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The QCD phase diagram is studied in the presence of an isospin asymmetry using continuum
extrapolated staggered quarks with physical masses. In particular, we investigate the phase boundary
between the normal and the pion condensation phases and the chiral/deconfinement transition. The
simulations are performed with a small explicit breaking parameter in order to avoid the accumulation of
zero modes and thereby stabilize the algorithm. The limit of vanishing explicit breaking is obtained by
means of an extrapolation, which is facilitated by a novel improvement program employing the singular
value representation of the Dirac operator. Our findings indicate that no pion condensation takes place
above T ≈ 160 MeV and also suggest that the deconfinement crossover continuously connects to the
BEC-BCS crossover at high isospin asymmetries. The results may be directly compared to effective
theories and model approaches to QCD.
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I. INTRODUCTION

The thermodynamics of strongly interacting matter, as
described by quantum chromodynamics (QCD), plays a
characteristic role for the phenomenology of heavy-ion
collisions, the structure of compact stars and the evolution
of the early Universe. The relevant parameters that impact
QCD physics in these settings include the temperature T
and the net densities nf of the individual quark flavors f. In
the light quark sector (f ¼ u, d), the characteristic combi-
nations are the baryon density nB ¼ ðnu þ ndÞ=3 and the
isospin density nI ¼ nu − nd. While the former measures
the overall excess of strongly interacting matter over
antimatter, the isospin density describes the asymmetry
between the up and down quarks or, equivalently, between
protons and neutrons in the system.
The above-mentioned physical settings are all thought to

exhibit a strong isospin asymmetry. The initial state of
typical heavy-ion collisions has around twice as many
neutrons as protons, which has implications, for example,
for the imbalance between the generated charged pions [1].
Cold neutron stars are characterized by even lower proton
fractions [2]. A high isospin asymmetry is carried by
charged pion degrees of freedom (d.o.f.) that might be
relevant for compact stars or for nuclear matter in general
[3]. Although the early Universe is typically assumed to
undergo an evolution with almost vanishing densities,

a large lepton asymmetry might propagate into the baryon
sector and shift equilibrium conditions around the time of
the QCD transition [4].
In the grand canonical approach to QCD, the densities

nf are traded for the corresponding chemical potentials μf
and the isospin chemical potential is defined as μI ¼
ðμu − μdÞ=2. The phase diagram in the temperature—
isospin chemical potential plane is known to exhibit at
least four different phases that can be relevant for the
physical systems mentioned above. We discuss these
phases qualitatively in Fig. 1. In the vacuum (for low
values of T and of μI) QCD is confining and the effective
d.o.f. are hadrons. On the one hand, if the temperature is
raised at low isospin chemical potential, deconfinement sets
in and the quark-gluon plasma phase is realized. Lattice
QCD simulations have demonstrated that the transition to
deconfinement is an analytic crossover [5] and occurs near
the chiral pseudocritical temperature of Tpc ≈ 155 MeV
[6]. On the other hand, if μI is increased at low temperature,
another phase transition line is encountered, which can be
best understood using an effective description of QCD
based on pionic d.o.f. Charged pions are the lightest
hadrons that couple to the isospin chemical potential,
and their effective dynamics is described by chiral pertur-
bation theory (χPT) [7].
At T ¼ 0, if the isospin chemical potential exceeds the

critical value μI;c ¼ mπ=2, sufficient energy is pumped into
the system so that charged pions can be created. Due to the
bosonic nature of pions, a Bose-Einstein condensate (BEC)
is formed at this point. χPT also predicts that the transition
between the vacuum and the BEC state is of second order
with the universality class O(2) [7]. As is usually the case,
the temperature tends to destroy the condensate so that this
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phase transition line is expected to bend towards higher
values of μI as T grows. While χPT predicts a monotonous
rise of μI;cðTÞ, our preliminary lattice simulations reveal a
flattening of this curve around the zero-density deconfine-
ment crossover [8,9]. This suggests that deconfinement is
in some sense stronger than the condensation mechanism,
and in the quark-gluon plasma phase no pions can be
created by increasing μI.
Yet another transition is expected to occur at even higher

isospin chemical potential. Perturbation theory predicts that
the attractive gluon interaction forms Cooper-pairs (BCS
superconductivity) of u and d̄ quarks in the pseudoscalar
channel. Since the resulting pair has the same quantum
numbers as the pion condensate, the deconfinement-type
transition between the BEC and BCS states is expected to
be an analytic crossover [7].
The particular structure of the transition lines separating

these four phases (hadronic, quark-gluon plasma, BEC and
BCS) in the phase diagram is not yet known. The results we
present below favor the scenario depicted in Fig. 1, where
the μI ¼ 0 deconfinement transition continuously connects
to the BEC-BCS crossover at high isospin chemical
potentials. We note that for asymptotically large values
of μI, perturbative arguments suggest [7,10] a decoupling
of the gluonic sector and the emergence of a first-order
deconfinement phase transition. This region is not included
in Fig. 1.
The QCD phase diagram at nonzero temperature and

isospin chemical potential has been studied using a
multitude of approaches. Besides the already mentioned
chiral perturbation theory as effective description [7,11],
hard thermal loop perturbation theory [12] and different

low-energy models of QCD have been employed. The latter
include the Nambu-Jona-Lasinio (NJL) model in four [13]
and in two dimensions [14], the linear sigma or quark
meson model [15], scalar field theory [16], random matrix
models [17], the thermodynamic bag model [18], the
hadron resonance gas model [19] and by means of the
functional renormalization group or Dyson-Schwinger
equations [20]. The impact of the isospin chemical poten-
tial was also investigated in the limit of large number Nc of
colors [21] and employing the holographic principle [22].
For large Nc, the phase diagram was argued to be related to
the analogous phase diagram with baryon chemical poten-
tial via the orbifold equivalence [23]. In particular, this
equivalence is expected to hold outside the pion conden-
sation phase only, so that the precise knowledge of the
location of the BEC transition line is relevant from this
point of view as well.
A significant advantage of the μI > 0 system is that—

unlike for nonzero baryon chemical potential—there is no
sign problem and lattice QCD simulations can be employed
to investigate the phase diagram directly. Following the
pioneering work of Refs. [24,25], the phase diagram was
studied both in the grand canonical [26–28] and in the
canonical ensemble [29,30]. The low isospin density region
was also discussed by means of a Taylor expansion in μI
[31,32], while the strong coupling regime was investigated
using the strong coupling expansion [33]. Finally, we
mention that QCD with μI > 0 has deep relations to
two-color QCD with baryon chemical potentials. The latter
theory has also been the subject of intensive research, both
on the lattice [34] as well as in model and functional
approaches [35].
We mention that, besides the broad range of applications

for this system, an additional motivation to study the μI > 0

theory is its similarity with nonvanishing baryon chemical
potential, μB > 0, both on the conceptual and on the
technical level. At T ¼ 0, both systems exhibit the so-
called silver blaze phenomenon [36] and undergo a phase
transition from the vacuum to a phase where colorless
composite particles are created. This transition is accom-
panied by the accumulation of near-zero eigenvalues of the
fermion matrix in both cases, leading to an ill-conditioned
inversion problem and a breakdown of naive simulation
algorithms. This necessitates the use of an infrared regu-
lator that we denote by λ below. Understanding these
concepts and facing these technical challenges in the (sign-
problem-free) μI ≠ 0 theory may give us insight on how to
assess the μB ≠ 0 system in the future.
In this paper, we follow the grand canonical approach

and simulate QCD with 2þ 1 flavors of dynamical
staggered quarks at various values of T and μI. Besides
the inclusion of the strange quark, we improve over
currently existing studies in the literature by using physical
quark masses and employing an improved lattice action in
the simulations. The latter enables a faster scaling towards

FIG. 1. A possible scenario for the QCD phase diagram in the
temperature—isospin chemical potential plane. The different
colors encode the various phases: hadronic phase (white),
quark-gluon plasma (orange) pion condensation (blue) and
BCS superconductivity (green). The red dashed line indicates
the deconfinement crossover and the blue solid line the second-
order phase transition to the pion condensed phase.
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the continuum limit. Furthermore, we present a novel
method to perform the extrapolation of the infrared
regulator λ to zero—the main technical achievement in
this project. This method involves the singular values of the
massive Dirac operator, which we discuss for the first time
on the lattice in this context. Preliminary results of our
simulations were presented in Refs. [8,9] and applied
in Ref. [37].

II. SETUP AND OBSERVABLES

A. Symmetries

First of all, it is instructive to discuss the pattern of the
symmetry breaking that leads to Bose-Einstein condensa-
tion at high isospin chemical potentials. In Euclidean
spacetime, our choice for the continuum action Sud ¼
ψ̄Mudψ for the light quarks ψ ¼ ðu; dÞ⊤ includes

Mud ¼ γμð∂μ þ iAμÞ1þmud1þ μIγ4τ3 þ iλγ5τ2: ð1Þ

Here Aμ is the gluon field and τa denote the Pauli matrices.
Besides the isospin chemical potential μI and the quark
mass mud, we also included an explicit symmetry breaking
term in Mud that couples to the charged pion field π�,

Sud ¼ Sudðλ ¼ 0Þ þ λπ�;

π� ≡ ψ̄iγ5τ2ψ ¼ ūγ5d − d̄γ5u: ð2Þ

The role of the parameter λ-referred to as a pionic source in
the following—will be elucidated below.
At μI ¼ λ ¼ 0 (but nonzero mud), the action Sud is

symmetric under the chiral group SUVð2Þ × UVð1Þ. The
UVð1Þ symmetry, corresponding to baryon number con-
servation, is not affected by the chemical potential nor by
the pionic source and is not discussed in the following. The
SUVð2Þ symmetry group is broken down to Uτ3ð1Þ by the
chemical potential. The subscript indicates that the gen-
erator of the remaining symmetry is τ3. Pion condensation
is signaled by the spontaneous breaking of this Uτ3ð1Þ
symmetry, by any of the expectation values hψ̄γ5τ1ψi,
hψ̄γ5τ2ψi.
The spontaneous breaking of the continuous Uτ3ð1Þ

symmetry implies the presence of a Goldstone mode.
The introduction of the pionic source λ in (1) corresponds
to an additional explicit breaking that selects the τ2
direction for the ground state and makes the would-be
massless mode a pseudo-Goldstone boson. In fact, in a
finite volume, such a trigger is necessary for the sponta-
neous breaking to occur. The physical limit λ → 0 is
obtained subsequently by means of an extrapolation.
Notice that for the Uτ3ð1Þ symmetry, its spontaneous (by
hπ�i) and explicit (by λ) breaking is completely analogous
to the one of the standard chiral symmetry at μI ¼ 0,
together with its spontaneous (by hψ̄ψi) and explicit (by
mud) breakings. One very important difference is that while

in nature mud > 0, the parameter λ is unphysical and the
limit λ → 0 needs to be taken.
For vanishing isospin chemical potential, the pionic

source can be rotated into the mass parameter. In particular,
we can perform the chiral rotation

ψ → eiαγ5τ2=2ψ ; ψ̄ → ψ̄eiαγ5τ2=2; α ¼ arctan
λ

mud
:

ð3Þ

This rotation brings the action into a flavor-diagonal form

Sud ¼ ψ̄Mudψ ;

Mud ¼ γμð∂μ þ iAμÞ1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ud þ λ2
q

1: ð4Þ

Thus, at μI ¼ 0 the mass and the pionic source parameter
are indistinguishable and only their squared sum plays a
physical role. This will have important consequences for
the ultraviolet structure of the theory, see Sec. II C below.
Notice that for μI ¼ 0 the pionic source has the same
interpretation as the twisted mass parameter used in the
context of Wilson fermions [38].

B. Lattice setup

To investigate pion condensation and the associated
spontaneous symmetry breaking, we study 2þ 1-flavor
QCD with μI > 0 and λ > 0 nonperturbatively on the
lattice. We work on N3

s × Nt lattices with spacing a and
sites indexed by the coordinates ðnx; ny; nz; ntÞ. The tem-
perature and the spatial volume read T ¼ 1=ðNtaÞ and
V ¼ ðNsaÞ3, respectively. To discretize the Dirac operator
we use the staggered formulation; here the equivalent
of γ5 is the local spin-flavor structure η5 ¼ γS5 ⊗ γF5 ¼
ð−1Þnxþnyþnzþnt . At μI ¼ λ ¼ 0, this operator couples to the
Goldstone boson in the chiral limit.
The partition function of this system is given in terms of

the path integral over the gluon links Uμ ¼ expðiaAμÞ,

Z ¼
Z

DUμe−βSGðdetMudÞ1=4ðdetMsÞ1=4; ð5Þ

where we employed the rooting procedure (for a discussion
on the theoretical issues related to rooting, see Ref. [39]).
In Eq. (5), β ¼ 6=g2 denotes the inverse gauge coupling, SG
is the tree-level Symanzik improved gluon action, Mud is
the light quark matrix in the basis of the up and down
quarks and Ms is the strange quark matrix,

Mud ¼
�
DðμIÞ þmud λη5

−λη5 Dð−μIÞ þmud

�
;

Ms ¼ Dð0Þ þms: ð6Þ
Here, the argument of D indicates the chemical potential
μI , introduced on the lattice by multiplying the forward
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(backward) timelike links by eaμI (e−aμI ). The pionic source
parameter λ induces an explicit symmetry breaking and
serves to trigger pion condensation as we discussed above
in Sec. II A.
The integrand of Z needs to be positive to allow the

importance sampling of the gluon configurations. The
strange quark determinant is real and positive due to
the standard η5-Hermiticity relation η5Msη5 ¼ Ms

†. To
show the positivity for the light sector, we need to discuss
the symmetry properties of the staggered Dirac operator at
μI ≠ 0. The staggered equivalent of chiral symmetry
implies that

DðμIÞη5 þ η5DðμIÞ ¼ 0 ð7Þ

holds. In addition, the Dirac operator satisfies

η5DðμIÞη5 ¼ Dð−μIÞ†: ð8Þ

so that the light fermion matrix is τ1η5-Hermitian

τ1η5Mudη5τ1 ¼ Mud
†: ð9Þ

Thus, taking the determinant of both sides shows that
detMud is real.
One can also show that the determinant is positive by

considering

Mud
0 ¼ BMudB ¼

�
DðμIÞ þmud λ

−λ ½DðμIÞ þmud�†
�
;

ð10Þ

where B ¼ diagð1; η5Þ and we used Eq. (8). Indeed, since B
has unit determinant, we have

detMud ¼ det ð½DðμIÞ þmud�½DðμIÞ þmud�† þ λ2Þ > 0:

ð11Þ

Thus, both determinants in the measure of the path integral
(5) are positive.
The fourth root of the determinants in (5) is approxi-

mated via rational functions. The simulation setup with
λ > 0 was first introduced for the Nf ¼ 2 theory in the
pioneering work of Ref. [24] for the quenched case and in
Ref. [25] for dynamical QCD. The same technique was also
used in Ref. [28]. Here we extend this setup by including
the strange quark as well. In addition, we improve the
lattice action by using the tree-level Symanzik gauge action
and by employing two steps of stout smearing in the Dirac
operator. The quark masses are tuned to their physical
values along the line of constant physics (LCP) mfðβÞ, as
determined in Ref. [40], with the pion massmπ ≈ 135 MeV.
Our simulation algorithm is based on Ref. [41]. In addition
we implement a Hasenbusch-type improvement scheme that

is typically used in the context of mass preconditioning [42].
In our setup this amounts to the replacement detMudðλÞ ¼
detMudðρÞ · detMudðλÞ= detMudðρÞ with ρ > λ, which
allows to use a larger step size (and a lower precision) in
the simulation algorithm for the second (more expensive)
factor.

C. Observables and renormalization

Our primary observables are the pion condensate and the
quark condensate. Both are obtained from the partition
function via differentiation,

hπ�i ¼ T
V
∂ logZ
∂λ ; hψ̄ψi ¼ T

V
∂ logZ
∂mud

: ð12Þ

Inserting the partition function (5) and rewriting the light
quark determinant using Eq. (11), we obtain for the
condensate operators,

π� ¼ T
2V

tr
λ

jDðμIÞ þmudj2 þ λ2
;

ψ̄ψ ¼ T
2V

Re tr
DðμIÞ þmud

jDðμIÞ þmudj2 þ λ2
: ð13Þ

The relation (13) allows for direct measurements using
noisy estimators.
The observables of Eq. (12) are subject to additive

renormalization. This is necessary, since logZ contains
ultraviolet divergences in the inverse lattice spacing. The
structure of these divergences can be determined based on
dimensional arguments (see Ref. [43] for a discussion at
μI ¼ λ ¼ 0),

logZ ∼ a−4 þ ðm2
ud þ λ2Þa−2 þ ðm2

ud þ λ2Þ2 log a; ð14Þ

where we suppressed further divergences that contain ms.
Note that the divergences are independent of μI , since the
chemical potential couples to a conserved charge [44].
Thus, it suffices to consider the case of μI ¼ 0. Above in
Eq. (4) we have seen that for vanishing isospin chemical
potential, the mass and the pionic source may be rotated
into each other, so that the two parameters can only appear
in Eq. (14) in the formm2

ud þ λ2. The quark condensate and
the pion condensate inherit the quadratic and the logarith-
mic divergences from logZ. However, for hπ�i these
vanish at λ ¼ 0—the point of interest for the physical
theory. Since the light quark mass is nonzero, the additive
divergences remain in hψ̄ψi and need to be subtracted even
in the limit λ → 0. The standard choice is to consider
the difference to hψ̄ψi measured in the vacuum, i.e. at
T ¼ μI ¼ 0.
Finally we need to address the multiplicative renormal-

ization of our observables. The quark condensate and the
pion condensate have nontrivial renormalization constants,
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Zψ̄ψ ¼ Z−1
mud

and Zπ ¼ Z−1
λ . The equivalence of mud and λ

at μI ¼ 0 and the μI-independence of the renormalization
constants, however, imply that Zmud

¼ Zλ, so that a
multiplication of the condensates by mud cancels the
multiplicative divergence.1 Altogether, the renormalized
observables read

Σψ̄ψ ¼ mud

m2
πf2π

½hψ̄ψiT;μI − hψ̄ψi0;0� þ 1;

Σπ ¼
mud

m2
πf2π

hπ�iT;μI ; ð15Þ

where we also included a normalization factor involving
the pion mass mπ ¼ 135 MeV and the chiral limit of the
pion decay constant fπ ¼ 86 MeV and added unity to the
quark condensate for convenience. In this normalization
(which follows Ref. [45]), Σψ̄ψ ¼ 1 at T ¼ μI ¼ 0 due to
the Gell-Mann-Oakes-Renner relation. In addition, zero-
temperature leading-order χPT [7] predicts a gradual
rotation of the condensates so that Σ2

ψ̄ψ þ Σ2
π ¼ 1 holds

irrespective of μI , which can also be observed to some
extent in the full theory.
In addition to the fermionic observables we also consider

the Polyakov loop,

P ¼
�
1

V

X
nx;ny;nz

Tr
YNt−1

nt¼0

UtðnÞ
�
; ð16Þ

as a measure for deconfinement. The multiplicative
renormalization of P amounts to

PrðT; μIÞ ¼ Z · PðT; μIÞ; Z ¼
�

P⋆
PðT⋆; μI ¼ 0Þ

�
T⋆=T

;

ð17Þ
with an arbitrary choice for P⋆ ¼ PrðT⋆; 0Þ and T⋆.
Different choices correspond to different renormalization
schemes; we choose T⋆ ¼ 162 MeV, where the bare
Polyakov loops are already significantly nonzero, and set
P⋆ ¼ 1. This renormalization prescription for P was
developed at μI ¼ 0 [46] and also put into practice at
nonzero background magnetic fields [47].

III. IMPROVEMENTS FOR THE
λ → 0 EXTRAPOLATION

The pionic source parameter λ > 0 is introduced in order
to trigger pion condensation and to stabilize the simulation
algorithm. However, in order to obtain physical results λ
needs to be extrapolated to zero. Most of the observables
exhibit a pronounced dependence on λ, making this

extrapolation cumbersome. As a typical example, in the
top panel of Fig. 2 we show the pion condensate Σπ of
Eq. (15) as measured using various values of λ on our
243 × 6 ensembles at T ¼ 113 MeV. Especially below and
around the critical chemical potential μI;c ≈mπ=2, a direct
fitting of the data appears to be hopeless. This necessitates
various improvements, both in the valence sector (the
definition of the operators) and in the sea sector (reweight-
ing of the configurations), to eliminate the λ-dependence in
the observables. The result of the improvement, which we
will describe below, is also included in the top panel of
Fig. 2—clearly revealing the transition between the vacuum
and the BEC phase, which was hidden for the direct data at
high λ.
The simulations at low values of λ suffer from a

numerical problem. Since the pionic source acts as an
infrared regulator, it has a substantial impact on the
condition number of the fermion matrixMud. In particular,
the average iteration count Ncg for the convergence of the
conjugate gradient algorithm used for invertingMud grows

FIG. 2. Top panel: direct results for the pion condensate using
the representation (13), obtained on ensembles with different
values of the pionic source λ (gray to red points). For comparison,
the results of our improved λ → 0 extrapolation are also shown
(yellow points). Bottom panel: average iteration count for
inverting Mud for various values of the isospin chemical
potential and the pionic source.

1Note that multiplying by λ would also result in a renormal-
ization group invariant combination. However, this construction
vanishes in the λ → 0 limit and is therefore not useful.
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significantly as λ decreases. This is especially the case in
the pion condensed phase (see the bottom panel of
zFig. 2), where the inversion at our smallest λ is an order
of magnitude slower than at the largest pionic source.2

Moreover, in order to maintain a reasonable acceptance in
the Metropolis step, the simulations at low λ need to be
performed with a reduced step size along the Monte-Carlo
trajectory due to increasing fluctuations in the fermion
force. This leads to a slowing down by a further factor of
3–4 for the lowest pionic source.
Thus, improving our observables so that they lie closer to

their λ → 0 limit is necessary—both for controlling the
extrapolation and for sparing simulation time. It turns out
that the improvement for the pion condensate is drastically
different from the improvement of the other observables due
to the fact that hπ�i plays the role of the order parameter for
Bose-Einstein condensation and thus has a highly nontrivial
finite volume scaling. There is, nevertheless, a common
element in the improvement program, which is the singular
value representation of the massive Dirac operator.

A. Singular values

To get acquainted with the notion of singular values, let
us begin with the eigenvalue equation of the massive Dirac
operator. For the up quark, the eigensystem reads

½DðμIÞ þmud�ψn ¼ ðνn þmudÞψn; ð18Þ

where the eigenvalues νn are complex numbers. Using
chiral symmetry (7) and the Hermiticity relation (8), we
obtain the eigensystem for the down quark,

ψ̃†
n½Dð−μIÞ þmud� ¼ ψ̃†

nðν�n þmudÞ; ψ̃n ¼ η5ψn:

ð19Þ

Note that DðμIÞ is not a normal operator thus ½DðμIÞ;
D†ðμIÞ� ≠ 0 and its left and right eigenvectors do not
coincide. Nevertheless, Eqs. (18) and (19) reveal that for
each eigenvalue in the up quark sector there is a complex
conjugate pair in the down quark sector, which is why the
determinant of the total light quark matrix is real and
positive as we have seen in Sec. II B.
We can create a Hermitian operator by taking the

modulus squared of the Dirac operator [48]. The square
roots of the eigenvalues of this operator are referred to as
the singular values3 of the Dirac operator. The eigenvalue
equation reads

½DðμIÞ þmud�†½DðμIÞ þmud�φn ¼ ξ2nφn: ð20Þ

Note that due to the non-normality of DðμIÞ, there is no
relation between the singular values ξn and the eigen-
values νn. We note that the singular values of DðμIÞþmud
and of Dð−μIÞ þmud coincide due to the Hermiticity
relation (8).

B. Banks-Casher type relation
for the pion condensate

An important characteristic of chiral symmetry break-
ing at μI ¼ 0 is reflected by the Banks-Casher relation
[49], which states that the chiral limit of the quark
condensate is related to the density of the Dirac eigen-
values around zero. Below we demonstrate that the λ → 0

limit of the pion condensate can be similarly obtained by
looking at the density of the singular values around zero.
The derivation follows Ref. [48], where massless quarks
at μI > 0 were considered. Here we generalize the
discussion to arbitrary mud. Throughout this section we
neglect exact zero modes, whose contribution is dis-
cussed in detail in Ref. [48].
Using Eq. (20), we can write down the singular value

representation of the pion condensate. Writing the trace of
Eq. (13) in the basis of the φn modes we obtain,

hπ�i ¼ λT
2V

�X
n

ðξ2n þ λ2Þ−1
�

⟶
V→∞ λ

2

�Z
dξρðξÞðξ2 þ λ2Þ−1

�

⟶
λ→0 π

4
hρð0Þi: ð21Þ

Here in the first step we considered the volume to be large
enough so that the singular values become sufficiently
dense and the sum can be replaced by an integral intro-
ducing the density of the singular values,

hρðξÞi ¼ lim
V→∞

T
V

�X
n

δðξ − ξnÞ
�
: ð22Þ

In the second step of Eq. (21) we performed the λ → 0 limit,
which lead to a representation of the δ-function and resulted
in the density ρð0Þ around zero. Equation (21) tells us that
having a nonzero pion condensate is equivalent to an
accumulation of the near-zero singular values of the massive
Dirac operator. Notice that the ordering of the two limits in
Eq. (21)—just like in the usual Banks-Casher relation—is
essential, and setting λ ¼ 0 in the operator directly would
give π� ¼ 0. Equation (21) also connects the slowing down
of the operator inversion and the high condition number of
the fermion matrix in the BEC phase (as we demonstrated
in the bottom panel of Fig. 2) with a physical notion: the
emergence of a nonzero pion condensate.

2We also mention that simulating with λ ¼ 0 is not feasible
even for our smallest isospin chemical potentials due to the
occasional appearance of configurations with fermion matrices of
very high condition numbers, for which the numerical inversion
breaks down.

3The name refers to the role of these in the singular value
decomposition of non-Hermitian matrices.
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C. Improvement of the quark condensate

For the quark condensate operator of Eq. (13), the
spectral representations reads

ψ̄ψ ¼ T
2V

X
n

Reφ†
n½DðμIÞ þmud�φn

ξ2n þ λ2
: ð23Þ

In this case, the λ → 0 limit can be taken explicitly, without
approaching the thermodynamic limit first. However,
unlike the pion condensate, the quark condensate neces-
sitates the calculation of various matrix elements and not
only that of the singular values. Besides the values of the
operators at λ ¼ 0, it will be advantageous to have access to
the λ dependence of the operator as well. In particular, we
define the change in the operator between λ and λ ¼ 0,

δψ̄ψ ≡ ψ̄ψðλÞ − ψ̄ψðλ ¼ 0Þ

¼ T
2V

X
n

Reφ†
n½DðμIÞ þmud�φn ·

�
1

ξ2n þ λ2
−

1

ξ2n

�
:

ð24Þ
We will use δψ̄ψ to improve the λ dependence of the ψ̄ψ
operator calculated using noisy estimators.

D. Leading-order reweighting

The above improvements eliminated the explicit depend-
ence of the operators (i.e., of the valence quarks) on the
pionic source. The remaining λ-dependence originates from
sea quarks, i.e. from the nonzero value of λ in the path
integral measure used to define expectation values hOiλ. In
particular, this involves the λ-dependence of the light quark
determinant in Eq. (5). To get rid of this contribution, we
need to manipulate the distribution of configurations by
introducing the reweighting factors,

hOiλ¼0 ¼
hOWðλÞiλ>0
hWðλÞiλ>0

;

WðλÞ≡ det ½jDðμIÞ þmudj2�1=4
det ½jDðμIÞ þmudj2 þ λ2�1=4 ; ð25Þ

where we used Eq. (11). This way the λ > 0 determinant is
canceled in the expectation values so that we mimic the
distribution that would have been obtained via a simulation
directly at λ ¼ 0. Note that Eq. (25) only holds if the
distributions at λ > 0 and at λ ¼ 0 have sufficiently large
overlap.
The full determinant is a very expensive object as in

principle it necessitates the calculation of all singular
values. However, since we only needWðλÞ for small pionic
sources, we can expand the reweighting factor in λ.
Rewriting the logarithm of the reweighting factor in this
manner, we obtain

logWðλÞ ¼ log
det ½jDðμIÞ þmudj2 þ λ2 − λ2w�1=4

det ½jDðμIÞ þmudj2 þ λ2�1=4
����
λw¼λ

¼
�
−
λ2w
4
tr

1

jDðμIÞ þmudj2 þ λ2
þOðλ4wÞ

	
λw¼λ

¼
�
−λ2w

V
2T

π�

λ
þOðλ4wÞ

	
λw¼λ

¼ −
λV
2T

π� þOðλ4Þ≡ logWLOðλÞ þOðλ4Þ:
ð26Þ

More specifically, here we replaced the logarithm of the
determinant ratio with its Taylor-expansion in the pionic
source (the expansion variable is denoted λw) and evaluated
the result at λw ¼ λ. We then exploited the fact that odd
terms in the expansion vanish. On comparison with
Eq. (13), the leading order term in the expansion is found
to be proportional to the pion condensate. The resulting
leading-order reweighting factor is denoted by WLOðλÞ.
Thus we conclude that the reweighting of an observable,

to leading order in λ, involves the exponential of the pion

FIG. 3. The leading-order reweighting factor WLO against the
full weightW on a scatter plot for two isospin chemical potentials
at low temperature. The dashed line represents WLO ¼ W. For
this plot the 84 ensemble of Ref. [28] was used.
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condensate (measured at λ > 0) times the four-volume.
Since the pion condensate is anyway measured on the
individual configurations to compute hπ�i, this improve-
ment comes with no extra costs. We test this improvement
on small lattices, where a calculation of the complete
spectrum of singular values ξ is feasible, enabling a direct
comparison between W and WLO. Specifically, we employ
the low-temperature 84 ensembles generated in Ref. [28]
and plot the two reweighting factors against each other in
Fig. 3 for two values of μI around the critical isospin
chemical potential. The scatter plot clearly shows the strong
correlation between W and WLO and that the two factors
become identical in the limit λ → 0.4

IV. RESULTS: IMPROVEMENT PROGRAM

In the following we always perform the leading order
reweighting with WLO ¼ exp½−λVπ�=ð2TÞ�, where π� is
calculated from (13) employing noisy estimators to evalu-
ate the traces. The measurements are carried out on the
reweighted ensembles.

A. Improved pion condensate

We describe our strategy to determine ρð0Þ in more
detail. The singular values of the massive Dirac operator
[i.e., the eigenvalues of jDðμIÞ þmudj2, cf. Eq. (20)] are
calculated using the Krylov-Schur algorithm. We find it
sufficient to work with the lowest 50–150 singular values
for each configuration. Using this set of singular values we
build a histogram for the integrated spectral density

NðξÞ ¼
Z

ξ

0

dξ0ρðξ0Þ; ð28Þ

where we discard bins that lie below the average lowest
singular value. The statistical error of NðξÞ in each bin is
estimated via the jackknife procedure. In Fig. 4 we plot
NðξÞ=ξ for two ensembles just around and slightly beyond
the transition to the pion condensed phase.
To obtain ρð0Þ, we need to extrapolate NðξÞ=ξ down to

zero. This is performed via polynomial fits of the histo-
gram. To take into account the correlation between the

individual bins, we minimize the correlated χ2corr, which
involves the inverse of the correlation matrix C of the data.
To avoid numerical problems during this inversion, we
smear the lowest eigenvalues of C following the strategy of
Ref. [50]. We perform the fits with polynomials of various
degrees and over various fit ranges. The resulting values for
ρð0Þ are weighted by expð−χ2corr=Nd.o.f.Þ with Nd.o.f. the
number of d.o.f. in the fit. The weighted results are used to
build yet another histogram (red area in Fig. 4), similar to
the analysis conducted in Ref. [51]. The central value for
ρð0Þ is obtained by the median, while the statistical plus
systematical error of the fit is estimated by the range that
contains the middle 68% of the histogram (orange area in
Fig. 4). The analysis gives drastically different results for
the two chemical potentials considered in the figure. While
the intersect of the fits is large for μI=mπ ¼ 0.53, it is
consistent with zero for μI=mπ ¼ 0.48. (In the latter case
ρð0Þ and its error is taken as the positive part of the orange

FIG. 4. Integrated spectral density (blue points) of the singular
values of DðμIÞ þmud, as measured on our 243 × 6 ensemble at
T ¼ 113 MeV for isospin chemical potentials just around (top
panel) and slightly beyond (bottom panel) the transition to the
BEC phase. The colored curves indicate polynomial fits of the
data (blue: linear, red: quadratic, green: cubic) and the red vertical
histograms mark the distribution of ρð0Þ as obtained from the fits.
The orange part of the histogram is our estimate of the statistical
plus systematical error of the fits.

4Notice furthermore that WLO tends to overestimate W if the
reweighting factors are below average (and vice versa). This can
be understood using the singular value representation of Eqs. (25)
and (26),

logW ¼ 1

4

X
n

log
ξ2n

ξ2n þ λ2
; logWLO ¼ 1

4

X
n

−λ2

ξ2n þ λ2
; ð27Þ

which can be used to show that the difference WLO −W is a
positive and monotonously decreasing function of ξn at fixed λ.
Thus, a fluctuation that reduces the singular values (i.e. that
pushes W below average), inevitably increases the deviation
WLO −W, thereby explaining the tendency visible in Fig. 3.
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histogram.) This demonstrates—via the relation (21)—the
emergence of a nonzero pion condensate in the BEC phase.
The so obtained results for hπ�i are included in the top
panel of Fig. 2 above.

B. Improved quark condensate

In principle, for the improvement scheme of the quark
condensate, outlined in Sec. III C, we need all singular
values ξn. This is in contrast to the improvement of the pion
condensate, where only the spectral density of singular
values around zero is of importance. Nevertheless, comput-
ing all singular values for each configuration is unfeasible
in practice and, in fact, not necessary. The important
simplification follows from the observation that the differ-
ence δψ̄ψ from Eq. (24) is dominated by the λ dependence
of the terms involving the lowest singular values. It might
thus be sufficient to perform the explicit λ → 0 extrapola-
tion in the operator for only the first N low modes and to
leave the contribution from the remaining singular values
untouched. To this end we introduce the truncated operator

ψ̄ψNðλÞ ¼ T
2V

XN
n¼1

Reφ†
n½DðμIÞ þmud�φn

ξ2n þ λ2
; ð29Þ

and the associated truncated difference

δNψ̄ψ ≡ ψ̄ψNðλÞ − ψ̄ψNðλ ¼ 0Þ

¼ T
2V

XN
n¼1

Reφ†
n½DðμIÞ þmud�φn ·

�
1

ξ2n þ λ2
−

1

ξ2n

�
;

ð30Þ
to rewrite the expectation value as

hψ̄ψi ¼ hψ̄ψ − δNψ̄ψ i þ hδNψ̄ψ i: ð31Þ
The second term vanishes when we perform the
λ-extrapolation, so that we obtain

lim
λ→0

hψ̄ψi ¼ lim
λ→0

hψ̄ψ − δNψ̄ψi: ð32Þ

This type of improvement will be efficient if N is large
enough to ensure that δNψ̄ψ ≈ δψ̄ψ so that the subtraction
effectively removes most of the λ dependence of the
observable.
The optimal value for N to achieve a good balance

between the improvement for the λ dependence of the
observable and the computational cost will, in general,
depend on the operator, the lattice size and the lattice spacing,
aswell as on themagnitude of the λ-values in use. The results
for δNψ̄ψ versus N for different values of λ are shown in the
top panel of Fig. 5. The figure indicates that moderate values
of N suffice to ensure that most of the λ dependence in
the valence sector is absorbed by the improvement. In the
bottom panel of Fig. 5 we plot the combination hψ̄ψ − δNψ̄ψ i,
revealing no significant λ dependence for N ≳ 100. For
comparison, the λ dependence of the unimproved observable

(marked by the short horizontal lines in the figure) is much
more pronounced.
We find that N ∼ 100 does suffice to warrant well

controlled λ-extrapolations for all ensembles and observ-
ables considered so far. Thus, the same set of singular
values can be used for the improvement of the pion
condensate as well as for the quark condensate.

C. Final λ-extrapolations

Having performed the improvements described above, we
can carry out the final extrapolation of the results to λ ¼ 0.
Since the improvements do not achieve a perfect elimination
of the pionic source [the reweighting is done only at leading
order, the singular value sums are truncated at a finiteN, and
the finiteness of the volume distorts the relation (21)], a mild
dependence of the results on λ is still expected. In Fig. 6
we show a few representative examples for the extrapolations
of Σπ and of Σψ̄ψ , where we also include the unimproved
observables [i.e. the quantities obtained via the full traces,
Eq. (13)]. Contrary to the pronounced (and thus uncon-
trolled) dependence of the latter on λ, we find that the

FIG. 5. Top panel: the difference δNψ̄ψ , calculated using the N
lowest singular values, on ensembles with various values of λ.
Bottom panel: the improved condensate (31) for the same
ensembles. The horizontal lines indicate the results for hψ̄ψi
obtained using noisy estimators of the trace (13). The color
coding is the same in both panels.
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improved observables can be reliably fitted by either a
constant or a linear function (on general grounds, Σπ is an
odd function of λ, whereas Σψ̄ψ is even in the pionic source).
We also attempted to perform a fit of the unimproved data by
means of a spline with Monte-Carlo-generated nodepoints
(for the details of this fit procedure, see Ref. [8]). For
comparison, the so obtained extrapolations are also included
in Fig. 6. Unlike the improved extrapolations, these fits are
always dominated by the points at low λ, making them
unreliable in several cases.

V. RESULTS

A. Phase diagram

In the following we work with the λ → 0 extrapolated
observables to determine the phase diagram of the system
in the μI − T plane. We work with four lattice ensembles
with Nt ¼ 6, 8, 10 and 12. Figure 7 shows our Nt ¼ 6
results for Σπ and for Σψ̄ψ from Eq. (15). The onset of pion
condensation is characterized by the abrupt change at the
boundary between the vacuum and the BEC phase, map-
ping a critical line μI;cðTÞ. The quark condensate exhibits a

similarly pronounced change at the pion condensation
phase boundary. In addition, it also features a smooth
dependence on the temperature around the chiral crossover
transition TpcðμIÞ. In the following, we refer to the point,
where these two transition lines meet as the pseudo-triple
point at μI ¼ μI;pt and T ¼ Tpt. The notation refers to the
fact that the chiral transition is pseudocritical and does not
correspond to a true phase transition (in which case this
point would be a true triple point).
The boundary of the pion condensation phase, μI;cðTÞ, is

determined by the points where Σπ acquires a nonzero
expectation value. We estimate its location by interpolating5

the results for Σπ using a two-dimensional cubic spline fit

FIG. 6. Final λ-extrapolations for the pion (top panel) and quark
condensates (bottom panel) on our 243 × 6 ensembles for various
values of the isospin chemical potential. The improvement is
crucial in all cases and enables a reliable extrapolation to λ ¼ 0.

FIG. 7. The pion condensate (top panel) and the quark con-
densate (bottom panel) as functions of the temperature and the
isospin chemical potential as measured on our Nt ¼ 6 lattices.
The color coding reflects the magnitude of the observables: blue
(Σ ¼ 0) towards yellow (Σ ¼ 1Þ. Notice that the orientation of the
μI-axis is different in the two panels.

5A technical issue regarding this fit is the non-analyticity of Σπ
at the critical chemical potential. Although it is regulated by the
finite volume, the sharp behavior around μI;c cannot be captured
by the smooth splines. To avoid this issue, here we fit the results
from Sec. IVA, allowing for negative intersects for ρð0Þ (i.e. the
full orange histograms of Fig. 4). This enables a more stable
determination of the Σπ ¼ 0 contour.
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with Monte-Carlo-generated nodepoints [8]. From χPT it
is known that μI;cð0Þ ¼ mπ=2 [7]. We observe that μI;cðTÞ is
independent of T up to a temperature of about 130 to
140 MeV—see also the results shown in [8,9]. For a
temperature of about 155 to 160 MeV the phase boundary
starts to flatten out, and above T ≈ 161 MeV the pion
condensate is found to vanishwithin errors for all ensembles.
Here we follow the phase boundary up to μI ¼ 120 MeV,
but this flat behavior is found to persist at least up to μI ≈
190 MeV on our Nt ¼ 6 ensemble, see below. These
findings contradict the expectations from χPT, which pre-
dicts a monotonous rise in μI;cðTÞ [7].
To perform the continuum extrapolation, we parameter-

ize μI;cðT; aÞ by a polynomial in ðT − T0Þ with lattice
spacing dependent coefficients. We set T0 ¼ 140 MeV,
below which μI;cðT; aÞ is found to be independent of T.
To capture both the flatness of the critical chemical
potential for low temperatures and its abrupt rise around
T ≈ 155 MeV, we found it necessary to include terms
proportional to ðT − T0Þ2, ðT − T0Þ3 and ðT − T0Þ4 in the
fit and to fix μI;cðT0; 0Þ ¼ mπ=2. We find that for
140 MeV≲ T ≲ 155 MeV, our Nt ¼ 6 results are outside
of the scaling region for lattice artefacts ofOða2Þ so that we
excluded these from the continuum extrapolation. The final
continuum curve, extrapolated including terms propor-
tional to a2, is shown in Fig. 8 (top panel), together with
the data for the phase boundary which has been included in
the fit. T ≈ 161 MeV serves as an upper bound for the
critical temperature, as Σπ is found to vanish within the
uncertainties for all lattice spacings and for all values of μI
considered in this region, as mentioned above.
We proceed with the chiral crossover transition temper-

ature TpcðμIÞ, which we define as the location of the
inflection point of Σψ̄ψ with respect to T.6 The data shows
an initial reduction in TpcðμIÞ up to about μI ¼ 70 MeV,
followed by a slight increase. Beyond the pseudo-triple
point, where the crossover line and the pion condensation
boundary meet, we observe the two transition lines to
coincide within errors. To be more quantitative, we once
again determine TpcðμIÞ using a two-dimensional spline fit
where the nodepoints have been generated via Monte-
Carlo. In the spline fit7 we include the constraint that Σψ̄ψ is
an even function of μI . To perform the continuum extrapo-
lation, we parameterize TpcðμI; aÞ by a polynomial which

is even in μI , including data up to μI;cð0Þ ¼ mπ=2. The
behavior of TpcðμIÞ beyond this value is difficult to capture
with polynomials. For the range of chemical potentials
included in the fit, the data is already well described by a
quadratic polynomial in μI and Oða2Þ lattice artefacts, see
Fig. 8 (bottom panel). Adding a μ4I -term or higher-order
lattice discretization errors was found to only increase the
uncertainties and not lead to significant differences.
The precise location of the pseudo-triple point is also

of interest. We define μI;ptðaÞ to be the value for μI where
the two transition lines become consistent within errors—
i.e. where the uncertainties overlap. This provides a
conservative lower bound for the pseudo-triple point.
The results for μI;ptðaÞ are shown in Fig. 9. As for the
pion condensation phase boundary, the continuum extrapo-
lation is performed including lattice artefacts of Oða2Þ and
excluding the Nt ¼ 6 results. The resulting continuum
extrapolation is indicated by the shaded orange band in

FIG. 8. Continuum extrapolations for the pion condensation
phase boundary (top panel) and the chiral crossover transition
temperature (bottom panel). The yellow curves correspond to
the continuum extrapolations, and we also show the data for the
individual lattices which have been included in the fits. In the
upper panel, the shaded gray area corresponds to the region where
Σπ is observed to be consistent with zero within errors—serving
as an upper bound for the critical temperature along the pion
condensation boundary.

6Note that in Refs. [8,9] we employed a different procedure,
defining Tpc as the point where Σψ̄ψ ðμI ; TpcðμIÞÞ ¼
Σψ̄ψ ð0; Tpcð0ÞÞ holds. This definition is only valid for
μI < μI;cð0Þ, since beyond that the condensate is affected by
μI already at T ¼ 0. On the contrary, the inflection point can be
used to define TpcðμIÞ at any value of μI .

7Here we only take into account the fit for T > 135 MeV,
where the spline captures the behavior of Σψ̄ψ ðμI; TÞ sufficiently
accurately. Below this temperature the condensate changes
abruptly at the BEC phase transition, which is not captured by
our smooth interpolation.
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Fig. 9. We found this extrapolation to be more stable than
the fit to all available lattice spacings, including lattice
artefacts of Oða4Þ. Both extrapolations lead to similar
results, see the comparison in Fig. 9.
We are now in the position to draw the continuum

phase diagram, which we display in Fig. 10. The chiral
crossover transition starts from a temperature of Tpcð0Þ ¼
159ð4Þ MeV, which is consistent with the crossover
temperatures from [6] within uncertainties. The results
exhibit a small downward curvature of the TpcðμIÞ line.
The pion condensation boundary remains at μI;c ¼ mπ=2
within our errors up to T ≈ 140 MeV, beyond which it
soon becomes very flat. For T ≳ 160 MeV, we do not
observe pion condensation up to μI ¼ 120 MeV.

The two transition linesmeet at the pseudo-triple point, for
which we obtain μI;pt ¼ 70ð5Þ MeV in the continuum limit,
indicated by the yellow point in Fig. 10. The corresponding
temperature is determined conservatively by taking into
account the upper bound for TpcðμI ¼ μI;ptÞ and the lower
bound for the temperature where μI;c ¼ μI;pt. Defining the
central value of Tpt as the midpoint of this interval we obtain
Tpt ¼ 151ð7Þ MeV. From what we observe at finite lattice
spacings, we expect that chiral symmetry restoration and
the pion condensation phase boundary coincide from the
pseudo-triple point on. Todemonstrate this, in Fig. 11weplot
the pion condensate together with the quark condensate
for μI > μI;pt. The figure indicates that pion condensation
(defined by the point where Σπ ¼ 0) occurs together with
chiral symmetry restoration (the inflection point of the
condensate). The initial rise of the chiral condensate in
Fig. 11 is an interesting feature in the pion condensation
phase. A similar tendency has been observed in a study of
the phase diagram of a related two-color NJL model [52].
We interpret it as a remnant of the relation between pion
and chiral condensate Σ2

ψ̄ψ þ Σ2
π ¼ 1, discussed in Sec. II C,

which follows from χPT to leading order [7].

B. Polyakov loop

Next, we elaborate on the properties of the decon-
finement transition in terms of the renormalized
Polyakov loop Pr. In contrast to the quark condensate,
the Polyakov loop exhibits no pronounced inflection
point. To capture how deconfinement depends on the
isospin chemical potential, we consider the curves in
the μI − T plane, where Pr ¼ const. is satisfied.
Considering our definition (17) for the renormalization,
the contour with Pr ¼ 1 is a possible choice for the
transition temperature. In addition, the distance between

FIG. 11. Pion and quark condensates as functions of the
temperature for μI ¼ 103 MeV as measured on our Nt ¼ 10
ensembles. The light blue area marks the pion condensation
phase boundary and the orange area indicates the location of the
inflection point of the condensate. The lines connecting the points
are only included to guide the eye.

FIG. 9. Continuum extrapolations for the isospin chemical
potential μI;pt corresponding to the pseudo-triple point, where
the chiral crossover line meets the pion condensation boundary.
The orange curve corresponds to the continuum extrapolation for
Nt ¼ 8, 10 and 12 including lattice artefacts of Oða2Þ and the
gray curve is the continuum extrapolation for all points including
an additional Oða4Þ term.

FIG. 10. The QCD phase diagram for nonzero isospin chemical
potential in the continuum limit. The blue band indicates the
chiral crossover transition temperature TpcðμIÞ and the green line
is the boundary μI;cðTÞ of the pion condensation phase (the
shaded green area). The yellow point marks the triple point,
beyond which the two transitions are coincident (see text).
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the various contour lines is related to the slope of Pr
around the transition point. We show the contours of
constant Pr in the phase diagram for Nt ¼ 6 in Fig. 12.
The contour lines are observed to be insensitive to the
BEC phase transition, as they enter the pion condensa-
tion phase without any sign of critical behavior. In this
plot we also included results obtained at high isospin
chemical potentials, up to μI ≈ 200 MeV for the pion
condensation boundary and up to μI ≈ 240 MeV for a
few Polyakov loop contours. After crossing the phase
boundary, the contours continue to decrease, in agree-
ment with the sketch of the phase diagram in Fig. 1. We
postpone a more detailed discussion of the deconfine-
ment transition to a future publication with an extended
range in μI.

C. Order of the BEC transition

Finally, we investigate the nature of the transition
between the vacuum and the pion condensed phase via a
finite size scaling analysis. To this end three Nt ¼ 6
ensembles with Ns ¼ 16, 24 and 32 are employed. The
results for Σπ around the critical isospin chemical potential
μI;c are shown in Fig. 13. Both at T ¼ 113 MeV and at
T ¼ 136 MeV a sharpening of ΣπðμIÞ is visible, confirm-
ing that a real phase transition takes place in the V → ∞
limit. To be more quantitative, we proceed with the
assumption that the transition is of second order. In this
case, our results at λ > 0 and μI ≈ μI;c must reflect the
critical behavior that emerges as λ → 0 and μI → μI;c in the
vicinity of the transition point. For the following analysis
we use the data obtained on the 243 × 6 ensemble at the
lowest temperature T ¼ 113 MeV.
First we compare our (unimproved) λ > 0 results for Σπ

to the prediction of χPT. This involves two free parameters:
the critical isospin chemical potential and a normalization

factor G, which corresponds to the magnitude of the
renormalized quark condensate Σψ̄ψ in the vacuum,

Σπ ¼ G sin α; sin

�
α − arctan

λ

mud

�
¼ 2μ2I

μ2I;c
sin 2α;

ð33Þ

where the vacuum angle α is determined implicitly by the
second equation (see Refs. [28,53]). The data is very well
described by the predicted behavior, see the top panel of
Fig. 14. Taking into account data points for μI=mπ < 0.63
and the two smallest pionic sources λ=mud < 0.2, we obtain
a reasonable fit with χ2=d.o.f. ≈ 1.6. For higher isospin
chemical potentials χPT tends to underestimate Σπ , as has
already been noted in Ref. [28]. The critical chemical
potential is μI;c ¼ 71ð2Þ MeV and the normalization factor
G ¼ 1.02ð1Þ, both very close to the values expected in the
zero-temperature and thermodynamic limits (mπ=2 and
unity, respectively).
We also consider the critical behavior of the O(2)

universality class to fit the order parameter as a function

FIG. 12. Contour lines of constant renormalized Polyakov loop
Pr in the μI − T plane for the Nt ¼ 6 lattices. Here we extended
our range of μI-values and included two additional points beyond
μI ¼ 120 MeV obtained from an interpolation of Pr for lines of
constant temperature.

FIG. 13. Volume dependence of the (λ → 0 extrapolated) pion
condensate Σπ around the critical isospin chemical potential for
two temperatures well below (top panel) and somewhat below
(bottom panel) the μI ¼ 0 chiral transition temperature. The
dotted lines merely serve to guide the eye.
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of μI and λ. In particular, this dependence involves the
universal scaling function fG,

Σπ ¼ h1=δ · fGðt=h1=ðβδÞÞ; h ¼ λ

λ0
; t ¼ μI;c − μI

t0
;

ð34Þ
with the critical exponents β and δ and the free parameters
μI;c, λ0, and t0. For the construction of fG, we follow
Ref. [54]. The result of the fit, using the two lowest pionic
sources and isospin chemical potentials 0.4 < μI=mπ <
0.63, is shown in the bottom panel of Fig. 14, demonstrat-
ing the collapse of the data on the universal curve.
The critical chemical potential is found to be μI;c ¼
74ð2Þ MeV. However, since the fit quality is rather low
( χ2=d.o.f. ≈ 3), we extended the fit function to include
scaling violations in the spirit of Ref. [54]. We found it
necessary to work with

Σπ ¼ h1=δ · fGðt=h1=ðβδÞÞ þ a1thþ b1hþ b3h3; ð35Þ
which allowed us to achieve reasonable fit qualities
( χ2=d.o.f. ≈ 1.5) for broader fit intervals λ=mud < 0.5

and 0.2 < μI=mπ < 0.7. The resulting fit is included in
the top panel of Fig. 14. We find μI;c ¼ 70ð2Þ MeV, again
lying very close to the expected value of mπ=2.
Summarizing, our results strongly indicate that the

transition into the pion condensed phase is of second order
in the infinite volume limit. In addition, the behavior of the
order parameter at nonzero values of the explicit breaking
parameter λ is consistent with the critical scaling in the O(2)
universality class, as expected due to the spontaneous
symmetry breaking pattern discussed in Sec. II A.

VI. SUMMARY

In this paper, we have presented the first study of the
phase diagram of QCD at nonzero isospin chemical poten-
tials in the continuum limit with dynamical u, d and s quarks
at physical quark masses. Our main result is the continuum
extrapolated phase diagram, as shown in Fig. 10. The key
features of the phase diagram are the chiral crossover
transition, the pion condensation boundary and their meeting
point, the pseudo-triple point. We observe that the critical
chemical potential for pion condensation remains constant
up to T ≈ 140 MeV, followed by a drastic change in
behavior and a saturation at around T ≈ 160 MeV. Above
this temperature, we no longer observe pion condensation, at
least up to μI ¼ 120 MeV. This finding might be particu-
larly relevant for the orbifold equivalence in the large Nc
limit, as the pion condensation region is smaller than
previously expected.
The chiral crossover temperature decreases slightly until

it reaches the vicinity of the pion condensation phase
boundary. The two transition lines meet at μI;pt ¼
70ð5Þ MeV and are found to be on top of each other
within uncertainties for higher isospin chemical potentials.
Our scaling analysis of the pion condensation boundary
shows consistency with a second order phase transition in
the O(2) universality class.
Using our Nt ¼ 6 lattice ensembles, we find first indi-

cations that the deconfinement transition temperature—
defined in terms of the renormalized Polyakov loop—
decreases and smoothly penetrates into the pion condensation
phase. This behavior is depicted schematically in Fig. 1.
If this tendency persists in the continuum limit and for
larger values of μI , the scenario where the deconfinement
transition connects continuously to the BEC-BCS crossover
will be favored. Our results for the phase diagram can be
compared directly to effective theories and models of
QCD and serve as a highly nontrivial check of the validity
of these approaches.
The main technical novelty of this study is the develop-

ment of an improvement program for the extrapolations in
the infrared regulator λ, discussed in detail in Secs. III
and IV. Without the use of these improved λ extrapolations,
the reliable extraction of the phase diagram would have
hardly been possible. We would like to emphasize that a
similar infrared regulator will likely be necessary to enable

FIG. 14. Top panel: comparison of our results for Σπ at nonzero
λ to χPT (dotted gray line) and to the critical behavior of the O(2)
universality class including scaling violations (dashed yellow
line). Bottom panel: collapse plot using the variables scaled
according to the O(2) behavior, Eq. (34).
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simulations at finite baryon chemical potential—granted
that the sign problem has been solved. In this case, a
generalization of the methods presented here might be
helpful to give insight to the investigations at finite μB.
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