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We present a model for Monte Carlo simulation of the fragmentation of a polarized quark. The model is
based on string dynamics and the 3P0 mechanism of quark pair creation at string breaking. The
fragmentation is treated as a recursive process, where the splitting function of the subprocess q → hþ q0

depends on the spin density matrix of the quark q. The 3P0 mechanism is parametrized by a complex mass
parameter μ, the imaginary part of which is responsible for single spin asymmetries. The model has been
implemented in a Monte Carlo program to simulate jets made of pseudoscalar mesons. Results for single
hadron and hadron pair transverse-spin asymmetries are found to be in agreement with experimental data
from SIDIS and eþe− annihilation. The model predictions on the jet-handedness are also discussed.
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I. INTRODUCTION

The fragmentation of quarks into hadron jets is a
nonperturbative QCD process and as such is still poorly
understood theoretically. For this reason many simulation
models based on the recursive splitting process q →
hþ q0 [1,2] have been developed to account for the main
jet properties, prepare high-energy experiments and
analyze their results. The most elaborate one is the
Lund symmetric model (LSM) [3], based on the semi-
classical dynamics of a string or color flux tube. This
model is the basis of the fragmentation part in the event
generator PYTHIA [4], which successfully describes the
experimental data for different scattering processes. Up to
now, however, the available codes of quark fragmentation
do not include the quark spin degree of freedom, at least
in a systematic way, like they do for flavor. In particular
they cannot simulate the Collins effect [5] and the
dihadron transverse-spin asymmetries observed in semi-
inclusive deep inelastic scattering (SIDIS) and in eþe−
annihilation [6]. Progresses toward the inclusion of the
quark spin has been done in Refs. [7–9], where it was
proposed to extend the LSM by assuming that the quark-
antiquark pairs created during string breaking are in the

3P0 state, which means that their spins are parallel and
they have one unit of orbital angular momentum, anti-
parallel to the total spin. The model of Refs. [7–9] is a
quantum version of the classical stringþ 3P0 mechanism
proposed in order to explain the inclusive hyperon
polarization [3] and used to explain the single-spin
asymmetry in p↑þ p → π þ X [10].
The road map proposed in Refs. [7–9] has now been

pursued, and in this paper we give full account of the model
which has been developed and of the program we have
written to simulate the fragmentation of a polarized quark.
The main results obtained will also be given, as well as their
comparison with the data. Preliminary results were pre-
sented in [11,12].
The paper is organised as follows. The theoretical

framework of the recursive model on which the code is
based is summarized in Sec. II. The details of the string
model, first in the spinless case, and then introducing the
spin and the 3P0 model, are spelled out in Sec. III. The
implementation of the model in a Monte Carlo code is the
subject of Sec. IV, while the results of the simulation are
compared with corresponding data from the COMPASS
and BELLE Collaborations in Sec. V. Section VI is
dedicated to the simulation of jet-handness, and our
conclusions are drawn in Sec. VII.
For completeness, we remind that a different model of

polarized quark fragmentation, based on the spin density
matrix formalism within the extended quark-jet framework
of Field and Feynman, has been recently proposed
in Ref. [13].
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II. THE GENERAL RECURSIVE MODEL

We consider the hadronization

qA þ q̄B → h1 þ h2 þ � � � þ hN ð1Þ

occurring in eþe− annihilation or W� decay in two jets. In
SIDIS the antiquark q̄B is replaced by the target remnant
represented by a diquark. This process is supposed to occur
via a quark chain diagram shown in Fig. 1 and modeled as
the set of splittings

qA → h1 þ q2; q2 → h2 þ q3;…

…qr → hr þ qrþ1;…qN → hN þ qB ð2Þ

i.e., as the iteration of the elementary splitting

q → hþ q0 ð3Þ

where the flavor content of the hadron h is qq̄0. The index
r ¼ 1; 2…N in Eq. (2) is the rank of the hadron or of
the splitting quark. The production of baryons is not
included in the present code. In the following k denotes
the 4-momentum of a quark, p that of a hadron. In Eq. (3)
momentum conservation gives p ¼ k − k0. In the recursive
model one assumes that the initial 4-momenta k1 ≡ kA and
kB̄ ≡ −kB are on mass shell and generated beforehand.1 In
the qAq̄B centre-of-mass frame we orient the ẑ axis (named
jet axis) along kA. In SIDIS this axis usually differs from
that defined in the laboratory frame by the virtual photon
momentum, due to the primordial transverse momentum of
the struck quark inside the nucleon. The “light cone”
components of p are p� ¼ p0 � pz and the transverse
ones pT ¼ ðpx; pyÞ (similarly for k and k0). The mass-shell

constraint writes pþp− ¼ m2
h þ pT

2 ≡ ϵ2h, where ϵh is the
hadron transverse energy.
The energy-momentum sharing between h and q0

in Eq. (3) is drawn at random following the splitting
distribution

dNðq → hþ q0Þ ¼ Fq→hþq0 ðZ;pT;kTÞ
dZ
Z

d2pT; ð4Þ

where the longitudinal splitting variable Z ¼ pþ=kþ is
the fraction of forward light cone momentum of q taken
by the hadron h. ðdZ=ZÞd2pT ¼ d3p=p0 is relativistically
invariant.

III. THE STRING+ 3P0 MODEL

A. Review of the spinless string fragmentation model

Hadronization of a quark pair qAq̄B is considered as
successive breakings of a massive string stretching between
qA and q̄B, which we call here a sting. Each breaking
creates a new quark-antiquark pair. A semiclassical treat-
ment of this process leads to a recursive model with a very
specific form of the splitting function. We will start with the
simple classical ð1þ 1ÞD yoyo model [14] where the
created quarks have no mass, no spin and no transverse
momentum. Then the complexity will be increased step by
step by introducing masses, transverse momenta and spin.

1. The ð1+ 1ÞD yoyo model

In this model everything occurs in the ðt; zÞ hyperplane.
One assumes that the sting has a uniform probability Pdzdt
to break in the space-time area dzdt. From the quantum
point of view, the “string fragility” P is taken into account
by adding an imaginary part −iℏP=2 to the string tension
κ ≃ 1 GeV=fermi [15–17]. The complex string tension
κC ¼ κ − iℏP=2 is analogous to the complex mass
m − iℏγ=2 of an unstable particle. The decay products
are small strings which oscillate like yoyos. Figure 2 shows
the corresponding space-time history. The string world
sheet (hatched domain) is bordered by quark world lines.
The breaking points Q2;Q3; � � �QN , completed by the
return points Q1 and QNþ1, form an a-causal chain, i.e.,
the 2-D vector QrQs is spacelike. The one-point breaking
density in the ðt; zÞ plane is

dN=d2Q ¼ P expð−POQ2=2Þ: ð5Þ

The exponential is the probability that no string breaking
occurred in the past light cone of Q.
Breaking at Qr creates a quark pair fqrq̄rg. qr and q̄rþ1

meet at point Hr to form the yoyo hr, which represents
a stable hadron or a resonance, depending on its mass. Its
2-momentum pr is given by

p̌r ¼ κQrþ1Qr; ð6Þ

FIG. 1. Left: multiperipheral diagram. Right: the associated
momentum diagram.

1This is a classical approximation: considering Fig. 1 as a loop
diagram, kA is an internal momentum. The cross section is then of
the form

R
d4kAAðkA; � � �Þ

R
d4k0AA

�ðk0A; � � �Þ with kA and k0A
being generally different and off mass shell.
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where the “check” symbol means interchanging the time
and z components, i.e., v̌ ¼ ðvz; v0Þ for any vector
v ¼ ðv0; vzÞ. In principle, a yoyo hr can further break,
simulating the decay of a resonance. However one limits
the model to the production of these “primary” hadrons. It
already reproduces salient properties of the hadronic final
states: two back-to-back jets, Feynman scaling, charge
retention effect and rapidity plateau. A weak point of the
model is its fully continuous mass spectrum starting
at m ¼ 0.

Recursive treatment.—In the “Pz ¼ −∞” frame, or using
X− ¼ t − z as time variable, the hadron emission points
H1; � � �HN are ordered in time according to their ranks
in Eq. (2). This allows to treat the sting decay as a recursive
quark fragmentation, identifying qr of the qrq̄r pair
with qr of Eq. (2). In the string picture the 4-momentum
conservation kr ¼ pr þ krþ1 applies to the canonical
momentum of the quark, given by

ǩcanr ¼ ðkzr; k0rÞ ¼ κOQr: ð7Þ

At any point q of the rth quark trajectory we have

kcanr ¼ kmec
r þ kstringr ; ð8Þ

where kmec
r , given by ǩmec

r ¼ κqQr, is the mechanical
momentum of the quark (see Fig. 3). It is on-mass-shell,
but varying along the quark line. kstringr is the momentum
flow, from right to left, of the string through Oq and plays
the role of a linear 2-potential. It is given by ǩstringr ¼ κOq.
Any recursive model can be uniquely defined by the

double density of consecutive quarks in momentum space.
In the ð1þ 1ÞD yoyo model it is

dNq0q

d2k0d2k
¼ ð2bLÞ2 expð−bLjkþk0−jÞ ð9Þ

with bL ¼ P=ð2κ2Þ and k≡ kcan. Note that kþ > 0 and
k− < 0 for all quarks, except for k−A ¼ kþB ¼ 0. The

exponential factor is the probability that no string breaking
occurs in the past light cone of H, as shown in the right
picture of Fig. 4.
From Eq. (9) we obtain the single quark density

dNq=d2k ¼ 2bL expð−bLjkþk−jÞ; ð10Þ

equivalent to Eq. (5), and the splitting function

dNq→hþq0

d2k
¼

�
dNq0q

d2k0d2k

��
dNq

d2k

�
−1

¼ 2bL expð−bLm2
h=ZÞ: ð11Þ

Multiperipheral feature.—The ð1þ 1ÞD yoyo model can
be cast in the form of a multiperipheral model with quark
exchanges,2 as pictured in Fig. 1. In Fig. 4 a vertex is
represented both in the string and in the multiperipheral
picture. The squared vertex function is

jVðk0; kÞj2 ¼ dNq0q=ðd2k0d2kÞ ð12Þ

and the squared propagator

FIG. 2. Space-time history of the string fragmentation. It
corresponds to the multiperipheral diagram shown in Fig. 1.

FIG. 3. Pictorial representation of the canonical and mechanical
momenta. The symbol ˇ represents the symmetry of the vector
with respect to the Xþ axis.

FIG. 4. Representation of the emission vertex of a hadron h in
the string fragmentation picture (right) and in the multiperipheral
picture (left).

2A connection between a QCD multiperipheral model and the
string fragmentation model is also discussed in Ref. [18].
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jDðkÞj2 ¼ ðdNq=d2kÞ−1: ð13Þ

Equation (10) insures the cutoff in the quark virtual-
ity −k2 ¼ jkþk−j.

2. Introducing transverse momenta
and actual hadron masses: The Lund
symmetric splitting function (LSSF)

Classically, string breaking can only create massless
quarks with zero transverse momenta. To overcome this
limitation one assumes that quarks pairs are created by a
tunneling mechanism analogue to the Schwinger mecha-
nism of eþe− pair creation in a strong electric field. The
quark and the antiquark of the rth pair have then opposite
transverse momenta, krT and −krT, which are absorbed by
hadrons hr and hr−1. Figure 2 is then an approximate
classical picture, a pointQr representing only the middle of
a tunneling path as shown more in detail in Fig. 5. Giving to
the hadrons their actual masses and using the principle of
“left-right” symmetry or “quark line reversal” (hereafter
referred to as “LR symmetry”), the authors of [3] came to
the Lund symmetric splitting function (LSSF),

Fq→hþq0 ðp; kÞ ¼ expð−bLϵ2h=ZÞ
× ð1=Z − 1Þaq0 ðZ=ϵ2hÞaq
× wq0;h;qðk02

T;pT
2;kT

2Þ=uqðkT
2Þ: ð14Þ

The inputs of the model are the parameters aq and the
function wq0;h;qðk02

T;p
2
T;k

2
TÞ, which depends on the quark

flavors q and q0, the hadron species h and the transverse
momenta. In the most general model aq ≡ aqðk2

TÞ. The
function uqðk2

TÞ is a normalizing factor. For LR symmetry
w must be symmetrical under fq;k2

Tg⇌fq0;k02
Tg together

with h⇌h̄.
Like the ð1þ 1ÞD yoyo model, the Lund symmetric

model can be cast in a multiperipheral form represented in
Fig. 1. Equations (9)–(13) for the quark densities, the
vertex, the propagators and the splitting function become

dNq0hq

d4k0d4k
¼ 2δðp2 −m2

hÞjVq0hqðk0; kÞj2; ð15Þ

jVq0hqðk0; kÞj2 ¼ ðk0þ=pþÞaq0 expð−bLjk0−kþjÞ
×jk−=p−jaqwq0;h;qðk02

T;p
2
T;k

2
TÞ; ð16Þ

jDqðkÞj−2 ¼ UqðkÞ≡ dNq=d4k; ð17Þ

UqðkÞ ¼ uqðk2
TÞ exp ð−bLjkþk−jÞjkþk−jaq ; ð18Þ

uqðk2
TÞ ¼

X
h

Z
d2k0

Twq0;h;qðk02
T;p

2
T;k

2
TÞ

Z
dZ
Z

×ðZ=ϵ2hÞaqð1=Z − 1Þaq0 expð−bLϵ2h=ZÞ; ð19Þ

dNq0hq=d4k0d4k
dNq=d4k

¼ 2δðp2 −m2
hÞFq→hþq0 ðp; kÞ; ð20Þ

where F is given by Eq. (14). wq0;h;q is normalized such that
any timelike curve passing by O in Fig. 2 is crossed by one
and only oneQQ0 segment. The power-law factors lead to a
multi-Regge behavior for large rapidity gaps [15]. In a
semiclassical approach, the quantum actions of the quarks
produce such factors, with aqðk2

TÞ ¼ αout − bLðm2
q þ k2

TÞ
[8]. Note that the vertex and the propagator are not invariant
under the full Lorentz group, but under the subgroup
generated by

(a) the rotations about ẑ,
(b) the Lorentz boosts along ẑ,
(c) the reflection about any plane containing ẑ.
Indeed, the string axis defines a privileged direction

of space.
We take w of the form

w ¼ jCq0;h;qǧðϵ2hÞfTðk02
TÞfTðk2

TÞj2: ð21Þ

Cq0;h;q is proportional to the ðq̄0qÞ wave function in flavor
space. It acts upon the hadron species distribution. fTðk2

TÞ
is a fast decreasing function of k2

T (e.g., a Gaussian). ǧðϵ2hÞ
acts upon the correlation3 between kT and k0

T, since
ϵ2h ¼ m2

h þ ðkT − k0
TÞ2. For ǧðϵ2hÞ ¼ 1 one obtains hkT ·

k0
Ti > 0 due to the factor expð−bLϵ2h=ZÞ in Eq. (14). In

PYTHIA, such a correlation is absent, due to the particular
choice ǧ2ðϵ2hÞ ¼ 1=Naðϵ2hÞ with

Naðϵ2hÞ ¼
Z

1

0

dZ
Z

�
1 − Z
ϵ2h

�
a
expð−bLϵ2h=ZÞ ð22Þ

where aqðk2
TÞ ¼ a is taken flavor- and k2

T- independent.

FIG. 5. Tunneling process of a qrq̄r pair.

3Such correlations are present in the standard multiperipheral
model, where hk0

Ti ¼ ð1 − ZÞkT [19].
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B. The classical string+ 3P0 mechanism

One assumes that the string breaking, in which a qrq̄r
pair is created (r is the rank of the splitting), occurs via a
tunnel effect and that, at the end of this process, qr and q̄r
are on the string axis (the z axis), with transverse momenta
krT and −krT respectively, zero longitudinal momenta, and
separated by the vector

dr ≡ rqr − rq̄r ¼ −2ẑðm2
qr þ k2

rTÞ1=2=κ: ð23Þ

The string between qr and q̄r has been “eaten” by the pair.
The modulus of dr is fixed by energy conservation and its
orientation is that of the initial color flux, i.e., from qA to
q̄B. The quark pair has a relative orbital momentum

Lr ¼ dr × krT: ð24Þ

One furthermore assumes that the qrq̄r pair is in the 3P0

state (which possesses the quantum numbers of the
vacuum). In such a state the spins are parallel and opposite
to Lr:

hsqr · sq̄ri > 0; hsqr ·Lri < 0; hsq̄r ·Lri < 0: ð25Þ

It follows from (23), (24), and (25) that the polarizations of
qr and q̄r are correlated to their transverse momenta:

hkrT × sqri · ẑ > 0; hkrT × sq̄ri · ẑ > 0: ð26Þ

Besides (25), which correlates sqr and sq̄r , there is a
correlations between sqr and sq̄rþ1

coming from the internal
wave function of the meson hr. In particular, if hr is a
pseudoscalar meson (π, K, η or η0),

hsqr · sq̄rþ1
i < 0; ð27Þ

as required by the 1S0 internal wave function.

Figure 6 depicts the spin and kT correlations in the
recursive decay of the sting when only pseudoscalar
mesons are emitted and assuming that qA is polarized
along þŷ (as represented by an counterclockwise arrow).
According to (25) and (27), q2 and q̄2 are both polarized
along −ŷ (clockwise arrow) and their relative orbital
momentum L2 is along þŷ (counterclockwise arrow).
Then q̄2 and q2 move respectively in the þx̂ and −x̂
directions, in accordance with (26). The transverse momen-
tum −k2T of q̄2, which is toward þx̂, is absorbed by h1,
resulting in a Collins effect with hp1;xi > 0, more generally
hp1T × SA;Ti · ẑ > 0.

C. Quantum treatment of the quark spin

We encode the quark spin degree of freedom with
Pauli spinors and, using the multiperipheral approach,
transform the vertex function V and the propagator D of
Eqs. (16)–(17) into 2 × 2 matrices acting on quark spin.
w, u and the quark density U of Eqs. (16)–(19) become
density matrices (Hermitian and semipositive definite) in
spin space. Full Lorentz invariance would require the use
of Dirac spinors, but Pauli spinors are sufficient to satisfy
the invariance under the above mentioned subgroup. Note
that it does not take into account the whole spin
information (2 q-bits) carried by an off-mass-shell
Dirac particle.

1. General formalism

We first consider a general mutiperipheral model, not
necessarily combined with the string model. The amplitude
for reaction (1) is

hSBjMðqAq̄B → h1h2…hNÞjSAi
¼ hSBjDðqBÞVðqB; hN; qNÞDðqNÞ � � �
� � �Vðq3; h2; q2ÞDðq2ÞVðq2; h1; qAÞDðqAÞjSAi: ð28Þ

To save place, the gothic letters gather several variables: for
a quark q ¼ fq; kg, where q is the flavor; for a hadron
h ¼ fh; p; shg, where h is the hadron species and jshi
belongs to an adopted spin basis (e.g., helicity basis). Thus,
DðqÞ≡Dðq; kÞ and Vðq0; h; qÞ≡ Vq0;h;sh;qðk0; kÞ. jSi is the
Pauli spinor of polarization S ¼ ðST; SLÞ, with T and L
referring to the transverse and longitudinal polarizations of
the quark respectively. jSBi is related to the polarization SB̄
of the antiquark q̄B by

jSBi ¼ −σzj − SB̄i; ð29Þ

which is the analog of the Dirac spinor vðk;SÞ ¼
−γ5uðk;−SÞ of an antiparticle.
The functions DðqÞ and Vðq0; h; qÞ may be chosen as

input of the model. However they can be “renormalized” by
the transformation

(a)

(b)

FIG. 6. Classical stringþ 3P0 mechanism of Collins effect.
(a) Elementary mechanism. (b) Iteration in the emission of
pseudoscalar mesons.
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DðqÞ → ΛLðqÞDðqÞΛRðqÞ;
Vðq0; h; qÞ → Λ−1

R ðq0ÞVðq0; h; qÞΛ−1
L ðqÞ ð30Þ

without changing the physical result, so different inputs
lead to the same model. Here we use the “renormalized
input” method of [9], where the 4 × 4 matrix

hjj0jN ðq0; h; qÞjii0i ¼ 2δðp2 −m2Þhjj0jV†
ptjhihhjVptjii0i

ð31Þ

is the density operator of pairs of consecutive quarks. i, j
label the spin states for q and i0, j0 label the spin states for
q0. In Eq. (31) we have introduced the partially transposed
matrix

hhjVptjii0i≡ hi0jVðq0; h; qÞjii: ð32Þ

Equation (31) generalizes Eq. (15). In fact N is a density
matrix in spin space but a classical density in momentum
space, since we still treat momenta classically (see foot-
note 1). The single-quark density operator, generalizing
Eq. (17), is

1

DðqÞD†ðqÞ ¼ UðqÞ ¼
X
h;sh

Z
d3p
p0

V†ðq0; h; qÞVðq0; h; qÞ:

ð33Þ

Invariance under reflection about the ðx; zÞ or ðy; zÞ plane
requires

UðqÞ ¼ U0ðqÞ þ U1ðqÞσ · ñðkÞ;
DðqÞ ¼ D0ðqÞ þD1ðqÞσ · ñðkÞ: ð34Þ

where ñðkÞ≡ ẑ × kT=jkTj. U is Hermitian and semipos-
itive definite: U0ðqÞ and U1ðqÞ are real with U0ðqÞ ≥
jU1ðqÞj. We assume the strict inequality so that a solution
of Eq. (33) for DðqÞ exists. DðqÞ is not uniquely deter-
mined by Eqs. (33) and (34) but, using the “renormaliza-
tion” (30), we can take the positive definite solution
DðqÞ ¼ U−1=2 without loss of generality.
Introducing the splitting matrix

Tðq0; h; qÞ≡ Vðq0; h; qÞDðqÞ; ð35Þ

the polarized splitting function to be used in Eq. (4)
becomes

Fq0;h;qðZ;pT;kTÞ ¼ Tr½Tðq0; h; qÞρðqÞT†ðq0; h; qÞ�: ð36Þ

where ρðqÞ ¼ ð1þ Sq · σÞ=2 is the spin density matrix of
quark q, normalized to unit trace. F obeys the normaliza-
tion condition

X
h;sh

Z
d3p
p0

Fq0;h;qðZ;pT;kTÞ ¼ 1: ð37Þ

From the practical point of view Eq. (36) is used to draw
the species h, the spin state sh and the momentum p of
hadron h.
The spin density matrix of the left-over quark q0 is

ρðq0Þ ¼ ½Tðq0; h; qÞρðqÞT†ðq0; h; qÞ�=Tr½idem�: ð38Þ

Thus Eqs. (36) and (38) are the basis for the recursive
generation of a polarized quark jet.

2. Combination with the string model

For the vertex V we take

Vðq0; h; qÞ ¼ ðk0þ=pþÞaq0=2 expð−bLjk0−kþj=2Þ
× jk−=p−jaq=2gðq0; h; qÞ; ð39Þ

which generalizes Eq. (16). gðq0; h; qÞ ¼ gq0;h;sh;qðk0
T;kTÞ

is a 2 × 2 matrix acting on quark spin. It also contains the
flavor and kT dependence of V.4

Factorizing the quark propagator as

DðqÞ ¼ jk−kþj−aq=2 expðbLjk−kþj=2ÞdqðkTÞ; ð40Þ

then Eq. (33) becomes

½dqðkTÞd†qðkTÞ�−1 ¼ uqðkTÞ; ð41Þ

where we have defined

uqðkTÞ ¼
X
h

X
sh

Z
d2k0

Tg
†ðq0; h; qÞgðq0; h; qÞ

×
Z

1

0

dZ
Z

�
1 − Z
Z

�
aq0
�
Z
ϵ2h

�
aq
expð−bLϵ2h=ZÞ:

ð42Þ

The term w of Eq. (19) has been replaced by the matrix
product g†g.

Particular choices of aq and gðq0; h; qÞ.—We take aq ¼
aq0 ¼ a ¼ constant and gðq0; h; qÞ of the form

gðq0; h; qÞ ¼ Cq0h;qǧðϵ2hÞ
× Δq0 ðk0

TÞΓh;shðk0
T;kTÞΔqðkTÞ; ð43Þ

4We omitted a spin-independent phase factor coming from the
string action. Indeed, the recursive model is based on the ladder
approximation of the multiperipheral model. In this approxima-
tion the spin independent phases of the amplitudes are irrelevant.
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with

ΔqðkTÞ ¼ ðμq þ σzσ · kTÞfTðk2
TÞ: ð44Þ

This procedure allows to generalize Eq. (21) when the
quark spin is taken into account. The term μq þ σzσ · kT is
the 2 × 2 analogue of the numerator mq þ γ · k of the
Feynman propagator. The function fT provides the cutoff in
kT. Inspired by the Schwinger mechanism, we take the
gaussian fTðk2

TÞ ¼ expð−bTk2
T=2Þ with bT a free param-

eter. μq is a complex parameter having the dimension of a
mass. With ImðμqÞ > 0, the factor μq þ σzσ · kT, intro-
duced in [7], reproduces the classical stringþ 3P0 mecha-
nism. Γ is a 2 × 2 matrix which depends on kT and k0

T at
most as a polynomial. In Eq. (54) and in the next sections
we will restrict ourselves to pseudo scalar mesons and, to
zero order in kT and k0

T, we will take

Γh ¼ σz ð45Þ
which is the analogue of γ5. In Ref. [12] the slightly
different choice Γh;shðk0

T;kTÞ ¼ μσz þ σ · pT and Δ ¼
expð−bTk2

T=2Þ was made. It gives practically the same
result. Vector and axial mesons can also be introduced as
shown in Ref. [7].
Using Eq. (43) we can rewrite Eq. (42) as

uqðkTÞ ¼ Δ†
qðkTÞûqðkTÞΔqðkTÞ; ð46Þ

ûqðkTÞ ¼
X
h

jCq0;h;qj2
Z

d2k0
Tǧ

2ðϵ2hÞNaðϵ2hÞ

×
X
sh

Γ†
h;sh

Δ†
q0 ðk0

TÞΔq0 ðk0
TÞΓh;sh ð47Þ

≡û0ðk2
TÞ þ û1ðk2

TÞσ · ñðkÞ; ð48Þ
with û0 > jû1j. Naðϵ2hÞ is given by Eq. (22). As solution of
Eq. (41), we take

dqðkTÞ ¼ Δ−1
q ðkTÞû−1=2q ðkTÞ: ð49Þ

The spitting matrix [(35)] takes the explicit form

T ¼ Cq0;h;qǧðϵ2hÞΔq0 ðk0
TÞΓh;sh û

−1=2
q ðk2

TÞ
× ½ð1 − ZÞ=ϵ2h�a=2 exp½−bLϵ2h=ð2ZÞ�; ð50Þ

to be used in the algorithm described after Eq. (37). ûqðk2
TÞ

has to be calculated beforehand.

Particular choices of ǧðϵ2hÞ.—As in the spinless case, this
function acts upon the spin-independent ðkT;k0

TÞ correla-
tion which adds to the one mediated by the quark spin. Let
us give four examples:
(a) ǧðϵ2hÞ ¼ ðϵ2hÞa=2,
(b) ǧðϵ2hÞ ¼ ðϵ2hÞa=2ecbLϵ

2
h=2, with c ≤ 1,

(c) ǧðϵ2hÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Naðϵ2hÞ

p
,

(d) ǧðϵ2hÞ ¼ ecbLϵ
2
h=2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Naðϵ2hÞ

p
, with c ≤ 0.

Choice (a) favors kT · k0
T > 0. In choice (b) this correlation

is reinforced for c < 0 and weakened for c > 0. Choice
(c) suppresses it, like in PYTHIA or in the simplified model
of [7]. In choice (d) the factor ecbLϵ

2
h=2 restores it.

D. The polarized q → h+ q0 splitting function
according to the 3P0 mechanism

We take ǧðϵ2hÞ ¼ ðϵ2hÞa=2, fTðk2
TÞ ¼ e−bTk

2
T=2 and a

unique complex mass parameter for all quark flavors,
i.e., μq ≡ μ ¼ ðReμ; ImμÞ. With our choice of ǧ two
successive quark transverse momenta kT and k0

T are
correlated. Gathering Eqs. (36), (44), and (50) we obtain
the polarized splitting function to be used in (4)

Fq0;h;qðZ;pT;kTÞ ¼ jCq0;h;qj2½ð1 − ZÞ=ϵ2h�a
× expð−bLϵ2h=Z − bTk02

TÞ
× Tr½ðμþ σzσ · k0

TÞΓhρ̂intðqÞ
× Γ†

hðμ� þ σ · k0
TσzÞ� ð51Þ

with

ρ̂intðqÞ ¼ û−1=2q ðkTÞρðqÞû−1=2q ðkTÞ: ð52Þ

The free parameters a and bL play the same role as a and b
in the PYTHIA event generator. They govern the suppres-
sions of F at large and small Z respectively. The parameter
bT is linked to the spread of the quark transverse momenta
produced at the string cutting points. ρ̂intðqÞ is an inter-
mediate density matrix which we have not normalized. The
corresponding polarization vector is

Sint ¼ Tr½ρ̂intσ�=Trρ̂int: ð53Þ

Working out the trace operations in Eq. (51) with
Γh ¼ σz, the splitting function is explicitly given by

Fq0;h;qðZ;pT;kTÞ ∝ ð1 − ZÞa exp ð−bLm2
h=ZÞ

× exp ð−bTξðZÞk2
TÞ exp

×

�
−

bL
ZξðZÞ ðk

0
T − ξðZÞkTÞ2

�

× ½jμj2 þ k02
T − 2ImðμÞSint · k̃0

T� ð54Þ

where k0
T ¼ kT − pT and ξðZÞ≡ bL=ðbL þ ZbTÞ. The

tilde denotes the “dual” of a transverse vector, for instance
p̃T ¼ ẑ × pT. The vector Sint is the polarization vector of
the intermediate spin matrix ρ̂intðqÞ given in Eq. (53).
Finally, using Eqs. (38) and (50), the spin density matrix

ρðq0Þ of the quark q0 is calculated as
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ρðq0Þ ¼ ðμþ σzσ · kTÞΓh;sh ρ̂intðqÞΓ†
h;sh

ðμ� − σzσ · kTÞ
TrðidemÞ :

ð55Þ

IV. MONTE CARLO IMPLEMENTATION

In this section we describe the simulation code handling
the fragmentation of a polarized quark into pseudoscalar
mesons (π, K, η0 and η0). It is a stand alone program not yet
interfaced with existing event generators. Presently, the
flavor and the spin density matrix ρðqAÞ of the fragmenting
quark qA are chosen at the beginning of the simulation. The
initial quark energy can either be fixed or chosen event by
event reading the values from an external file. The output
consists in a file with the relevant information on all the
hadrons generated in the fragmentation, later on analyzed
to obtain the azimuthal angle distributions and the analyz-
ing powers.

A. The Monte Carlo program structure

A preliminary task, before starting the generation of the
events, is to calculate ûqðkTÞ from Eqs. (47) and (44), then
û−1=2q ðkTÞ and tabulate its values.
The initial kinematics for lepton-proton DIS is defined

event by event according to the hard subprocess lþ q0 →
l0 þ qA. We consider the center of mass frame of the system
composed by the virtual photon and the target proton. We
orient the z axis along the virtual photon momentum and
consider first the case where qA has no primordial trans-
verse momentum kTprim. This reference frame coincides
also with the center of mass frame of the final hadronic
system whose light cone momenta P� are defined by

Pþ ¼ P− ¼ W ð56Þ
where W2 ¼ PþP− ¼ ð1=xB − 1ÞQ2 þM2 is the squared
invariant energy available for the fragmentation process.M
is the target proton mass. Thus the reservoir of forward and
backward light cone momenta is fixed for each event by the
values of xB and Q2 taken from samples of real events.
For the eþe− annihilations, W coincides with the center

of mass energy and it is the same for all the events of a
simulation.
In our reference frame the quark qA travels along the

forward light cone and one can identify kþA ≡ Pþ (implying
kþB̄ ¼ 0). We only consider the fragmentation of this initial
quark and neglect the jet initiated by q̄B, which in the DIS
case is a diquark and travels along the backward light cone
with momentum k−B̄ ≡ P− (implying k−A ¼ 0).
We simulate the splitting process q → hþ q0 recursively,

starting with q ¼ qA, following the steps:
(1) generate a new q0q̄0 pair
(2) form h ¼ qq̄0 and identify the type (π; K; η0 or η0) of

the pseudoscalar meson

(3) generate Z according to the pT-integrated splitting
function and calculate pþ ¼ Zkþ

(4) generate pT according to the splitting function
at the generated Z and calculate k0

T ¼ kT − pT
(for qA, kT ¼ 0)

(5) calculate p− imposing the mass shell condition
pþp− ¼ m2

h þ pT
2

(6) test the exit condition: if it is not satisfied continue to
step 7, otherwise the current hadron is removed and
the decay chain ends

(7) calculate the hadron four-momentum and store it
(8) calculate the spin density matrix of quark q0 using

Eq. (55) with Γh ¼ σz and come back to step 1.
We iterate steps 1–8 until the exit condition, described

below, is satisfied. More details on the different steps are
given in the following.
(a) Quark flavorandhadron typegeneration (steps1and2).

In step 1 the generation of s quarks is suppressed with
respect to u or d quarks, by choosing the flavor with
probabilities PðuūÞ∶Pðdd̄Þ∶Pðss̄Þ ¼ 3=7∶3=7∶1=7.
The meson identification at step 2 uses the isospin

wave function and also suppresses the η0 meson pro-
duction with respect to π0 to account for their mass
difference. We have chosen Nðη0Þ=Nðπ0Þ ≃ 0.57 as
suggested in Ref. [1].

(b) Exit condition (step 6). After the rth splitting, the
4-momentum of the remaining string is Prem;rþ1 ¼
kB̄ þ krþ1. Then

Pþ
remðrþ1Þ ¼ Pþ

remðrÞ − pþ
r ; ð57Þ

P−
remðrþ1Þ ¼ P−

remðrÞ − ϵ2hr=p
þ
r ; ð58Þ

PT;rþ1 ¼ PT;r − pT;rþ1: ð59Þ

The remaining squared energy to be used in the genera-
tion of the next hadrons is W2

rþ1¼Pþ
remðrþ1ÞP

−
remðrþ1Þ−

P2
T;rþ1. If the last hadron is generated with a very small

value of Z, P−
remðrþ1Þ can become negative. In this case

the last hadron is rejected and a new one is tried.
IfW2

rþ1 falls below a givenmassM2
R the chain terminates

and the last hadron generated is erased (exit condition at
step 6). We take MR ¼ 1.5 GeV=c2 in order to leave
enough energy for the production of one baryon, which
is not simulated. The observables investigated here
are not sensitive to this value.

(c) Recursive splitting (steps 3 and 4). The energy-
momentum sharing in the splitting qðkT; kþÞ →
hðpT; ZkþÞ þ q0ðk0

T; ð1 − ZÞkþÞ is performed using
the splitting function given in Eq. (54). The differential
probability to produce a hadron with light cone
momentum fraction Z is given by the integral of the
splitting function over pT and writes
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dZξðZÞð1 − ZÞa exp
�
−
bLm2

h

Z
− bTξðZÞk2

T

�

×

�
jμj2 þ ZξðZÞ

bL
þ ξðZÞ2k2

T − 2ImðμÞξðZÞSint · k̃T

�
:

ð60Þ

The choice of the values of the parameters a, bL, bT
and μ entering Eq. (60) will be discussed in the next
section. The terms which affect mostly the distribution
of Z are
(i) the parameter a which suppresses large values

of Z by a power law
(ii) the exponential exp ð−bLm2

h=Z − bTξðZÞk2
TÞ

which depends on mh and on k2
T. This shifts

Z toward larger values when k2
T is large.

To be more precise, the first rank hadron h1 is
generated in the splitting qAð0T; kþAÞ → h1ðp1T; Z1k

þ
AÞ þ

q2ðk2T; ð1 − Z1ÞkþAÞ, hence Z1 is drawn according to
Eq. (60) with vanishing kT and only the mass mh enters
the exponential. At the next step the hadron of rank two h2
is generated in the splitting q2ðk2T; k

þ
2 Þ → h2ðp2T; Z2k

þ
2 Þþ

q3ðk3T; ð1 − Z2Þkþ2 Þ, therefore Z2 is shifted towards larger
values with respect to Z1 because now in Eq. (60) enters a
not vanishing k2

2T. At this point the splitting of q3 is similar
to that of q2 and no differences are expected for hadrons of
rank two or higher.
After the generation of Z we draw pT according to the

differential probability

d2pT exp

�
−

bL
ZξðZÞ ðk

0
T − ξðZÞkTÞ2

�

× ½jμj2 þ k02
T − 2ImðμÞSint · k̃0

T� ð61Þ

where kT is fixed from the previous hadron generation. For
ImðμÞ > 0, the Sint · k̃

0
T term of Eq. (61) pushes k0

T in the
direction of ẑ × Sint and contributes to the Collins effect
through pT ¼ kT − k0

T. This reproduces the classical 3P0

mechanism. An other consequence of the stringþ 3P0

mechanism is the spin-mediated correlation between kT
and k0

T, which is negative for pseudoscalar meson emis-
sion, as can be seen in Fig. 6 between k2T and k3T. On the
other hand, the exponential factor in Eq. (61) naively forces
the relation pT ∼ ð1 − ξðZÞÞkT and since 0 < ξðZÞ < 1 for
every value of Z, the effect is that the transverse momenta
of two successive quarks tend to be aligned, as already
mentioned. Hence in our model there are two effects at
work, which are opposite for the case of pseudoscalar
mesons: the 3P0 mechanism and the dynamical correlations
between the transverse momenta of quarks in the decay
chain. Since the pT distribution strongly depends on kT due
to the exponential factor in Eq. (61), we expect differences
between the p2

T distributions of the first and second rank
hadrons and no further change for higher rank hadrons.

B. Values of the free parameters

The values of the four free parameters a, bL, bT, and jμj2
have been tuned comparing the simulation results for
unpolarized quark fragmentations with the measured p2

T
distributions of charged hadrons produced in SIDIS off
unpolarized deuteron [20] and with a set of unpolarized
pT-integrated fragmentation functions from global fits [21],
in order to find a qualitative agreement. The slope of
the p2

T spectrum is sensitive to bL and bT while its detailed
shape for p2

T → 0 is sensitive to jμj2. The slopes are not
affected by a, which changes the fragmentation functions at
large hadron fractional energy zh and has been fixed
comparing with the pT-integrated FFs. In this work we
have used a ¼ 0.9, bL¼ 0.5GeV−2, bT¼ 5.17 ðGeV=cÞ−2,
and jμj2 ¼ 0.75 ðGeV2=c2Þ2.
The parameter ImðμÞ has been fixed comparing the

simulated and the measured Collins asymmetries extracted
from eþe− annihilation data, as explained in the next
section. Knowing already jμj2, ReðμÞ is given up to a sign,
which cannot be fixed by transverse spin asymmetries alone.
In all the simulations we use ReðμÞ ¼ 0.42 GeV=c2,
ImðμÞ ¼ 0.76 GeV=c2.
Note that all the results but those in Sec. V D have

been obtained with a vanishing primordial transverse
momentum.

C. Kinematical distributions

Let us first look at the kinematical (spin-independent)
distributions with the chosen values of the parameters.
Figure 7(a) shows the distributions of the longitudinal
splitting variable Z for the first four rank hadrons generated
in the fragmentation chain of a u quark. As can be clearly
seen, the distribution of the first rank hadron is shifted
towards smaller values of Z with respect to the distributions
of higher rank hadrons. This is due to the kT dependence of
the splitting function discussed above. Also, the distribu-
tions of higher rank hadrons are similar, as expected.
It is interesting to compare Fig. 7(a) with Fig. 7(b)

showing the zh distributions for the first four rank hadrons.
The shapes of the zh distributions are similar for rank 1 and
2 and change sensibly with the hadrons rank r because
of the relation zhr ≃ Zrð1 − Zr−1Þ…ð1 − Z2Þð1 − Z1Þ. By
definition the Z and zh distributions for the rank one hadron
coincide.
The k02

T distributions for the different splittings are very
much the same and, since the initial quark has vanishing
kT, the k02

T distribution of the leftover quark in the first
splitting coincides with the p2

T distribution of the first rank
hadron. As a consequence the p2

T distribution of the first
rank hadron is softer than the distributions of higher rank
hadrons, as shown in Fig. 8(a). The slope of the h1
distribution is almost twice the slope of h2 distribution.
Indeed, hp2

1Ti ¼ hk2
1Ti whereas hp2

2Ti ¼ hk2
2Ti þ hk2

3Ti−
2hk2T · k3Ti ≃ 2hk2

1Ti. This difference between the p2
T of
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rank 1 and rank 2 hadrons is a common feature of all
recursive fragmentation models. A trace of it is the
inequality hp2

TðhþÞi < hp2
Tðh−Þi for medium values of zh

in u jets, shown in Fig. 8(b). However the data suggest the
opposite. This discrepancy could be reduced with the
introduction of resonances, like vector mesons, and their
decay. The decrease of hp2

Ti at small zh is due to the factor
expð−bLp2

T=ZÞ in the splitting function [Eq. (51)].

V. RESULTS ON THE TRANSVERSE
SPIN ASYMMETRIES

In order to study the transverse spin effects measured in
SIDIS off transversely polarized protons and in eþe−
annihilation, fragmentation events have been generated
for initial quarks fully polarized along a fixed ŷ axis

orthogonal to the string axis. Only the results of the
dominant u quark fragmentation are shown in the follow-
ing. We have checked that the results for pion production in
d quark fragmentation are related to those of the u quark
fragmentation by isospin symmetry.
For the SIDIS case we have used a sample of real

COMPASS events. The xB and Q2 of these events serve to
fix the initial kinematics of our simulation event-by-event.
For the study of the asymmetries in the azimuthal

distributions of the hadrons produced in eþe− annihilation
a second sample of events has been generated with a fixed
c.m. energy W ¼ 10 GeV corresponding to the BELLE
energy.
In this section we present the results on the single hadron

and the dihadron transverse spin asymmetries and dis-
cuss the kinematical dependences of the corresponding
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FIG. 7. Distributions of kinematical variables Z (a) and zh (b) in the first four rank hadrons in u quark jets.
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analyzing power. The effect of the primordial transverse
momentum is also described. The Monte Carlo (MC)
results are compared only with the COMPASS and
BELLE data, which are in quite good agreement with
the corresponding results from HERMES [22] and
Jefferson Lab experiments [23] and from BABAR [24]
and BESIII [25] experiments respectively.

A. Single hadron transverse spin asymmetries

The well known Collins effect [5] is the left-right
asymmetry in the distribution of the hadrons produced in
the fragmentation of a transversely polarized quark with
respect to the plane defined by the spin and the momentum
of the quark. The azimuthal distribution of the hadrons of
the jet is given by

dNh

dzhd2pT
∝ 1þ aqA↑→hþXðzh; pTÞSAT sinϕC ð62Þ

where SAT is the quark transverse polarization. The angle
ϕC ¼ ϕh − ϕSA is the Collins angle, where ϕh and ϕSA are
the azimuthal angles of the hadron momentum and of the
quark spin. The analyzing power aqA↑→hþX is the ratio
between the spin dependent part of the FF (the Collins FF)
and the unpolarized quark FF. Experimentally, the Collins
effect has been observed in SIDIS, where the Collins FF
couples with the transversity PDF, and in eþe−, where the
measured azimuthal asymmetry can be written in terms of
products of two Collins FFs. The sinϕC dependence of
Eq. (62) is effectively obtained in our simulation. The fact
that our model is formulated at the amplitude level
guaranties that no other azimuthal modulation is present
and that positivity constraints are satisfied. Using simulated
events, the analyzing power aqA↑→hþX is calculated as
2hsinϕCi and in general it is function of both zh and pT.
The Collins asymmetry measured from eþe− annihila-

tion data has been used to fix the value of the free parameter
ImðμÞ ¼ 0.76 GeV=c2. More specifically we have com-
pared the mean value of the Collins analyzing power for
positive pions in transversely polarized u jets from simu-
lations with the mean value 0.258� 0.006 obtained in
Ref. [26] from BELLE data.
Figure 9 shows the Collins analyzing power au↑→hþX as

function of zh for charged pions and kaons (left panel) and
as function of pT for charged pions (right panel). The main
feature is that the analyzing power has opposite sign and
almost equal magnitude for oppositely charged mesons, as
qualitatively expected from the 3P0 model. The mean
values for hadrons with pT > 0.1 GeV=c and zh > 0.2
are given in Table I.
Also, the analyzing power vanishes for small zh and is

almost linear in the range 0.2 < zh < 0.8. A linear depend-
ence on zh is also suggested by the BELLE data [26] when
the analyzing power for the favored fragmentation is
assumed to be opposite to that for unfavored fragmentation.

The sign and the monotonic dependence of the analyzing
power on zh can be understood by writing au↑→hþX as the
sum of different rank hadron contributions weighted by the
number of hadrons of that rank. The analyzing power can
be written as

au↑→hþXðtÞ ¼
P

rNhrðtÞau↑→hrþXðtÞP
rNhrðtÞ

ð63Þ

where the variable “t” can be either zh or pT. Nhr is the
number of hadrons of type h and of rank r and au↑→hrþX is
the analyzing power associated with rank r, both calculated
at the same value t. The analyzing power for the different
rank hadrons is shown in Fig. 10. It has opposite sign for
even and odd ranks, as suggested by Fig. 6, and decreases
with the rank. Such decrease is due to the depolarization of
the recurrent quark which, with the current choice of
parameters, turns out to be a weak effect. Indeed in each
splitting roughly 10% of the recurrent quark transverse
polarization is lost. The main cause of decay of the
analyzing power at small zh is the mixture of contributions
from even and odd ranks. The fact that the zh dependence is
roughly linear, not another power law, is a priori accidental.
Concerning the sign of the analyzing power, for an initial

u quark, a fast positive pion can be produced at first rank or
at rank r > 1 following r − 1 π0’s or η’s. On the contrary a
negative pion can never be produced at first rank because of
its charge. Furthermore the contribution of larger ranks is
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FIG. 9. Left panel, Collins analyzing power as function of zh for
charged pions produced in simulations of transversely polarized u
quark jets. Right panel, simulated Collins asymmetry as function
of pT. The cut pT > 0.1 GeV=c is applied in both cases and
zh > 0.2 only for the pT analyzing power.

TABLE I. Mean values of the analyzing power shown in Fig. 9
for positive and negative charges. The cuts zh > 0.2 and pT >
0.1 GeV=c have been applied.

hau↑→hþXi hþ h−

π −0.260� 0.002 0.268� 0.002
K −0.270� 0.003 0.234� 0.004
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smaller becauseNhrðrÞ decreases with rank due to the finite
W. Thus the signs of the πþ and π− analyzing powers are
fixed by the contributions of the first and second ranks,
respectively. The same considerations can be made for
charged kaons.
From the left panel of Fig. 9, we notice also that the slope

for negative mesons, which are unfavored in u chains, is
slightly larger than the slope for positive ones. This effect is
easily explained by the fact that the absolute value of the
analyzing power for a rank two hadron is somewhat larger
than the analyzing power for a rank one, as can be seen
from Fig. 10. Finally we can see that the slope for π− and
K− are similar, as expected because both start to be
produced from rank two.
Concerning the analyzing power as function of pT,

shown in the right panel of Fig. 9, there are clearly different
behaviors for positive and negative mesons. An interesting
feature is the change of sign of the analyzing power for
positive pions at pT ≃ 0.9 GeV=c. The rank analysis at this
value of pT shows that the number of πþ of rank 1 and 3 is
roughly the same as the number of πþ of rank 2 and 4.
Moreover positive pions with large pT are more likely
produced as rank two, following a rank one π0 or η, than as
rank one. This effect combines with the alternate sign of the
analyzing power for even and odd rank hadrons to give
au↑→πþþXðpT ¼ 0.9 GeV=cÞ ≃ 0. The number of higher
rank pions decreases quickly and they give only a small
contribution to the asymmetry.
Similar trends are observed in the Collins asymmetry for

charged pions produced in SIDIS off transversely polarized
protons as measured by COMPASS [27]. The comparison
with Monte Carlo results is shown in Fig. 11 as function of
zh (left plot) and as function of pT (right plot). The
Monte Carlo values in both panels are those of Fig. 9
multiplied by an overall scale factor λ1 ¼ 0.055� 0.010
obtained from χ2 minimization. In the u-dominance

hypothesis for a proton target and neglecting the effect
of the primordial transverse momentum, λ1 is the ratio of
the xB-integrated u-quark transversity and the xB-integrated
unpolarized u quark density, multiplied by the depolariza-
tion factor DNN of lepton-quark scattering.
As apparent from the right panel of Fig. 11, the

Monte Carlo describes qualitatively the pT dependence
of the experimental points, which do not exclude a change
of the πþ asymmetry sign for pT > 0.9 GeV=c.
The agreement between Monte Carlo and COMPASS

asymmetries as function of zh is satisfactory for positive
pions, whereas for negative pions it is poor for zh > 0.6.

B. Dihadron transverse spin asymmetries

The properties of the analyzing power au↑→h1h2þX due to
the Collins effect in the h1h2 pair production in a u jet have
also been studied. Such analyzing power has been found to
be related to au↑→h�þX in a recent experimental work in
SIDIS [28,29] and its magnitude can be obtained by eþe−
data [30].
In general the distribution of oppositely charged hadron

pairs in the same jet, as function of the relevant variables
used here, is given by

dNh1h2

dzdMinvdΦ
∝ 1þ aqA↑→h1h2þXðz;MinvÞSAT sinðΦ − ϕSAÞ

ð64Þ

where z ¼ zh1 þ zh2 , Minv is the invariant mass of the h1h2
pair and Φ is the azimuthal angle of a vector characterizing
the pair (different choices have been made in different
analysis). The subscript 1(2) indicates the positive (neg-
ative) hadron with transverse momentum p1Tðp2TÞ.
The analyzing power is extracted from the simulated

events as 2hsinðΦ − ϕSAÞi taking into account all possible
pairs of the jets.
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FIG. 10. Collins analyzing power for positive pions as function
of their rank. The cuts zh > 0.1 and pT > 0.1 GeV=c have been
applied.
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1. Comparison with BELLE data

In order to compare with the eþe− data we
have evaluated the quantity ϵðMinvÞ≡ hau↑→πþπ−þXi×
au↑→πþπ−þXðMinvÞ, where hau↑→πþπ−þXi is the analyzing
power averaged over all the kinematical variables, includ-
ing Minv. For this comparison, in the simulation the
analyzing power au↑→πþπ−þX has been estimated using
Φ ¼ ϕB where ϕB is the azimuthal angle of the vector
p1T − p2T.
Figure 12 shows the results for ϵðMinvÞ from the

simulation when zh1;2 > 0.1 with no cut in pT as circles
whereas for those represented by squares we have required
pT > 0.3 GeV=c. The open triangles show the values of ϵ
as measured by BELLE [30]. Both in the simulation and in
the data the analyzing power shows a saturation for large
values of the invariant mass while for small values it tends
to zero. It has to be noted that the Monte Carlo data sample
has a different invariant mass spectrum with respect to
BELLE data. In particular in the BELLE data sample the
statistics is larger in the region of the ρ meson while in the
program there are no resonances and most of the statistics is
at higher values of Minv. Still, both in BELLE and in
simulation results, no structure can be seen.
We recall that, in order to cancel, or minimize, the effects

due to the primordial transverse momenta, the dihadron
asymmetry is normally written in terms of the azimuth of
the relative transverse momentum

RT ¼ ðzh2p1T − zh1p2TÞ=z: ð65Þ

For the BELLE results we are considering here, the vector
characterizing the pair is

p1T − p2T ¼ 2RT þ ðzh1 − zh2ÞPT=z ð66Þ

where PT ¼ p1T þ p2T is the global transverse momentum
of the pair. Defining as “pure” dihadron asymmetry the one
defined with respect to the vector RT, the asymmetry
extracted from the BELLE data is a combination of the pure
dihadron asymmetry and of the global Collins effect of
the pair.

2. Comparison with COMPASS data

In Fig. 13 we show the comparison between the
Monte Carlo and the COMPASS dihadron asymmetry
for hþh− pairs measured in SIDIS off transversely polar-
ized protons as function of z (left) and Minv (right). The
dihadron asymmetry is extracted usingΦ ¼ ϕR where ϕR is
the azimuthal angle of the vectorRT, thus it can be regarded
as a pure dihadron asymmetry. Both in COMPASS data and
in simulations the cuts zh > 0.1, xF > 0.1, RT>0.07GeV=c
and jpij > 3 GeV (i ¼ 1, 2) have been applied.
The left plot of Fig. 13 concerns the dependence on

z. The Monte Carlo points are scaled by a factor λ2
estimated by comparing with the COMPASS asymmetry
as function of z. From a χ2 minimization we obtain λ2 ¼
0.055� 0.008 in perfect agreement with the value of λ1
obtained in the single hadron asymmetry case, as expected.
The results from the Monte Carlo are in good agreement
with the experimental data.
The right plot of Fig. 13 shows the dependence of the

analyzing power on Minv. The same cuts as those for the
dihadron asymmetry as function of z have been applied.
After scaling by the same parameter λ2, the Monte Carlo
points describe quite well the trend of the data.

C. Comparison between single hadron and dihadron
transverse spin asymmetries

Following the work done in Ref. [28] we have studied
the relationship between the Collins and the dihadron
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FIG. 12. Monte Carlo calculation of ϵðMinvÞ for pions pairs
produced in transversely polarized u jets asking for each pion of
the pair zh > 0.1 (circles) and also pT > 0.3 GeV=c (squares).
The black open triangles are the values of ϵðMinvÞ obtained from
BELLE data [30].
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λ2 (full points): as function of z ¼ zh1 þ zh2 (left panel) and as
function of Minv (right panel).
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analyzing powers for hadron pairs in the same u quark jet,
as function of the relative azimuthal angle Δϕ ¼ ϕ1 − ϕ2.
In that analysis using only the events with at least one hþ
and one h− two kinds of asymmetries had been extracted:
the “Collins-like” (CL) asymmetries AsinϕC

CL1ð2Þ for positive

and negative hadrons and the dihadron asymmetry for

oppositely charged hadron pairs Asinϕ2h;S
CL;2h . In each bin ofΔϕ,

the CL asymmetry is the Collins asymmetry of hþ (h−) of
the pair.
As in Ref. [28] we calculate au↑→hþh−þX using Φ ¼ ϕ2h,

where ϕ2h is the azimuthal angle of the vector p̂1T − p̂2T
and p̂T ≡ pT=jpTj. Due to the relation

p̂1T − p̂2T ¼ RTð1=jp1Tj þ 1=jp2TjÞ

þ PT
zh1=jp1Tj − zh2=jp2Tj

z
; ð67Þ

the considered asymmetry is a combination of the “pure”
dihadron asymmetry and of the global Collins asymmetry
of the hadron pair. However, as already discussed in
Ref. [28], the azimuthal angle ϕR is strongly correlated
with ϕ2h, and the dihadron asymmetry measured from
2hsinϕ2h;Si with ϕ2h;S ¼ ϕ2h − ϕSA , is essentially the same
as the “pure” dihadron asymmetry, which could be verified
with the code as well.
The blue squares in Fig. 14(a) represent the dihadron

analyzing power au↑→πþπ−þX calculated in the Monte Carlo
as function ofΔϕ. The blue curve is the result of the fit with

the function c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − cosΔϕÞp

as suggested in Ref. [28].

The plot in Fig. 14(b) shows the asymmetry Asinϕ2h;S
CL;2h as

measured in COMPASS. As can be seen, the agreement is

good. Note that the Asinϕ2h;S
CL;2h asymmetry is smaller than

au↑→πþπ−þX by a factor of 0.1 analogous to λ2 but for the
higher cut xB > 0.032 adopted in this experimental
analysis.
The same considerations hold also for CL analyzing

power AsinϕC
CL1ð2Þ of hþ and h− shown in the top plot of

Fig. 14(a) with red circles and black triangles respectively.
The corresponding COMPASS data are shown in top
plot of Fig. 14(b): again, the trend is very similar.
The MC points are fitted with functions of the type
δ1ð2Þ þ c1ð2Þ sinΔϕ, as suggested from Ref. [28], and the
results are represented by the red and the black dashed
lines. The red and the black dashed lines in Fig. 14(b)
represent the fits to the experimental CL asymmetries as
shown in Ref. [28], which are consistent with vanishing
δ1ð2Þ parameters.

D. Introducing the primordial transverse momentum

In the previous sections we did not consider the
primordial transverse momentum of the initial quark. In
this section we show the results when the initial quark qA
does have a primordial transverse momentum. Figure 15
depicts the string direction in the DIS γ�-nucleon center of
mass framewhen the struck quark has primordial transverse
momentum kT prim, inherited from the quark motion in the
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nucleon. kT prim, also written kT=qγ , is defined with respect
to the γ� momentum qγ . The target remnant has the
opposite −kT prim. The string is stretched between qA
and the target remnant. Its axis is therefore rotated from
the γ�-nucleon axis. The effect of a random kT prim is the
broadening of the spectra of hadrons transverse momenta
with respect to qγ . This should partly smear the single
hadron asymmetry.
The primordial momentum kT prim is generated according

to the probability

d2kT primπ
−1hk2Tprimi−1 expð−k2

T prim=hk2TprimiÞ ð68Þ

where hk2T primi is a free parameter. The fragmentation of the
initial transversely polarized quark qA is performed using
the rotated string axis as ẑ axis. Then we go in the
laboratory frame with a boost along the γ�-nucleon axis.
In the small angle approximation, the rotation in the

string center of mass frame is practically equivalent to make
the following shift in pT (which is relative to the string axis)

pT=qγ ¼ xFkTprim þ pT ð69Þ

where pT=qγ is the hadron transverse momentum with
respect to the γ� axis and xF ¼ ð2pz=WÞc:m: is the
Feynman scaling variable. Since xF ¼ zh − ϵ2h=ðzhW2Þ,
Eq. (69) almost coincides for large xF with the often used
equation pT=qγ ¼ zhkTprim þ pT. The shift is zero at xF ¼ 0

and opposite to kT prim in the backward hemisphere as can
be guessed from Fig. 15.
From Eq. (69) follows at fixed xF

hp2
T=qγ

i ¼ x2Fhk2
Tprimi þ hp2

Ti: ð70Þ

The effect of kT prim is clearly seen in Fig. 16 showing
the hp2

T=qγ
i as function of zh for positive hadrons when the

fragmenting quark has hk2
T primi ¼ 0.3 ðGeV=cÞ2. The

large zh region, where zh ≃ xF, is more sensitive to
the primordial transverse momentum and the effect decays
for smaller values of zh. It turns out that the difference
between hp2

Ti for positive and negative hadrons shown in

Fig. 8(b) is somewhat reduced due to the x2Fhk2
T primi term

but still the negative hadrons are produced with larger
transverse momenta.
In Fig. 17 we show the effect of the primordial transverse

momentum on the Collins analyzing power as function of
zh (left plot) and pT=qγ

(right plot) for positive and negative

pions. The analyzing power for hk2T primi ¼ 0.3 ðGeV=cÞ2
(full points) is compared to that for vanishing primordial
transverse momentum (open points). The reduction of the
analyzing power is visible at large zh (left plot) and at low
pT=qγ (right plot). We note also that the change of sign of
the analyzing power as function of pT=qγ is no more there.
The same effects are also observed for charged kaons.
Table II shows the mean values of the single hadron and

dihadron analyzing powers for charged pions for different
values of hk2

T primi. At variance with the Collins asymmetry
for single hadrons, the asymmetry for pairs of oppositely

FIG. 15. Illustration of the rotation of the string axis in the
string center of mass frame.
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charged hadrons is practically not affected by the noise
introduced by kT prim.

VI. RESULTS ON THE JET HANDEDNESS

The present model can treat both longitudinal and
transverse polarizations at the same time. In particular it
can predict jet handedness [31,32] which for a particle pair
h1h2 and for a longitudinally polarized quark qA can be
parametrized in the form

dNh1h2

d3p1d3p2

∝ 1þ aq⃗A→h1h2þX
JH SAL sinðϕ2 − ϕ1Þ: ð71Þ

The simplified model of Ref. [7] predicts such an effect
with an analyzing power proportional to Imðμ2Þ. The same
factor appears in the present model.
We have made a simulation for πþπ− pairs in the jet of an

initial longitudinally polarized u quark and calculated the
analyzing power au⃗→πþπ−þX

JH as 2hsinðϕ2 − ϕ1Þi. Figure 18
shows the dependences of au⃗→πþπ−þX

JH on the invariant mass
Minv of the pion pair (left plot) and on the sum of their
fractional energies z1 þ z2 (right plot). While we do not
observe a strong dependence on Minv, the handedness
analyzing power increases with z1 þ z2. This is expected
since at large z1 þ z2 both hadrons have nearly fixed ranks
(rank 1 for πþ and rank 2 for π−). Comparing Fig. 18 with
Fig. 13, where we remind that the Monte Carlo analyzing
power is scaled by the factor λ2, we find for the jet
handedness an effect smaller than the dihadron asymmetry
by one order of magnitude. Note that we obtain an opposite
asymmetry by reversing the sign of ReðμÞ.
Up to now, attempts to observe jet handedness were not

conclusive, see, e.g., Ref. [33]. Several reasons can explain
this failure:

(i) the sign of the asymmetry may vary too much with
the charges, the rapidity ordering or the invariant
mass of the h1 − h2 pair.

(ii) the observable cosðϕ2 − ϕ1Þ is very sensitive to a
redefinition of the jet axis. It can be easily blurred by
a too large experimental uncertainty on the orienta-
tion of the jet axis or by gluon radiation.

Like for the Collins effect, the blurring effect can be
eliminated by involving one more particle. Indeed, for
three particles h1, h2 and h3 of the jet, the pseudoscalar
quantity

J ¼ ðp1 × p2Þ · p3 ¼ ðp1;⊥P × p2;⊥PÞ · P; ð72Þ

where P ¼ p1 þ p2 þ p3, is independent of the jet axis
and we may take hJi as helicity-sensitive estimator (the
estimator hsignðJÞi was proposed in Ref. [32]). However it
requires the clean measurement of three particle momenta
and its amplitude depends on a 6 kinematical variables,
e.g., z1, z2, z3, jp1;⊥Pj, jp2;⊥Pj, and jp3;⊥Pj.

VII. CONCLUSIONS AND PERSPECTIVES

We have developed a stand alone Monte Carlo code for
the simulation of the fragmentation process of a polarized
quark (u, d, or s). The theoretical framework is provided by
the string fragmentation model where the quark-antiquark
pairs in the string cutting points are produced according to
the 3P0 mechanism. The quark spin is included through
spin density matrices and propagated along the decay chain
reproducing the stringþ 3P0 mechanism.
With respect to the Lund symmetric model, this

model requires an additional complex mass parameter
whose imaginary part directly affects the single hadron
Collins asymmetry. The three free parameters present in
the string fragmentation framework and the absolute
value of the complex mass have been tuned by comparison
with unpolarized SIDIS data and with global fits of
pT-integrated fragmentation functions.
The analyzing powers have been extracted from the

simulated events both for the single hadron and for the
hadron pairs. The results of the simulation show a Collins
analyzing power of opposite sign for oppositely charged
mesons. The dependence on the kinematical variables
zh and pT has been investigated, finding a reasonable

TABLE II. Mean value of the analyzing powers shown in
Fig. 17 (left) for positive and negative pions with cuts zh > 0.1
and pT=qγ > 0.1 ðGeV=cÞ have been applied. We show also the
mean values of the asymmetry for πþπ− pairs with the same cuts.

hk2Tprimi hau↑→πþþXi hau↑→π−þXi hau↑→πþπ−þXi
No kT=prim −0.208� 0.001 0.188� 0.002 −0.276� 0.002
0.1 ðGeV=cÞ2 −0.197� 0.001 0.181� 0.002 −0.271� 0.002
0.3 ðGeV=cÞ2 −0.183� 0.001 0.175� 0.002 −0.269� 0.002
0.5 ðGeV=cÞ2 −0.172� 0.001 0.169� 0.002 −0.266� 0.002
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FIG. 18. The analyzing power for the jet handedness effect
in the fragmentation u⃗ → πþπ− þ X, defined in Eq. (71), as
function of z¼ zh1 þ zh2 (left plot) and as function of the invariant
mass of the pion pair (right plot). The cuts z1ð2Þ > 0.1 and
p1ð2ÞT > 0.1 GeV=c have been applied.
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agreement with experimental results. A clearly different
from zero analyzing power for hadron pairs of opposite
sign in the same jet is also obtained from the same
simulated data. The Monte Carlo results are compared to
BELLE and COMPASS dihadron asymmetries finding
again a satisfactory agreement. Thus a unique mechanism
generates both the Collins and the dihadron asymmetry.
Furthermore with the same model we predict also a jet

handedness effect in the fragmentation of a longitudinally
polarized quark.
Such a model can be a guide to optimize the estimators

of quark polarimetry. An interface of our Monte Carlo
program with the PYTHIA event generator is foreseen. A
further improvement of the model is the inclusion of
resonances, in particular of vector mesons, and the gen-
eration of their hadronic decays.
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