physical scale
here). No term such as λϕ2σ2 ¼ λhσi2ϕ2 þ � � � was gen-
erated at the quantum level in the potential, with λ the Higgs
self-coupling; if present, this would have required the usual
SM-like fine-tuning of λ. Further, if one introduces a
classical “mixing” coupling λm, with a tree-level term
λmϕ

2σ2 which would break the enhanced Pv × Ph sym-
metry, this would require a tuning of λm (rather than λ) upon
replacing σ → hσi þ σ̃, in order to keep the correction to
the mass of ϕ under control. But such tuning is natural and
needs to be done only once at the classical level, since the
beta function βλm ∼ λm at one loop [22,30,35,39] and two
loops [36]. Further, for large hσi, the nonpolynomial
operators that broke the Pv × Ph symmetry vanish, and
this symmetry and its “protective” role are restored.
Therefore, this protection remains true in the presence of
nonpolynomial operators e.g., λ6 ≠ 0.22

The SR scheme used here is based on the DR scheme
which may be considered unsuitable to capture the quadratic
UV-scale dependence of the scalar ðmassÞ2. It is important to
note, however, that in our approach any scale is generated by
fields vevs after spontaneous SSB. The field dependence
(e.g., counterterms, etc.) of the quantum corrected action is
not affected by the regularization and is actually dictated by
the symmetries of the theory (including scale invariance),
which our SR scheme respects (unlike DR). Therefore, the
dependence of the quantum action on the mass scales
(generated by these fields vev’s) cannot be affected. The
UVbehavior of themass ofϕ, i.e., its dependence on hσi (our
physicalUVscale) is thus not affected by a regularization that
respected all symmetries of the theory.23

III. CONCLUSION

Following the original idea of Englert et al. and using a
perturbative approach, we examined the quantum implica-
tions of a regularization scheme that preserves the scale
invariance of the classical theory. To this purpose, we
demanded that the analytical continuation of the theory to
d ¼ 4 − 2ϵ preserves the scale symmetryof thed ¼ 4 action.
This is possible under the additional presence of a dilaton
field (σ), the Goldstone mode of scale symmetry breaking.
This field is classically decoupled from the visible sector,
following an enhanced Poincaré symmetry of the two
sectors, but there are nevertheless quantum effects.
The scale invariance in d ¼ 4 − 2ϵ and the dilaton it

demands have two main effects:
(a) introduce new “evanescent” interactions (∝ ϵ) which

have quantum consequences;
(b) generate the subtraction scale μ ∼ hσi after sponta-

neous scale symmetry breaking.
As a result, a scale invariant regularization is reformulated
into an ordinary DR scheme of μ ¼ constant (∝ hσi) plus
an additional field (dilaton) with an infinite series of
evanescent couplings to the visible sector. When evanes-
cent interactions multiply the poles of loop integrals, new
quantum corrections (finite or infinite counterterms) are
generated, not present in the quantum version of the same
theory regularized with μ ¼ constant (i.e., no dilaton,
explicit breaking). These corrections, which also include
the log terms in the potential (such as ln σ) are scale
invariant and have effects such as the transmission of scale
symmetry breaking after its spontaneous breaking in the
dilaton (hidden) sector or dilaton-dilaton scattering.
The scalar potential was computed at two loops by direct

calculation and at three loops by integrating its Callan-
Symanzik equation. The result is scale invariant. It contains
new loglike corrections (in the dilaton σ) similar to those
obtained by naively replacing μ → σ in the result obtained
in the “usual” DR scheme with μ ¼ constant. In addition,
depending on the details of the classical theory, scale
invariant nonpolynomial effective operators are also gen-
erated from one or two loops onwards, in a series of the
form ϕ4 × ðϕ=σÞ2n. These operators are important for large
field values ϕ ∼ σ (and can be comparable to “standard” log
terms of the loop corrections); the beta functions of their
couplings were also computed.
These operators are a generic presence and can be

understood via their Taylor series expansion about the
scale hσi ≠ 0 of spontaneous SSB, when they become
polynomial. Scale symmetry acts at the quantum level as an
organizing principle that resums the polynomial ones.
Therefore, maintaining at the quantum level the scale
symmetry of the classical action makes the theory non-
renormalizable. In the decoupling limit of the dilaton, these
operators vanish, and one recovers the quantum result of a
renormalizable theory with explicit SSB (if the classical
theory was renormalizable).

22Since we are using spontaneous SSB and a SR scheme, the
conclusions of [47] do not apply here.

23To appreciate the role of d ¼ 4 enhanced Poincaré symmetry,
consider a different scale-invariant regularization that violates the
Pv × Ph symmetry. For V ¼ λϕ4=4!, use a momentum “cutoff”
regularization: k2 ≤ σ2; σ is a hidden sector field with hσi the scale
of new physics. At one loop, ΔV ∝

R
σ2
0 d4k lnð1þ λϕ2=ð2k2ÞÞ ¼

λϕ2σ2 þ ::. This term (absent in our case) requires the “usual”
order-by-order fine-tuning of a self-coupling λ.
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The role of the quantum scale symmetry and enhanced
Poincaré symmetry in protecting a mass hierarchy m2

ϕ ≪
hσi2 was reviewed. This protection cannot be affected by
working in a regularization ultimately based on a DR
scheme, because all scales and thus hierarchy thereof are
generated by vev’s of the fields present in the quantum
corrected action (after spontaneous SSB); its counter-
terms, i.e., the fields dependence are dictated by the
symmetries of the theory (including scale symmetry)
that our regularization respects (unlike DR), hence the

aforementioned protection. This remains true in the pres-
ence of the nonpolynomial terms (i.e., despite nonrenor-
malizability) since at large hσi the enhanced Poincaré
symmetry is restored. The study can be extended to gauge
theories.
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