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In light-front dynamics, form factors are traditionally computed with the “good current” J* within the
Drell-Yan frame gt = 0. Due to truncations imposed in practical calculations, the from factor may acquire
frame dependence, which is often neglected. In this work, we explore the form factors in more general
frames, preserving the boost covariance. We find the frame dependence of the elastic form factors for
mesons is small in basis light-front holography and related models with two-body Fock space truncation.
We suggest to use the difference between form factor results from Drell-Yan frame and the “longitudinal
frame” as a metric for the violation of the Lorentz symmetry due to Fock space truncation.
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I. INTRODUCTION

In quantum field theory, elastic electromagnetic form
factors characterize the structure of a bound state system.
They generalize the multipole expansion of charge and
current density in nonrelativistic quantum mechanics.
Formally, they are defined as the Lorentz scalars arising
in the Lorentz structure decomposition of the hadron matrix
element (y,(p + q)|J*(0)|lw,(p)). If the hadron state
vector |y, (p)) is known for arbitrary momentum p of
interest, the hadron matrix element can be directly
obtained. Light-front wave functions (LFWFs) are boost
invariant objects hence are particularly advantageous for
this task. LFWFs are the eigenfunctions of the light-front
quantized Hamiltonian operator at a fixed light-front time
xT =1+ z/c. See Refs. [1-7] for reviews of this topic.

Although, by definition, form factors are Lorentz invar-
iants, calculations in light-front dynamics are typically done
using a specific component J* = J° + J3, the “good cur-
rent,” and in a special frame ¢* = ¢° + ¢*> = 0, the Drell-
Yan frame' [8—11]. The main advantage of this combination
of current and frame choices is that vacuum pair production/
annihilation is suppressed [10-12]. As a result, parton
number is conserved and the matrix element only involves
the overlap of LFWFs of the same parton number [see
Fig. 1(a)]. Nevertheless, this is not an a priori restriction and
other frames and/or components can be used. However, since
the parton number is no longer conserved, higher Fock sector

'Note that it represents infinite many of frames related by light-
front boost transformation.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2018,/97(5)/054034(10)

054034-1

wave functions are needed [see Fig. 1(b)]. In most practical
calculations, only a finite number of partons can be retained
in the Fock space, though exceptions exist, e.g. [13].
Consequently, with truncated Fock sector representations,
form factors evaluated in different frames or using different
components of the current give different results, implying the
loss of Lorentz covariance.

Note that even with the combination of Drell-Yan frame
and J*, higher Fock sector contributions are present.
Neglecting these contributions could also lead to violation
of Lorentz symmetry. Since in practical calculations, Fock
sector truncation is part of the model, the frame dependence
of form factors may be used to as a metric of the violation of
Lorentz covariance within the model [ 14]. This suggestion of
auseful metric also applies to other observables. The hope is
that, as more Fock sectors are included, the frame depend-
ence may be reduced, as is shown in some specific models
[15-17].

The light-front projection of the Bethe-Salpeter amplitude
(BSA) provides another insightful perspective. In particular,
using perturbatively obtained BSA,” it was shown that apart
from the overlap of LFWFs, a non-LFWF-overlap contri-
bution, known as the Z-diagrams, also emerges ([12,18-20],
see Fig. 2). These diagrams are a partial resummation of
higher Fock sector contributions. They do not necessarily
vanish even in the Drell-Yan frame except for J* for scalar
theory [12,18]. However, beyond perturbation theory, itis not
clear to what extent the Z-diagram is large or how to evaluate
their contributions, although they can be separately modeled
[21,22]. Furthermore, modern Bethe-Salpeter equations
coupled with the Dyson-Schwinger equations are formulated

*For these calculations, one can also start directly from light-
cone perturbation theory, as it is equivalent to the light-front
projection of the covariant perturbation theory.
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(a) Parton-number-conserving
contributions

FIG. 1.

-

) Parton-number-non-conserving
contributions

LFWF representation of the hadron matrix element. The double-lines represent the hadrons. The solid lines represent the

partons. The wavy lines represent the probing photon. The shaded areas represent the LEFWFs. These diagrams are ordered by light-front
time x*, which flows from left to right. The parton-number-nonconserving contributions (b) stem from pair production/annihilation.
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b) Triangle diagram time
ordering b
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FIG. 2. Top: The light-front projections of the covariant triangle diagrams. (a) and (b) represent different time ordering. Bottom: The
light-front projection of the Bethe-Salpeter amplitude representation of form factors. The shaded ovals represent LFWFs. The rectangle
represents a non-LFWF vertex. (c) resembles (a) while (d) resembles (b).

in Euclidean space time. To evaluate the form factors, the
current may also have to be consistently dressed [23].
The bridge between the Euclidean Bethe-Salpeter and the
Minkowskian light-front approaches is not yet built [24-31].

The dependence of form factors on the current compo-
nents and on the reference frame are two typical symptoms
of the violation of the Lorentz covariance in light-front
dynamics. Model independent analysis of current compo-
nents in the Drell-Yan frame has been performed exten-
sively by Karmanov and collaborators in the covariant
formulation of light-front dynamics [6] (cf. [12]). Apart
from the formal aspects, the use of other current compo-
nents for certain observables is more physically justified.
For example, in nonrelativistic quantum mechanics,
the magnetic moments can only be extracted from
3-dimensional current density operator J. While in quan-
tum field theory, relativity allows us to extract magnetic
moments from the charge density operator J°, or in light-
front dynamics, JT, this procedure requires a proper

implementation of Lorentz covariance within the model.

In contrast, the current density operator J 1, echoing its
nonrelativistic counterpart, should provide a more reliable
access to magnetic moments, at least in heavy quarko-
nia [32].

On the other hand, the investigation of the frame
dependence in elastic form factors is rare to the best of
our knowledge [12,14,18,19]. Most studies focus on the
transition form factors in the time-like region where the
Drell-Yan frame is not applicable [12,21,33,34]. This work
is intended to fill the gap. In particular, we propose a
new parametrization, in which the form factors are
expressed as a function of two boost invariants z, A
[see Eq. (10)]. If the Lorentz covariance is restored, the
dependence is reduced to a single Lorentz invariant
02 = (M} + A%)/(1 -2).

As aconcrete example, we scrutinize the frame dependence
of the elastic charge form factor of (pseudo-)scalar mesons for
heavy quarkonia in a phenomenological model based on
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light-front holographic QCD. In (pseudo-)scalar mesons, the
frame and the component dependence largely separate, so that
we can focus on the former. We discover that the frame
dependence is moderate in heavy quarkonia. We also find the
frame dependence can be characterized by the discrepancy
between two frames: the Drell-Yan frame and the “longi-
tudinal frame”, the meaning of which will be explained later.
Finally, we will also comment on the frame dependence in
light meson elastic form factors based on calculations with
light-front holographic QCD wave functions.

This paper is organized as follows. In Sec. I we present the
formalism for computing form factors in a general frame. In
Sec. Il we apply the formulation to light-front wave
functions for heavy quarkonia. We conclude in Sec. IV.

II. FORM FACTOR IN LIGHT-FRONT DYNAMICS

The Lorentz decomposition of the matrix element of a
(pseudo)scalar meson 4 is [6],

(i (p"s @)|7#(0) [y (p; w))

=(p+p)F(z.0") +

M(p.plio) =

S(z.0%. (1)

where g, = p, — p, 2=w-q/w-p', 0* =—¢* wis a
Jfixed null 4-vector (w,@" = 0) indicating the orientation of
the quantization surface. For the elastic form factor,
p? = p”? = M;. Because the light-front quantized state
vector |y,) depends on w,” in covariant light-front dynam-
ics (CLFD, [6]), the Lorentz structure of the hadronic
matrix element is extended. Similar analysis can be applied
to the decay constant as well as the non-local matrix
elements, e.g. distribution amplitude and generalized par-
ton distribution. In the case of (pseudo)scalar mesons, apart
from the physical form factor F, there appears a spurious
form factor S. Furthermore, the form factors depend on two
Lorentz scalars Q® and 2 If the Lorentz symmetry is
dynamically restored, the spurious form factor § will
vanish, as will the dependence of the form factors on z.
The emergence of the spurious form factors in CLFD is
general. For spin-1/2 hadrons, there are 3 spurious form

dxdk,i

ZHZ

lwi(p.j.4))

X W ({Xi Kivosib)eh (ept ki +xpL) %

(x, kJ_)

_Z/l dx /dkl
Ty x(i-x)) 2 )*‘””/h

x bl (xp* Ky +xpL)di((1—x)p*

(X1+)C2+"'+

factors; for spin-1, the number is 8 [6]. These spurious form
factors are expected to vanish dynamically when the trunca-
tions are lifted. For an ab initio calculation, our best hope is
that these form factors are suppressed by powers of Aqcp /A,
where A is the UV scale associated with the truncation.

In this work, we choose the standard light-front dynamics,
ie.w = (% @) = (1,0,0, —1) The light-cone coordinates
are defined as v* = v* + 2%, and ¥, = (v',0?). In this
convention, o~ =2, ot =w,; =0, and @ - v = v". Note
that this choice does not automatically make the spurious
form factor S or the frame dependence disappear. Indeed, the
spurious form factor S enters the hadron matrix elements of
J~, and leads to the violation of the current conservation:

q,*(p, p's @) = z8(z, 0%). (2)

The physical form factor F(z, Q%) can be extracted from
either J* or J | :

Wa(p"s )T 0)ywy(ps @) = (p* + p'")F(z,0%). (3)

wa(p )T LO)wy(pw)) =(B. + P )F(z.Q%).  (4)

The current components J* and J | are related by a
kinematical boost in the transverse direction:

(wu(p™, P+ P PLs w>|jJ_|l//h(P+v pL+ptpLiw)
= (wa(p™" P o)l Llwa(p™, Prso))
+BL (P P o) i (pt, pos o). (5)
Substituting (3), (4), these two current components lead to
the same results for the form factor F(z, Q?), as expected.
Next, we turn to the frame dependence, i.e. z dependence

of the physical charge form factor F(z, Q?). The meson state
vector |y, (p, j,4)) can be expanded in the Fock space,

xn)(2”)352(7€1l thy 4ot Izni)

coxel (x,p T ks +x,51)]0)

—ky A+ (1=x)pL)0) + - (6)

*The dependence is always in the form of a ratio, e.g. @/ - p, as there is an additional conformal symmetry, i.e. lw* and @* indicate

the same quantization surface [6].
4 . . . .
z 1s not a Lorentz invariant, as w is a fixed 4-vector.
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where v, ({x;, I?i 1,5;}) are the LFWFs. The dots represent the higher Fock sector contributions. The current operator

J# = yry*y, where the quark field operator y at x* = 0 is,

Z/dPerzPL
27)32p*

p)lbs(p". p1)

u(p™, BL)e ™ +di(p*.py)

v (P, Bu)et | o (7)

The operators b and d satisfy the standard anticommutation relation,

{bs(p™, BL),by(p' B} = {dy(p™, BL). dy(p™. B} = (22)%2pT8(p*

= p"")8 (P = P)oy- (8)

Then the LFWF representation of the electromagnetic vertex is,

) =3 [ /dellZﬁ«x/ R
2\P> P — Jo 2x(1—x) (2n,)3x/ : s p kL P

syl ROy, (kL) +

where x'pt=xpt+q*, and K, —i—x’ﬁl:la +xp+q,.
The dots represent the higher Fock sector contributions.
Here for mesons with quark and antiquark having the same
flavor, we have coupled the photon only to the quark.
Otherwise, the form factor is exactly zero due to charge
conjugation symmetry.

We introduce a boost invariant:

~ - P L
A =g, —zp| =p <—>, 10
p" p* (10)

where z = ¢*/p'" is another boost invariant introduced
above [see Eq. (1)]. Using z and A |,

X=x+z(1-x), K o=k +0-x)A,. (1)
The momentum fraction in the valence LFWF is constrained
by 0 <x < 1. Therefore, we only have access to the
kinematical region 0 < z < 1. Negative z probes sea quark
contributions in higher Fock sectors. z > 1 probes the
timelike region, which is a different process in light-front
dynamics. The Lorentz invariant momentum transfer squared
g* = (p’ — p)? depends on these two boost invariants,

, MR+ AT
=TT 1, T -0°, (12)
where M), is the mass eigenvalue of the meson, i.e. p*> =
p"? = M3. For the available kinematic range (0 < z < 1),
g*> <0,i.e. ¢° is spacelike. We introduce two special frames:
(I transverse frame (z = 0), also known as Drell-Yan
frame (g7 =0): ¢*> = A3 = —¢3;

(D) longitudinal frame (A, = 0): ¢*> = —z2M3 /(1 - z).
Our definition of the longitudinal frame is very similar to the
longitudinal frame (g, = 0) introduced in the literature

*Note that g, , in general, is not a boost invariant.

ru (xpt k4 xp))

©)

[12,14,18,19]. However, & | is boost invariant while g,
is not. As we have mentioned earlier, the form factor in
light-front dynamics depends on two boost invariants z and
A |, instead of one Lorentz invariant Q. This dependence is
referred to as the frame dependence. Note that each pair of
(z, A ) denotes infinitely many reference frames related by
light-front boost, longitudinal and transverse, as well as by
rotation in the transverse plane.

The LFWF representation of the charge form factor is,

d’k X
Fe =YY i ] e
07 222 2x(1-x) ) (22)* { x+2(1-x)
szg/h(x+z(1 —x)’krF(] —x)&L)st//1(X7EL)
oo (13)
where Q% = (M3 + A%)/(1 —2). At Q - 0, z — 0 and

A, - 0and F(z, QZ) — 1. At large Q, either large A | or
z— 1, F(z,0% — 0. The explicit expression including
higher Fock sectors is presented in Appendix A. In the
Drell-Yan frame (z = 0, Q> = A?%), we obtain the familiar
expression

Fov(0 Z/ 2x1—x/<dzk)l

x l//:?/h(x’ kl +(1- X)AL)ng/h(X, ki)

In the longitudinal frame (A, =0, Q> = z°M3 /(1 — 2)),

d’k, X
Fiong (%) = 1__52/ 2x(1- x/ )m

X ‘/’ﬁi/h(x'i'z(l _x)vkl)ll’ss/h(%kl) +

(15)
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III. APPLICATION TO HEAVY QUARKONIA

Recently, we proposed a model for heavy quarkonia
based on light-front holographic QCD [35] and one-gluon
exchange [36]. The theory is solved in the basis function
approach (BLFQ, [37,38]). The one-gluon exchange imple-
ments the short-distance physics and supplies the proper
spin structure. The resulting LFWFs have been used to
compute a number of observables as well as in diffractive
vector meson production, showing reasonable agreement
with the available experimental data [39,40]. In this model,
the violation of Lorentz symmetry leads to the spread of
mass eigenvalues with the same angular momentum j but
different magnetic projection m;. However, such violation
is sufficiently small that it does not interfere with spectrum
reconstruction. Therefore, it is interesting to see whether
the frame dependence, also originating from the violation
of the rotational symmetry, is under control.

As mentioned, the model is solved in a basis function
approach. The LFWFs read,

l//si(x’ I_C'L) = ZW(’L m, s, E)anm(l_él/ \% x(l - x))Xl(x)'

n,m,l

Here ¢,, and X; are known analytic functions (see
Refs. [37,38] for details). The basis space is truncated
by 2n+ |m|+ 1 < Ny and I < L., and in the calcu-
lation, N, = Lax 1S chosen. The truncation introduces a
UV scale Ayy = kyv/Npyax and a resolution in the longi-
tudinal direction Ax= L;!,, where x is the confining
strength whose value is given in Ref. [38]. Since form
factors in light-front dynamics are represented as the
convolution of LFWFs, the variables z, A, and Q7 are
only supported up to the basis resolutions: Q% < k2N, in
the transverse direction and Q? < M3L,,, in the longi-
tudinal direction. Beyond these regimes, the LFWFs are
dominated by the asymptotics of the basis included within
the limited basis space.

Figure 3 shows numerical results for charmonia 7., y.,
1. and their bottomonium counterparts #,, ¥, #1,- A basis
truncation N, = L.« = 32 is used. The solid curves
represent the Drell-Yan frame while the dashed curves the
longitudinal frame. The shaded areas represent all other
frames as obtained numerically through a dense sampling
of the z and A | parameter space. We observe that overall,
the frame dependence is moderate for both systems. The
frame dependence of bottomonia is also smaller than that

(16)
1 0 T T T | T T T | T T T | T T T 1 '0 T | T | T | T | T | T
5 c m Ty B Xc0 ® Xbo ]
0.8 _ 0.8 |
‘\
i\ ) i - 4
0.6— \\\ Solid: Drell-Yan 0.6/~ Solid: Drell-Yan ]
;\'& R Dashed: longitudinal 7\'5; = Dashed: longitudinal
L N i
= R T 04 =
04— Ao Nnax=32 n L Nimax=32 i
- Q > 7 0.2 ]
02 e - L i
o~ S - 0.0
0.0 I I I | I I I | 1 1 | 1 1 I 1 I | I | I | I | I | I
0 20 40 60 80 0 10 20 30 40 50 60
Q* (GeV?) 0* (GeV?)
1 '0 T T T T | T T T | T T T T | T T T T
SR
0.8 —
0.6 Solid: Drell-Yan
g Dashed: longitudinal
=
04\ § Nax=32 -
\J
L X 4
02 NN -
oob—— 1y - | R TR TR el Il el st Bl
0 10 20 30 40
0% (GeV?)

FIG. 3.

Frame dependence of heavy quarkonia form factors. The solid curves represent the Drell-Yan frame while the dashed curves the

longitudinal frame. The shaded areas represent all other frames as obtained numerically through a dense sampling of the z and A |
parameter space. Note that the appearance of crossing lines in the third panel of may be misleading since there is a spread in the distribution
of dense points nearby that are not visible at the resolution of the figure. The basis is truncated with N ,, = L.« = 32 (see text).
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FIG. 4. Form factors with different basis truncations. On the right panels, form factors are shown up to the UV scale Ayy = kv/N pax-

Note that in the basis representation, this is a soft cutoff.

of charmonia, which is consistent with the fact that
bottomonia are less relativistic. These results also show
that the Drell-Yan frame and the longitudinal frame are
indeed two special frames: their respective form factors
typically signal the extreme of the form factor F(z, Q?) for
a given Q2 and 0<z< 1.5 Therefore, the difference
between the Drell-Yan frame and the longitudinal frame
can be used to approximately characterize the frame
dependence.

In the LFWFs, there are two sources of Lorentz
symmetry violation. One comes from the Fock sector
truncation and the associated effective interaction. The
other comes from the basis truncation. Form factors of
., p from different basis truncations (N, = Lmax = 8,
16, 32) are shown in Fig. 4. The basis convergence is
observed to be reasonable up to the UV limit specified by
the basis cutoff. To further see the basis truncation
effects, we compare the form factors evaluated from
the leading basis function (N, = L. = 1) and the
full diagonalization (N ,x = L. = 32) in Fig. 5. The
basis function is the solution of the long-distance

®This is most of the cases but not all.

part, i.e. the light-front holographic QCD (LFHQCD),
without the contributions from the one-gluon exchange
interaction. Therefore, this is essentially a comparison
between LFHQCD’ and BLFQ for a particular set of
parameters. We find that the excited states are more
sensitive to the basis truncation. That is, we find that
the excited states require more basis functions to resolve
the spatial structure of the excited state wave functions.
On the other hand, the ground states are more sensitive to
the Fock sector truncation and to the model for the
effective interaction. For example, the ground-state
BLFQ form factors show more frame dependence.
This is because, compared with LFHQCD (i.e.
Nmax = Lmax = 1), BLFQ has an additional interaction,
the one-gluon exchange, which, upon Fock sector trun-
cation, introduces an additional source of Lorentz sym-
metry violation.

"In the LFHQCD description of heavy quarkonia, a longi-
tudinal function is required. Reference [38] compares two
popular longitudinal functions and found they are almost iden-
tical for heavy quarkonia.
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FIG. 5. Comparison of form factors from the leading basis function (N, = L. = 1) and BLFQ (N .x = Liax = 32).

IV. DISCUSSION AND CONCLUSIONS

We have shown, using phenomenological LFWFs,
scalar and pseudoscalar heavy quarkonia form factors
admit moderate frame dependence. This dependence
decreases from charmonium to bottomonium. We are
therefore led to consider the frame dependence in light
mesons. However, a similar model for light mesons is yet
to be developed. As mentioned above, the phenomeno-
logical model is based on LFHQCD, whose LFWFs can
be readily used for light mesons. On the other hand,
using similar phenomenological wave functions, Isgur
and Smith found that the pion form factor has a large
frame dependence [14]. In Ref. [18], using a BSA, the

discrepancy is attributed to the zero-mode contributions
in the longitudinal frame. Such contributions are absent
in the Drell-Yan frame.

Figure 6 presents the 7, p, 17, and ¢ form factors obtained
from LFHQCD.® Note that the spin effect is ignored in
LFHQCD (cf. [41-45]). So p and 7 share the same spatial
LFWF hence form factors in the Drell-Yan frame’

SHere n, is the ground-state pseudoscalar s§ meson, which
does not have any correspondence in Nature. The physical
pseudoscalars 7 and 7' are dominated by the axial anomaly,
which is not described in LFHQCD. #; is used as a theoretical
construction in LFHQCD with a predicted mass 676 MeV.

The longitudinal form factor depends on the physical mass.

054034-7



YANG LI, PIETER MARIS, and JAMES P. VARY

PHYS. REV. D 97, 054034 (2018)

1'0 T | T | T | T | T 140 T | T | T | T | T | T | T | T | T | T
3 n T u b nllg m ¢ b
0.81% — 0.8 —
A)
- \‘ . 1 . T
R Solid: Drell-Yan Solid: Drell-Yan
— 0.6f— N I 0.6 e
S N\ Dashed: longitudinal | £ Dashed: longitudinal
SN 1o+ i
= 04 AN 4 &~ 04l -
L N“s - — -
T TR
02%  Uee—oT — 02+ —
s T ———,
. i L <L 4
0.0 I ietd I L n N L 1 1 | ! T MY i i b it SRl Y O [ gy gy ey
0 1 2 3 4 5 0 OO 1 2 3 4 5 6 7 8 9 10
0* (GeV?) 0* (GeV?)

FIG. 6. Frame dependence of (left) z, p and (right) ,, ¢ form factors from LFHQCD. We adopt quark mass m, = 46 MeV,
mg = 356 MeV and confining scale k = 0.54 GeV [35]. The solid curves represent form factors in the Drell-Yan frame, which are the
same for 7 and p (left) as well as 7, and ¢ (right) in LFHQCD. The dashed curves are the form factors in the longitudinal frame. While
both pseudoscalars display considerable frame dependence, that of 7 seems especially large.

Similarly, ¢ and 5, share the same LFWF hence
form factors in the Drell-Yan frame. These light vector
mesons p, ¢ show relatively small frame dependence
in charge form factors as compared to the pseudo-
scalar mesons. The frame dependence in pion is especially
large. Comparing p and z, this large frame dependence can
be attributed to the mass, as this is the only difference
between p and z in LFHQCD (spin is assigned, not
dynamical).

The mean-square radius 72 controls the slope of the
form factor at Q> — 0. It can be shown that, in the Drell-
Yan frame, r2 o k~2In M2/x> + O(MZ%/x*), whereas in
the longitudinal frame, r2 o k*/M%* + O(M2/x?) up to a
log correction InM,/x. Here « is the confining
scale parameter. As M, <k, the discrepancy in r2
explains the large frame dependence of the pion form
factor at low Q% The asymptotics of r2 obtained in the
Drell-Yan frame is in agreement with the prediction from
chiral perturbation theory [46,47]. Therefore, this large
frame dependence points to the (lack of) chiral symmetry
breaking in valence sector pion wave function, in par-
ticular, in the longitudinal direction. Chiral symmetry
breaking on the light front is generally understood to
require zero modes [48-51]. The conventional wisdom
from the BSA suggest that this discrepancy may be caused
by the (lack of) zero-mode contributions in the longi-
tudinal frame, which have been omitted [12,18]. Of
course, without a corresponding BSA, it is not clear
how to take such contributions into account. Therefore,
developing a light-front model implementing dynamical
chiral symmetry breaking is essential for a self-consistent
description of the pion.

To summarize, in this work, we develop a boost-
invariant representation of space-like form factors in a
general frame. We investigated the frame dependence of
form factors in light-front dynamics. Heavy quarkonia are

used as a concrete example. We show that the frame
dependence is suppressed by the heavy quark mass. We
identify the Drell-Yan frame and the longitudinal frame as
two special frames, whose difference can be used to
represent the frame dependence.
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APPENDIX: LIGHT-FRONT WAVE
FUNCTION REPRESENTATION BEYOND
THE VALENCE SECTOR

In this section, we present the general LFWF represen-
tation of the elastic form factors in a general frame
with a boost-invariant parametrization using z and A
(0<z<1). The form factor admits a diagonal piece
[Fig. 1(a)] and an off-diagonal piece [Fig. 1(b)]:

F(z,07%) = Fyiag(2. %) 4 Fofraing(z. 7). (A1)

The diagonal part reads,
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Fdlag(Z Q _ZZ/dxd kzi ZCIf\/7 {xzvku’/l})llln({xz’kliv/1 }f)

where x; is the momentum fraction of the struck parton and g its charge number.

(X1, ky 1A X0, koL Ags

(A2)

{'xzvl_éu_’)“ } =

Xy, k,, 1,A4,) is a collection of parton quantum numbers for the n-body Fock sector.

{x}, IZ 1,4} is similar, except that a subscript f is used to indicate the dependence on the choice of struck parton.

spectator;

x;(1 —=z)+z, struck parton.

[dx;d?k; ], is the n-body phase space integration measure:

/[dx &k ], = Sy HZ/d" & k’L 2n)35<§;xi - 1>52 <ZEL>

In the Drell-Yan frame (z = 0), the diagonal part reduces to the Drell-Yan-West formula [10,11].

The off-diagonal part reads,

Fotfdlag(Z Q

s { lj, - x,ﬁ 1 ) spectator; (A3)
kii + (1 —x;)A,, struck parton.
(A4)
d’k,
[dx;d?k;
k] Z%Z/ 251— /( 27)°
&(1 =&y ({xi. ki¢7/1i})‘//n+2({x§7 kuﬂu}f) (AS)

where x; is the momentum fraction of the struck parton and g, its charge number, [dx;d’k; ﬂn is again the n-body phase

space integration measure. The collections of parton quantum numbers {x;,k;,4;} and {x}, k;

i1, 4} are similar to the

diagonal part, except that, now, it is understood the spectators within the initial and final states pair up.

x;(1 —z), spectator; I;,- 1= xi& s spectator;
xh =4 &, struck quark; IZ =<k 1+ 5& I struck quark; (A6)
z(1=¢),  struck antiquark. —k, + (1- 5)& 1, struck antiquark.
Ais spectator;
Ay =4 A, struck quark; (A7)
—As, struck antiquark.

In the Drell-Yan frame (z = 0), the off-diagonal part has only zero-mode contributions.
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