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The left-right symmetric model (LRSM) is an attractive extension of the Standard Model (SM) that can
address the origin of parity violation in the SM electroweak interactions, generate tiny neutrino masses,
accommodate dark matter (DM) candidates, and provide a natural framework for baryogenesis through
leptogenesis. In this work, we utilize the minimal LRSM to study the recently reported DAMPE results of the
cosmic eþe− spectrum, which exhibits a tentative peak around 1.4 TeV, while satisfying the current neutrino
data. We propose to explain the DAMPE peak with a complex scalar DM χ in two scenarios:
(1) χχ� → Hþþ

1 H−−
1 → lþ

i l
þ
i l

−
j l

−
j , and (2) χχ� → Hþþ

k H−−
k → lþ

i l
þ
i l

−
j l

−
j accompanied by χχ� →

Hþ
1 H

−
1 → lþ

i νlil
−
j νlj , with li;j ¼ e, μ, τ and k ¼ 1, 2. We fit the theoretical prediction of the eþe−

spectrum to relevant experimental data to determine the scalar mass spectrum favored by the DAMPE excess.
We also consider various constraints from theoretical principles and collider experiments, as well as DM relic
density and direct search experiments.We find that there is ample parameter space to interpret theDAMPEdata
while also passing the constraints. On the other hand, our explanations usually imply the existence of other new
physics at an energy scale ranging from 107 to 1011 GeV. Collider tests of our explanations are also discussed.
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I. INTRODUCTION

The discovery of the Higgs boson at the LHC indicates
that the Standard Model (SM) of particle physics is a highly
successful theory in describing a large amount of low-
energy phenomena [1,2]. On the other hand, the origin of
the chiral structure of the SM—which is crucial to under-
standing why the matter content of the SM is much lighter
than the Planck scale—is not explained in the framework of
the SM. In fact, it is still unknown why the weak interaction

violates parity while all other interactions conserve parity,
and whether parity conservation can be achieved at a more
fundamental level.
The left-right symmetricmodel (LRSM),which is a vector

extension of the SMwith an enlarged gauge group SUð3ÞC ×
SUð2ÞL × SUð2ÞR ×Uð1ÞB−L [3–7], assumes that the fun-
damentalweak interaction is invariant under parity symmetry
and the observed parity violation is the consequence of the
spontaneous breaking of parity symmetry. Requiring the
existence of right-handed neutrinos in the LRSM, tiny
neutrino masses can naturally be generated by the type II
seesaw mechanism [8–12]. Besides, the LRSM can accom-
modate darkmatter candidates [13–21] and provide a natural
framework for baryogenesis through leptogenesis [22]. Its
gaugegroup can naturally appear in the typicalSOð10Þ grand
unified theory (GUT) group breaking chain [SOð10Þ→
SUð4ÞPS×SUð2ÞL×SUð2ÞR→LR], or from the breaking
of some other partial unification theories, such as
SUð4ÞPS × SUð4ÞW , SUð7Þ, etc. [23–25]. The SUð2ÞR ×
Uð1ÞB−L breaking scale, which can be characterized by the
WR gauge boson masses, is well motivated to lie as low as
several TeV [26–32] and allows us to search for possibilities
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using various experimental signatures, such as collider
signals [28,33–47], flavor observables [36,48–59], and
EW precision parameters [60,61].
Very recently, the DArk Matter Particle Explorer

(DAMPE) experiment reported new results of the total
cosmic eþ þ e− flux measurement between 25 GeV and
4.6 TeV, which contain a spectral softening at around
0.9 TeVand a peak at around 1.4 TeV [62,63]. The spectral
softening may be due to the breakdown of the conventional
assumption of a continuous source distribution or the
maximum acceleration limits of electron sources, while
the peak can be explained by dark matter (DM) annihilation
in a nearby clump halo either into an exclusive eþe− final
state or equally into eþe−, μþμ−, and τþτ− states [64]. The
best-fit values for the DM particle mass, annihilation cross
section, DM halo mass, and DM annihilation luminosity
L ¼ R

ρ2dV are about 1.5 TeV, hσvi ∼ 10−26 cm3=s,
107−8Msun, and 1064–66 GeV2 cm−3, respectively, if the
halo is about 0.1–0.3 kpc away from the Earth [64].
Many simplified DM models have already been pro-

posed to interpret the DAMPE peak [65–97]. Some models
are based on the typical new-gauge anomaly-free Uð1Þ
family symmetry with the corresponding gauge boson as
the mediator [65–71]. Other proposals, such as a scalar
mediator with typical lepton-specific Yukawa couplings,
have also been discussed [83–89]. However, many existing
DM explanations of the DAMPE results are rather ad hoc
and the involved interactions are not naturally the conse-
quence of a well-motivated popular beyond-the-SM (BSM)
model. So it is desirable to see if some popular BSM
models can already explain the DAMPE results.
The minimal LRSM predicts 14 physical Higgs bosons:

four CP-even H1;2;3;4, two CP-odd A1;2, four singly
charged H�

1;2, and four doubly charged H��
1;2 , all with

increasing masses in ascending order. In this work we
propose to explain the DAMPE excess with a complex
scalar DM annihilation into triplet scalar pairs which later
decay and produce cosmic leptons. More specifically, we
will consider the following two scenarios.

(i) Scenario I: χχ� → Hþþ
1 H−−

1 → lþ
i l

þ
i l

−
j l

−
j .

(ii) Scenario II: χχ� → Hþþ
k H−−

k → lþ
i l

þ
i l

−
j l

−
j ,

accompanied by χχ� → Hþ
1 H

−
1 → lþ

i νlil
−
j νlj.

Here χ stands for the scalar DM candidate, li;j ¼ e, μ, τ,
and k ¼ 1, 2.
As for the proposal, we stress that the mediating scalars

H��
1;2 and H�

1 can naturally arise from the LRSM where
they belong to the SUð2ÞL triplet ΔL and/or the SUð2ÞR
triplet ΔR, which are essential in generating neutrino
masses. Assuming that the Dirac mass terms for neutrinos
take certain forms, the Yukawa couplings involving the
triplet scalars can be nearly generation universal for
leptons, or the first generation can dominate over the other
generations. As a result, the scalars can decay democrati-
cally into three generation of leptons or dominantly into
electrons.

We also stress that DM candidates can automatically
appear in LRSMwith the DM stability guaranteed by either
the nature of minimal dark matter or due to matter parity
[13]. In the former case, the DM particle can be identified
as the neutral component within certain high-dimensional
SUð2Þ representations that forbid the renormalizable cou-
plings, leading to its decay. In the latter case, however, the
residue ZB−L

2 symmetry from the Uð1ÞB−L breaking by the
scalar triplet Higgs ΔL;R can also act as the DM parity,
which could guarantee the stability of alternative fermionic
(bosonic) DM candidates with even (odd) B − L
charge [13,14].
This paper is organized as follows. In Sec. II, we give a

brief review of the essential features of the minimal LRSM.
In Sec. III, we propose a simplified scalar DM theory based
on the LRSM to explain the DAMPE excess. In Sec. IV, we
discuss the implications of our explanation and its possible
collider tests. Finally, we draw our conclusions in Sec. V.

II. BRIEF REVIEW OF THE MINIMAL LRSM

As noted previously, the LRSM model is an extension of
the SM with the corresponding gauge group SUð3ÞC×
SUð2ÞL × SUð2ÞR ×Uð1ÞB−L, and all of the right-handed
fermions are embedded into the SUð2ÞR doublets. Due to
such an assignment, right-handed neutrinos—which are
needed to fit into right-handed lepton doublets—naturally
appear in LRSM.
In the minimal LRSM, the quantum numbers of

the particle contents under SUð3Þc × SUð2ÞL × SUð2ÞR ×
Uð1ÞB−L are as follows [98].

Fermions∶

QL ¼
�
uL
dL

�
∈ ð3; 2; 1; 1=3Þ;

QR ¼
�
uR
dR

�
∈ ð3; 1; 2; 1=3Þ; ð2:1aÞ

LL ¼
�
νL

lL

�
∈ ð1; 2; 1;−1Þ;

LR ¼
�
νR

lR

�
∈ ð1; 1; 2;−1Þ: ð2:1bÞ

Scalars∶

Φ ¼
�
ϕ0
1 ϕþ

1

ϕ−
2 ϕ0

2

�
∈ ð1; 2; 2; 0Þ;

ΔL ¼

0
B@

δþLffiffi
2

p δþþ
L

δ0L − δþLffiffi
2

p

1
CA ∈ ð1; 3; 1; 2Þ;

ΔR ¼

0
B@

δþRffiffi
2

p δþþ
R

δ0R − δþRffiffi
2

p

1
CA ∈ ð1; 1; 3; 2Þ: ð2:1cÞ
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Here the bidoublet Higgs field is needed to give masses to
ordinary SM fermions other than neutrinos, and the triplet
fields are needed to generate tiny neutrino masses via
mixed type-I and type-II seesaw mechanisms and while
preserving the left-right symmetry.
The Lagrangian is [98]

L ¼ Lkin þ LΦ
Y þ LΔ

Y þ LLR; ð2:2Þ

where the Yukawa couplings involving the bidoublets and
triplet scalars are given by

−LΦ
Y ¼ QLðYQ1

Φþ YQ2
Φ̃ÞQR þ LLðYL1

Φþ YL2
Φ̃ÞLR

þ H:c:;

−LΔ
Y ¼ LC

LYΔL
ðiσ2ÞΔLLL þ LC

RYΔR
ðiσ2ÞΔRLR þ H:c:;

ð2:3Þ

with Φ̃≡ −σ2Φ�σ2 and ΨC ¼ iΨTγ2γ0, and the Higgs
potential takes the form

LLR ¼ −μ21TrðΦ†ΦÞ − μ22½TrðΦ̃Φ†Þ þ TrðΦ̃†ΦÞ� − μ23½TrðΔLΔ
†
LÞ þ TrðΔRΔ

†
RÞ� þ λ1½TrðΦ†ΦÞ�2 þ λ2f½TrðΦ̃Φ†Þ�2

þ ½TrðΦ̃†ΦÞ�2g þ λ3TrðΦ̃Φ†ÞTrðΦ̃†ΦÞ þ λ4TrðΦ†ΦÞ½TrðΦ̃Φ†Þ þ TrðΦ̃†ΦÞ� þ ρ1f½TrðΔLΔ†
LÞ�2 þ ½TrðΔRΔ†

RÞ�2g
þ ρ2½TrðΔLΔLÞTrðΔ†

LΔ
†
LÞ þ TrðΔRΔRÞTrðΔ†

RΔ
†
RÞ� þ ρ3TrðΔLΔ

†
LÞTrðΔRΔ

†
RÞ þ ρ4½TrðΔLΔLÞTrðΔ†

RΔ
†
RÞ

þ TrðΔ†
LΔ

†
LÞTrðΔRΔRÞ� þ α1TrðΦ†ΦÞ½TrðΔLΔ†

LÞ þ TrðΔRΔ†
RÞ� þ fα2eiδ2 ½TrðΦ̃Φ†ÞTrðΔLΔ†

LÞ
þ TrðΦ̃†ΦÞTrðΔRΔ

†
RÞ� þ H:c:g þ α3½TrðΦΦ†ΔLΔ

†
LÞ þ TrðΦ†ΦΔRΔ

†
RÞ� þ β1½TrðΦΔRΦ†Δ†

LÞ þ TrðΦ†ΔLΦΔ†
RÞ�

þ β2½TrðΦ̃ΔRΦ†Δ†
LÞ þ TrðΦ̃†ΔLΦΔ†

RÞ� þ β3½TrðΦΔRΦ̃†Δ†
LÞ þ TrðΦ†ΔLΦ̃Δ†

RÞ�: ð2:4Þ

In the above potential, μi, λi, βi (with i ¼ 1, 2, 3) and ρj, αj
(with j ¼ 1;…; 4) are all free parameters.
The SUð2ÞR × Uð1ÞB−L is broken to Uð1ÞY by the

vacuum expectation value (VEV) of the SUð2ÞR triplet
scalarΔR, while the SM gauge group is broken toUð1ÞQ by
the VEVs of the bidoublet Higgs. The VEVs of the
bidoublet and triplets, which are taken to be real to forbid
spontaneous CP violation, are parametrized as

hϕ0
1i ¼

vffiffiffi
2

p cos β; hϕ0
2i ¼

vffiffiffi
2

p sin β; tβ ≡ tan β ¼ v2
v1

;

hδ0Li ¼
vLffiffiffi
2

p ; hδ0Ri ¼
vRffiffiffi
2

p ; ð2:5Þ

with vL ≪ v ≪ vR, so v can be identified as the SM VEV.
Therefore, the masses of the new gauge bosons read

MZR
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2R þ g2BL

q
vR; MWR

≃
gRffiffiffi
2

p vR: ð2:6Þ

Due to the LR symmetry, we take the two SUð2Þ gauge
couplings to be equal, namely, gR ¼ gL. The mixing
between the electric charged gauge fields WL and WR will
result in two mass eigenstates W and W0, and similarly the
mixing among the neutral components W3

L, W
3
R, and BB−L

will predict three vector bosons as mass eigenstates, i.e., the
photon, Z and Z0.
The minimal LRSM predicts ten physical particles: four

CP-even Higgs bosons, two CP-odd Higgs bosons, two
singly charged Higgs bosons, and two doubly charged
Higgs bosons. With the minimization conditions of the

scalar potential, one can trade the parameters μi and β2
using the VEV [98]. As a result, with the assumption that
vL=v; vL=vR; tan β; α1; α2; β1 → 0 (so that the mixings
between the bidoublet and the triplet scalars are small),
the bidoublet-like scalar masses are given by

m2
h ≃ 2λ1v2 −

8λ24v
4

α3v2R
; m2

H ≃ 2ð2λ2 þ λ3Þv2 þ
α3
2
v2R;

ð2:7aÞ

m2
A ≃

α3
2
v2R þ 2ðλ3 − 2λ2Þv2; m2

H�≃ 1
4
α3ðv2 þ 2v2RÞ;

ð2:7bÞ

where h corresponds to the SM-like Higgs boson with its
mass fixed at 125 GeV, and H, A, and H� are the heavier
neutral scalar and pseudoscalar states and the charged
Higgs, respectively. The triplet-scalar sector masses are

m2
HL

≃
1

2
ðρ3 − 2ρ1Þv2R; m2

HR
≃ 2ρ1v2R; ð2:8aÞ

m2
AL

≃
1

2
ðρ3 − 2ρ1Þv2R;

m2
H�

L
≃
1

2
ðρ3 − 2ρ1Þv2R; ð2:8bÞ

m2
H��

a
≃ 2ρ2v2R þ 1

2
α3v2;

m2
H��

b
≃
1

2
ððρ3 − 2ρ1Þv2R þ α3v2Þ; ð2:8cÞ
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where particles with an index LðRÞ mostly consist of ΔLðRÞ
components, and since the doubly charged Higgses can in
general be strongly mixed, we label them as H��

a=b. Under
the condition vL=vR → 0, the mass spectrums implies the
approximate degeneracies

2λ1v2 −
8λ24v

4

α3v2R
≃m2

h; ð2:9Þ

α3
2
v2R ≃m2

H ≃m2
A ≃m2

H� ð2:10Þ

for the bidoublet sector and

2ρ1v2R ≃m2
HR
; ð2:11Þ

2ρ2v2R þ 1

2
α3v2 ≃m2

H��
a
; ð2:12Þ

ρ3 − 2ρ1
2

v2R ≃m2
H��

b
≃m2

H�
L
≃m2

HL
≃m2

AL
ð2:13Þ

for the triplet sector. In the following, we label particles
with the same quantum numbers using the subscripts 1,2,…
and assume that they have an ascending mass order, i.e.,

mH1;2;3;4
∶ neutralCP-even Higgs; ð2:14Þ

mA1;2
∶ neutralCP-odd Higgs; ð2:15Þ

mH�
1;2
∶ singly charged Higgs; ð2:16Þ

mH��
1;2
∶ doubly charged Higgs: ð2:17Þ

In the minimal LRSM, the tiny neutrino mass can be
generated via mixed type-I and type-II seesaw mechanisms
with the corresponding mass matrix given by [98]

1

2

�
νL νCR

��
M�

L MD

MT
D MR

��
νCL
νR

�
þ H:c:; ð2:18Þ

where

ML ¼
ffiffiffi
2

p
YΔL

vL; MR ¼
ffiffiffi
2

p
YΔR

vR;

and MD ¼ vffiffiffi
2

p ðYL1
sin β þ YL2

cos βÞ: ð2:19Þ

After the diagonalization of the mass matrix, the Majorana
mass of the left-handed neutrinos can be determined to be

mlight
ν ¼ ðM�

L −MDM−1
R MT

DÞ: ð2:20Þ

This expression indicates that a possibly large cancellation
among the two terms is required to give tiny neutrino
masses of order 0.1 eV. One should note that loop
corrections will in general spoil the cancellation among
the two terms.

The discrete LR symmetry, which can be identified
with parity symmetry, requires the Yukawa couplings to
satisfy [98]

Ya ¼ Y†
a; YΔL

¼ YΔR
: ð2:21Þ

In terms of the neutrino masses and Pontecorvo-Maki-
Nakagawa-Sakata mixing matrix from neutrino oscillation
experiments, the Yukawa couplings involving the triplets
can be determined as [98]

Yð���Þ
Δ ≡ Yð���Þ

ΔL=R
¼ 1

2
ffiffiffi
2

p
vL

M�1=2
D R�diagðBði;iÞ

D

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBði;iÞ

D Þ2 þ 4α

q
ÞR†M1=2

D ;

BD ¼ R†M�−1=2
D mlight

ν M−1=2
D R�;

α ¼ vL=vR ð2:22Þ

for given specific inputs of vL, vR, andMD. In the previous
expression, BD is a diagonal 3 × 3matrix and R is a unitary
rotation matrix to keep both sides of Eq. (2.22) equal.
It should be noted that there is not a unique solution
to the triplet-Yukawa couplings, which corresponds to an
ambiguous � sign in the bracket of the expression. It
should also be noted that the magnitude of YΔ is sensitive to
the choice of vL and MD, and may vary from Oð10−4Þ to
Oð1Þ in producing the measured neutrino masses and
mixings.

III. DAMPE EXPLANATION WITH SCALAR DM

As one of the most compelling BSM theories, the LRSM
itself can naturally accommodate a DM candidate, which is
absolutely stable due to the residual matter parity ZB−L

2

[13,14]. To provide a scalar DM candidate, the minimal
realization requires the introduction of two complex scalar
fields ϕL and ϕR with their respective quantum numbers
under the gauge group SUð3Þc × SUð2ÞL × SUð2ÞR ×
Uð1ÞB−L [14],

ϕL ¼
�
ϕ0
L

ϕ−
L

�
∈ ð1; 2; 1;−1Þ;

ϕR ¼
�
ϕ0
R

ϕ−
R

�
∈ ð1; 1; 2;−1Þ; ð3:1Þ

and the DM candidate corresponds to the lightest mass
eigenstate among the mixture of the neutral components.1

1Note that for such an assignment of gauge quantum numbers,
the properties of the fields ϕL and ϕR are similar to those of the
left-handed and right-handed scalar lepton fields in the super-
symmetric LRSM, respectively. Thus, in some cases the DM as
the lightest state can mimic the behavior of the popular sneutrino
DM in supersymmetric theories.
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These additional gauge nonsinglet scalars greatly extend
the minimal LRSM, and the general form of the resulting
theory contains 16 new parameters and 20 extra quartic
scalar interactions [14]. Obviously, working in such a
complex framework to interpret the DAMPE excess
involves the treatment of a large number of free parameters,
which usually obscures the underlying physics. This
situation motivates us to consider the incorporation of
DM physics into the LRSM in a simpler way. To be more
specific, we note that the gauge-singlet scalar is ubiquitous
in various UV-completion theories of the LRSM. For
example, it can appear in the decomposition of the 54 or
210 dimensional representation of SOð10Þ under the Pati-
Salam SUð4Þc × SUð2ÞL × SUð2ÞR (or LR gauge group)
gauge group and possibly be tuned to be light [99]. It can
also appear in orbifold GUT models with proper boundary
conditions by embedding the LRSM gauge group into GUT
or partial unification theory [100,101]. These facts motivate
us to consider a VEV-less gauge-singlet complex scalar
particle as the DM candidate with its stability protected by
an accidental global Uð1Þχ symmetry, which may be
promoted to a gauged one that was broken at a certain
high energy scale into a discrete Z2 symmetry in the early
evolution of the Universe.
Based on the above discussion, we propose to introduce

a complex scalar DM χ into the minimal LRSM—which is
a singlet under the LR gauge group—as the simplest
effective DM model to explain the DAMPE results with
the DM stability guaranteed by the conserved accidental
Uð1Þχ quantum number, just as the conserved baryon
number classically ensures the stability of proton. The
couplings of χ are assumed to be

L ⊇ j∂μχj2 − μ2χ jχj2 − κ1jχj2½TrðΔLΔ†
LÞ

þ TrðΔRΔ
†
RÞ� − κ2jχj2TrðΦ†ΦÞ

− κ3jχj2½TrðΦ̃Φ†Þ þ TrðΦ̃†ΦÞ� − λχ jχj4; ð3:2Þ

which are invariant under the discrete left-right symmetry
for real parameters λχ and κi (i ¼ 1, 2, 3).
We use SARAH [102] to implement the model and

SPHENO [103,104] to calculate the mass spectrum. Since
many parameters are involved in our discussion on
the interpretation of the excess, we fix some of them in
Table I, where vL ¼ 2 × 10−7 GeV,MD ¼ 1 MeV, and the
“þþþ” sign choice for three generations will give

YðþþþÞ
Δ ¼

0
B@

1.12× 10−2 −1.41× 10−5 2.97× 10−6

−1.41× 10−5 1.12× 10−2 −3.78× 10−5

2.97× 10−6 −3.78× 10−5 1.12× 10−2

1
CA

ð3:3Þ

according to Eq. (2.22). This setup—where the Dirac
neutrino mass is diagonal and flavor universal—always

predicts an almost degenerate spectrum of right-handed

neutrinos due to the nearly degenerate diagonal Yði;iÞ
Δ entries

and the relatively smaller nondiagonal entries. As a result,
the triplet-dominated scalars H��

1;2 will decay dominantly
into l�i l

�
i (i ¼ e, μ, τ) with approximately equal branching

ratios.
In practice, in order to obtain the solutions to the

DAMPE excess we first determine the favored DM mass
mχ and Δm≡mχ −mH��

1
, where we utilize the process

χχ → Hþþ
1 H−−

1 → lþ
i l

þ
i l

−
j l

−
j (with li;j ¼ e, μ, τ) to

generate the measured eþe− spectrum. The impact of the
mass spectrum on the eþe− flux as well as our strategy to
determine their favored region have been described in detail
in Ref. [71]. Here we simply apply them to the case in
which the intermediate scalars H��

1 as the DM direct
annihilation products decay democratically into e�e�,
μ�μ�, and τ�τ�. The results are presented in Fig. 1, where
we show the fit of the predicted eþe− spectrum to the
corresponding AMS-02 and DAMPE data. The left panel is
the χ2 map on the Δm −mχ plane with the color bar
denoting the values of χ2 and the enclosed line correspond-
ing to the constant contour χ2 ¼ χ2best þ 2.3. The region
bounded by this contour is interpreted as the best region of
the two-step DM annihilation process to explain the
DAMPE excess at the 1σ level. The best-fit point is located
at about (6 GeV, 3060 GeV) with hσvi0 ¼ 2.98 ×
10−26 cm3=s for the default setting on the distance of
the subhalo from the Earth and the subhalo mass in
Ref. [71], d ¼ 0.1 kpc and Mhalo ¼ 1.9 × 107m⊙. The
right panel of Fig. 1 corresponds to the eþe− spectrum
predicted by the best-fit point which lowers the χ2 value to
104.2 in comparison with 109.7 for the background-only
hypothesis. These facts indicate that, by choosing appro-
priate ðΔm;mχÞ, the process χχ → Hþþ

1 H−−
1 → lþlþl0−l0−

is indeed capable of reproducing the DAMPE eþe− peak.
Next, we discuss in detail two scenarios to explain the

excess, which are presented in Table II. In order to get
relevant parameter points, we scan the parameters mχ , κ1,

TABLE I. Parameter settings for the scan in this work over the
varying parameters. These parameters are defined at the scale
vR ¼ 20 TeV.

vL 2.0 × 10−7 GeV vR 2.0 × 104 GeV
MD 1 MeV YðþþþÞ

Δ Eq. (3.3)
mχ (2.95, 3.15) TeV tan β 10−4

λ1 0.13 λ2 0
λ3 0 λ4 0
ρ1 (0,0.1) ρ2 (0,0.1)
ρ3 (0,0.2) ρ4 0
α1 0 α2 0
α3 2.0 β1 0
β3 0 κ1 (0,5)
κ2;3 0 λχ 0
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and ρi (i ¼ 1, 2, 3) with the setting in Table I, and we
consider the following constraints:
(1) The DM relic density ΩDM¼0.1199�0.0027 [105,

106], which implies that hσviFO ∼Oð10−26Þ cm3=s
with a velocity v ∼ 0.1c in early freeze-out.
In our theoretical framework, the DM annihilation

into scalar pairs SS� proceeds through the quartic
scalar interaction χχ�SS�, the s-change exchange of
any CP-even Higgs boson, and the t-channel ex-
change of χ. Therefore, the relic density mainly
limits the coupling strength κ1 for the parameter
settings in Table I and the favored spectrum in Fig. 1.
We use MICROMEGAS [107,108] to obtain the
density at which the threshold effects are important
when the DM mass is close to intermediate particle
masses [109]. We also use MICROMEGAS to cal-
culate the DM annihilation rate in today’s Universe
and the DM-nucleon scattering rate discussed below.

(2) The mass spectrum presented in Fig. 1 as well as
today’s DM annihilation cross section hσvi0 > 1 ×
10−26 cm3=s with v ∼ 10−3c in the nearby subhalo,
which are essential conditions to explain the
DAMPE result (see Refs. [64,71] for more details).

Obviously, the former condition limits the ranges of
mχ and ρi, while the latter condition (as a useful
supplement to the DM relic density) has nontrivial
requirements on κ1.

(3) DM direct-detection bounds on the spin-independent
DM-nucleon scattering cross section σSIχ−n from the
recent XENON-1T [110] and PandaX-II experiments
[111].
In our theory, the scattering proceeds through t-

channel exchange of any CP-even Higgs boson
[112]. Considering that the CP-even Higgs fields
in the bidoublet Φ have no coupling with χ since we
set κ2 ¼ κ3 ¼ 0 in Table I, and that theCP-even field
in ΔR which couples to χχ� with a strength propor-
tional to κ1vR has no couplings with quarks due to the
Uð1ÞB−L charge assignment, one can conclude that
the scattering rate vanishes if there is no mixing
between these two types of fields in forming mass
eigenstates, i.e., the magnitude of the rate is decided
by the size of the mixing. As far as the parameter
setting in Table I is concerned, we checked that the
mixing is less than 10−8, which results in a scattering
rate less than 10−14 pb. Therefore, although the

FIG. 1. Fit of the eþe− spectrum generated by the process χχ → Hþþ
1 H−−

1 withH��
1 → e�e�; μ�μ�; τ�τ� at a rate equal to the AMS-

02 and DAMPE data. Left: χ2 map projected onto the Δm-mχ plane with Δm≡mχ −mH��
1
, where the color bar denotes the χ2 values.

The best-fit point if located at about (6 GeV, 3060 GeV), and the contour of χ2 ¼ χ2best þ 2.3 (solid line) is also shown. Right: The
cosmic eþe− spectrum of the best-fit point generated by the DM annihilation process in comparison with the AMS-02 and DAMPE data.

TABLE II. Two scenarios of the Higgs spectrum and DM annihilation channels pertinent to explaining the
DAMPE excess.

Scenario
Mass spectrum: mχ and Δm > 0 lie within

the region enclosed by the solid line in Fig. 1.
Relevant DM annihilations
li;j ¼ e, μ, τ, k ¼ 1, 2.

I mH��
1

∼ 3 TeV and Δm≡mχ −mH��
1
.

The other scalars are heavier than DM.
χχ → Hþþ

1 H−−
1 → lþ

i l
þ
i l

−
j l

−
j

II mχ > mH��
2
; mH2

; mA1
; mH�

1
> mH��

1
,

and Δm≡mχ −mH��
1
.

The other scalars are heavier than DM.

χχ → Hþþ
k H−−

k → lþ
i l

þ
i l

−
j l

−
j

χχ → Hþ
1 H

−
1 → lþ

i νlil
−
j νlj
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direct-detection bounds play an important role in DM
physics and must be considered when explaining the
excess, they actually impose no constraint on
our case.

The surviving samples from the scan are projected onto
themH��

1
-κ1 plane in Fig. 2 with the color bar indicating the

DM annihilation rate today hσvi0. This figure indicates
that there are certain parameter regions that explain
the excess without conflicting with experimental results,
which are characterized by κ1 ∈ ð2.8; 5Þ for Scenario I,
κ1 ∈ ð1.8; 2.5Þ for Scenario II, and hσvi0 ∈ ð1; 3.2Þ ×
10−26 cm3 s−1 for both scenarios. In Table III we present
more details about the relevant parameter regions. Note that
κ1 in Scenario I is significantly larger than that in Scenario II.
The underlying reason is that κ1 is the coupling that controls
the interaction strength between DM χ and Higgs triplets, as
indicated in Eq. (3.2). Because a more intermediate Higgs is
available in the two-step DM annihilation in Scenario II (see
Table II), a relatively low κ1 is enough to predict the right
relic density. Also note that κ1 in Scenario I spans a much
wider range than that in Scenario II. This is because in some
rare cases of Scenario I, the DMmay annihilate through the
resonant H3 into right-handed neutrinos. We checked these
cases and found that, althoughHþþ

1 H−−
1 is still the dominant

annihilation product, the contribution of the neutrino chan-
nel to the total annihilation rate may reach about 35% at the
freeze-out temperature.
Regarding the DM explanation of the DAMPE excess,

we emphasize that it is consistent with the other direct and
indirect DM experiments (see Refs. [65,78] for a detailed
discussion), such as the H.E.S.S. data on the annihilation

χχ → S�S → 4e [97,113], the Fermi-LAT data in the
direction of the dwarf spheroidal galaxies [114], the
Planck cosmic microwave background (CMB) data which
is sensitive to energy injection in the CMB from DM
annihilations [115,116], and the IceCube data on DM
annihilation into neutrinos [117]. Dark matter in our
scenario also survives the upper bounds from the
XENON-10 and XENON-100 experiments on DM-elec-
tron scattering [118]. Moreover, we checked that the
samples in Fig. 2 also satisfy the constraints from collider
experiments and some theoretical principles recently dis-
cussed in Refs. [30–32], which mainly limit the parameters
ρi. These constraints include the following2

(1) The existence of a SM-like Higgs boson (corre-
sponding to H1 in our case) with a mass around
125 GeV: We examine its properties with the pack-
age HIGGSSIGNALS [119].

(2) Collider searches for extra scalars: We calculate the
couplings of the non-SM-like Higgs bosons using
SPHENO and link them to HIGGSBOUNDS [120–122].
We require them to be allowed by the direct search
results at colliders.

(3) Low-energy lepton-flavor-violation processes con-
sidered in Ref. [98], which include two-body decays
such as μ → eγ, τ → eγ, τ → μγ, and three-body
decays such as μ → eee, τ → eee: These processes
proceed at loop level and may be enhanced greatly
(in comparison with their SM predictions) by large
flavor nondiagonal elements of YΔ if the new scalars
and new vector bosons running in the loops are not
too heavy. In our analysis, we use FLAVORKIT [123]
to calculate the rates of these processes.

(4) B0
s;d − B̄0

s;d mixing: As shown in Ref. [55], this
constraint is rather strong and it requires the masses
of the heavier doublet Higgses to be larger than
about 20 TeV. In our discussion, we satisfy the
requirement by setting α3 ¼ 2 and vR ¼ 20 TeV.

(5) The precision electroweak observable δρ, which is
defined by δρ≡ ΠZZð0Þ

m2
Z

− ΠWWð0Þ
m2

W
with ΠZZð0Þ and

ΠWWð0Þ denoting the self-energy of the Z and W
boson at zero momentum, respectively [124,125]3:
In the minimal LRSM, the new scalars enter the self-
energies, and consequently δρ depends on their
spectrum [60]. In our analysis we use SPHENO to
calculate δρ and find that its typical size is less than

FIG. 2. Scenario-I and Scenario-II samples from Table II to
explain the DAMPE data, which are projected onto the κ1 −mH��

1

plane with the color bar denoting the value of hσvi0. The upper
and lower regions correspond to Scenario I and II, respectively,
and all of the samples satisfy the constraints listed in the main
text.

2Note that these limitations are obviously weak for the
parameter settings in Table I. This is because the YΔ we adopt
is small in magnitude and nearly flavor diagonal, all scalars other
than the SM-like Higgs boson as well as the new gauge bosons
are heavier than about 3 TeVand thus their effects are decoupled,
vL ¼ 2 × 10−7 GeV is tiny, and the quartic scalar couplings
are only moderately large.

3Note that in our case, the tree-level contribution to the
ρ parameter is negligibly small since we consider a very small
vL [60].
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10−4, which lies within the experimentally allowed
region −0.000313 ≤ δρ ≤ 0.00156 [126,127].

(vi) The vacuum stability condition, λ1 ≥ 0, ρ1 ≥ 0, ρ1 þ
ρ2 ≥ 0 and ρ1 þ 2ρ2 ≥ 0, which was derived in
Refs. [128,129].

(vii) Unitary constraints on the quartic scalar couplings:
Since the theory predicts 11 complex fields and 17
independent quartic couplings, the unitary con-
straints are rather complicated in a general case.
In our analysis, however, we note that α3 and κ1 are
much larger than the other couplings. So we consider
a simple case where only α3 and κ1 among the
couplings are nonzero. We work in the basis (χχ�,
HLHL, ALAL, H�

LH
∓
L , H��

L H∓∓
L , HRHR, ARAR,

H�
RH

∓
R , H��

R H∓∓
R , H1H1, A1A1, H�

1 H
∓
1 , H2H2,

A2A2, H�
2 H

∓
2 ), and calculate all 2 → 2 transition

amplitudes as in Refs. [130–132]. After the diago-
nalization of the transition matrix, we obtain the
following unitarity condition:

4κ21 þ 9α23 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16κ41 þ 28κ21α

2
3 þ 15α43

q
≤ ð8πÞ2:

ð3:4Þ

We note that the unitarity constraint was also
discussed in Ref. [32], where the authors sorted
out all possible quartic contact terms in terms of the
physical fields where the vertex factors of each
coupling are linear functions of the quartic cou-
plings. Finally, the authors required each of the
couplings to be less than 8π. Obviously, the limits
obtained in this way are rather conservative, which
can be seen from their results:

α1≤8π; α2≤4π; α1þα3≤8π;…: ð3:5Þ

IV. IMPLICATION OF THE EXPLANATION

From the discussion in Sec. III, one can learn that our
explanation relies on a moderately large κ1, i.e., κ1 ∼ 4 for
Scenario I and κ1 ∼ 2 for Scenario II. This may spoil the
perturbativity of the theory. We investigate this issue by
first choosing one benchmark point in Scenario II and
presenting its properties in Table IV. Then, we study the
behaviors of some potentially large couplings with the
increase of the energy scale according to the renormaliza-
tion group equations (RGEs) presented in the Appendix.

TABLE III. Survived parameter ranges to explain the DAMPE excess. Note that the values of ρi (i ¼ 1; 2; 3) in the
table are scaled by a factor of 102 and the DM mass is in unit of TeV.

Scenario I Scenario II

mχ κ1 100ρ1 100ρ2 100ρ3 κ1 100ρ1 100ρ2 100ρ3

(2.9,3.2) (2.8,4.7) (1,5) (1.1,1.2) (8,20) (1.8,2.4) (1,3) (1.1,1.2) (6,10)

FIG. 3. Left: The RGE evolution of the three largest couplings—κ1 (black lines), λχ (blue lines), and α3 (red lines)—for the benchmark
point of Scenario II in Table IV. In calculating the RGE, only the dominant contributions are included, and the solid and dashed lines
correspond to one-loop and two-loop results, respectively. Right: Same as the left panel, but for κ1 ¼ 4 which is favored by Scenario I to
explain the DAMPE excess.
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In the left panel of Fig. 3, we show the results for the
benchmark point, with the solid and dashed lines denoting
one-loop and two-loop predictions, respectively. This
indicates that κ1 as the largest coupling is the first one
to reach its Landau pole at a scale near 4 × 1012 GeV at the
one-loop level, while at the two-loop level the growth rate
of κ1 to higher energy scales is greatly reduced. In fact, for
an energy scale lower than about 109 GeV (where κ1 ≃ 3),
the difference between the one-loop and two-loop β
functions is negligibly small. However, for an energy scale
higher than about 1010 GeV (where κ1 ≃ 4), the difference
between the one-loop and two-loop β functions is signifi-
cant. This fact implies that the perturbativity of the theory
becomes much worse and perturbative calculations are no
longer reliable near 1010 GeV. As a comparison, we choose
κ1 ¼ 4 (favored by Scenario I to explain the excess) while
keeping α3 and λχ the same, and study its RGE behavior.
We find that κ1 reaches its Landau pole at the scale 3.2 ×
108 GeV at the one-loop level, as shown in the right panel
of Fig. 3. Similar to the case in the left panel, the sharp
increasing behavior at the one-loop level is ameliorated
after including the two-loop corrections near 107 GeV. We
should note that the appearance of the Landau pole may not
be problematic. Possible new particles (such as heavy
fermions or new gauge bosons) that can contribute to
the beta function at high energy (such as the Pati-Salam
unification scale) may change the RGE behavior of the
quartic couplings at such an energy scale. We also recall
that the calculation of the two-loop results is rather
involved, and we obtain our results using PYR@TE
[133–135]. To the best of our knowledge, the two-loop
result in the minimal LRSM is still absent in the literature.
The discussion in Sec. III also indicates that the

explanation requires one or more doubly charged
Higgses H��

1;2 with masses around 3 TeV. These particles,
once produced at future colliders, will decay dominantly
into same-sign lepton pairs with an invariant mass peaking
around 3 TeV. Given that such a signal is quite distinct at
hadron colliders, we briefly discuss its observability in

future experiments. In Fig. 4, we show for the benchmark
point in Table IV the production rates σðpp →
Hþþ

1 H−−
1 ; Hþþ

2 H−−
2 Þ which proceed mainly through the

exchange of vector bosons such as γ, Z, and Z0, as well as
through neutral Higgs bosons Hi (but with smaller con-
tributions). This figure indicates that the production rates
increase with the collision energy

ffiffiffi
s

p
, but are generally

small even for
ffiffiffi
s

p ¼ 100 TeV which has σ ∼ 0.1 fb. This
implies that even if one neglects the SM background arising
from possibly mistagged leptons, an integrated luminosity
of ≳Oð100Þ fb−1 may be needed to detect the signal.
In Fig. 4 we also show the production rates of

σðpp → Hþ
1 H

0
2; H

−
1H

0
2Þ. Since H−

1 and H0
2 mainly decay

into lν and neutrino pairs, respectively, these processes will
result in a mono-lþ ET

miss signal which has the same
signature as WZ-associated production and thus is also
distinct. Nevertheless, since the corresponding production
rates are too small (at most 10−2 fb), the prospect of
detecting them may be dim.

TABLE IV. A benchmark point in Scenario II. Here the nearly degenerate particlesH0
2, A1,H�

1 , andH
þþ
1 correspond to triplet scalars,

and H0
4, A2, and H�

2 are bidoublet scalars.

κ1 2.0 ρ1 1.4 × 10−2

ρ2 1.1 × 10−2 ρ3 7.3 × 10−2

mH0
1

1.25 × 102 GeV mH0
2

3.01 × 103 GeV
mH0

3
3.34 × 103 GeV mH0

4
2.00 × 104 GeV

mA1
3.01 × 103 GeV mA2

2.00 × 104 GeV
mH�

1
3.01 × 103 GeV mH�

2
2.00 × 104 GeV

mH��
1

2.99 × 103 GeV mH��
2

3.01 × 103 GeV
mZ0 1.57 × 104 GeV mW0 9.37 × 103 GeV
ΓZ0 4.66 × 102 GeV ΓW 0 3.27 × 102 GeV
BrðZ0 → Hþþ

1;2 H
−−
1;2Þ ∼2.8% BrðW0þ → Hþ

1 H
0
2Þ ∼5.1 × 10−5

BrðHþþ
1 → lþi l

þ
i Þ ∼33%, 33%, 33% BrðHþþ

2 → lþi l
þ
i Þ ∼33%, 33%, 33%

BrðHþ
1 → lþj νiÞ ∼33%, 33%, 33% BrðH0

2 → νiνiÞ ∼33%, 33%, 33%

FIG. 4. Production rates of σðpp → Hþþ
1 H−−

1 ; Hþþ
2 H−−

2 ;
Hþ

1 H
0
2; H

−
1H

0
2Þ for the benchmark point of Scenario II in Table IV

as a function of the collision energy
ffiffiffi
s

p
.
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For the benchmark point in Table IV, we also checked
that the production rates of σðpp → Hþþ

1 H−−
2 ; Hþ

1 A
0
1Þ are

much smaller than those of the above production channels.
Moreover, we note that the doubly charged Higgses H��

1;2

may contribute to the process eþe− → lþ
i l

−
j via t-channel

mediation at the future International Linear Collider.
However, the signal strength of this process is proportional
to Y4

Δ. Due to the small value of YΔ as well as the heavy
mass of the H��

1;2 , we estimate that the effect is negligible.

V. CONCLUSION

Given the fact that the electroweak interaction in the
SM violates parity while all other interactions conserve
parity, the LRSM is an attractive extension of the SM
that can address the parity violation in the EW interaction,
generate tiny neutrino masses, accommodate DM
candidates, and provide a framework for baryogenesis
through leptogenesis. In this work we enlarged the field
content of the minimal LRSM by adding one gauge-
singlet scalar field, which acts as the simplest extension
of the LRSM to include DM physics, and utilized
the resulting theory to study the recently reported
DAMPE results of the cosmic eþe− flux. We considered
two scenarios to explain the DAMPE peak with a scalar
DM χ: (1) χχ� → Hþþ

1 H−−
1 → lþ

i l
þ
i l

−
j l

−
j , and (2) χχ� →

Hþþ
k H−−

k → lþ
i l

þ
i l

−
j l

−
j accompanied by χχ� → Hþ

1 H
−
1 →

lþ
i νlil

−
j νlj (with li;j ¼ e, μ, τ and k ¼ 1, 2). We fit the

theoretical prediction of the eþe− spectrum to relevant
experimental data to determine the scalar mass spectrum
favored by the DAMPE excess. We also considered various
constraints from theoretical principles, collider experi-
ments, the DM relic density, and direct search experiments.
We found that there is ample parameter space that can
interpret the DAMPE data while passing the constraints.
Our interpretation, on the other hand, implies the break-
down of the perturbativity of the theory at an energy scale
ranging from 107 to 1011 GeV, which can be avoided by
the intervention of other new physics. We also briefly
discussed collider signals of our explanation and concluded
that a luminosity of ≳Oð100Þ fb−1 is needed to probe the
signal at a future hadronic collider with

ffiffiffi
s

p ¼ 100 TeV.
Before we end this work, we would like to clarify two

important points.
One is that the gauge-singlet scalar DM considered in this

work is motivated by some UV completions of the LRSM
and also by simplicity. The two essential ingredients of our
interpretation of the excess include the existence of one or
more leptophilic mediators Si (which areH��

1;2 andH�
1 in the

LRSM), and sufficiently large quartic scalar couplings
χχ�SiS�i which ensure that the DM χ acquires the right relic
density without any suppression of the hσvi0 for the
annihilation χχ� → SiS�i . It should be noted that the scalar
leptophilic DM model containing ϕL;ϕR introduced in the

beginning of Sec. III also possesses the aforementioned
ingredients, where the λΔ1

term in Eq. (64) and the λϕΔΔϕ
term in Eq. (67) of Ref. [14] play the same role as the κ1 term
in DM physics. Therefore, the model may also be utilized to
explain the excess; however, its structure is much more
complex. Obviously, if the DM explanation of the excess is
confirmed by future data, a careful examination of the model
should be carried out,which is beyond the scope of thiswork.
We should compare this work with our earlier studies

[67,71], where we extended the SM using lepton-specific
symmetries and built anomaly-free theories in an economic
way. In all of these works we considered a scalar DM
candidate to generate the eþe− flux using a two-step
annihilation process, followed by solving the propagation
equation of the electron/positron in a cosmic ray and looking
for the maximum value of the likelihood function to attain
the χ2map in theΔm −mχ plane needed to produce the right
shape of the eþe− spectrum. Then, we obtained the
parameter space of the model relevant to explaining the
excess by considering the constraints fromDM relic density
and direct-detection experiments. Due to their shared work-
flow procedures, we organized the discussions in a similar
way. However, the underlying physics in these works are
quite different, which is reflected in the following aspects.
(1) The theoretical frameworks considered in

Refs. [67,71] focus on the DAMPE excess, and
the DM candidate together with the lepton-specific
gauge bosons are added by hand. By contrast, in this
work we considered the physically well-motivated
LRSM where the leptophilic mediators and the DM
candidates can arise quite naturally without the needs
for lepton-specific gauge interactions. This model,
aside from being capable of explaining the DAMPE
excess, can also account for many fundamental
problems in particle physics such as neutrino masses
and baryogenesis. Moreover, as we mentioned in the
Introduction, the theory has rich phenomenology at
colliders which can be tested in the future. Conse-
quently, it is of particular interest.

(2) In earlier works [67,71] we extended the SM using
certain lepton-specific gauge symmetries in an
economic way. In doing this, we noted that the
anomaly-free condition puts a nontrivial requirement
on the quantum number of leptons for the new
symmetry and, consequently, the new gauge boson
Z0 as the mediator of the two-step annihilation must
decay in certain pattern, e.g., either democratically
into three generations of lepton pairs or into eþe−
and μþμ− with equal branching ratios. By contrast,
in this work we considered the triplet scalars as the
mediators of the DM annihilation. The decay modes
of the scalars are determined by the Yukawa
coupling YΔ which depends on the parameters
vL;R and MD and is therefore somewhat arbitrary.
Moreover, since the LRSM predicts six triplet Higgs
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bosons, we have more choices when selecting the
mediators of the annihilation than in Refs. [67,71].
These features make the discussions of this work
more adaptive to future cosmic-ray data.
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APPENDIX: RGES OF THE RELEVANT
COUPLINGS

Here we present the RGEs of the parameters in the
extended minimal LRSM discussed in this work. Since the

complete forms of the equations in the LRSM are quite
complicated [32,136],4 we consider the case of large
κ1, λχ , and α3 and only include potentially large contribu-
tions in the RGEs. At the initial stage of this work, we
calculated the effects of κ1 and λχ on the one-loop β
functions of the couplings by hand, and took the rest
of the contributions from Ref. [136]. While revising the
manuscript, we noticed that the tool PYR@TE [133–135]
can calculate the β functions automatically. Thus, we
use this program to calculate all of the one-loop β
functions. We find that, as far as the dominant contri-
butions listed below are concerned, the two sets of results
agree with each other. We also calculate the two-loop β
functions for the couplings κ1, λχ , α3, and α1 using the
program and keep only the dominant terms. We note that
the calculation of the two-loop contributions is rather
computationally heavy, and attaining the complete set of
the two-loop results is beyond the capability of our
computing resources.
The resulting RGEs are given by

16π2
∂gs
∂t ¼ −7g3s ; 16π2

∂g2
∂t ¼ −

7

3
g32; 16π2

∂gBL
∂t ¼ 14

3
g3BL; ðA1Þ

16π2
∂yt
∂t ¼ yt

�
−
2

3
g2BL −

9

2
g22 − 8g2s þ 8y2t

�
; ðA2Þ

16π2
∂κ1
∂t ¼4κ21þ8λχκ1þ16ρ1κ1þ6ρ3κ1−12κ1g22−6κ1g2BLþ

1
16π2

ð−4α21κ1−3α23κ1−15κ31−48κ21λχ−40κ1λ2χ−4α1α3κ1Þ;
ðA3Þ

16π2
∂λχ
∂t ¼ 20λ2χ þ 6κ21 þ

1
16π2

ð−24κ31 − 60κ21λχ − 240λ3χÞ; ðA4Þ

16π2
∂λ1
∂t ¼ 32λ21 þ

5

2
α23 þ 16λ1λ3 þ 16λ23 þ 6α1α3 þ 6α21 þ 12λ1y2t − 6y4t − 18λ1g22 þ 3g42; ðA5Þ

16π2
∂λ3
∂t ¼ −α23 þ 24λ1λ3 þ 16λ23 þ 12λ3y2t þ 3y4t − 18λ3g22 þ

3

2
g22; ðA6Þ

16π2
∂α1
∂t ¼ 8λ1α3 þ α23 þ 8λ3α3 þ 16ρ1α3 þ 8ρ2α3 þ 3ρ3α3 þ 20λ1α1 þ 8λ3α1 þ 16ρ1α1 þ 8ρ2α1 þ 6ρ3α1 þ 4α21 þ 6α1y2t

− 6α1g2BL − 21α1g22 þ 6g42 þ
1

16π2

�
−18α31 − 10α21α3 − α1κ

2
1 − 6α33 −

27
2
α1α

2
3

�
; ðA7Þ

16π2
∂α3
∂t ¼ 4λ1α3 þ 4α23 − 8λ3α3 þ 4ρ1α3 − 8ρ2α3 þ 8α1α3 þ 6α3y2t − 6α3g2BL − 21α3g22

þ 1
16π2

�
−34α21α3 − 34α1α23 −

19
2
α33 − α3κ

2
1

�
; ðA8Þ

4One can also get the total one-loop β functions of the minimal LRSM from the website https://github.com/jlgluza/LR.
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16π2
∂ρ1
∂t ¼2α23þ28ρ21þ16ρ1ρ2þ16ρ22þ3ρ23þ4α1α3þ4α21−12ρ1g2BLþ6g4BLþ12g2BLg

2
2−24ρ1g22þ9g42þκ21; ðA9Þ

16π2
∂ρ2
∂t ¼ −α23 þ 24ρ1ρ2 þ 12ρ22 − 12ρ2g2BL − 24ρ2g22 − 12g22g

2
BL þ 3g42; ðA10Þ

16π2
∂ρ3
∂t ¼ 2α23 þ 32ρ1ρ3 þ 16ρ2ρ3 þ 4ρ23 þ 8α1α3 þ 8α21 − 12ρ3g2BL − 24ρ3g22 þ 12g4BL þ 2κ21; ðA11Þ

where yt ≃ ðYQ1
Þ33 in the small-tan β limit denotes the top-quark Yukawa coupling, t ¼ ln μ, and the terms in bold denote

dominant two-loop contributions. Note that since the operators TrðΦ†ΦÞ½TrðΔLΔ
†
LÞ þ TrðΔRΔ

†
RÞ� and ½TrðΦΦ†ΔLΔ

†
LÞ þ

TrðΦ†ΦΔRΔ
†
RÞ� contain the same fields, the calculations of the β functions for α1 and α3 are entangled. Thus we also present

the two-loop result for α1, although it is not important in our numerical calculation. From these analytic expressions, one
can learn that for the benchmark point in Table IV, the two-loop contribution is at most 6% of its corresponding one-loop
result at the TeV scale, although the values of κ1 and α3 are quite large.
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