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Twistor string models have been known for more than a decade now but have come back under the
spotlight recently with the advent of the scattering equation formalism which has greatly generalized the
scope of these models. A striking ubiquitous feature of these models has always been that, contrary to usual
string theory, they do not admit vibrational modes and thus describe only conventional field theory. In this
paper we report on the surprising discovery of a whole new sector of one of these theories which we call
“twisted strings,” when spacetime has compact directions. We find that the spectrum is enhanced from a
finite number of states to an infinite number of interacting higher spin massive states. We describe both
bosonic and world sheet supersymmetric models, their spectra and scattering amplitudes. These models
have distinctive features of both string and field theory, for example they are invariant under stringy
T-duality but have the high energy behavior typical of field theory. Therefore they describe a new kind of
field theories in target space, sitting on their own halfway between string and field theory.
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I. INTRODUCTION

String theories based on Penrose’s twistor theory have
lead to a revolution in our understanding of the S-matrix of
quantum field theory [1]. The most remarkable feature of
these models is that, contrary to string theory, they describe
only field theory (spin ≤ 2 fields), that is, higher spin
massive excitations are absent from their spectrum. These
models combine the mathematical elegance of string theory
with twistor methods to describe the low energy field
theories of nature.
In the field of scattering amplitudes, the recent intro-

duction of the “scattering equations formalism” [2–4] lead
to the discovery of the ambitwistor string, which in turn
lead to advances which were out of reach of the previous
twistor methods. Most notably this includes loop-level
[5–9] amplitudes and curved space [10,11]. But an impor-
tant open question remained, the connection between these
new models to traditional string theory. The best framework
to understand these questions relies on a recently redis-
covered quantization ambiguity that leads to closed theories
which we call “twisted strings” below. The idea is that the
ambitwistor string arises in the tensionless limit of the
twisted string [12–16].

The main result of this paper is the following: While in
flat space the twisted type II string describes gravity only, in
spacetimes with different topologies, where the string can
wind around compact dimensions, an infinite tower of
massive states arises. This twisted string theory remains
distinct from usual string theory, as we explain below, and
describes the new type of theories halfway between string
and field theory.
We study the bosonic and world sheet supersymmetric

models. The bosonic twisted string has tachyonic excitations
(whose masses squared are bounded by−4/α0 where α0 is the
Regge slope) and ghosts (negative normed states) in the phy-
sical spectrum. The Ramond-Neveu-Schwarz (RNS) formu-
lation with N ¼ ð1; 1Þ world sheet supersymmetry has no
tachyons but also seems to have nondecoupling ghosts.
Remarkably, we also find that the compactified theory

has T-duality: the spectrum is invariant when the radius R
of the compact dimension is exchanged with α0/R. At the
self-dual radius R ¼ ffiffiffiffi

α0
p

, both in the RNS and bosonic
models, infinitely many higher spin states become mass-
less, a rather striking fact that will be explored elsewhere.
We compute the scattering amplitude of these twisted

theories and find that, in contrast to string theory, these
theories do not enjoy exponential suppression at high
energies [17,18].
The combination of these three elements: stringy

T-duality, field-theory power law suppression at high energy
and the fact that these theories only describe conventional
field theory in flat space give these theories a genuinely
novel status somewhere between field and string theory.
We also comment on the connection to the ambitwistor

string [19] and scattering equations in the tensionless
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limit [12,13]. We find that the winding modes decouple
from the scattering equations, but modify the integrand in a
way that we describe. This gives new scattering-equation
like formulas for winding states which include higher-spin
states.

II. TWISTED STRINGS

A. Review

We call twisted strings the world sheet models described
by Siegel in the context in [12,20]. The α0 → ∞ limit of
these models produces the ambitwistor string [12–14]. We
present here a brief description of the model; for more
details the reader is referred to [14]. The twisted bosonic
string action is the Polyakov action

S ¼ 1

2πα0

Z
d2z∂Xμ∂̄Xμ; ð1Þ

here written in flat space and in conformal gauge. We
expand the field Xðz; z̄Þ ¼ XLðzÞ þ XRðz̄Þ in the usual way:

Xμ
LðzÞ ¼ xμL − i

α0

2
pμ
L lnðzÞ þ i

�
α0

2

�
1/2 X∞

m¼−∞

1

m
αμm
zm

Xμ
RðzÞ ¼ xμR − i

α0

2
pμ
R lnðz̄Þ þ i

�
α0

2

�
1/2 X∞

m¼−∞

1

m
α̃μm
z̄m

ð2Þ

with canonical commutation relations

½αμn; ανm� ¼ ½α̃μn; α̃νm� ¼ nδnþmη
μν ð3Þ

½xμL/R; pν
L/R� ¼ iημν; ½xμL/R; pν

R/L� ¼ 0; ð4Þ

where ημν ¼ ð−;þ;…;þÞ.
The difference to conventional strings comes from the

choice of vacuum [12–14,21,22],

αnj0i ¼ α̃−nj0i ¼ 0; ∀ n > 0; ð5Þ

which we call twisted vacuum. The negative modes of α̃
annihilate the vacuum in contrast to the conventional string
vacuum where the positive modes annihilate the vacuum.
This defines the following operator ordering:

∶αμnαν−m∶ ¼ αν−mα
μ
n; ∶α̃μ−mα̃νn∶ ¼ α̃νnα̃

μ
−m; ∀ n; m > 0:

ð6Þ
The spectrum of these theories can be computed from the

Virasoro constraints,

ð∂XÞ2 ¼ 0; ð∂̄XÞ2 ¼ 0: ð7Þ

The bosonic theory is found to live in 26 dimensions. In the
twisted vacuum the zero modes L0 and L̄0 of (7) acquire a
normal ordering constant [23],

L0 ¼
α0

4
p2
L þ N − 1; L̄0 ¼

α0

4
p2
R − N̄ þ 1 ð8Þ

with N ¼ P∞
n¼1 ∶α−n · αn∶ and N̄ ¼ −

P∞
n¼1 ∶α̃−n · α̃n∶—

the minus signs comes from the choice of vacuum. The zero
modes of the Virasoro conditions then read

ðN − N̄Þ − α0m2 ¼ 0; N þ N̄ − 2 ¼ 0: ð9Þ

The normal ordering constant appears in the level matching
truncating the spectrum to a finite number of states. These
are the massless sector of the bosonic string plus massive
spin two states, with m2 ¼ �4/α0.
Adding a pair of fermions gives the RNS model which

also has a twisted vacuum [see Eq. (16)] but in this case
there is no tachyon. We proved in [13] following on [12]
that both the bosonic and the type II models have as the
tensionless limit ambitwistor strings.

B. Bosonic model on a circle

Taking one of the target-space dimensions to be a
circle of radius R allows winding modes X25ðσ þ 2πÞ ¼
X25ðσÞ þ 2wπR with w ∈ Z. In the presence of winding
and Kaluza-Klein modes (n ∈ Z) in the 25th dimension,
the momentum zero modes are

pμ
L/R ¼

�
km;

n
R
� Rw

α0

�
; ð10Þ

where m ¼ 0;…; 24. The constraints (9) become

m2 ¼ n2

R2
þ R2w2

α02
þ 2

α0
ðN − N̄Þ

N þ N̄ þ nw ¼ 2: ð11Þ

The compactified model contains many new tachyonic
states. To see this take k ¼ −nw > 0. The lowest possible
mass squared states have ðN; N̄Þ ¼ ð0; kþ 2Þ. The mass-
shell constraint then gives

m2 ¼ n2

R2
þ R2w2

α02
þ 2

α0
ð−k − 2Þ ¼

�
n
R
þ wR

α0

�
2

−
4

α0
:

ð12Þ

Taking n > 0 and w < 0, m2 < 0 if

n >
jwjR2

α0
− 2 and n <

jwjR2

α0
þ 2: ð13Þ

There are always integer solutions for n, therefore there are
infinitely many tachyonic states in the bosonic twisted
string, with masses squared bounded from below by −4/α0.
In addition, many of them have negative norm [14,24], we
come back to this point for the RNS model below.
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C. RNS model on a circle

The RNS model contains two Majorana-Weyl fermions
ψðzÞ; ψ̄ðz̄Þ and has the standard RNS world sheet super-
symmetric action. Following conventions of [25] the
fermions have mode expansion

ψðzÞ ¼
X

r∈Zþν

ψ r

zr
; ψ̄ðz̄Þ ¼

X
r∈Zþν̃

ψ̄ r

zr
ð14Þ

with ν ¼ 1/2 is the NS sector while ν ¼ 0 is the Ramond
sector, and we keep

fψμ
r ;ψν

sg ¼ fψ̃μ
r ; ψ̃ν

sg ¼ ημνδrþs ð15Þ

while we define the twisted vacuum

ψμ
r j0i ¼ 0; ψ̃μ

−rj0i ¼ 0 ∀ r > 0 ð16Þ

depending on the NS or R vacuum. In a given sector
for the closed string, NS-NS, NS-R, R-NS or R-R, the
constraints are

m2 ¼ n2

R2
þ R2w2

α02
þ 2

α0
ðN − N̄ − aν þ aν̄Þ

Ntot þ N̄tot þ nw ¼ aν þ aν̄ ð17Þ

with aNS ¼ 1/2, aR ¼ 0. The operators Ntot and N̄tot count
the total number of oscillators, ψ’s and α’s.
These models have a Gliozzi-Scherck-Olive (GSO)

projection which eliminates the tachyonic state. The argu-
ment is: In the NS-NS sector, the GSO-even states are built
out of at least one ψμ

r and ψ̃ν
r modes, for example

ψμ
−1/2ψ

ν
1/2j0i. Therefore the number operators on physical

states always obey Ntot ≥ 1
2
and N̄tot ≥ 1

2
.

It is easy to see that there are no tachyonic modes in the
NS-NS sector; the only nontrivial case has nw ¼ −k with
k > 0. The twisted level matching constraint implies that
the lowest mass in (17) is a state with N̄tot ¼ kþ 1

2
and

Ntot ¼ 0:

m2 ¼ n2

R2
þR2w2

α02
þ 2

α0

�
1

2
− k−

1

2

�
¼
�
n
R
þwR

α0

�
2

; ð18Þ

which is always positive. In the R-R sector both Ntot and
N̄tot can be zero but there is no normal ordering constant.
The lowest possible value for the mass is given by the state
with ðN; N̄Þ ¼ ð0; kÞ for which

m2 ¼ n2

R2
þ R2w2

α02
þ 2

α0
ð−kÞ ¼

�
n
R
þ wR

α0

�
2

> 0: ð19Þ

The mixed NS-R and R-NS sectors are also tachyons-free,
the argument follows as above. In conclusion, the com-
pactified twisted model has no tachyons.

D. Negative-norm states

So far we have described the masses of the states in the
spectra of these new theories. It turns out that the models
possess ghosts in the physical spectrum, which naively
spoils the unitarity of the theories. In the flat space case, it
was known that the bosonic model had ghosts, while the
supersymmetric model was ghost-free. Here this is not the
case anymore and we argue now that both models do
contain ghosts in the physical spectrum. In light-cone
gauge, the GSO admissible supergravity states are of the
form ψ I

−1/2ψ̄
J
1/2j0; ki with I; J ¼ 1;…; d − 1 have positive

norm if h0; kj0; ki > 0. A winding state with Kaluza-Klein
(KK) momentum and winding is created by acting with
expðikLα0Þ and expðikRα̃0Þ on ψ I

−1/2ψ̄
J
1/2j0; ki, adding

compensating α̃i’s and setting the number of α’s to zero
such that N̄tot; n; w solve the constraints. These states have
negative norms whenever there is an odd number of α̃ [26].
An interesting prospect would be to find a target space with
extra symmetries that would remove these states.

E. T-duality

Another fact to add to the list of curious properties of
these new theories is that they are invariant under T-duality,

ðn; w; RÞ ↔
�
w; n;

ffiffiffiffi
α0

p

R

�
: ð20Þ

This is surprising since in normal string theory, T-duality
reflects the existence of a minimum spacetime length and is
connected to the UV completeness of string theory. The
amplitude analysis below shows that, contrary to string
theory amplitudes that are exponential soft at high energies,
twisted strings have a power-law falloff and therefore
behave like field theories, which do generically suffer
from UV divergences.
Since the action is the same for twisted strings and

conventional strings we expect that the Buscher rules [27]
for T-duality in nontrivial backgrounds are the same in
twisted strings as in string theory.
At the self-dual radius R ¼

ffiffiffiffi
α0

p
a surprising effect arises:

both the twisted bosonic and RNS strings do have infinitely
many extra massless states at the self-dual radius. The
Virasoro conditions obeyed by physical states can be
written as follows:

m2 ¼ ðkLÞ2 þ
4

α0

�
Ntot −

1

2

�
¼ ðkRÞ2 þ

4

α0

�
1

2
− N̄tot

�
:

ð21Þ
Since Ntot, N̄tot ≥ 1

2
for most values of Ntot the first

condition has no solution when m2 ¼ 0. However there
is an interesting class of solutions with Ntot ¼ 1

2
. The

first equation is solved by w ¼ −n and the second by w ¼
� ffiffiffi

q
p

with N̄tot ¼ 1
2
þ q. For the

ffiffiffi
q

p
integer, these are
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consistent solutions that describe massless spacetime vec-
tors with nonzero KK and winding charge. This suggests
an exotic gauge symmetry enhancement [28]. It would be
nice to understand this strange sector of the theory. One
interesting application would be to take the tensionless
limit of an amplitude between these gauge bosons and
obtain corresponding Cachazo-He-Yuan (CHY) formulas.
Since the heterotic ambitwistor string is inconsistent [19],
this may provide an alternative approach to gauge
interactions.

III. PROPERTIES OF TWISTED STRINGS

In this section we study various properties of the twisted
strings with windings; scattering amplitudes, high-energy
behavior and partition functions. We also comment on the
form of ambitwistor or CHY integrands with windings.

A. Scattering amplitudes and high-energy behavior

It was shown in [12,14,24,29] that the oscillator flip in
scattering amplitudes is implemented by using the twisted
world sheet correlators hXXi (see also [30])

hXμðz; z̄ÞXνðw; w̄Þi ¼ −
α0

2
ln

�
z − w
z̄ − w̄

�
ð22Þ

or, equivalently,

hXμ
LðzÞXν

LðwÞi ¼ −ημν
α0

2
lnðz − wÞ ð23Þ

hXμ
Rðz̄ÞXν

Rðw̄Þi ¼ ημν
α0

2
lnðz̄ − w̄Þ: ð24Þ

The part of the string integrands that is affected by
the sign flip is the Koba-Nielsen factor, the correlator
between the plane-wave part of the vertex operators
expðik · Xðz; z̄ÞÞ → expðiðkLXðzÞ þ kRXRðz̄ÞÞÞ [31]:
�Yn

j¼1

eiðkLjXLðzjÞþkRjXRðz̄jÞÞ
�

¼ e−
P

i;j
kLi·kLjhXLðziÞXLðzjÞie−

P
i;j
kRi·kRjhXRðz̄iÞXRðz̄jÞi: ð25Þ

In ordinary string theory, this reduces to the standard
expression

Q
i<jjzijjα0ki·kj or

Q
i<jðzijÞα0kLi·kLj/2ðz̄ijÞα0kRi·kRj/2

when windings are included.
In the twisted string, we use (24) to obtain

Y
i<j

ððzi − zjÞ12α0kLi·kLj × ðz̄i − z̄jÞ−1
2
α0kRi·kRjÞ: ð26Þ

Given the definitions of the momenta in (10), we have that
α0kL1 · kL2 ¼ α0kR1 · kR2 − 2n1w2 − 2n2w1. In the presence
of windings, Eq. (26) is then rewritten

Y
i<j

�
zi − zj
z̄i − z̄j

�1
2
α0qi·qj jzi − zjjniwjþnjwi ; ð27Þ

where we used an effective higher-dimensional shorthand
notation q ¼ ðkm; nR ; wRα0 Þ, such that 2qi · qj ¼ kLi · kLj þ
kRi · kRj ¼ 2kmi kjm þ ninj/R2 þ wiwjðR/α0Þ2.
To compute these amplitudes we generalize the original

observation of [29] which implies a remarkable property:
The results of these integrals are rational functions of the
kinematic invariants. This can be seen explicitly from the
following formula:

Z
d2z

�
z
z̄

�
a
jzj2n

�
1 − z
1 − z̄

�
b
j1 − z̄j2m

¼ ð−a − nÞ2nþ1ð−b −mÞ2mþ1

ð−1 − a − b − n −mÞ2nþ2mþ3
; ð28Þ

where ðaÞn ¼ ΓðaþnÞ
ΓðaÞ is known as a Pochhammer symbol.

It simplifies to a product when n is integer ðaÞn ¼
aðaþ 1Þ � � � ðaþ n − 1Þ.
This rational result is typical of a field theoretic behavior

at tree level. By factorization, higher point amplitudes
should also be given by rational functions.
This surprising fact which starkly contrasts with string

theory calculations, where the oscillator spectrum gives rise
to infinitely many poles in the S-matrix, can be understood
as follows. The discrete momenta in physical states require
compensating oscillator excitations [see again Eq. (11)].
Momentum quantization and conservation in the extra
dimensions therefore imply that only finitely many states
can be exchanged in a given channel [33].
At loop orders, unitarity cuts predict that the twisted-

string integrand in a loop-momentum formulation [37]
must also be a rational function. In ordinary string theory,
these integrands are typically given by elliptic multiple zeta
values [38–41] and the fact that these new integrands
should be rational is an interesting mathematical fact
deserving further investigation.

B. CHY integrands for higher spins

A prescription for obtaining the scattering equations
from the twisted string was given in [12]. We apply it here
to obtain scattering equations for states carrying winding
modes and corresponding Cachazo-He-Yuan [3] formulas.
The integrand for a generic amplitude in a space with one
compact dimension has a universal contribution from the
twisted Koba-Nielsen factor (26). Following [12], we shift
the antiholomorphic coordinate as z̄ → z − 1

β z̄ and take the
limit when β → ∞ so that z̄ → z. Contrary to the uncom-
pactified case, the exponentials in the Koba-Nielsen factor
do not cancel completely leaving a ðzijÞniwjþnjwi con-
tribution to the amplitude, as can be seen from Eq. (27).
The scattering equations come at the next order by
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integrating over z̄ to obtain δ̄ðEiÞ where Ei ¼
P

i<k
qi·qj
zij

−
2
α0

ðniwjþnjwiÞ
zij

¼ 0. In the limit Eq. (27) becomes

Z
ð� � �Þ

Y
i<j

ðzi − zjÞniwjþnjwi δ̄ðEiÞ: ð29Þ

The integral supported on the scattering equations, done
naively, does not reproduce the one obtained using
formulas like (28) (but it still is a rational function).
This is similar to the procedure described in [42] where,
after changing the integration measure to one containing
the scattering equation in a string amplitude, one does not
have the same amplitude anymore and a limit must
be taken.
In our case here, the proper CHY amplitude is obtained

after the α0 → ∞ limit is taken. This decouples the wind-
ings from the scattering equations but leaves a contribution
of ðzi − zjÞniwjþnjwi to the integrand. We hope this formula
paves the way to describe higher spin (and perhaps
massive) amplitudes in the CHY framework.

C. Partition function

The partition function of the bosonic twisted model is
readily written in terms of a state sum. The twisted
oscillator part was computed in [14] [below Eq. (5.15)].
The only new ingredient here is the (ordinary) lattice sum
coming from the left- and right-moving zero modes. As
emphasized above, this piece is unaffected by the changes
in the oscillator sector so the whole partition function is
given by

Zðτ; τ̃Þ ¼
Z

d26keiπðτ−τ̃Þα
0k2
2

X
n;m∈Z2

qp
2
L/2q̃p

2
R/2

ηðqÞ24η24ð1/q̃Þ ; ð30Þ

where q ¼ expð2iπτÞ, q̃ ¼ expð−2iπτ̃Þ and ηðqÞ ¼
q1/24

Q∞
n¼1ð1 − qnÞ. As observed in [14], the unusual 1/q̃

makes a naive interpretation of the integration variable τ
impossible, for otherwise ηð1/q̃Þ is not defined. The model
should be complexified, a matter that will be studied
somewhere else and connected with similar problems in
the ambitwistor string side [13,43,44].
Physical states are obtained in the state sum by

integrating
R
1/2
−1/2 dðℜeτÞZðτ; τ̄Þ, as is standard and was

done in the flat case in [14]. Higher dimensional
generalizations are done just like in string theory, and
it would of course be interesting to see if some com-
pactification manifolds would produce better behaved
theories, without ghosts for instance.

IV. DISCUSSION

In this paper we described a surprising new facet of
twisted strings: the winding sector. Its existence calls for a

complete reevaluation of the kind of target space theories
these models describe and opens the way to many new
interesting possibilities. Many baffling aspects of this
theory need clarification: for instance, what is the target
space theory describing interacting massless higher spins at
the self-dual radius. The presence of negative-norm states
seems to ruin the unitarity of the theory, but perhaps there is
a way to project these states out.
The most urgent question is probably a detailed study of

the α0 → ∞ limit, which is expected to generalize the
ambitwistor string framework. In this limit winding modes
are admissible but it is unclear if they contribute or
decouple from the spectrum. This question is under
investigation and will be discussed elsewhere. Closely
related is the possibility of introducing consistent Yang-
Mills interactions in the ambitwistor string by taking the
tensionless limit from this model at the self-dual radius and
a possible inclusion of windings in loop amplitudes in the
ambitwistor string [5,7,8].
Another interesting direction is to use the above for-

malism to obtain CHY formulas for higher spin particles,
massive particles and higher dimensional operators gen-
eralizing the work of [45].
Finally, the connection with double field theory (DFT)

remains to be elucidated. It would be interesting to compare
the amplitude calculations of these models with the ones in
DFT of [46] for instance. On a more conceptual level, the
sign change seems to be connected to the complexification
of space-time and exchanging the roles of windings and
momenta. It would be interesting to make a connection
with [30,47–49]. Some comments on DFT background
were also recently made in [50] in relation to Siegel’s chiral
string (which we call twisted strings) and it would be
interesting to try to include compact directions in their
analysis.
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