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We estimate bottomonium yields in relativistic heavy-ion collisions using a lattice QCD vetted,
complex-valued, heavy-quark potential embedded in a realistic, hydrodynamically evolving medium
background. We find that the lattice-vetted functional form and temperature dependence of the proper
heavy-quark potential dramatically reduces the dependence of the yields on parameters other than the
temperature evolution, strengthening the picture of bottomonium as QGP thermometer. Our results also
show improved agreement between computed yields and experimental data produced in RHIC
200 GeV=nucleon collisions. For LHC 2.76 TeV=nucleon collisions, the excited states, whose suppression
has been used as a vital sign for quark-gluon-plasma production in a heavy-ion collision, are reproduced
better than previous perturbatively-motivated potential models; however, at the highest LHC energies our
estimates for bottomonium suppression begin to underestimate the data. Possible paths to remedy this
situation are discussed.
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I. INTRODUCTION

Ultrarelativistic heavy-ion collision (URHIC) experi-
ments being performed at the Large Hadron Collider
(LHC) at CERN and the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven National Laboratory aim to recreate
a primordial state of nuclear matter known as the quark-
gluon plasma (QGP). Comparisons between hydrodynamic
simulations that describe the evolution of the bulk matter
and experimental data suggest that LHC URHICs produce
a QGP with an initial temperature on the order of T0 ¼
600–700 MeV at τ0 ¼ 0.25 fm=c [1–5], for beam energies
in the range of 2.76–5.02 TeV=nucleon. In addition,
analysis of the collective flow of the matter produced in
URHICs indicates that the QGP behaves like a nearly
inviscid relativistic fluid [1–5]. Although the light hadronic
states, such as pions, are disassociated at temperatures
around the pseudocritical temperature Tc ≃ 155 MeV, it
was predicted that, due to their large binding energies,
bound states of heavy quarks could survive up to

temperatures on the order of 600 MeV. Due to their short
formation times, such heavy-quark bound states probe the
history of the QGP and their suppression relative to
production in pp collisions was proposed to be a clear
signal of the creation of the QGP stemming from temper-
ature-dependent screening of the color force [6,7]. In
practice, experimentalists do see a reduced yield of heavy
quarkonium compared to elementary collisions both at
RHIC and LHC [8,9].
As we have learned over the course of the last years,

however, the suppression of heavy quarkonium may be
accompanied by the regeneration of the observed quarko-
nium states (a) at the phase boundary between the QGP and
the hadronic phase [10–12] or (b) dynamically due to in-
medium recombination of QQ̄ pairs [13,14]. If a sizable
number of QQ̄ pairs is created in the initial stages of a
collision, the probability for a free quark antiquark pair to
coalesce into a bound state at some point during the QGP
lifetime can become significant. Measurements of charmo-
nium yields e.g. have shown that for this lighter flavor
indeed regeneration becomes quite important at LHC
energies [15]. For bottomonium, only recently have there
been studies carried out that include a regeneration compo-
nent, see e.g. [16]. In the case of bottomonium, one expects
regeneration to be less important due to its much heavier rest
mass and large vacuumbinding energy (≲1 GeV) and this is
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borne out by detailed calculations. That said, it is desirable to
have a unified framework that includes the effects of both in-
medium suppression and regeneration.
Recent measurements at LHC have also shown an

unambiguous signal for the elliptic flow of the J=Ψ
particle, which implies that charm quarks are at least
partially kinetically equilibrated with the surrounding
medium [17–19]. A similar observation for bottomonium
has not been made and it is expected that bottomonium
does not yet participate in the collective motion of the bulk
at 5.02 TeV. Since equilibration is intimately related to a
loss of memory, charmonium at LHC appears to provide us
with a window into the late stages of the collision, while
bottomonium is considered to act as probe of the full
evolution of the QGP. As a result, a detailed understanding
of heavy quarkonium in-medium will open the possibility
to infer the time-dependent properties of the nuclear matter
produced in a heavy-ion collision. It is an open question
which properties the different species are most sensitive to,
as candidates of course temperature or the shear viscosity to
entropy ratio come to mind.
In this paper, we focus solely on bottomonium and

investigate its suppression at both RHIC and LHC energies.
To this end we combine a nonrelativistic description of the
quark-antiquark bound state in terms of an in-medium
potential with a realistic dynamical model of the bulk matter
created in the collision. The potential model used is vetted by
comparing it to lattice QCD calculations of the real and
imaginary parts of the heavy-quark potential, providing the
first model to attempt to constrain the full complex potential
using lattice input. In addition, since bottomonium states are
believed to be formed early on in a collision (τ < 1 fm=c),
they can be sensitive to the early-time nonequilibrium
dynamics of the QGP. Of particular importance is the large
pressure anisotropy of the QGP in the local rest frame,
PL ≪ PT , which is induced by the rapid longitudinal
expansion of the QGP created in URHICs [20,21]. This
pressure anisotropy leads to potentially important nonequi-
librium corrections to the widths of the various bottomonia
states [22–32] which we will take into account using
information provided by perturbative calculations of the
screening masses in an anisotropic QGP [22,24,26,32,33]
coupledwith a realistic 3þ 1d dissipative anisotropic hydro-
dynamic evolution for the QGP background [5,34–38].
The structure of our paper is as follows. In Sec. II we

review how the complex-valued heavy-quark potential used
for the description of bottomonium is defined and extracted
using lattice QCD and appropriately parametrized for use in
phenomenological applications. Section III collects the
relevant details on the dynamical evolution model of
anisotropic hydrodynamics and how it is connected to
the lattice-vetted potential via a spacetime-dependent
anisotropic Debye mass. We present the results of our
computation in Sec. IV and conclude with a discussion and
outlook in Sec. V.

II. POTENTIAL DESCRIPTION
OF HEAVY-QUARKONIUM

Herein, we use a lattice QCD vetted, nonrelativistic
potential based description of heavy-quarkonium in a
thermal medium to compute its real-time evolution in a
heavy-ion collision. The potential originates in a systematic
treatment of heavy quarkonium in QCD, based on the
effective field theories nonrelativistic QCD (NRQCD) and
potential NRQCD [39,40]. These frameworks exploit the
inherent separation of scales between the heavy quark rest
mass mc;b, the surrounding medium temperature, as well as
the characteristic scale of QCD ΛQCD to dramatically
simplify the description of heavy quarkonium. Instead of
having to consider a full quantum field-theoretical boun-
dary value problem for Dirac spinor fields, one may go over
in a first step to an initial-value problem for two-component
Pauli spinors (NRQCD). In a second step this nonrelativ-
istic theory may be matched to a further simplified
description in terms of coupled color singlet ψSðr; tÞ and
color octet wave functions ψOðr; tÞ (pNRQCD). In the
latter, the interaction among the heavy-quarks, as well as
their interaction with the medium is captured in both
potential and nonpotential contributions. Depending on
the concrete scale hierarchy of the problem at hand, the
potential contributions may dominate and the relevant real-
time evolution of heavy quarkonium reduces to a
Schrödinger equation.
For realistic settings, such as those encountered in

heavy-ion collisions at RHIC and LHC, the matching
coefficients of the effective theory, i.e. the potential cannot
be reliably determined using perturbation theory.
Nevertheless vital insight had been gained by evaluating
pNRQCD using the hard-loop approximation [40,41]. In
particular it was found that the proper in-medium potential
must assume complex values at high temperatures, as was
first discussed in [41] and subsequently extended to a
momentum-space anisotropic medium in [22–24,32]. This
fact, in particular, implies that purely real model potentials,
such as the popular color singlet free energies or the
internal energies do not constitute valid descriptions of
the relevant in-medium quarkonium physics.
The proper heavy-quark potential is related to a real-time

QCD quantity, the rectangular Wilson loop, via the process
of matching, i.e. one selects a correlation function in the
effective theory pNRQCD and in the underlying micro-
scopic theory QCD which carry the same physics content
and identifies them at an appropriate scale. In our case the
unequal time correlation function of a heavy quarkonium
singlet state may be identified with the Wilson loop in the
static limit

hψSðr; tÞψSðr; 0ÞipNRQCD
≡m→∞

W□ðr; tÞ ¼
�
Tr

�
exp

�
−ig

Z
□

dxμAa
μTa

���
QCD

:
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Since the Wilson loop obeys a simple equation of
motion [41]

i∂tW□ðr; tÞ ¼ Φðr; tÞW□ðr; tÞ; ð1Þ

with a time- and space-dependent complex function
Φðr; tÞ, the potential picture is applicable as long as Φ
asymptotes towards a time independent value at late times.
This value in general is complex and the corresponding
potential may be formally defined as

VQCDðrÞ ¼ lim
t→∞

i∂tWðt; rÞ
Wðt; rÞ : ð2Þ

As such, this real-time definition is not yet amenable to
an evaluation in nonperturbative lattice QCD, which is
simulated in unphysical Euclidean time. Instead, one has to
take a detour via the spectral decomposition of the Wilson
loop to relate the Euclidean and Minkowski domain [42,43]

W□ðτ; rÞ ¼
Z

dωe−ωτρ□ðω; rÞ ↔
Z

dωe−iωtρ□ðω; rÞ

¼ W□ðt; rÞ: ð3Þ

Inserting (3) into (2) tells us that the real and imaginary part
of the potential are related to the position and width of the
lowest lying peak structure within the Wilson loop spec-
trum. It has been shown [44] that if a potential picture is
applicable, the Wilson loop spectrum actually contains a
well defined lowest lying peak of skewed Lorentzian form
from which the values of the potential can be straightfor-
wardly extracted via a χ2-fit.
Note however that the extraction of spectral functions

from Euclidean lattice data is an ill-posed inverse problem,
which has only recently been successfully tackled in the
context of the heavy-quark potential. With the help of a
novel Bayesian approach [45] the reconstruction robustness
was significantly improved compared to previous attempts
based on the Maximum Entropy Method [43]. In practice,
instead of the Wilson loop on the lattice, one considers
Wilson line correlators fixed to Coulomb gauge, which are
free from a class of divergences hampering the numerical
determination of the Wilson loop. Using this prescription,
the values of the potential have been extracted, to date, in
quenched QCD based on the naive Wilson action [46], as
well as for full QCD with Nf ¼ 2þ 1 light medium quark
flavors based on simulations by the HotQCD Collaboration.
In both cases, the applicability of the potential picture
was confirmed, at all temperatures considered, as the
Wilson spectral functions showed a well defined peak of
Lorentzian shape.
To utilize the discrete values of the potential obtained

from lattice QCD two further steps need to be taken, for
which we follow the same strategy as laid out in [47,48].
The first task is to parametrize the values of the potential

with an analytic formula, which allows the evaluation of
Re[V] and Im[V] at intermediate separation distances not
explicitly resolved on the lattice. The second task is to
correct the parameters of this analytic parametrization for
finite volume and finite lattice spacing artifacts, as no fully
continuum extrapolated lattice QCD determination of the
potential has been achieved so far.
The analytic parametrization we deploy in the following

is based on the concept of a generalized Gauss law for the
vacuum heavy quark potential. Lattice QCD studies have
shown that over the phenomenologically relevant range of
distances for quarkonium the T ¼ 0 potential is very well
reproduced by the Cornell ansatz, consisting of a
Coulombic and linearly rising term. Allowing the linear
term to contribute down to the smallest distances mimics
the effects of a running in the coupling. With the Cornell
potential applicable in vacuum, we can consider the
divergence of the auxiliary (color) electric field E⃗ ¼
qra−1r̂ arising from either the Coulombic a ¼ −1; q ¼
αs; ½αs� ¼ 1 or the stringlike part a ¼ 1; q ¼ σ; ½σ� ¼ GeV2

∇⃗
�

E⃗
raþ1

�
¼ 4πqδðr⃗Þ: ð4Þ

Three parameters enter this expression, which characterize
the nonperturbative vacuum physics of the quarkonium
bound state: the strong coupling αs, the string tension σ,
and a constant shift c. Note that we absorb the factor CF

into our definition of the strong coupling αs ¼ g2CF
4π .

In order to introduce the effects of a thermal medium, we
adopt a prescription well known in classical electrodynam-
ics, i.e. in the case of the Coulombic contribution, one
Fourier transforms Gauss’ law and subsequently modifies
the right-hand side by dividing it with an in-medium
permittivity ϵ. We use here the permittivity of the QCD
medium computed in hard-thermal loop perturbation theory

ε−1ðp⃗; mDÞ ¼
p2

p2 þm2
D
− iπT

pm2
D

ðp2 þm2
DÞ2

: ð5Þ

The idea is that the nonperturbative physics of the bound
state is encoded in the Cornell form of the T ¼ 0 potential,
whose modification is driven by a weakly-coupled gas of
quarks and gluons. Combining (5) and (4) thus leads to
integro-differential equations for the in-medium modified
Coulombic and string-part of the T ¼ 0 potential as
discussed in detail in [49]. Since the permittivity is
complex, the in-medium potential also contains an imagi-
nary part. In contrast to purely perturbative computations,
which capture only the Coulombic contribution to the
potential, the in-medium potential here receives additional
contributions to its real and imaginary part from the
stringlike part of the T ¼ 0 Cornell potential. The explicit
expressions for the Coulombic part are
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VcðrÞ ¼ −αs
�
mD þ e−mDr

r
þ iTϕðmDrÞ

�
; ð6Þ

with

ϕðxÞ ¼ 2

Z
∞

0

dz
z

ðz2 þ 1Þ2
�
1 −

sinðxzÞ
xz

�
; ð7Þ

which coincide with the results of Ref. [41]. The additional
and novel stringlike contribution on the other hand reads

ReVsðrÞ ¼ −
Γ½1

4
�

2
3
4

ffiffiffi
π

p σ

μ
D−1

2
ð

ffiffiffi
2

p
μrÞ þ Γ½1

4
�

2Γ½3
4
�
σ

μ
; ð8Þ

for the real part, where the strength of the in-medium
modification is characterized by the parameter μ4 ¼
m2

Dσ=αs. For its imaginary part we have

ImVsðrÞ ¼ −i
σm2

DT
μ4

ψðμrÞ ¼ −iαsTψðμrÞ; ð9Þ

where ψ corresponds to the following Wronskian

ψðxÞ ¼ D−1=2ð
ffiffiffi
2

p
xÞ

Z
x

0

dyReD−1=2ði
ffiffiffi
2

p
yÞy2ϕðymD=μÞ

þ ReD−1=2ði
ffiffiffi
2

p
xÞ

Z
∞

x
dyD−1=2ð

ffiffiffi
2

p
yÞy2ϕðymD=μÞ

−D−1=2ð0Þ
Z

∞

0

dyD−1=2ð
ffiffiffi
2

p
yÞy2ϕðymD=μÞ:

An important aspect of these expressions is that, once the
vacuum parameters of the Cornell potential are fixed, only a

single temperature-dependent parameter remains, the
Debye mass mD.
While the analytic parametrization was derived in a

straightforward fashion, it relies on several assumptions
and thus needs to be validated on real lattice QCD data.
Using both quenched [46] and full QCD simulations with
Nf ¼ 2þ 1 light flavors [47] it was shown that the lattice
values of the potential were indeed excellently reproduced
by the generalized Gauss law parametrization (see Fig. 1).
After fixing αs, σ, and c using low temperature ensembles,
the real-part of the potential was fitted by tuning mD. Once
mD is fixed, the parametrization makes a prediction for
Im½V�, which for quenched QCD simulations showed
quantitative agreement at high temperatures and, as
expected, became less accurate around the phase transition.
In full QCD, no robust determination of the imaginary part
has been achieved so far, however, the tentative values
extracted, again, showed very good agreement with the
Gauss-law parametrization at high and intermediate tem-
peratures [47]. The values for the Debye mass related to the
full QCD in-medium potential also showed clear deviations
from the perturbative predictions in the phenomenologi-
cally relevant regime between TC < T < 3TC.
Even though it has been established that the Gauss-law

parametrization is capable of reproducing the lattice QCD
in-medium potential, its values found on the lattice may not
be applied directly to phenomenological computations due
to the presence of lattice artifacts. If a continuum extrapo-
lation of the T ¼ 0 potential in the thermodynamic limit
were available, we could directly determine the parameters
αs, σ and c from first principles. Here instead we select
these parameters in a phenomenological fashion, i.e. we
tune them such that the vacuum bottomonium spectrum

–

FIG. 1. The real (left) and imaginary (right) part of the in-medium heavy quark potential in full QCD with Nf ¼ 2þ 1 light quark
flavors based on ensembles by the HotQCD Collaboration (colored points, shifted for better readability). The vacuum parameters here
are tuned using the T ≈ 0 ensembles at β ¼ 6.9 and β ¼ 7.48. By adjusting the Debye mass parameter mD, the lattice QCD values of
Re½V� are reproduced very well via the Gauss-law parametrization (solid lines) over all separation distances and temperatures. The
theoretical error bars (shown as shaded regions surrounding the central line) arise from the fit uncertainty of mD. For Im½V�, the
agreement at high temperatures and small distances is very good, while at T ≈ TC deviations from the extracted lattice values are visible.
(The crossover temperature on these lattices due to the relatively large pion mass of mπ ≈ 300 MeV lies at TC ¼ 172.5 MeV)
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below the B-meson threshold is reproduced. The correct
quark mass to be used in such a computation is the
renormalon subtracted mass, which for bottomonium
may be perturbatively computed and takes the value
mRS0

b ¼ 4.882� 0.041 GeV. Since the vacuum potential
in full QCD was robustly determined only up to distances
r ≈ 1 fm we enforce the flat asymptotics due to string
breaking by hand at rSB ¼ 1.25 fm. Within this setting the
best set of parameters is

c ¼ −0.1767� 0.0210 GeV;

αs ¼ 0.5043� 0.0298;ffiffiffi
σ

p ¼ 0.415� 0.015 GeV: ð10Þ

In this study we will compute the Debye mass self-
consistently from the dynamical evolution of the bulk and
use its value to implement the in-medium modification of
the Cornell potential with the above parameters. In Fig. 2
we show the real (left) and imaginary part (right) of the
actual potential used for different values of the Debye mass.
In order understand better which values ofmD play a role in
the evolution of heavy quarkonium we note that lattice
QCD studies showed that in a thermal QCD medium close
to the crossover transition the ratio of mD=T ≈ 1 and grows
to mD=T ≈ 2 as temperature is increased to T ¼ 2TC.
We note that the potential here is defined in the rest frame

of the heavy-quarkonium system and we have to distinguish
between the relative velocity and center of momentum
velocity corrections to it. The former, while known at T ¼ 0

to order v2 [50,51] have not yet been computed at finite
temperature, which adds to an unquantified systematic error
in our results. The effect of the heavy-quarkonium moving
in the medium on the other hand may be accommodated
by considering instead a “hot-wind” effect, while still

remaining in the rest frame of the QQ̄ particle. This topic
has been studied perturbatively in [52] but also here no
nonperturbative results are available of yet.

III. NONEQUILIBRIUM CORRECTIONS,
STATIC SCHRÖDINGER EQUATION SOLUTION,

AND REAL-TIME QGP EVOLUTION

With the real and imaginary parts of the potential
specified, we can now turn to the method used to fold
the dynamical evolution of the full three-dimensional QGP
evolution together with information about the real and
imaginary parts of the resulting binding energies. In order
to do so, however, we will must first make an extension of
the result presented in the previous section to the case of a
QGP with momentum-space anisotropies. This is necessary
for a realistic model of QGP evolution and quarkonia
suppression. The simplest form for the soft-particle dis-
tribution function that can be used to take into account QGP
momentum-space anisotropies is a generalization of an
isotropic phase-space distribution which is squeezed or
stretched along one direction in momentum space, defined
by n̂, with a parameter −1 < ξ < ∞. In a heavy-ion
collision the direction n̂ can be identified with the beam
line direction, n̂ ¼ ẑ. The resulting one-particle distribution
function is given by the following spheroidal “Romatschke-
Strickland” form [33,53]

fðp; ξ;ΛÞ≡ fisoð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ξðp · n̂Þ2

q
=ΛÞ; ð11Þ

where Λ is the transverse temperature scale and fiso is the
isotropic thermal distribution function associated with the
soft degrees of freedom in the QGP.

FIG. 2. The real (left) and imaginary (right) part of the in-medium heavy quark potential used in this study. Their values are given for
different values of the Debye mass of the QCD medium. The vacuum parameters αS, σ, and c at mD ¼ 0 were tuned such that the PDG
bottomonium spectrum is reproduced. To this end string breaking is enforced at rsb ¼ 1.25 fm. The in-medium modification of the
Cornell-type vacuum potential in our approach is governed by a single temperature-dependent parameter, the Debye mass mD. Thermal
effects lead to a characteristic (Debye) screening of the real-part and induce a finite imaginary part, which saturates at large distances.
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A. Anisotropic Debye mass

The Debye mass, which we use to evaluate the heavy-
quark potential in our approach, is self consistently
computed from the dynamical evolution of the soft bulk
matter. The conventional isotropic mD is defined via an
integral over the isotropic distribution function

m2
D ¼ −

g2

2π2

Z
∞

0

dpp2
dfiso
dp

; ð12Þ

where p2 ≡ p2 ¼ p2⊥ þ p2
z . Since lattice studies are

restricted to a thermal and isotropic state, we have to
use additional input to incorporate the effects of a QGP
momentum-space anisotropy on the potential itself. For this
purpose, we use the results contained in Sec. 2.2 of
Ref. [26] where it was shown that, empirically, one can
incorporate the momentum-space anisotropy parameter ξ
into the potential by making the Debye mass depend on the
angle with respect to the beam line direction. The result
obtained was

�
μðθÞ
mD

�
−4

¼ 1þ ξ

�
a −

2bða − 1Þ þ ð1þ ξÞ1=8
ð3þ ξÞb

�

×
�
1þ cðθÞð1þ ξÞd

ð1þ eξ2Þ
�
; ð13Þ

with a ¼ 16=π2, b ¼ 1=2, d ¼ 3=2, e ¼ 1=3, and

cðθÞ ¼ 3π2 cosð2θÞ þ ð9þ 4
ffiffiffi
3

p
− 4

ffiffiffi
6

p Þπ2 þ 64ð ffiffiffi
6

p
− 3Þ

4ð ffiffiffi
3

p ð ffiffiffi
2

p
− 1Þπ2 − 16ð ffiffiffi

6
p

− 3ÞÞ :

ð14Þ

With these values in hand, we simply tabulate the real and
imaginary parts of the potential functions with respect to
mD and r, and then replace mD → μ in the isotropic
potential to obtain the corresponding anisotropically
modified potential. The parameter ξ sets the degree of
momentum-space anisotropy, with −1 < ξ < 0 corre-
sponding to a prolate distribution, with more momentum
along the beam line direction than transverse to it and ξ > 0
corresponding to an oblate distribution. The anisotropy
parameter is dynamically tied to the bulk QGP evolution
using anisotropic hydrodynamics (aHydro) which we will
discuss shortly [5,21,34–38,54–58].
To close this section, we note that the anisotropic Debye

mass above was extracted from a perturbative evaluation of
the potential in an anisotropic QGP [22,26]. This procedure
is well-justified only in the high-temperature limit, how-
ever, since it is not possible to extract this directly from the
lattice, one must use models of the nonequilibrium
response. The use of the perturbative anisotropic Debye
mass introduces some model uncertainty into our results,
the impact of which is hard to estimate. One could consider

evaluating the anisotropic potential and parameterizing it in
the strong-coupling limit using AdS=CFT methods, how-
ever, the way in which anisotropies are introduced in the
AdS=CFT literature is more akin to a spatial anisotropy
than a momentum-space anisotropy so it is not clear that
there is a direct connection. For now, we will proceed with
the understanding that μðθÞ is perturbatively extracted.

B. Solving the Schrödinger equation
with a complex potential

Since the potential no longer has full rotational sym-
metry one has to go beyond a single (radial) dimension
when solving the Schrödinger equation. With the assumed
form for the one-particle distribution function, only one
symmetry direction is broken (spheroidal symmetry),
and one can, in principle, simply use a two-dimensional
solver. Here we have chosen to make use of a full three-
dimensional solution since codes for this are already
available even for complex-valued potentials [59,60]. For
this purpose, the real-time Schrödinger equation is solved
in imaginary time. The grid spacing for ϒðnSÞ states is
chosen as a ¼ 0.15 fm on N ¼ 2563 regularly-spaced grid
points. Due to the larger size of p-wave bottomonia, our
grid spacing for the χbðmPÞ states is set to a ¼ 0.175 fm.
Starting from a randomized three-dimensional wave func-
tion, we evolve in imaginary time until the ground state
wave function converges to within a given tolerance. Using
“snapshots” of the wave function stored during the imagi-
nary-time evolution, we can project out the low-lying
excited states [59]. Additionally, by fixing the symmetry
(symmetric vs anti-symmetric) of the initial random wave
function we can select the s-wave or p-wave states
independently [59]. In this way we can obtain the wave
functions of the 1s, 2s, 3s, 1p, and 2p Upsilon states and in
turn we can compute the real and imaginary parts of their
respective energies. For more details concerning the
numerical method, we refer the reader to Refs. [59,60].

C. Anisotropic hydrodynamics equations
and initial conditions

To proceed, we assume that the underlying bulk one-
particle distribution function is well approximated by
Eq. (11) at all points in spacetime. In addition, we assume
that the bulk evolution is well described using hydrody-
namical degrees of freedom, such as energy density,
pressures, and viscous corrections. This assumption has
been tested by comparing the predictions of anisotropic
hydrodynamics to exact solutions of the Boltzmann equa-
tion [61–70] (see also [71] for more comparisons to kinetic
theory) where it has been shown to reproduce the exact
kinetic evolution even far from equilibrium. The equations
used herein are obtained using the zeroth and first moments
of the Boltzmann equation in the relaxation-time approxi-
mation. For details about the dynamical equations used and
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their physical content, we refer the reader to Sec. IV
of Ref. [72].
In order to solve the aHydro dynamical equations,

one has to make a reasonable assumption about the
initial conditions at the initial longitudinal proper-
time for the hydrodynamic evolution, τ ¼ τ0. For our
initial conditions, we take the system to be isotropic
in momentum space (ξ ¼ 0) with zero transverse flow
and Bjorken flow in the longitudinal direction. In the
transverse plane, the initial energy density is computed
from a linear combination of smooth Glauber wounded-
nucleon and binary-collision profiles with a binary mixing
factor of α ¼ 0.15. In the longitudinal direction, we
used a “tilted” profile with a central plateau and
Gaussian tails resulting in a profile function of the
form ρðςÞ≡ exp ½−ðς − ΔςÞ2=ð2σ2ςÞΘðjςj − ΔςÞ�, with ς ¼
arctanhðz=tÞ being spatial rapidity. The parameters entering
the longitudinal profile function were fitted to the pseudor-
apidity distribution of charged hadrons with the results
being Δς ¼ 2.3 and σς ¼ 1.6. The first quantity sets the
width of the central plateau and the second sets the width of
the Gaussian “wings”. The resulting initial energy density
at a given transverse position x⊥ and spatial rapidity
ς was computed using E ∝ ð1 − αÞρðςÞ½WAðx⊥ÞgðςÞþ
WBðx⊥Þgð−ςÞ� þ αρðςÞCðx⊥Þ, where E is the energy
density, WA;Bðx⊥Þ is the wounded nucleon density for
nuclei A and B, Cðx⊥Þ is the binary collision density, and
gðςÞ is the “tilt function.” The tilt function gðςÞ ¼ 0 if
ς < −yN , gðςÞ ¼ ðςþ yNÞ=ð2yNÞ if −yN ≤ ς ≤ yN , and
gðςÞ ¼ 1 if ς > yN where yN ¼ logð2 ffiffiffiffiffiffiffiffi

sNN
p

=ðmp þmnÞÞ
is the nucleon momentum rapidity [73]. For full details
concerning the wounded nucleon density and binary
collision density, we refer the reader to Chapter 3 of
Ref. [74] and Sec. 5.1 of Ref. [26].

D. Computing the suppression

The solution of the 3þ 1d aHydro dynamical equations
gives us the hard momentum scale Λ, the momentum-
anisotropy parameter ξ, and, consequently, the anisotropic
Debye mass μ as a function of proper time, transverse
coordinate x⊥, and spatial rapidity ς. Solving the
Schrödinger equation in addition provides the real and
imaginary parts of the binding energy of a given state as a
function of Λ and ξ. Folding these together gives us the real
and imaginary parts of the binding energy as a function of
proper time, transverse coordinate x⊥, and spatial rapidity
ς: Re½Ebindðτ;x⊥; ςÞ� and Im½Ebindðτ;x⊥; ςÞ�, respectively.
Full details of the method used can be found in Ref. [26].
Here we summarize the important points.
We use the imaginary part of the binding energy to

provide information about the decay rate of a given state
and the real part of the binding energy to tell us when the
state becomes completely unbound. The imaginary part of
the binding energy can be related to the decay rate, Γ, using
∂τni ¼ −Γini, where i indexes the state in question, giving

Γi ¼ −2Im½Ei� [26]. Finally, using the fact Im½Ebind� ¼
−Im½E� we obtain

Γðτ;x⊥;ςÞ

¼
	
2Im½Ebindðτ;x⊥;ςÞ� Re½Ebindðτ;x⊥;ςÞ�>0

10GeV Re½Ebindðτ;x⊥;ςÞ�≤0
ð15Þ

The value of 10 GeV in the second case was chosen in order
to quickly suppress states which are fully unbound and, in
practice, the results do not depend significantly on this
value as long as it is large enough to quickly disassociate
the state under consideration.
We then integrate the instantaneous decay rate, Γ,

obtained in this manner over proper-time to extract the
dimensionless logarithmic suppression factor

ζðpT;x⊥;ςÞ

≡Θðτf−τformðpTÞÞ
Z

τf

maxðτformðpTÞ;τ0Þ
dτΓðτ;x⊥;ςÞ; ð16Þ

where τformðpTÞ is the lab-frame formation time of the state
in question. The formation time of a state in its local rest
frame can be estimated by the inverse of its vacuum binding
energy [75]. For the formation times for the ϒð1SÞ, ϒð2SÞ,
ϒð3SÞ, χbð1PÞ, χbð2PÞ, χbð3PÞ and states we take
τ0form ¼ 0.2 fm=c, 0.4 fm=c, 0.6 fm=c, 0.4 fm=c,
0.6 fm=c, and 0.6 fm=c, respectively.
Our choice for the initial proper time τ0 for plasma

evolution is τ0 ¼ 0.3 fm=c at both RHIC and LHC ener-
gies. The final time, τf, is defined to be the proper time
when the local effective temperature drops below
Td ¼ 192 MeV. At this energy density, plasma screening
effects are assumed to decrease rapidly due to the transition
to the hadronic phase and the widths of the states will
become approximately equal to their vacuum widths.
From ζ obtained via Eq. (16) one can directly compute

the suppression factor RAA using

RAAðpT;x⊥; ςÞ ¼ e−ζðpT;x⊥;ςÞ: ð17Þ

Next, we must average over transverse momenta, imple-
menting the appropriate cuts. For this purpose, we assume
that all states have an approximately 1=E4

T spectrum.
Integrating over transverse momentum given pT-cuts
pT;min and pT;max we obtain the pT-cut suppression factor

RAAðx⊥; ςÞ≡
R pT;max
pT;min dp2

TRAAðpT;x⊥; ςÞ=ðp2
T þM2Þ2R pT;max

pT;min dp2
T=ðp2

T þM2Þ2 :

ð18Þ

For implementing cuts in centrality we compute RAA for
finite impact parameter b and map centrality to impact
parameter in the standard manner. Finally, to compare with
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experimental observations we average RAAðx⊥; ςÞ over x⊥.
For this operation, we use a production probability dis-
tribution which is proportional to the overlap density [26]

hRAAðςÞi≡
R
x⊥ dx⊥nAAðx⊥ÞRAAðx⊥; ςÞR

x⊥ dx⊥nAAðx⊥Þ
; ð19Þ

where nAA ¼ TAðxþ b=2; yÞTAðx − b=2; yÞ with TA being
the nuclear thickness function [74].

IV. RESULTS

In this section, we present our numerical results and
compare them to data from RHIC and LHC. The back-
ground dynamics discussed in the previous section have
been determined for three different values of the shear
viscosity to entropy ratio varied around the proposed
quantum bound η=s ¼ 1=4π, with the initial temperature
tuned so that the soft particle multiplicity is held fixed. The
corresponding initial temperature values for the appropriate
beam energies are listed in Table I and lead to hydro-
dynamic evolution, which reproduces light particle spectra
and azimuthal flow well.
The survival probabilities of the bottomonium states are

folded with the aHydro background evolution to obtain the
primordial RAA for each state. The resulting values for LHC
run1 are shown in Fig. 3. Due to the large suppression from
the lattice-vetted heavy-quark potential, the curves for the
χbð2PÞ, ϒð3SÞ, and χbð3PÞ states fall on top of each other.
For all of these states, they are completely suppressed in the
interior of the fireball, however, there are always states at
the edge of the plasma where the temperature/density is low
where the states are largely unsuppressed. This results in a
kind of universal “halo” survival probability which is
related to the geometry of the fireball and its temperature
profile.
Since it is not the primordial bottomonium states

themselves that are measured in the detector but instead
the decay dileptons, feed down must be factored to
calculate the inclusive RAA for each state observed in
experiment as described in the previous section. The
relevant feed down fractions are obtained from averaging

over pT from experimental feed down yields [76] and are
listed in Table II.
The inclusive ϒð1SÞRAA is presented in Fig. 4 both

computed using the lattice-vetted heavy-quark potential
(solid lines) as well as with the perturbative Bazow-
Strickland model potential of Ref. [26] (dashed lines).
Two observations can be immediately made: First, the RAA
obtained with the lattice-vetted potential lies consistently
below the values obtained from the perturbative potential.
The reason is that the former features a stronger imaginary
part and thus the bottomonium states are more easily
dissociated. Second, we find that RAA computed with the
lattice-vetted heavy-quark potential is virtually indepen-
dent of the η=s parameter of the aHydro background
evolution. This behavior is consistently observed both at
RHIC and LHC energies and has important consequences
for the role bottomonium can play as a probe of the QGP.
The less the suppression depends on parameters other than
the temperature, the more bottomonium can be used as a as
dynamical thermometer of nuclear matter under extreme
conditions.
In order to meaningfully compare to experimental

results, we need to quantify the uncertainty in the used
potential. When vetting the potential with lattice QCD

TABLE I. Values of initial temperature T0 in GeV used for
RHIC 0.2 TeV, LHC run1 2.76 TeV, and LHC run2 5.02 TeV for
the different values of the shear viscosity over entropy ratio
considered herein. In the aHydro simulations used, the QGP was
assumed to be initially isotropic in momentum space.

ffiffiffiffiffiffiffiffi
sNN

p

4πη=s 0.2 TeV 2.76 TeV 5.02 TeV

1 0.442 0.552 0.641
2 0.440 0.546 0.632
3 0.439 0.544 0.629

FIG. 3. Primordial RAA for each bottomonium state as a
function of the number of participants for the parameter sets
of LHC run1.

TABLE II. Feed down fractions to the ϒð1SÞ state used in the
determination of the final measured yields.

Feed down fractions

ϒð1SÞ → ϒð1SÞ 0.668 ... ...
ϒð2SÞ → ϒð1SÞ 0.086 ϒð2SÞ → ϒð2SÞ 0.604
ϒð3SÞ → ϒð1SÞ 0.010 ϒð3SÞ → ϒð2SÞ 0.043
χbð1PÞ → ϒð1SÞ 0.170 ... ...
χbð2PÞ → ϒð1SÞ 0.051 χbð2PÞ → ϒð2SÞ 0.309
χbð3PÞ → ϒð1SÞ 0.015 χbð3PÞ → ϒð2SÞ 0.044
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simulations it was observed that the lattice potential values
could be fitted with a Debye mass with around 10%–20%
error. We, therefore, have repeated our calculations includ-
ing a modest�15% variation ofmD which leads to an error
estimate on the RAA theory curve quantifying the potential
uncertainty. Since our results are essentially independent of
the shear viscosity parameter, we set 4πη=s ¼ 2 consistent
with recent particle spectra fits [5]. Another source of
uncertainty lies in the as of yet unconstrained initial
anisotropy parameter ξ0. We show in Fig. 5 that changing
it appreciably from zero to a finite value around ξ0 ¼ 10
leads only to a small difference in the outcome, which is
subdominant to the uncertainty arising from the determi-
nation of the Debye mass.
We start the explicit comparisons of our computed yields

to experiment with data obtained at RHIC by the STAR
Collaboration [77] in Fig. 6. We show both the previous
estimates based on a perturbative model potential (light
gray lines with grey error band) and based on the lattice-
vetted heavy quark potential (solid line with blue error
band). As is expected from the behavior found in Fig. 4 our
new results lie systematically below those coming from the
perturbative model potential. Interestingly, the shift to
lower values brings the values for RAA into very good
agreement with the measured RHIC data.
Turning to LHC energies, in Fig. 7 we compare our new

results with RAA data obtained by the CMS Collaboration
at (left) 2.76 TeV and (right) 5.02 TeV as function of
centrality. The CMS data were taken from Refs. [78,79],

FIG. 4. Bottomonium suppression for the LHC run2 parameter
set based on the perturbative model of [59] (top three curves) and
the lattice-vetted heavy-quark potential (bottom three curves).
Note that due to the large imaginary part in the lattice-vetted
potential the suppression is consistently larger in than in the
perturbative model potential. Interestingly we find that virtually
no dependence on the chosen values for the shear viscosity to
entropy ratio is observed with the lattice-vetted potential. This
behavior is found both at RHIC and LHC energies.

FIG. 5. Bottomonium suppression for the LHC run2 parameter
set based on the lattice-vetted heavy-quark potential at
4πη=s ¼ 2. The blue error band around the solid line quantifies
the uncertainty from the determination of the Debye mass in a run
with initial anisotropy set to vanish ξ0 ¼ 0. The dashed line
corresponds to initial conditions with a sizable initial anisotropy
of ξ0 ¼ 10 but we find that while at small Npart the changes in the
RAA are compatible with the uncertainty from the Debye mass
beyond Npart > 100 they are clearly subdominant.

FIG. 6. RAA as a function of the number of participants
compared to STAR data taken at RHIC as a function of Npart

for 0.2 TeV Au-Au collisions [77]. We show both the previous
estimates based on a model potential (light gray lines with grey
error band) and our new results obtained using the lattice-vetted
heavy-quark potential (solid line with blue error band). The error-
band around our new central value corresponds to a �15%
variation in mD used to estimate the uncertainty in the determi-
nation of the potential. Due to the stronger imaginary part present
in the lattice-vetted potential, the new estimates move to lower
values and are in very good agreement with experimental
observations.
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respectively. Previous estimates of the ϒð1SÞ ground state
suppression for LHC run1, based on the model potential,
reproduced the data points best when selecting values of
4πη=s ¼ 2 with stronger shear leading to systematically
lower values [27]. A similar conclusion was reached for the
ϒð2SÞ suppression. Now with the lattice-vetted heavy
quark potential the dependence on the assumed value of
the shear viscosity is essentially absent and the stronger
imaginary part in the lattice-vetted potential induces
slightly stronger suppression. For ϒð1SÞ our new estimates
agree with the data within the still relatively large error bars
but are slightly lower than the experimental data. On the
other hand, the trend in the excited state data points is
excellently reproduced, touching also the point at the
lowest centrality bin, providing a better description overall

than the perturbative model results (see Ref. [31] for a
compilation of the prior results).
That being said, when moving to the higher energy of

run2 at the LHC, we find that the trend of stronger
suppression continues in our estimates of bottomonium
suppression. At this energy the lattice-vetted model over-
predicts the amount of suppression of both the ϒð1SÞ and
ϒð2SÞ. This means that now our RAA systematically over-
estimates the suppression for both states. The discrepancy
is larger for more central collisions while for smaller Npart

we still find reasonable agreement with the data.
In Fig. 8 we plot the nuclear modification factor as

function of pT integrated over all centrality classes at (left)
2.76 TeV and (right) 5.02 TeV. Once again, the CMS data
were taken from Refs. [78,79], respectively. Similarly to

FIG. 7. RAA as a function of the number of participants Npart compared to CMS data taken at the LHC for 2.76 TeV (left) and 5.02 TeV
(right) Pb-Pb collisions taken from Refs. [78,79], respectively. At 2.76 TeV (left) we find that within the uncertainty of the calculation
we reproduce the ground state RAA with our estimates having a slight tendency to take on lower values. The excited state ϒ0 on the other
hand is excellently captured. At 5.02 TeV (right) our estimates consistently lie below the experimental observations both for the ground
state and the excited state, the deviation increasing with increasing centrality of the collisions.

FIG. 8. RAA as a function of transverse momentum pT compared to CMS data taken at the LHC for 2.76 TeV (left) and 5.02 TeV
(right) Pb-Pb collisions taken from Refs. [78,79], respectively. Also here at LHC run1 energies we find good agreement with the ϒð1SÞ
data and an excellent reproduction of the ϒð2SÞ suppression. At 5.02 TeV the experimentally determined suppression appears slightly
weaker than what our calculation predicts, with good agreement for ϒð1SÞ at small pT and the largest discrepancies around 8–10 GeV.
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our findings in terms of centrality at LHC run1 energies, the
agreement here is best forϒð2SÞ and acceptable forϒð1SÞ.
There is a tendency visible to slightly overestimate the
suppression when using the lattice-vetted potential in the
computation.
Finally, in Fig. 9 we show RAA as a function of spatial

rapidity using the CMS cuts at 2.76 TeV (left) and 5.02 TeV
(right) collisions at the LHC. Once again, the CMS data
were taken from Refs. [78,79], respectively. The outcome
of our calculation as can now be expected from the above
discussion agrees well for the ϒð1SÞ at LHC run1 energies
and gives an excellent account of the ϒð2SÞ suppression.
At 5.02 TeV the trend of a overestimation of the suppres-
sion manifests itself again.

V. CONCLUSIONS AND OUTLOOK

By combining a lattice QCD vetted in-medium heavy-
quark potential with a realistic anisotropic hydrodynamics
simulation for the bulk matter created in a heavy-ion
collision, we have studied the nuclear modification factor
RAA for the bottomoniumground and first excited states. The
functional form and temperature dependence of the lattice-
vetted heavy quark potential lead to a significantly reduced
dependence of the Upsilon RAA on the values of the shear to
entropy ratio of the QGP. From a phenomenological point of
view this is a welcome finding, since it strengthens the
position of bottomonium as a genuine dynamical thermom-
eter of the QGP, as originally envisioned.
We have found that our estimates for the suppression of

primordial bottomonium show the best agreement with
experimental results at RHIC energies, where they repro-
duce the measured data within errors. The larger imaginary
part in the lattice-vetted potential compared to previously
used model potentials leads to a stronger suppression,
which in the case of RHIC energies is the reason for the

excellent reproduction of the experimental data. At LHC
run1 we find, on the other hand, hints of a tendency to
overestimate the suppression compared to the data, while at
5.02 TeV we clearly see too much suppression when using
the lattice-vetted potential. Two reasons for this behavior
immediately come to mind. The first is related to the
physics mechanism we assume underlies the imaginary part
of the potential, the second one is related to the fact that
no regeneration component has been included in our
current study.
Our calculation uses a simple implementation of botto-

monium suppression as discussed in Sec. III. By using the
imaginary part of the potential directly in the Schrödinger
equation we have assumed that it arises solely from gluo-
dissociation of the heavy-quarkonium. Studies of bottomo-
nium in perturbative pNRQCDhave shown however that the
imaginary part contains both contributions from gluo-
dissociation and Landau damping, which leads to the
excitation of bottomonium states without decay of the
QQ̄ pair. Eventually we will need to understand how to
disentangle these two contributions, since the latter, as
shown in exploratory studies in the context of open-quantum
systems [80,81] leads to a weaker suppression. That is, our
inability to disentangle the underlying mechanisms of the
imaginary part has led us to assign it fully to a loss channel
which may overestimate the actual suppression.
One possible way for future improvement of the pro-

per potential based real-time description of the heavy
quarkonium evolution, would be to utilize the framework
of open-quantum systems. As was proposed e.g. in [82], the
imaginary part of the heavy-quark potential, which arises in
the description of the unequal time correlation functions of
Eq. (1) is unraveled into either a stochastic dynamics on the
level of the Schrödinger equation or equivalently into a
master equation for the density matrix of quarkonium

FIG. 9. RAA as a function of spatial rapidity y compared to CMS data taken at the LHC for 2.76 TeV (left) and 5.02 TeV (right) Pb-Pb
collisions taken from Refs. [78,79], respectively. Similar to the pT plots, at LHC run1 energies we observe good agreement with the
ϒð1SÞ data and theϒð2SÞ suppression is very well reproduced. At 5.02 TeV the experimentally determined suppression appears slightly
weaker than what our calculation predicts.
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states. Recent developments in this field include a formu-
lation of a Lindblad type coupled dynamics for color singlet
and octet degrees of freedom [83–85], which has been
evaluated in a perturbative setting in [86]. A first attempt to
describe bottomonium dynamics was presented in [80],
however, the medium evolution used in this paper was not
yet realistic.
In addition, we have estimated the suppression of

bottomonium states without including a possibility for
regeneration. While for charmonium there are clear indi-
cations for the presence of a regeneration components in
the observed yields [15], no such signals have been firmly
established for bottomonium yet. One hint toward the onset
of regeneration could be the small change in the bottomo-
nium suppression when going from 2.76 to 5.02 TeV.
While the lattice-vetted potential predicts suppression that
increases with beam energy, the data appears to not
decrease as rapidly as suggested by our calculations.
This would allow for the addition of a regeneration

component to approach the data from below, however,
we are not yet in a position to quantitatively estimate the
magnitude of this effect.
In the end it will be necessary to explore both paths to

come to a robust phenomenological understanding of the
observed yields. The model of bottomonium suppression
needs to be made more flexible in order to accommodate
the different underlying physics mechanisms inherent in the
imaginary part, e.g. via a stochastic Schödinger equation
and the inclusion of regeneration via a rate equation
framework is desirable.
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