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We revisit the “state-dependence” of the map that we proposed recently between bulk operators in the
interior of a large anti–de Sitter black hole and operators in the boundary CFT. By refining recent versions
of the information paradox, we show that this feature is necessary for the CFT to successfully describe local
physics behind the horizon—not only for single-sided black holes but even in the eternal black hole. We
show that state-dependence is invisible to an infalling observer who cannot differentiate these operators
from those of ordinary quantum effective field theory. Therefore the infalling observer does not observe any
violations of quantum mechanics. We successfully resolve a large class of potential ambiguities in
our construction. We analyze states where the CFT is entangled with another system and show that the
ER ¼ EPR conjecture emerges from our construction in a natural and precise form. We comment on the
possible semiclassical origins of state-dependence.
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I. INTRODUCTION

Recent work by Mathur [1], Almheiri et al. [2,3] and
then by Marolf and Polchinski [4] has sharpened the
information paradox [5,6] and highlighted some of the
difficulties in analyzing questions about local bulk phys-
ics in the AdS/CFT correspondence. Put briefly, these
authors argued that the CFT does not contain operators
with the right properties to play the role of local field
operators behind the black hole horizon. Their arguments
were phrased in terms of various paradoxes, and they
interpreted these apparent contradictions to mean that
generic high energy states in the CFT do not have a
smooth interior; and even if they do, the CFT cannot
describe it meaningfully.
If correct, this conclusion would be a striking violation

of effective field theory. A semiclassical analysis performed
by quantizing fluctuations about the classical black hole
solution would suggest that for a large black hole, quantum
effects detectable within effective field theory are confined
to the neighborhood of the singularity. However, the papers
above suggest that the range of quantum effects, visible to a

low energy observer, may spread out all the way to the
horizon.
In previous work [7–10], we analyzed these arguments in

detail. We found that they made two tacit assumptions. The
first, which was important for the strong subadditivity
paradox of Mathur [1] and the first paper of Almheiri et al.
[2], was that locality holds exactly in quantum gravity. We
showed how a precise version of black hole complemen-
tarity, where the commutator of operators outside and
inside the black hole vanishes within low point correlators
but is not exactly zero as an operator, allow one to resolve
this paradox. We review this resolution briefly at the end of
Sec. VII D below.
We emphasize that this resolution is consistent with the

belief that locality is not absolute in theories of quantum
gravity; so a nonvanishing commutator between operators
outside and inside is not surprising by itself. What we
found, however, was that it was possible to construct
interior operators so that this nonvanishing commutator
only shows up in very delicate observations involving an
extremely large number of quanta. The reader may wish to
look at Sec. VII D and then at [9] for further discussion of
these nonlocal effects.
Our focus in this paper is on a second aspect of the

information paradox that was emphasized in [3]. Here,
Almheiri et al. argued that even large black holes in anti–de
Sitter (AdS) should contain firewalls. To make this argu-
ment they had to make a second tacit assumption, which
was that local bulk observables like the metric are repre-
sented by fixed linear operators in the CFT. More precisely,
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this is the idea that even in two different states one may use
the same CFT operator to represent the metric at a
“given point.”
By identifying and discarding this assumption in [8,9], we

were able to resolve all the paradoxes alluded to above.
Furthermore, we were able to explicitly identify CFT
observables that were dual to local correlation functions
in the black hole interior. This construction allowed us to
probe the geometry of the horizon and show that the horizon
was smooth—as predicted by effective field theory, and in
contradiction with the firewall and fuzzball proposals.
The operators in our construction are state dependent.

This means that they act correctly about a given state, and
in excitations produced on that state by performing low
energy experiments. If one moves far in the Hilbert space—
even just by changing the microscopic and not the macro-
scopic degrees of freedom—then one has to use a different
operator to represent the “same” local degrees of freedom.
Our resolution to the firewall paradox has encountered

two kinds of objections. A technical point is that our
construction relies on a notion of equilibrium. It was first
noticed by van Raamsdonk [11] that our equilibrium
conditions were necessary but not sufficient; Harlow [12]
later elaborated on this point. This leads to a potential
“ambiguity” in our construction where, at times, we cannot
definitively identify the right operators in the black hole
interior.
The second is more fundamental. Is it acceptable at all,

within quantum mechanics, to use state-dependent bulk to
boundary maps so that the metric at a given point in space
may be represented by different operators in different
microstates and backgrounds? It has been argued
[3,4,12] that state-dependence is inconsistent with linearity
in quantum mechanics. Is this correct, and in particular, is it
possible for any observer (bulk or boundary) to detect
measurable violations of linearity?
This is the context for our paper. In this work we make

the following advances.
(1) In Sec. V, we revisit and sharpen the arguments of

Almheiri et al. [3]. We believe that this strongly
suggests that there is no alternative to firewalls
except for a state-dependent construction of the
black hole interior. In fact, we show in Sec. VI that
the paradoxes of [3] also arise for the eternal black
hole. We show that it is necessary to use state-
dependent operators, which we construct explicitly,
to rule out a scenario where even the eternal black
hole does not have a smooth interior.

(2) In Sec. VIII, we resolve a large class of ambiguities
in our construction by refining our notion of an
equilibrium state, including all of those pointed out
by van Raamsdonk [11]. We point out difficulties
with Harlow’s analysis [12] that attempted to accen-
tuate these ambiguities.

(3) We show how our analysis extends naturally to
superpositions of states in Sec. VII. We reiterate and
expand on the point, already made in [8,9] that the
infalling observer does not observe any violations of
quantum mechanics or the “Born rule.”

(4) In Sec. IX, we show how our construction extends
naturally to entangled systems. This leads to a new
and interesting outcome: a precise version of the
ER ¼ EPR conjecture [13] emerges automatically
from our analysis. In particular our construction
shows—without any additional assumptions—why
one should expect a geometric wormhole in the
thermofield double state, and a somewhat “elon-
gated” wormhole in states with less entanglement.
Our analysis also shows why there is no geometric
wormhole in a generic entangled state of two CFTs,
or when the CFT is entangled with a system of a few
qubits.1

We also initiate an investigation into the semiclassical
origins of state-dependence in Appendix A. We show that
local observables like the metric are well-defined classical
functions on the phase space of canonical gravity.
Ordinarily such functions would lift to state-independent
operators in the quantum theory. However, our analysis of
state-dependence in the eternal black hole suggests an
interesting obstacle to this map: the inner product between
states in the CFT representing different geometries does not
die off as fast as a naive analysis of coherent states in
canonical gravity would suggest. Instead it saturates at a
nonperturbatively small but finite value. We present some
evidence that it is this overcompleteness that prevents
the existence of state-independent operators behind the
horizon.2

Apart from the new results mentioned above, we also
present some material that we hope will help to clarify
some conceptual issues and be of pedagogical utility. For
example, in Sec. III we present a discussion of relational
observables in AdS quantum gravity. This concept is
important throughout this paper to understand the geo-
metric properties of operators behind the horizon, but we
believe that it may be of broader significance. This idea has
often been used in discussions of the subject (and was first
described to us by Donald Marolf) but we attempt to
present a pedagogical and precise definition here.
We also present a derivation of the properties of

operators behind the horizon from a pedagogically new
perspective in Sec. IV. We consider the two-point function
of a massless scalar field propagating in the geometry. By
using the properties of this two-point function, when the

1We limit our assertions to wormholes that can be probed
geometrically using effective field theory. Therefore we do not
have any comment on the strong form of the ER ¼ EPR
conjecture, which posits that any entanglement should be
accompanied by a wormhole.

2A similar idea was suggested earlier by Motl [14].
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two points are almost null to each other, we are able to
derive the correct formula for the entanglement of modes
behind and in front of the horizon. One concern about our
previous analysis [7] was that even though a black hole in a
single CFT does not have a second asymptotic region, we
had to appeal to the analogy with the thermofield double, to
derive the properties of our operators behind the horizon.
We now perform this derivation from a purely local
calculation.
We believe that the results of this paper present compel-

ling evidence in favor of the claim that there are no firewalls
in generic states, and also that the map between bulk and
boundary operators is state dependent behind the horizon.
The recent literature on the information paradox is

extensive [15]. In particular, Erik Verlinde and Herman
Verlinde also reached the conclusion that state-dependence is
required to construct the black hole interior from a different
perspective [16,17]. We direct the reader to [18] for a
discussion of the relation between our approach and theirs.
The effects of the backreaction of Hawking radiation were
discussed in [19], and Nomura et al. also presented another
perspective in [20]. For a precursor of the firewall paradox,
see [21] and for approaches using complexity see [22].

II. SUMMARY

In this section, we briefly summarize the contents of
various sections and suggest different paths that could be
taken through the paper.
Reconstructing the bulk and state-dependence: Section III

is partly devoted to clarifying some conceptual issues related
to bulk to boundary maps. We quickly review what it means
for such a map to be state independent or state dependent.
We also point out that all existing methods of extracting bulk
physics from the boundary, as currently formulated, are state
dependent. Experts in the subject may wish to look only at
Sec. III A 1 where we define the relational observables that
we use in the rest of the paper and at Sec. III B 1 where we
describe the state-dependence of prescriptions to relate
geometric quantities to entanglement.
Need for operators behind the horizon: Section IV is

largely devoted to a detailed derivation of the fact that we
require new modes that can play the role of “right moving”
excitations behind the horizon to describe the interior of a
black hole. We derive the two-point function of these
modes with modes outside the horizon from a local
calculation, thereby removing the need to make an analogy
to the thermofield double state and also sidestepping the
trans-Planckian issues in Hawking’s original computation.
In this section, we also review the standard construction of
local operators outside the horizon. Experts may be
interested in Sec. IV B 2 where we describe a state-
independent construction of local operators outside the
horizon in the minisuperspace approximation.
Either state-dependence or firewalls: The objective of

Sec. V is to try and show that we must accept one of two

possibilities: either the black hole interior is mapped to the
CFT by a state-dependent map, or generic microstates have
firewalls. Our arguments here are extensions and refine-
ments of the arguments presented in [3,4]. In particular, we
strengthen the argument of [4] by bounding potential errors
in that calculation. We also rephrase the “counting argu-
ment” of [3] entirely within the context of two-point
correlation functions to remove potential loopholes. This
section can be skipped, at a first reading, by a reader who
already accepts the validity of the arguments of [3,4].
State-dependence for the eternal black hole: In Sec. VI we

show that these versions of the information paradox also
appear in the eternal black hole. Therefore it is inconsistent
to adopt the position that the eternal black hole in AdS has a
smooth interior whereas the large single-sided black hole
does not. Wewould urge the reader to consult [23]—where a
concise version of these arguments has already appeared—in
conjunction with this section, which contains some addi-
tional details. Since there is substantial evidence that the
interior of the eternal black hole is smooth, this provides
strong support for state-dependence behind the black hole
horizon.
Definition of mirror operators; consistency with super-

position principle: In Sec. VII, we review the state-
dependent construction of the black hole interior that
was first presented in [8,9]. Experts may be interested in
Sec. VII E where we check the linearity of this map for
superpositions of a small number of states. In Sec. VII F we
construct the interior of the eternal black hole. This
construction is of interest since it provides some insight
into state-dependence as arising from the “fat tail” of the
inner product between different microstates of a black hole.
Detecting unitaries behind the horizon: In Sec. VIII, we

show how to remove some of the ambiguities in our
definition of equilibrium. This section will be of interest
to experts. We point out that by using the CFT Hamiltonian,
we can detect excitations behind the horizon in states that
we might otherwise have classified as being in equilibrium.
We also point out, in some detail, that the effort made in
[12] to sharpen this ambiguity by considering a new class
of excitations is based on an erroneous analysis of local
operators in the eternal black hole. While, for this reason,
the analysis of [12] does not have direct physical signifi-
cance, it does point to an interesting new class of excited
states that we discuss in some detail.
Entangled systems and relation to ER ¼ EPR: In

Sec. IX, we extend our construction to account for cases
where the CFT is entangled with another system. The
equations that describe modes in the interior do not change
at all. The only new element that we need to introduce is
that the “little Hilbert space” of excitations about a base
state may get enlarged since we can also act with operators
in the other system. Surprisingly we show that a precise
version of the ER ¼ EPR conjecture emerges automatically
from our analysis. We are able to show that when two
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entangled CFTs are in the thermofield state the modes
observed by the right-infalling observer inside the black
hole are the same as those observed by the left observer
outside. However, when the CFTs are entangled in a
generic manner this is no longer true.
We also consider cases where the CFT is entangled with

a small system—say a collection of qubits. Our analysis of
this setup, together with our verification of linearity in
Sec. VII establishes that the infalling observer cannot detect
any departures from ordinary linear quantum mechanics.

III. GENERALITIES: STATE-DEPENDENT VS
STATE-INDEPENDENT OPERATORS

Since this paper focuses on state-dependent bulk-boun-
dary maps, it is useful to first clarify the meaning of state-
dependence and, conversely, what we would require of a
putative state-independent operator. Since this issue has
been the cause of significant confusion—some of which
has arisen because of the use of imprecise terminology—
we have tried to make this section as precise and detailed as
possible.
A brief summary of this section is as follows. We define

state-dependence. We point out that state-dependent bulk-
boundary maps are already common in the AdS/CFT
literature. Finally we explain the origin of the naive
expectation that the bulk and boundary are related in a
state-independent manner, and also indicate why this
intuition fails.
Apart from the pedagogical definitions, we also pay

some attention to the techniques of extracting bulk physics
using entanglement entropy. These are all state dependent
since entanglement entropy does not correspond to a linear
operator on the boundary. This includes, for example, the
well-known Ryu-Takayanagi (RT) relation [24] between
the entanglement entropy of a region on the boundary and
the corresponding area of an extremal surface in the bulk.
As we emphasize repeatedly in this paper, as a result of
very robust statistical properties of the Hilbert space of the
CFT at large N ,3 it is perfectly natural for such a state-
dependent formula to emerge within effective field theory,
and its use does not lead to any violation of quantum
mechanics.
While the use of state-dependent operators may be

common in AdS/CFT, from a broader viewpoint it is true
that this is a rather special situation in physics. So it would
be incorrect to go to the other extreme and dismiss state-
dependence as mundane or unremarkable.
In this section, we point out that based on intuition from

canonical gravity, one may have naively expected that
there is some overarching linear operator in the CFT that

includes, in various limits, all these state-dependent pre-
scriptions. If one were to obtain gravity through phase
space quantization, then one may naively expect that many
reasonable functions on the phase space of gravity—such
as the metric at a point—would lift to operators. We show
why this naive intuition runs into difficulty in the context of
AdS/CFT. We complete this analysis in greater detail in
Appendix A. The semiclassical origins of state-dependence
that we outline in this section and in the appendix are, we
believe, an important and interesting subject of study.
In this section and later in the paper we often speak of

CFT operators that also have a dual geometric interpreta-
tion. To avoid confusion, we adopt the following notational
convention.
Notation: A CFToperator is denoted with a bold symbol;

for example an operator in the CFT corresponding to the
bulk metric would be denoted by gμν, as opposed to the
value of the semiclassical metric for a geometry gμν, which
is written in ordinary font.

A. State-independent operators

We consider an AdS/CFT duality, where we expect a
number of “effective fields” to propagate in the bulk. One
of these is the metric gμν but in general there are other
fields, which can include scalars but also fields of higher
spin. We collectively denote these fields byϕ. We then have
the following definition.
Definition of a state-independent bulk-boundary map:

We say that there is a state-independent map between the
bulk and the boundary if there exist CFT operators gμνð~xÞ
and ϕð~xÞ parametrized by dþ 1 real numbers, which we
denote by ~x, so that in all CFT states that are expected to be
dual to a semiclassical geometry, which we denote by jΨi,
the CFT correlators involving both the metric and other
light fields,

Cð~x1;…~xmþpÞ
¼ hΨjgμ1ν1ð~x1Þ…gμmνmð~xmÞϕð~xmþ1Þ…ϕð~xmþpÞjΨi;

ð3:1Þ

have the right properties to be interpreted as “effective field
theory correlators.”
This definition has many parts that we unpack below,

where we explain what it means for a state to be dual to a
semiclassical geometry, and what one expects from effec-
tive field theory.
An immediate issue—but one that does not have

significant physical ramifications—is that the bulk theory
has diffeomorphism invariance. The dþ 1 real numbers
above play the role of coordinates in the bulk. Given any
valid diffeomorphism, ~x → ξð~xÞ, the distinct CFToperators
ϕðξ−1ð~xÞÞ give an equally valid bulk to boundary map. So
we must always discuss equivalence classes of bulk-
boundary maps. Maps that are related by diffeomorphisms

3In this paper we adopt notation that is consistent with [8,9].
So N is proportional to the central charge of the CFT. In the
commonly considered case of the maximally supersymmetric
SU(N) Yang-Mills theory, we would have N ∝ N2.
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belong to the same equivalence class. Later in this section,
we also describe various physical choices of gauge that help
to remove this redundancy, and pick a preferred element of
the equivalence class. We now turn to other aspects of the
definition above.
Semiclassical states: We now explain what we mean by

semiclassical states in the definition above. In the AdS/CFT
duality, we often identify certain states with dual bulk
geometries. These maps have been developed as a result of
various calculations. Schematically, we may represent this
process of identifying a metric dual to a state by

jΨgi↔gμνð~xÞ: ð3:2Þ

Two examples may help in elucidating this concept.
Consider the vacuum of the CFT, j0i. In this case, the
expectation is that

j0i↔gadsμν ;

where the metric on the right-hand side is the metric of
empty global AdS.
In this paper, we are particularly interested in a second

example of such maps: a generic state at high energies in
the CFT is believed to be dual to a large black hole in
the bulk.
Consider a set of energy eigenstates centered around a

high energy E0 ≫ N , and with a width Δ ≪ N . The set of
all energy eigenstates in this range is called

RE0
≡ fjEii∶E0 − Δ ≤ Ei ≤ E0 þ Δg:

We denote the dimension of this space by DE0
. By taking

all linear combinations of these states, we get a subspace of
the Hilbert space of the CFT,

jΨi ¼
X

αijEii; jEii ∈ RE0: ð3:3Þ

We assume above (and whenever we use αi to take
superpositions of states) that they are chosen so that the
state is correctly normalized. We can place an additional
restriction on jΨi above that it has vanishing SOðdÞ and
R-charges.
Next, we consider the set of unitary matrices that acts

entirely within this subspace. This is a very large unitary
group UðDE0

Þ. For Δ ¼ Oð1Þ, we expect that
DE0

¼ OðeN Þ. The Haar measure on this unitary group
now defines a measure for the coefficients αi in (3.3), and
we can pick a “typical” state in the microcanonical
ensemble by using this measure. Then the expectation is
that almost all states chosen in this manner, except for an
exponentially small fraction of states, correspond to a dual
Schwarzschild black hole geometry in the bulk:

jΨi↔gbhμν:

We can get other kinds of black holes by varying the other
charges. This is the central class of “semiclassical states”
that we are interested in this paper.
The example above also points to an additional important

fact, which the reader should keep in mind. While we write
jΨgi to prevent the notation from becoming unwieldy the
state dual to a geometry is far from unique. There are
several microstates that represent the same geometry.
Two additional classes of states are of some interest to us,

and are entirely derivative from the class above.
(1) Superpositions of semiclassical states

First, given states corresponding to different
metrics jΨg1i↔g1;μν;…; jΨgmi↔gm;μν we may con-
sider a superposition of such states,

jΨsi≡
�Xm

i¼1

αijΨgii
�
: ð3:4Þ

If the geometries above are reasonably distinct, then
the states are almost orthogonal. This is also the case
if we pick two generic microstates corresponding to
the same geometry. As we see below we expect that

hΨg1 jΨg2i ¼ Oðe−N Þ;
hΨg1 jgμ1ν1ð~x1Þ…gμmνmð~xmÞϕð~xmþ1Þ…ϕð~xmþpÞjΨg2i

¼ Oðe−N Þ; ð3:5Þ

both for states corresponding to distinct geometries,
and for generic microstates corresponding to the
same geometry. Therefore, we require

P
ijαij2 ¼

1þ Oðe−N Þ in this situation. The important point is
as follows. The smallness of the off-diagonal matrix
elements above implies that a quantum superposi-
tion of a small number of geometries, or a small
number of microstates corresponding to the same
geometry, corresponds in effect to a classical prob-
ability distribution over these states. On the other
hand, it is clear that if we take m ¼ OðeN Þ in the
superposition above, then this intuition breaks down,
and the cross terms become important.

(2) Excitations of semiclassical states
Furthermore, given a state jΨgi, which we have

identified with a metric gμν, one can consider
“excitations” of this state. For example, one may
“act” on this state using some of the operators
corresponding to the metric or other light fields.
These new states correspond to excitations of the
original state,

jΨex
g i ¼ gμ1ν1ð~x1Þ…gμmνmð~xmÞ…ϕð~xmþ1Þ…

ϕð~xmþnÞjΨgi: ð3:6Þ

In the large N limit, after subtracting off the
contribution of the background metric, this state
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should be interpreted as an excitation with nþm ≪
N quanta on a background with metric g. Although
these excited states occupy a very small fraction of
the volume of the Hilbert space at any energy, they
are important because there are several interesting
physical questions about the response of equilibrium
states to excitations.

Coherent states vs metric eigenstates: Although we have
taken a CFT perspective on the states above, in principle we
could also have viewed these states as solutions of the
Wheeler de Witt equation that live in a Hilbert space
obtained by quantizing gravity and the other light fields.
From this perspective we should emphasize, to avoid any
confusion, that the semiclassical states jΨgi that we refer to
here are “coherent states,” which correspond to an entire
semiclassical spacetime; these states are distinct from
metric eigenstates that are sometimes considered in conven-
tional analyses of canonical gravity.4

Let us make this more precise. We start by performing a
dþ 1 split of the geometry

ds2 ¼ −N2dt2 þ γijðdxi þ NidtÞðdxj þ NjdtÞ;

and promote the d-metric γij to an operator. The canoni-
cally conjugate momentum is

πij ¼ −γ1
2ðKij − γijKÞ;

where Kij is the extrinsic curvature [25]. [See (A6) for an
explicit expression.] Given a CFT operator gμν we can
therefore define two related CFToperators γij and πij. Now
the key point is that the semiclassical/coherent states that
we are discussing satisfy

hΨgjγi1j1ð~x1Þγi2j2ð~x2ÞjΨgi

− hΨgjγi1j1ð~x1ÞjΨgihΨgjγi2j2ð~x2ÞjΨgi ¼ O

�
1

N

�
;

hΨgjπi1j1ð~x1Þπi2j2ð~x2ÞjΨgi

− hΨgjπi1j1ð~x1ÞjΨgihΨgjπi2j2ð~x2ÞjΨgi ¼ O

�
1

N

�
:

ð3:7Þ

We can specify the Oð 1N Þ terms precisely, as we do in the
next section. But for now we emphasize that these states
have a small but finite uncertainty for both the three-metric
and its canonically conjugate variable. Therefore they are
distinct from metric eigenstates which would have satisfied

γijð~xÞjγi ¼ γijð~xÞjγi; metric eigenstate:

Such metric eigenstates would, on the other hand, have a
large variance for πij.
It is these coherent states that have a natural semi-

classical interpretation. Metric eigenstates, on the other
hand, have maximum uncertainty in the value of πij and
therefore, under time evolution, they quickly disperse into a
superposition of several different eigenstates.
Expectations from effective field theory: We now turn to

the other term used in the definition above: the expectations
from effective field theory for correlators of these operators.
Let us assume that we are given a state jΨgi which is

believed to be dual to a geometry by the relation (3.2).
Then, the most basic expectation from a putative CFT
operator that could yield the metric in the bulk is that

hΨgjgμνð~xÞjΨgi ¼ gμνð~xÞ: ð3:8Þ
Further, we demand that the n-point correlators of these
operators have the property that

hΨgjgμ1ν1ð~x1Þ…gμnνnð~xnÞjΨgi
¼ gμ1ν1ð~x1Þgμ2ν2ð~x2Þ…gμnνnð~xnÞ
þ Gμ1ν1μ2ν2ð~x1; ~x2Þgμ3ν3ð~x3Þ…gμnνnð~xnÞ þ perm

þ Gμ1ν1μ2ν2μ3ν3ð~x1; ~x2; ~x3Þgμ4ν4ð~x4Þ…gμnνnð~xnÞ þ perm

þ � � � : ð3:9Þ
where Gμ1ν1…μjνjð~x1;…~xjÞ are the connected j-point cor-
relators as calculated by perturbatively quantizing metric
fluctuations on the background of the metric gμν and… are
the higher point functions which we have not shown
explicitly. Note that this also fixes the 1

N corrections that
appeared in (3.7), because the connected correlators are
subleading in 1

N .
Similarly, we declare that other bulk excitations are

realized by state-independent operators, if there exist
operators ϕð~xÞ in the CFT, with the property that n-point
correlators of these operators have an expansion

hΨgjϕð~x1Þϕð~x2Þ…ϕð~xnÞjΨgi
¼ Gð~x1; ~x2ÞGð~x3; ~x4Þ…Gð~xn−1; ~xnÞ þ perm

þGð~x1; ~x2; ~x3ÞGð~x4; ~x5; ~x6ÞGð~x7; ~x8Þ…Gð~xn−1; ~xnÞ
þ permþ � � � ; ð3:10Þ

where the functions G are the perturbative j-point con-
nected correlation functions as obtained by quantizing the
field ϕ about the metric g.

4Strictly speaking, if we think of the degrees of freedom in
gravity as being obtained from tracing out stringy and other heavy
degrees of freedom, then we would expect a generic CFT state to
correspond to a density matrix for the gravitational degrees of
freedom, and not a pure state at all. However, because off-
diagonal matrix elements of light operators between different
coherent states are very small, a sum of coherent states effectively
behaves like a classical superposition. Therefore we can neglect
this complication here. Indeed, it is because of this fact that
canonical gravity—where the entanglement with these heavier
degrees of freedom is ignored even in excited background
geometries like the black hole—makes sense at all.
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In this expansion, we emphasize that we are not
interested in gravitational loop corrections at the moment,
but would be satisfied if the n-point correlators of the CFT
operators have an expansion that agrees with that obtained
from perturbative quantum field theory carried out at tree
level. This tree-level contribution is already enough to fix
the leading 1

N terms. It is also important to note that even the
two-point function already knows about the background
metric. This is simply because the graviton and matter
propagators depend on the metric background. Therefore,
in a sense, in the expansions (3.9)–(3.10) we have already
resummed the 1

N series. It is in this resummed series that we
are only interested in tree-level correlators.
Second, let us make a comment about superpositions of

distinct geometries as in (3.4). Then we expect that

hΨsjgμνð~xÞjΨsi ¼
Xm
i¼1

jαij2hΨgi jgμνð~xÞjΨgii þ Oðe−N Þ:

A similar relation holds for n-point correlators, provided
that n ≪ N . This is the statement that cross terms between
macroscopically distinct geometries are very small. So, a
superposition of the form above essentially behaves like a
classical mixture for our purposes.
This is an important point since there is no canonical way

to speak of the “same point” in different macroscopic
geometries. Stated precisely, this is the statement that
quantum field theory in curved spacetime does not lead
to any prediction for cross-correlators

hΨgjgμνð~x1Þgμνð~x2ÞjΨg0 i;

where gμνð~xÞ and g0μνð~xÞ are metrics corresponding to
macroscopically different geometries.5 However, (3.5) tells
us that we never need to consider such cross terms in
correlators of the metric, which are exponentially sup-
pressed and do not have any semiclassical interpretation.
Finally, let us point out that if we declare that we do have

a construction of state-independent local operators, then we
should take it seriously. Therefore, if we find a state jΨi, in
which n-point correlators of the operator ϕð~xÞ cannot be
reorganized as perturbative correlators about any metric,
then we must declare that the state jΨi does not correspond
to a semiclassical geometry.
Gauge invariance and coordinates: We now turn to the

last remaining point in our definition of state-independent
operators. The dþ 1 real parameters parametrize CFT
operators and are to be interpreted as coordinates in
AdS. This is a tractable issue but two points sometimes
lead to confusion: the fact that the metric and other local
observables are not gauge invariant, and the fact that we are

using a uniform coordinate system to represent all metrics.
Both of these issues can be resolved simultaneously by an
appropriate gauge fixing, as we now describe.
First, as we have already noted, given a family of CFT

operators labeled by coordinates ~x, so that the family of
operators satisfies (3.8)–(3.9) we can clearly simply con-
sider another family of CFT operators, which is related to
the previous one by diffeomorphisms.

ḡμνð~xÞ ¼ ∂ξμ
∂xρ

∂ξν
∂xσ g

ρσð~ξ−1ð~xÞÞ;
ϕ̄ð~xÞ ¼ ϕðξ−1ð~xÞÞ: ð3:11Þ

The operators on the left-hand side of (3.11) are distinct
CFT operators, but they obviously encode the same bulk
physics. We can choose to simply live with this lack of
uniqueness, while keeping in mind that to extract any
physics from the operator (3.8) we need to form gauge-
invariant quantities. But from a physical point of view, it is
more convenient to pick a gauge so that the CFT operators
that we are discussing become unambiguous.
A related problem has to do with the “range” of the real

numbers in ~x. Usually, we tailor the coordinate system
to the metric. So it is often the case that the AdS
Schwarzschild metric and the empty AdS metric are written
in terms of coordinates that have different ranges.
In addressing these two issues, it is useful to recognize

that they also arise in numerical general relativity. There we
are given a grid of points, drawn from Rd;1, with a fixed
range and we place different metrics on this grid so that the
resultant spacetime describes an entire range of physics,
from empty AdS to black holes.
To make this more precise, note that the empty AdS

metric is given by

ds2ads ¼ −ð1þ r2Þdt2 þ dr2

1þ r2
þ r2dΩ2

d−1:

By a coordinate transformation, r ¼ ρ
1−ρ, we can bring the

boundary to a finite coordinate distance

ds2ads ¼
1

ð1 − ρÞ2
�
−f̂ðρÞdt2 þ 1

f̂ðρÞ dρ
2 þ ρ2dΩ2

d−1

�
;

ð3:12Þ

with f̂ðρÞ ¼ ð1 − ρÞ2 þ ρ2. The boundary is at ρ ¼ 1, and
manifold in (3.12) is ½0; 1Þ × R × Sd−1. In this paper we are
only interested in different metrics placed on this manifold
that asymptotically tend to the metric in (3.12), although
they may differ in the bulk. Even if black holes are present,
we simply consider nice slices that are parametrized by the
coordinates ½0; 1Þ × Sd−1, as shown in Fig. 1, and then
consider their evolution in time for a finite range of time.
Note that by this finite-time restriction, we also avoid
questions of “topology changes.”

5For the case where these metrics are so close that one can be
considered to be a coherent excitation of gravitons on the other,
we refer the reader to Appendix A.
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Having chosen a uniform coordinate system to describe
the metrics that we are interested in, we can further choose
a gauge to unambiguously specify the CFToperators we are
interested in. A convenient choice of gauge is given by the
“generalized harmonic gauges.” In these gauges, we set

□~xμ ¼ Hμð~xÞ: ð3:13Þ

A choice of the “source functions” Hμð~xÞ gives a choice
of gauge.
Note that once (3.13) is imposed as an additional

operator equation that must be satisfied by the CFT
operators that appear in (3.8)–(3.9), then this removes
the redundancy (3.11) in the identification of these oper-
ators in the CFT. So, if such operators exist then (3.13)
picks out a specific family of them.
For the specific case of AdS, an appropriate choice of

source functions is discussed in detail in [26]. These details
are not important here. The point that we can take away
from the numerical analysis of [26] is that it is possible to
describe a very broad range of metrics in AdS, including
empty AdS and excited black holes that are dual to fluid
dynamical situations on the boundary with a uniform
choice of coordinate system and gauge.

1. Relational observables

There is another class of coordinate systems, which is
particularly convenient in AdS. This is the class of
coordinate systems that is defined relationally with respect
to the boundary. Here, we assume that we are already given
the metric in some coordinate system, such as the ones
above. We then describe a coordinate transformation to a
more convenient relational coordinate system.

Intuitively, we consider an experiment where an observer
jumps from the boundary, with no initial velocity along the
Sd−1, falls for a given amount of proper time, and then
makes a measurement. In fact this notion is a little hard to
make concrete in this form because if we drop the observer
from a point that is infinitesimally close to the boundary, he
very rapidly approaches the speed of light. This problem
cannot be solved by using an affine parametrization of null
geodesics either, since any affine parameter that is finite in
the bulk goes to infinity as we reach the boundary.
So, it is convenient to use the following slightly more

complicated construction. We start from a given point on
the boundary, which we label by ðt1;Ω1Þ. We know that the
metric is of the asymptotically AdS form given by (3.12).
We now consider a null geodesic, parametrized by ordinary
asymptotic AdS time, that extends into the bulk, with no
velocity along the Sd−1. More precisely, let us consider a
null geodesic trajectory given by

~x1ðtÞ≡ ðt; ρ1ðtÞ; Ω1ðtÞÞ; ρ1ðt1Þ ¼ 1;

Ω1ðt1Þ ¼ Ω1; _Ω1ðt1Þ ¼ 0; _ρðt1Þ ¼ −1; ð3:14Þ

where by a slight abuse of notation we have used Ω1 both
for the solution to the geodesic equation, and for the initial
value of the solution. Note that initial “velocity” in the
radial direction is fixed since the geodesic is null and the
sign indicates that the geodesic is ingoing and moves into
the bulk as time advances. This geodesic reaches a finite
coordinate distance in the bulk in finite time. Second, note
that while we are starting with no angular momentum,
intrinsic properties of the geometry may cause the geodesic
to start moving on the sphere as well after it departs from
the boundary.
We now consider a second null geodesic that intersects

the boundary at a later point ðt1 þ τ;Ω2Þ and also has
_Ω2 ¼ 0 at its final point. This is the geodesic trajectory

~x2ðtÞ ¼ ðt;Ω2ðtÞ; ρ2ðtÞÞ;
ρ2ðt1 þ τÞ ¼ 1;

Ω2ðt1 þ τÞ ¼ Ω2;

_Ω2ðt1 þ τÞ ¼ 0

_ρ2ðt1 þ τÞ ¼ 1; ð3:15Þ

and the sign of the radial derivative indicates that the
geodesic is outgoing at the time t1 þ τ. Now given a
particular value of t1;Ω1ðt1Þ, we varyΩ2ðt1 þ τÞ so that the
geodesics intersect. We expect that

∃Ω2 and ∃ti;
t1 < ti < t1 þ τ such that ρ2ðtiÞ ¼ ρ1ðtiÞ;
Ω2ðtiÞ ¼ Ω1ðtiÞ:

FIG. 1. Even in the presence of a black hole, nice slices can be
parametrized by coordinates on ½0; 1Þ × Sd−1. We examine
physics for a finite interval ΔT so that the future singularity is
irrelevant.
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Intuitively, the existence of such a solution seems clear. For
example, in the case where the geometry has no angular
momentum at all, we can solve the equation above simply
by setting Ω2 ¼ Ω1. If we start deforming the geometry so
that it is rotating, we should still be able to tune Ω2 so that
the two geodesics intersect. Even for other, more compli-
cated geometries, we expect that the intersection point
should be well defined at least as long as we are close
enough to the boundary and we see below that this is all that
we need.
We denote the point of intersection by

Piðt1;Ω1; τÞ≡ ðti;Ω1ðtiÞ; ρ1ðtiÞÞ: ð3:16Þ

This is a bulk point that is parametrized by the starting point
of the first geodesic and the time difference to the ending
point of the second geodesic.
Note that by means of such a process we cannot reach

behind the black hole horizon. However, once we have a
parametrization of points in the exterior, it is simple to
extend them behind the horizon. We once again consider
geodesics that start from a point ðt1; ~Ω1Þ on the boundary
but this time we parametrize them using an affine parameter
so that the geodesic satisfies the equation

d2xμ1ðλÞ
dλ2

þ Γμ
νσ
dxν1ðλÞ
dλ

dxσ1ðλÞ
dλ

¼ 0:

This is just a reparametrization of the geodesic in (3.14),
and so we have denoted it with the same symbol ~x1ðλÞ.
The key point is that we can use our previous para-

metrization (3.16) to normalize the affine parameter. We set

~x1ð0Þ ¼ Piðt1;Ω1; τ1Þ; ~x1ð1Þ ¼ Piðt1;Ω1; τ2Þ:

A choice of the intervals τ1, τ2 gives a specific normalization
of the affine parameter. The reader can, for her convenience,
think of any concrete value: say τ1 ¼ lads, τ2 ¼ 2lads.
Once this normalization is fixed we obtain the set of

points

Pλðt1;Ω1; λÞ ¼ ðt1ðλÞ;Ω1ðλÞ; ρ1ðλÞÞ: ð3:17Þ

The difference between (3.17) and (3.16) is that the points
in (3.17) can also reach inside the horizon. The entire
process above is summarized in Fig 2.
The advantage of this prescription is that, classically,

measurements of a scalar field defined in such a relational
manner are gauge invariant. We recall that when we define
quantum gravity in anti–de Sitter space, we have to
consider the set of all field configurations modulo trivial
diffeomorphisms. The trivial diffeomorphisms are those
that vanish at the boundary of anti–de Sitter space. Large
gauge transformations—which leave the boundary in
asymptotically AdS form, but yet move points on the

boundary—correspond to symmetries in the boundary
theory, and induce a change of the physical state.
So, gauge-invariant observables are those that are

invariant under trivial diffeomorphisms. In the relational
observables described above, we start with a point on the
boundary—which is left fixed because the diffeomorphism
vanishes there—and then follow a gauge-invariant pre-
scription to reach a point in the interior. Evidently, scalar
fields evaluated at this point are themselves gauge invariant.
There is an important stronger statement that we can

make. Consider a large diffeomorphism that induces a
conformal transformation on the boundary ðt;ΩÞ →
C−1ðt;ΩÞ, where C denotes an element of the conformal
group. Geometrically, under the diffeomorphism the geo-
desic trajectories in (3.14)–(3.15) get mapped to new
geodesic trajectories. Therefore we expect that the rela-
tionally defined points in (3.17) will transform under the
diffeomorphism as

Pλðt;Ω; λÞ → PλðC−1ðt;ΩÞ; λÞ:
The important point is that this transformation of the
relational points does not depend on the details of the
diffeomorphism in the bulk, but merely on how it acts on
the boundary.
Now consider a scalar field operator ϕðPλðt;ΩÞ; λÞ with

the bulk point defined as in (3.17). Corresponding to the
conformal transformation C, there is a unitary operator UC
on the boundary. Then, in order to be consistent with the
geometric intuition, we expect that the CFT operator ϕ will
satisfy

U†
Cϕ

iðPλðt;Ω; λÞÞUC ¼ ϕiðPλðCðt;ΩÞ; λÞ:
We use this relation several times to obtain the commutator
of bulk operators with the Hamiltonian which arises

FIG. 2. The relational gauge fixing proceeds in two steps: first
we use intersecting geodesics to parametrize points outside the
horizon. Then we use this set of points to normalize the affine
parameter and follow null geodesics into the horizon.
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from the special case where C is just taken to be the
time translation above. In Sec. VI, we apply this analysis
in a more general setting where there are two boundaries.
The disadvantage of the relational prescription is that it is

harder to make this precise at subleading order in 1
N .

Clearly, the affine parameter along a geodesic from the
boundary to another point may itself be expected to
fluctuate at order 1

N. In this paper, these subtleties are
not important.

B. The alternative: state-dependent
bulk-boundary maps

An alternative to the state-independent possibility above
is that geometric quantities like the metric do not arise by
evaluating a Hermitian operator, but correspond to more
general “measurables.” More precisely, we would be led to
state-dependence if there are no globally defined Hermitian
operators gμνð~xÞ and ϕð~xÞ. Rather, about a given state jΨgi
we would have operators gfΨg

μν ð~xÞ and ϕfΨgð~xÞ so that the
correlators

CΨð~x1;…~xmþpÞ
¼ hΨjgfΨg

μ1ν1ð~x1Þ…gfΨg
μmνmð~xmÞϕfΨgð~xmþ1Þ…ϕfΨgð~xmþpÞjΨi

ð3:18Þ

reproduce the predictions of effective field theory
that we outlined above. This definition is identical to the
definition (3.1) in terms of the semiclassical states jΨi that
appear here and the expectations we have for the values
of the correlators. The difference is in the nature of the

operators gfψgμν which now depend on the state.
One possible way to think about (3.18) is that the

geometry emerges as a “function of correlation functions”6

and not by measuring linear operators. However, we have
some additional structure in (3.18). Since the bulk observer
must see quantum effective field theory, it must be the case

that to an excellent approximation the operators gfΨg
μν ð~xÞ and

ϕΨð~xÞ act as linear operators. In terms of the classes of states
that we have defined above, this can be turned into a sharp
restriction: the same operators that represent the metric and
other excitations in a state jΨgi must also represent these
excitations in superpositions (3.4) and (3.6).We show below
that, in our construction, this is indeed the case.
To lighten the notation we now usually omit the super-

script Ψ in gfΨg
μν even when we are considering state-

dependent operators. Although in several cases we discuss
explicitlywhether a given operator is state dependent or state
independent, in others it should be clear from the context.
We now point out that many of the existing methods of

associating a geometry to a state as in (3.2) are state

dependent in practice.7 We hasten to add that this, by itself,
does not mean that the map (3.2) can only be realized in a
state-dependent manner. Our discussion in this subsection
does not rule out the possibility that there may be an
overarching state-independent prescription which encap-
sulates all of these state-dependent approaches in some
approximation, or that the realizations of (3.2) that are
discussed below cannot be interpreted as constructions
which only hold in a limited class of states. Our purpose in
this subsection is to use these examples to explain the
distinction between state-dependent and state-independent
realizations of the maps.
We now proceed to discuss the Ryu-Takayanagi formula,

the procedure for extracting the Einstein equations from the
first law of entanglement, and the smearing function
construction of operators outside the black hole.

1. State-dependence in geometry from entanglement

The RT formula [24] and its generalization [27] by
Hubeny, Rangamani and Takayanagi provide a method of
reading off geometric quantities from a state. We review the
formula, and show how it is state dependent. We also show
how to interpret it correctly and that this state-dependence
does not imply any contradiction with quantum mechanics.
In particular these formulas provide a relation between

the entanglement entropy of a region on the boundary, and
the area of an extremal surface in the bulk which is
homologous to the boundary region. So, given a region
R on the boundary and a semiclassical metric gμν, we can
calculate the area of this extremal area surface Aðg; RÞ.
The Ryu-Takayanagi formula now states

1

4GN
Aðg; RÞ ¼ SR; Ryu-Takayanagi ð3:19Þ

where SR is the entanglement entropy of the region R.
We now show the following.
(1) The formula (3.19) cannot be interpreted as an

operator relation for the area, because there is no
entanglement entropy operator.

(2) However, even though the entanglement entropy
cannot, in general, be interpreted as the expectation
value of a Hermitian operator, because of properties
of the large-N CFT Hilbert space, we expect to find
a state-dependent operator AR in the CFTwhich has
the property that

hΨjARjΨi ¼ SRðjΨiÞ;
both in states (3.2) and in superpositions of a small
number of such states (3.4).

6We thank Nima Lashkari for this phrase.

7We cannot help making the curious observation that, within
the string theory literature, this fact hardly attracted any attention
or controversy until the recent discussions on the black hole
interior.
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We start by noting that if the metric is a state-indepen-
dent operator, then the area of the minimal area surface,
which is a functional of the metric, is also a state-
independent operator. In fact, as we see below, from the
point of view of a semiclassical quantization of gravity—
which is what yields the justification for expecting the
metric to be an ordinary operator—the area of the minimal
area surface should be as good an operator as the metric.
Therefore, we might expect the existence of some operator
AR, so that in the state dual to the geometry with metric gμν,
we have

ARjΨgi ¼ Aðg; RÞjΨgi þ O

�
1

N

�
:

However, on the other hand, the entanglement entropy is
not a linear operator. The standard proof is as follows.
Consider the division of the CFT Hilbert space into that of
the region and its complement: H ¼ HR ⊗ H ~R. Say that
we want an operator SR so that ∀jΨi ∈ H; we have
hψ jSRjΨi ¼ SðjΨiÞ, where S is the entanglement entropy
between R and its complement in that state. Now we note
the following facts. Since SðjΨiÞ is always non-negative,
the expectation value of the putative SR operator is non-
negative in all states; therefore it can have no negative
eigenvalues. Second, we can find a complete basis of
unentangled states

jΨiji ¼ jRii ⊗ j ~Rji; ð3:20Þ

where i ∈ ½1;… dimðHRÞ�; j ∈ ½1;… dimðH ~RÞ�. Clearly
we expect hΨijjSRjΨiji ¼ 0. Moreover, since jΨiji is a
basis, we also have TrðSRÞ ¼ 0. Since SR has no negative
eigenvalues, and its trace is zero, it must be the case that
SR ¼ 0 identically. This is absurd. Therefore, there is no
operator SR whose expectation value equals the entangle-
ment entropy in general. A simple extension of this
argument shows that this is also true for the Renyi entropies
TrðρnRÞ, where ρR is the reduced density matrix of the
region.
The fact that the entanglement entropy does not corre-

spond to an ordinary linear operator may appear to be a
formal statement, but it becomes acute in the following
situation in the AdS/CFT correspondence. Consider a
superposition of two different classical geometries, as in
(3.4). For simplicity, we can consider a pure state which is a
superposition of a pure state corresponding to a black hole
at temperature β, with a corresponding metric gβ,
and another pure state corresponding to a black hole at a
temperature β0, with a corresponding metric gβ0 . Provided
that β − β0 ≫ 1

N , we see that the corresponding pure states
are almost orthogonal. We write the superposed state as

jΨsi ¼ α1jΨgβi þ α2jΨgβ0 i;

and normalizability requires jα1j2 þ jα2j2 ¼ 1þ Oðe−N Þ.
This is not a state that we usually consider, but it is certainly
possible to consider such superpositions in the CFT since
distinct geometries do not belong to strict superselection
sectors.
From the bulk point of view, quantum mechanics

provides the following prediction. If one measures the
area in this state, one expects to find the answer Aðgβ; RÞ
with probability jα1j2 and Aðgβ0 ; RÞ with probability jα2j2.
While the entanglement entropy cannot reproduce this

probability distribution, with some work we can show that
the entanglement entropy does correctly reproduce the
expectation value of the area. The argument is as follows.
Consider the reduced density matrix of the region R in all
three states,

ρRðβÞ ¼ Tr ~RðjΨgβihΨgβ jÞ;
ρRðβ0Þ ¼ Tr ~RðjΨgβ0 ihΨgβ0 jÞ;
ρRðΨsÞ ¼ Tr ~RðjΨsihΨsjÞ;

where ~R is the complement of R.
We can write both the states in terms of a Schmidt basis,

jΨgβi ¼
X
i

γβi jRβ
i i ⊗ j ~Rβ

i i;

jΨgβ0 i ¼
X
i

γβ
0

i jRβ0
i i ⊗ j ~Rβ0

i i; ð3:21Þ

where, by the definition of the Schmidt basis, we have

hRβ
i jRβ

j i ¼ δij; h ~Rβ
i j ~Rβ

j i ¼ δij;

hRβ0
i jRβ0

j i ¼ δij; h ~Rβ0
i j ~Rβ0

j i ¼ δijX
i

jγβi j2 ¼ 1;
X
i

jγβ0i j2 ¼ 1.

To simplify the analysis, without sacrificing anything of
importance, let us truncate the range of i in (3.21) so that it
runs over OðeN Þ states. In almost any state, where the
energy scales like N , it is in fact true that even if the exact
expansion of the state involves an infinite number of
eigenvectors, all but an OðeN Þ number of them are
exponentially unimportant.
Now, the key point is that in a very large Hilbert space

we expect that the Schmidt basis decomposition for the
state jΨgβi and the state jΨgβ0 i is typically uncorrelated.
This implies that

jhRβ
i jRβ0

j ij2 ¼ Oðe−N Þ; jh ~Rβ
i j ~Rβ0

j ij2 ¼ Oðe−N Þ: ð3:22Þ

Strictly speaking (3.22) is valid if one takes a large Hilbert
space and divides it into two parts. In a local quantum field
theory, it is possible that the very short distance modes in
the two regions are entangled in a universal manner.

REMARKS ON THE NECESSITY AND IMPLICATIONS OF … PHYSICAL REVIEW D 93, 084049 (2016)

084049-11



This does not affect any of our results since in considering
the entanglement entropy we, in any case, must subtract off
this universal part.
Now the first two reduced density matrices are given by

ρRðβÞ ¼
X
i

jγβi j2jRβ
i ihRβ

i j;

ρRðβ0Þ ¼
X
i

jγβ0i j2jRβ0
i ihRβ0

i j:

The corresponding entanglement entropies are given by

Sβ ¼ −TrðρRðβÞ ln ρRðβÞÞ ¼ −2
X
i

jγβi j2 ln jγβi j;

Sβ0 ¼ −TrðρRðβ0Þ ln ρRðβ0ÞÞ ¼ −2
X
i

jγβ0i j2 ln jγβ
0

i j:

Moreover, we see that

ρRðΨsÞ ¼ jα1j2ρRðβÞ þ jα2j2ρRðβ0Þ þ ρcross;

where we see that the matrix involving the cross terms is

ρcross ¼
X
i;j

½α1α�2γβi ðγβ
0

j Þ�h ~Rβ0
j j ~Rβ0

i i�jRβ
i ihRβ0

j j þ H:c:

Now even though this is an eN × eN sized matrix, we can
check using (3.22) that TrðρcrossÞ ¼ Oðe−N Þ and also that
Trðρ2crossÞ ¼ Oðe−N Þ. Therefore the cross terms have an
exponentially small effect in the computations below, and
we neglect them.
Now consider two positive integers m1, m2. We see that

Trðρm1

R ðβÞρm2

R ðβ0ÞÞ ¼
X
i;j

jγβi j2m1 jγβ0j j2m2 jhRβ
i jRβ0

j ij2:

Therefore, from (3.22), we see that

Trðρm1

R ðβÞρm2

R ðβ0ÞÞ ¼ Oðe−N Þ; if m1; m2 > 0:

This allows us to evaluate the entanglement entropy of
the superposed state. In particular, using the result above,
we see that mth Renyi entropy for the superposed state is
given by

TrðρRðΨsÞmÞ ¼ jα1j2mTrðρRðβÞmÞ þ jα2j2mTrðρRðβ0ÞmÞ
þ Oðe−N Þ:

Therefore the entanglement entropy is given by

SRðΨsÞ ¼ − lim
m→1

d
dm

TrðρRðΨsÞmÞ
¼ −jα1j2 lnðjα1j2ÞTr½ρRðβÞ� − jα2j2 lnðjα2j2ÞTr½ρRðβ0Þ�
− jα1j2Tr½ρRðβÞ lnðρRðβÞÞ� − jα2j2Tr½ρRðβ0Þ lnðρRðβ0ÞÞ�

¼ −jα1j2 lnðjα1j2Þ − jα2j2 lnðjα2j2Þ þ jα1j2SRðβÞ þ jα2j2SRðβ0Þ:

Therefore we see that

SRðΨsÞ ¼
1

4GN
hAðRÞi − jα1j2 lnðjα1j2Þ − jα2j2 lnðjα2j2Þ;

where hAðRÞi ¼ jα1j2Aðgβ; RÞ þ jα2j2Aðgβ0 ; RÞ is the ex-
pectation value of the area obtained from a naive analysis.
In fact the additional term that we have obtained is

always subleading even if we take a superposition of a large
number of states. This is because the leading term is OðN Þ
as we can see from the explicit factor of GN in the formula
above. Now, even if we superposem-states in the form (3.4)
with coefficients

P
m
i¼1 jαij2 ¼ 1, then the additional term is

bounded by

−
Xm
i¼1

jαij2 lnðjαij2Þ ≤ lnðmÞ:

Therefore, unless we take a superposition of an eN

number of states, we see that we can still consistently

interpret the entanglement entropy as the expectation value
of the operator that, classically, would correspond to the
area,

SR ¼ 1

4GN
hARi: ð3:23Þ

If we do take a superposition of an exponentially large
number of states, then the cross terms become important
even for the area operator, and we must reevaluate the entire
expression.
To summarize, we have concluded that once the original

Ryu-Takayanagi formula is interpreted as a relation
between an expectation value and the entanglement entropy
as in (3.23), then it holds consistently even in states that are
superpositions of classical geometries as advertised. Our
analysis here does not rule out the existence of a state-
independent area operator AR but such a state-independent
operator cannot be dual to the entanglement entropy in
general.

KYRIAKOS PAPADODIMAS and SUVRAT RAJU PHYSICAL REVIEW D 93, 084049 (2016)

084049-12



Before concluding, we should mention that there are
several approaches that attempt to construct other bulk
geometric quantities by massaging or refining the Ryu-
Takayanagi formula. For example, the authors of [28] related
the differential entropy—obtained by considering the varia-
tion of the entanglement entropy as the interval on the
boundary is altered—to the area of a hole in the bulk. This
can be used to read off the bulk metric more directly than the
minimal area prescription. Of course, all of these approaches
are also explicitly state dependent. However, just as in our
discussion above, we expect that when we interpret them
appropriately they do not present any observable contra-
diction with quantum mechanics in the bulk.

2. Equations of motion from the first law
of entanglement

Another approach to deriving the bulk from the boun-
dary, which has attracted attention, is the program of
deriving the bulk equations of motion from the “first
law of entanglement” [29–31]. Consider, once again, a
region R on the boundary, and a CFT in the vacuum state.
Then we may define the modular Hamiltonian of the region
by demanding that the reduced density matrix of R has the
form

ρR ¼ e−H
R
mod

TrHR
ðe−HR

modÞ ;

where the reader should note that the trace is in HR only.
In this case, if we consider the vacuum of the CFT and

take the region R to be a ball of radius a centered around a
point ~y0, then the modular Hamiltonian is given by [32]

HR
mod ¼ 2π

Z
R
dd−1~y

a2 − j~y − ~y0j2
2a

Ttt; ð3:24Þ

where Ttt is the time-time component of the stress tensor.
But this is a state-dependent formula that is obtained by
defining the modular Hamiltonian about the vacuum.
Using this formula it was shown [29,33] that one can

relate the linearized Einstein equations in the bulk to the
first law of entanglement entropy under small changes of
the state. By considering a generalization of the Ryu-
Takayanagi conjecture, where the area is replaced by a
Wald functional, this was extended to higher derivative
theories in [30] and 1=N interactions were included in [34].
However, although (3.24) looks like an operator equa-

tion, the modular Hamiltonian is also a state-dependent
operator. There is no globally defined operator HR

glob in the
theory so that its action equals that of the modular
Hamiltonian on every possible state. The proof is similar
to the one above. Let us say that we had an operator

HR
globjΨi ¼ HR

modjΨi; ð3:25Þ

so that its action on HR was that of the modular
Hamiltonian and it acted as the identity on H ~R.
Consider again the unentangled states in (3.20). The
density matrix of R in this state is pure: ρRðjΨijiÞ ¼
jRiihRij. We can see that this implies that the putative
modular Hamiltonian operator must have the action
HR

globjΨiji ¼ 0. However, if HR
glob is a linear operator, then

on any state HR
glob

P
ijαijjΨiji ¼ 0. This suggests that

HR
glob ¼ 0 as an operator, which is absurd. Therefore

(3.25) cannot hold for any state-independent operatorHR
glob.

Therefore, (3.24) must be interpreted as a relation that is
true within expectation values taken in the vacuum or small
fluctuations about the CFT vacuum. No operator generali-
zation of this equation exists as we have shown above.
Nevertheless, it should be possible to obtain similar
formulas about different states by defining the action of
the modular Hamiltonian relative to that state. Such
formulas also work for superpositions of a small number
of states, as we showed above in the case of the entangle-
ment entropy, but this entire process is fundamentally state
dependent.
The authors of [35] proposed that HR

modjΨi ¼ ARjΨi
should hold as an operator equation. However, as they
noted explicitly this is a state-dependent relation which
works in the neighborhood of a given state. As we
discussed above we would also expect it to work in
superpositions of a small number of semiclassical states.

3. Smearing function construction of local operators

Another commonly used method—and one that we use
in this paper—of extracting local physics from a state uses a
smearing function to represent bulk operators as smeared
versions of boundary operators [36]. We review this
approach in greater detail in Sec. IVB, where we also
derive the expressions below for some states. In this
approach, given a state jΨgi, we guess a smearing function
and conjecture that local fields in the bulk have the form

ϕð~xÞ ¼
Z

Oð~ybÞKgð~yb; ~xÞdd~yb; ð3:26Þ

where ~x is a bulk point, ~yb is a boundary point, O is a
single-trace operator on the boundary, and Kg is an
appropriately chosen smearing function. Strictly speaking,
there are some difficulties in interpreting (3.26) in position
space, having to do with the convergence of the integral,
which has led to some confusion in the literature [37,38].
However, as we showed in [7], these difficulties go away if
we work in momentum space and this subtlety is irrelevant
for our present discussion.
One may object that one is putting in the answer by hand

in (3.26) in the kernel Kg. However, it is a nontrivial fact
that the operators ϕð~xÞ do obey (3.10), and also have the
right boundary values (as one approaches the boundary of
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AdS) as CFT correlators. In particular for an operatorO of
dimension Δ, we require that

hOð~xb1Þ…Oð~xbnÞi ¼ Zn lim
r→∞

rΔ1…rΔn hϕð~xb1; r1Þ…ϕð~xbn; rnÞi;
ð3:27Þ

where Z is a numerical wave-function renormalization
factor, and we have written the bulk points as a boundary
point combined with a radial coordinate r which can be
identified with the coordinate r in (4.1). The fact that both
(3.26)–(3.27) hold simultaneously involves a delicate inter-
play between the kernel and the correlators of O in the
state jΨgi.
As written, the expression (3.26) is explicitly state

dependent because the kernel Kg depends on the metric,
and is therefore different in different states jΨgi. So, for a
given kernel Kg, this expression works only in a state that
corresponds to this semiclassical geometry.
In Sec. IV, we discuss whether it may be possible to lift

(3.26) to a state-independent prescription, at least, outside
the horizon. While this is possible in a minisuperspace
approximation as we show around (4.21), we are agnostic
about whether this works in general, even outside the
horizon. In [3] it was argued that the 1=N corrections may
automatically resum to give the correct smearing function
on a general semiclassical background. It would be
interesting to explore this possibility further and we com-
ment more on this issue in [39].

C. A semiclassical obstruction to state-independence

Given that all existing examples of extracting local
physics from the boundary involve various measurables,
which are nevertheless not linear operators, why should we
expect that the metric is given by an ordinary operator in the
CFT? More precisely, what is the basis for the naive
expectation that operators satisfying (3.8) and (3.10) should
exist in the CFT? In this subsection, we try and explain the
basis for this naive expectation, although, as we point out
immediately, we believe that this intuition is flawed.
For simplicity, we consider whether one should expect a

state-independent metric operator gμνð~xÞ to exist. A similar
argument applies to other light fields in the theory.
The key point is that the classical metric gμνð~xÞ is a well-

defined function on the classical phase space of the theory.
Recall that the classical phase space can be put in 1–1
correspondence with the set of all classical solutions of the
theory. Given initial data for the canonical variables, and
their conjugate momenta, we can evolve it forward to
generate the entire classical solution. Conversely, given a
classical solution, we can take a section by evaluating the
variables and their momenta at some point in time to obtain
a point on the phase space.
As we have explained above, once we go to a well-

defined gauge, the value of the metric gμνð~xÞ is well-defined

in any classical geometry. Therefore the metric is a well-
defined function on the phase space of the theory. Now, one
usually expects that quantization takes functions on the
phase space to well-defined operators in the Hilbert space.
Therefore one might expect the metric gμνð~xÞ in relational
gauge to lift to a state-independent operator in the theory.
As we review in Appendix A, this is usually done as

follows. In the quantum theory, we obtain coherent states,
jgi corresponding to each semiclassical geometry. We then
lift the classical function to an operator through

gμνð~xÞ ∼
X
g

gμνð~xÞjgihgj; ð3:28Þ

where the sum is over all metrics, discretized in some
fashion.8

Now, the analysis of Appendix A and Sec. VI shows that
for such a construction to work, it is very important that if
we consider the inner product of two distinct geometries, it
dies off to arbitrarily small values

hg1jg2i ¼ e−N υðg1;g2Þ:

We can compute the function υ on the right-hand side in
linearized gravity but in order for (3.28) to converge we
require that for sufficiently distinct g1, g2, we can
have v ≫ 1.
On the other hand, in the CFT, as we have discussed

coherent states of the metric jgi correspond to CFT states
jΨgi. However, for generic states at the same energy
E ∝ N , we have

hΨg1 jΨg2i ¼ Oðe−S
2Þ;

where S ∝ N is the thermodynamic entropy of the CFT at
the energy E.
This fat tail in the inner product of coherent states in the

CFT subtly violates the expectation from a semiclassical
quantization of gravity.9 As a result of this tail, we cannot
write down an expression of the form (3.28) with the
putative coherent states replaced by jΨgi because interfer-
ence from distant microstates implies that the operator
gμνð~xÞ on the left of (3.28) does not behave like the classical
function gμνð~xÞ.
We direct the reader to Sec. VI for an example where this

can be seen very clearly. In Appendix A we discuss the
single-sided case in more detail and describe why we

8For a concrete example of a formula of this sort, the reader
may wish to look at (4.21) although we caution the reader that
(4.21) sums only over spherically symmetric metrics and works
only outside the horizon. In contrast, we would like (3.28) to
work for all kinds of metrics, and both inside and outside the
horizon.

9This is reminiscent of the fact [40] that thermal correlators in
the CFT decay down to Oðe−SÞ, in contrast to the naive expect-
ation from semiclassical gravity that the exponential decay in
time should continue forever.
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believe that the same obstruction prevents one from writing
down state-independent operators for well-defined classical
geometric quantities.

IV. LOCAL BULK OPERATORS IN ADS/CFT:
CONDITIONS FOR A SMOOTH INTERIOR

In this section, we review the conditions that are required
to obtain a smooth exterior and interior geometry for a
black hole in AdS/CFT. The central point that we empha-
size in this section is that a smooth interior requires the
existence of operators in the CFT, with specific properties
that we enumerate below. We have dealt with this question
in our previous papers [7–9], but we present a slightly new
perspective here to buttress the same conclusion.
Before we proceed to the analysis, we briefly state our

result and emphasize the difference with previous deriva-
tions. Consider a black hole horizon, which may have been
formed due to gravitational collapse or may be part of an
eternal black hole. If we quantize a field on both sides of the
horizon, we find that while the Schwarzschild left movers
cross the horizon smoothly, the Schwarzschild right movers
do not. The claim is that to obtain a smooth horizon, we
must find new operators, which play the role of right
movers behind the horizon, and are appropriately entangled
with the right movers in front of the horizon.
There are various ways to reach this conclusion. These

right movers were identified in Hawking’s original analysis
of this question as modes from past null infinity that are
concentrated in the time, just after the last null ray to escape
the horizon. In Hawking’s geometric analysis, these modes

bounce from r ¼ 0 to play the role of right movers behind
the horizon. One can also argue for the existence of these
right movers and the appropriate entanglement—as we did
in [7]—by using the semiclassical intuition that, at late
times, the collapsing geometry approaches the eternal black
hole where these right movers originate from a left
asymptotic region, which we call region III. Figure 3
displays the intuition for these arguments.
These derivations suffer from certain difficulties.

Hawking’s original work has a trans-Planckian problem
because tracing these modes back to past null infinity
boosts them to very high energies. Similarly, the intuition
that these modes come from an effective region III is
somewhat confusing because we do not expect any such
region to exist for a collapsing geometry.
To solve these problems, in this section, we perform a

purely local derivation that reveals the necessity of the
existence of appropriate entangled right-moving modes
behind the horizon. Our picture in this paper is shown in
Fig. 4. We start with the sole assumption that the field in
the near-horizon region outside and inside the horizon has
an effective perturbative description. This assumption
implies the universality of a certain two-point function.
By Fourier transforming this universal two-point function,
we infer that the right movers behind the horizon must
exist, and also infer their two-point functions with modes
in front of the horizon. We start by performing this
analysis in the bulk, and then discuss the implications
in the CFT.

A. Bulk analysis of the mirror operators

Let us start from the bulk perspective. We then examine
how this must be translated to the boundary. For simplicity,
let us consider a massless scalar field in the bulk. This
analysis carries over, almost entirely unchanged to the case
of the graviton and other fields.

(a) Hawking’s
derivation

(b) The analogy to the Eternal
Black hole

FIG. 3. Two ways of arguing that new right movers are
necessary behind a black hole horizon. Hawking’s original
derivation is on the left, where the right movers are modes that
have “bounced” off r ¼ 0 and propagated through the infalling
matter. The analogy to the eternal black hole is on the right, where
the right movers come from a left asymptotic region. Both of
these suffer from difficulties, and so we perform a purely local
derivation leading to the same result.

FIG. 4. We derive the necessity of new modes just by
demanding a regular two-point function for points P1, P2 across
the horizon without invoking another asymptotic region or
tracing these modes back into the past.
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Consider a big black hole in AdS. In the past this black
hole could have been formed from the collapse of a star or
some other physical process. However, we are interested in
the late-time region shown schematically as the rectangular
patch P in Fig. 5. This patch of spacetime overlaps with the
region both in front of, and behind, the horizon. Classically,
we expect that the initial collapsing matter, and any
perturbations, have died away and are irrelevant for physics
in this region. In the analysis below, we assume the validity
of this classical expectation and derive various results for
correlators of fields. Later we need to check the consistency
of these results by ensuring that it is possible to construct a
bulk to a boundary map that reproduces these correlators.
Geometry: The metric, at late times, outside the horizon

is given by

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2

d−1; ð4:1Þ

where

fðrÞ ¼ r2 þ 1 − cd
GM
rd−2

;

cd ¼
8π

2−d
2 Γðd=2Þ
d − 1

:

The numerical constant, cd, arises from the volume of the
d − 1-dimensional sphere. and we have set the radius of
AdS to 1.
The horizon is defined implicitly by the equation

fðr0Þ ¼ 0. As usual, it is convenient to introduce tortoise
coordinates by dr�

dr ¼ f−1ðrÞ. Unlike in the case of the
Schwarzschild black hole in flat space, we cannot usually
express the tortoise coordinates in terms of the original
coordinates using elementary functions. But we can choose
the differential equation to satisfy

r� ¼ 0; at r ¼ ∞:

As r → r0, we see that f−1ðrÞ diverges and r� → −∞.
In order to approach the future horizon we have to take the
limit r� → −∞ and at the same time t → þ∞.
We introduce the following coordinates:

U ¼ −e
2π
β ðr�−tÞ; V ¼ e

2π
β ðr�þtÞ:

The horizon is given by U ¼ 0, but with V being finite. We
can check that with the factors of 2π

β , the horizon is smooth
in the U, V coordinate system. Near the horizon, with
ðr − r0Þ ≪ 1, we have fðrÞ ¼ κðr − r0Þ. The constant κ is
related to the temperature. A shortcut to determine the
relation is to continue to Euclidean time, t → iτ, identify

τ ∼ τ þ β and make the change of variables x ¼ 2
ffiffiffiffiffiffiffi
r−r0
κ

q
.

Near the horizon, the analytically continued metric then
takes the form

ds2E !x→0
dx2 þ κ2

4
x2dτ2 þ r20dΩ2

d−1:

For the Euclidean circle τ to smoothly cap off at x ¼ 0, we

require κ2β2

4
¼ ð2πÞ2 or κ ¼ 4π

β .
In the near-horizon region, we now have the following

relations:

fðrÞ ¼ 4π

β
ðr − r0Þ; ⇒ r� ¼

β

4π
ln

�
r − r0
r0

�
þ const:

From here, it follows that fðrÞ !
r�→∞

κ0ð2πβ Þ2e
4πr�
β , where κ0 is

another (irrelevant) constant.
In Kruskal coordinates the metric takes the form

ds2 ¼
�
β

2π

�
2 fðrÞ
UV

dUdV þ r2dΩ2
d−1;

and we see that the factor of 1
UV precisely cancels off the

growing exponential in fðrÞ near the horizon to ensure that
the metric is regular.

gμν !
U→0

− κ0dUdV þ r20dΩ2
d−1:

After we cross the horizon, we can introduce a second
Schwarzschild patch. Since U > 0 in the region inside the
black hole (which we sometimes also call region II), we
write

U ¼ e
2π
β ðr�−tÞ; V ¼ e

2π
β ðr�þtÞ; in region II:

Inside the horizon, the tortoise coordinate, r�, rises from its
value of −∞ at the horizon, while the Schwarzschild time

FIG. 5. We are interested in the late-time physics of the black
hole geometry, schematically denoted by the rectangular patch P
above.
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decreases from its values of ∞ as one goes from right
to left.
Two-point scalar correlators: Now, we consider a mass-

less scalar field propagating in this background. We define
this field using the relational prescription of Sec. III A 1. We
derive various consequences of the fact that the horizon is
smooth, simply by demanding that the two-point function
both outside and inside the horizon be smooth.
We expect that the two-point scalar function has the form

hϕð~x1Þϕð~x2Þi ¼ Gð~x1; ~x2Þ þ O

�
1

N

�
:

We are interested in the regime where ~x1 and ~x2 approach
the light cone, but always remain spacelike with respect to
each other. In this regime the Wightman and time-ordered
Green functions coincide and so we do not have to keep
track of factors of iϵ. In the expression above, we have also
used the fact that corrections to this expression come from
interactions that are suppressed by 1=N . However, we do
not need the full form of the propagator. For a large black
hole, provided that the geodesic distance l12 between ~x1
and ~x2 is small in comparison to the scale of curvature
l12 ≪ 1

β, we expect that

hϕð ~x1Þϕð ~x2Þi ≈
1

½gμνðx1 − x2Þμðx1 − x2Þν�d−12
;

jl12j ≪ β−1: ð4:2Þ

Recall that the dimension of the bulk theory is dþ 1. The
exponent above is the engineering dimension of the field,

which is ðdþ1Þ−2
2

. The relation (4.2) above is a powerful
constraint, which holds in the short distance limit for any
field theory in the bulk that is controlled by a free
ultraviolet fixed point.10

Now we consider the correlation function as one point
approaches the light cone of the other in the UV plane.11

We work in the regime where the two points are separated
on this plane so that −ðU1 − U2ÞðV1 − V2Þ > 0.

h∂V1
ϕðU1;V1;Ω1Þ∂V2

ϕðU2;V2;Ω2Þi

¼ ∂V1
∂V2

1

ð−κ0ðU1−U2ÞðV1−V2ÞþΩ2
12Þ

d−1
2

¼ðdþ1Þðd−1Þ
4

ðκ0Þ2 ðU1−U2Þ2
ð−κ0ðU1−U2ÞðV1−V2ÞþΩ2

12Þ
dþ3
2

;

where Ω2
12 is defined as the distance between the points Ω1

and Ω2 on the sphere of radius r0. We argue that this two-
point function is actually proportional to a delta function in
the coordinates on the sphere, as we takeU1,U2 → 0. If the
transverse space had been planar, this would have been a
planar delta function.
First note that we clearly have that

lim
U1;U2→0

ðU1 −U2Þ2
ð−ðU1 −U2ÞðV1 − V2Þ þ Ω2

12Þ
dþ3
2

¼ 0;

for Ω1 ≠ Ω2:

But on the other hand, let us consider

IðU1 −U2; V1 − V2Þ

¼
Z

dd−1Ω2

ðU1 −U2Þ2
ð−κ0ðU1 −U2ÞðV1 − V2Þ þ Ω2

12Þ
dþ3
2

:

The integral above is on a sphere of radius r0, but we can
rescale the sphere by introducing a new variable Ω0

2 ¼ Ω2

ðκ0δÞ12with δ≡ −ðU1 − U2ÞðV1 − V2Þ,

IðU1 − U2; V1 − V2Þ

¼
Z �ðκ0δÞd−12 ðU1 −U2Þ2

ðκ0δÞdþ3
2 ð1þ Ω2

12

κ0δ Þ
dþ3
2

dd−1Ω0
2

�

¼ 1

ðκ0Þ2ðV1 − V2Þ2
Z

dd−1Ω0
2

ð1þ ðΩ0
12Þ2Þ

dþ3
2

:

The final integral is clearly a constant independent of Ω1.
This leads to the conclusion that

lim
U1−U2→0

h∂V1
ϕðU1; V1;Ω1Þ∂V2

ϕðU2; V2;Ω2Þ

¼ κN
1

ðV1 − V2Þ2
δd−1ðΩ1 −Ω2Þ;

where κN is a normalization constant that we do not fix
here. In the same way, we also have

lim
V1−V2→0

h∂U1
ϕðU1; V1;Ω1Þ∂U2

ϕðU2; V2;Ω2Þ

¼ κN
1

ðU1 −U2Þ2
δd−1ðΩ1 −Ω2Þ: ð4:3Þ

This is a powerful and broadly applicable result. The
ultralocality that we see in the transverse directions was
also noted and used in the papers [41].
Now, let us see what this result implies for the correlation

functions of the Schwarzschild creation and annihilation
operators. Consider again the region near the horizon of a
black hole, but this time in the original time and tortoise
coordinates. Outside the horizon, we have the expansion

10Of course here we are talking about the intermediate regime,
where l12 ≪ β−1 but at the same time l12 ≫ lp; ls where the
latter are the Planck and string scales in the bulk.

11As we see below, to take this limit for correlators of the scalar
itself is delicate, as a result of the usual complications of dealing
with a massless scalar in two dimensions. This is the reason for
taking correlators of its derivatives instead.
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ϕðt; r�;ΩÞ !
U→0−

X
m

Z
∞

0

dωffiffiffiffi
ω

p aω;me−iωtYmðΩÞ

× ðeiδeiωr� þ e−iδe−iωr�Þ þ H:c:; ð4:4Þ

where YmðΩÞ are spherical harmonics that we normalize
below. The left and right movers get related to each other,
and the phases δ depend on scattering in the black hole
geometry [7]. As we noted above, and see again below, we
can only use (4.4) for correlators of derivatives of the field.
Note that the canonical conjugate to the field outside the

horizon is

πðt; r�;ΩÞ ¼ gtt
ffiffiffiffiffiffi
−g

p ∂
∂tϕðt; r�;ΩÞ ¼ rd−1

∂
∂tϕðt; r�;ΩÞ:

We must impose the canonical commutation relations

�
ϕðt; r�1;Ω1Þ;

∂
∂tϕðt; r�2;Ω2Þ

�

¼ i
rd−1

δðr�1 − r�2Þδd−1ðΩ1 −Ω2Þ:

Since the modes take this plane wave form in the near-
horizon region, as r → r0, by imposing these commutation
relations we find that they are satisfied only if

½aω;m; a†ω0;m0 � ¼ δðω − ω0Þδmm0 ;

provided that we normalize the spherical harmonics by

X
m

YmðΩÞY�
mðΩ0Þ ¼ 1

4πrd−10

δd−1ðΩ −Ω0Þ:

Now the two-point function, with both points outside the
horizon but close to it, is given by

h∂U1
ϕðU1; V1;Ω1Þ∂U2

ϕðU2; V2;Ω2Þi

¼ β2

4π2U1U2

X
m

Z
∞

0

ωdω

×

�
ðNω;m þ 1ÞYmðΩ1ÞY�

mðΩ2Þ
�
U1

U2

�iβω
2π

þ Nω;mYmðΩ1Þ�YmðΩ2Þ
�
U2

U1

�iβω
2π

�
: ð4:5Þ

Here we have defined the two-point expectation value

ha†ω;maω0m0 i ¼ Nω;mδðω − ω0Þδm;m0

in the black hole state and assumed that it is proportional to
a delta function which is reasonable at late times when
nothing depends on the time or the angular position.

Note that the expansion in two-point function (4.5)
would not have converged without the derivatives on
U1, U2. These derivatives pull down two factors of ω
and ensure that the integrand is well behaved at ω ¼ 0.
Now we show that we must have

Nω;m ¼ e−βω

1 − e−βω
:

To see this, note that

Z
∞

0

ωdω

�
e−βω

1 − e−βω

�
U2

U1

�iβω
2π þ 1

1 − e−βω

�
U1

U2

�iβω
2π

�

¼
Z

∞

−∞
ωdω

e−βω

1 − e−βω

�
U2

U1

�iβω
2π

:

This integral can be completed in the lower half plane if
jU1j > jU2j and in the upper half plane otherwise. Picking
up the poles at ω ¼ 2πin

β , we find that this integral
evaluates to

Z
∞

−∞
ωdω

e−βω

1 − e−βω

�
U2

U1

�iβω
2π ¼ −

1

β

X
n

n

�
U2

U1

�
n

¼ −
U1U2

βðU1 −U2Þ2
:

Second, note that the sum over m in (4.5) automatically
leads to a delta function proportional to δd−1ðΩ1 − Ω2Þ.
From the results above, we therefore find that (4.5)
and (4.3) coincide provided that

haω;ma†ω0;m0 i ¼ 1

1 − e−βω
δðω − ω0Þδmm0 ;

ha†ω;maω0;m0 i ¼ e−βω

1 − e−βω
δðω − ω0Þδmm0 : ð4:6Þ

Two caveats are in order. Note that (4.3) was derived in the
near-horizon limit where U1; U2 → 0 and therefore our
derivation above for the value of Nω;m is not valid for low
frequencies ω ≪ 1

β. It is also not valid for Planckian

frequencies ω ¼ OðN Þ, where we do not expect effective
field theory to give reliable results.
We now turn to the expansion behind the horizon. Here,

as we quantize the field in region II, and approach the
horizon from inside, we find an expansion.

ϕðt; r�;ΩÞ !
U→0þ

X
m

Z
∞

0

dωffiffiffiffi
ω

p

× ðaω;me−iδe−iωðtþr�ÞYmðΩÞ
þ ~aω;me−iδeiωðt−r�ÞY�

mðΩÞÞ þ H:c: ð4:7Þ

Several points are worth noting in (4.7).
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(1) By continuity of the mode eiωðtþr�Þ ¼ V
iβω
2π , the

operators a in region II must be the same as the
operators in region I.

(2) Second, we need some operators to multiply the
right-moving modes that vary as eiωðt−r�Þ. In (4.4) we
identified these modes with aω;m, but we find that
this cannot be correct here. We call the ~aω;m
operators the mirror operators.

(3) Note that the timelike coordinate inside the black
hole is r�. Therefore, the operator multiplying
eiωðt−r�Þ is classified as an “annihilation” operator.
This is in spite of the fact that it has positive
frequency with respect to t; the relevant point is
that it has negative frequency with respect to r�.

(4) Note that we have also conjugated the spherical
harmonic Ym for this mode. This is just a matter of
choosing a convenient convention.

Inside the horizon, the canonical conjugate to the field is
given by

πðt; r�;ΩÞ ¼ gr�r�
ffiffiffiffiffiffi
−g

p ∂
∂r� ϕðt; r�;ΩÞ

¼ rd−1
∂
∂r� ϕðt; r�;ΩÞ:

The canonical commutation relations are�
ϕðt1; r�;Ω1Þ;

∂
∂r� ϕðt2; r�;Ω2Þ

�

¼ i
rd−1

δðt1 − t2Þδd−1ðΩ1 −Ω2Þ:

By repeating the analysis of the canonical commutation
relations we find that

½ ~aω;m; ~a†ω0;m0 � ¼ δðω − ω0Þδmm0 ;

where we have tacitly assumed that the possible mixed
commutator ½ ~aω;m; a†ω0;m0 � vanishes. The mirror annihilation
operator ~aω;m and the ordinary creation operator a†ω;m have
the same energy under the CFT Hamiltonian as we show in
(4.13). So in a state that is time-translationally invariant, we
do not expect this commutator to have a nonzero expect-
ation value.12

We now consider a two-point function with one point in
front of the horizon, and another point behind the horizon.
This calls into play both the expansions (4.4) and (4.7).
Recalling the fact that the relation between the Kruskal and
Schwarzschild coordinates inside and outside the horizon
differs by a minus sign, and repeating the derivation above
for this case, we find that

h∂U1
ϕðU1; V1;Ω1Þ∂U2

ϕðU2; V2;Ω2Þi

¼ β2

4π2U1U2

X
m;m0

Z
∞

0

ω
1
2dωðω0Þ12dω0Iω;ω0;m;m0 ; ð4:8Þ

with

Iω;ω0;m;m0 ≡ haω;m ~aω0;m0 iYmðΩ1ÞY�
m0 ðΩ2Þð−U1Þ

iβω
2π ðU2Þ

−iβω0
2π

þ haω;m ~a†ω0;m0 ið−U1Þ
iβω
2π ðU2Þ

iβω0
2π YmðΩ1ÞYm0 ðΩ2Þ

þ H:c: ð4:9Þ

Note that the result (4.3) is valid regardless of whether the
points are on opposite sides, or the same side of the
horizon. Now we find, repeating the contour integral
argument above, that (4.8) agrees with (4.3) only if the
two-point function between the two annihilation operators
(and the two creation operators) is nonzero, whereas the
mixed two-point function vanishes.

haω;m ~aω0;m0 i ¼ e−
βω
2

1 − e−βω
δðω − ω0Þδmm0 ; haω;m ~a†ω0;m0 i ¼ 0;

ha†ω;m ~a†ω0;m0 i ¼ e−
βω
2

1 − e−βω
δðω − ω0Þδmm0 ; ha†ω;m ~aω0;m0 i ¼ 0:

ð4:10Þ

The additional factor of e−
βω
2 arises because of the relative

minus sign between U1 and U2 in (4.9).
We can also consider the case where both points are

inside the black hole. This is very similar to the cases
above, so we just state the result. The smoothness of the
two-point function of ϕ requires

h ~aω;m ~a†ω0;m0 i ¼ 1

1 − e−βω
δðω − ω0Þδmm0 ;

h ~a†ω;m ~aω0;m0 i ¼ e−βω

1 − e−βω
δðω − ω0Þδmm0 : ð4:11Þ

Finally, recall from the discussion of Sec. III A 1 that
relationally defined observables in the bulk must obey the
Heisenberg equations of motion. Consider a bulk point
obtained considering a geodesic that originates on the
boundary at point ðtb;ΩbÞ, with no initial velocity along the
sphere, and following it for an affine parameter λ. In (3.17),
this point was denoted by Pλðtb;Ωb; λÞ. By solving the
geodesic equation in the metric given by (4.1), we can trade
these coordinates for Schwarzschild coordinates.

Pλðtb;Ωb; λÞ ¼ ðt;Ω; r�Þ:

Then it is easy to check that the isometry of the metric
under time translations implies that if we follow another
geodesic that originates at tb þ T, then

12This assumption of time-translational invariance on the
boundary is not true in some cases, like in the geon geometry
considered in [42] where the mirror operators can be identified
with the ordinary ones.
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Pλðtb þ T;Ωb; λÞ ¼ ðtþ T;Ω; r�Þ: ð4:12Þ
The relation (4.12) holds for points both outside and inside
the horizon. In terms of the field this means that for the field
written in Schwarzschild coordinates,

eiHTϕðt; r�;ΩÞe−iHT ¼ ϕðtþ T; r�;ΩÞ;
where H is the boundary Hamiltonian that translates times
on the boundary. This translates into the following com-
mutation relations for the modes introduced above:

½H; aω;m� ¼ −ωaω;m; ½H; a†ω;m� ¼ ωa†ω;m;

½H; ~aω;m� ¼ ω ~aω;m; ½H; ~a†ω;m� ¼ −ω ~a†ω;m: ð4:13Þ
Note the opposite signs in the two lines of (4.13). This is a
result of the fact that we mentioned above—the operator
~aω;m multiplies a mode that is positive frequency with
respect to the Schwarzschild time.
Summary: In this section we considered a scalar field

propagating in the geometry of a Schwarzschild black hole.
By simply imposing the requirement that the two-point
function had the correct short distance behavior we were
able to derive necessary conditions on the two-point
functions of the modes of the field in the black hole state.
These conditions are given by (4.6) and (4.10)–(4.11). If
the field is defined relationally with respect to the boun-
dary, then the modes must also have the Hamiltonian
commutators (4.13).
In the CFT we must find operators that satisfy these

conditions in any state that is dual to a smooth geometry.

B. Local operators in the CFT

Let us now understand what the analysis above implies
for the CFT. As discussed in Sec. III, we would like a
family of operators in the CFT, parametrized by a set of real
numbers, ϕðU;V;ΩÞ, so that the correlation functions of
these operators reproduce the correlators of a perturbative
field in AdS. In this subsection, we discuss how to find such
correlators outside the horizon. We turn to the issue of the
nature of these operators inside the horizon in Sec. V.

1. Local operators outside the horizon

For the CFT to successfully reproduce effective field
theory correlators outside the horizon, it must have oper-
ators which play the role of the modes aω;m that we
encountered in (4.4). If we allow ourselves to use state-
dependent operators, then this can be done in a straightfor-
ward way, as we show below.
Dual to each propagating field in the bulk, we have a

generalized free field (GFF), O on the boundary—usually
it is a single trace operator in a gauge theory. The fact that
bulk correlators factorize because the bulk theory is
perturbative is reflected in the large-N factorization of
boundary correlators. When evaluated in the vacuum,

h0jOðt1;Ω1Þ…Oðt2n;Ω2nÞj0i

¼ 1

2n

X
π

h0jOðtπ1 ;Ωπ1ÞOðtπ2 ;Ωπ2Þj0i…

× h0jOðtπ2n−1 ;Ωπ2n−1ÞOðtπ2n ;Ωπ2nÞj0i þ O

�
1

N

�
;

ð4:14Þ
where π sums over all possible permutations. A similar
relation holds for thermal correlators.

1

ZðβÞTr½e
−βHOðt1;Ω1Þ…Oðt2n;Ω2nÞ�

¼ 1

2n

X
π

�
1

ZðβÞTr½e
−βHOðtπ1 ;Ωπ1ÞOðtπ2 ;Ωπ2Þ�…

×
1

ZðβÞTr½e
−βHOðtπ2n−1 ;Ωπ2n−1ÞOðtπ2n ;Ωπ2nÞ�

�

þ O

�
1

N

�
: ð4:15Þ

Note that (4.15) is subtly different from (4.14) and does not
follow from it directly. In particular, in (4.15), the thermal
two-point functions have already resummed the 1

N series
about the vacuum that appears in (4.14) into a different 1

N
series. In particular, the thermal two-point function

Gβðt1;Ω1; t2;Ω2Þ ¼
1

ZðβÞTr½e
−βHOðt1;Ω1ÞOðt2;Ω2Þ�;

ð4:16Þ
where ZðβÞ is the partition function, is very different from
the vacuum two-point function

Gvacðt1;Ω; t2;Ω2Þ ¼ h0jOðt1;Ω1ÞOðt2;Ω2Þj0i:

Also, note that the large-N factorization of the thermal
correlators (4.15) may break down if the operators are
separated by large distances in time.
Finally, by the usual equivalence of ensembles, and the

eigenstate thermalization hypothesis [43], a similar state-
ment holds when the thermal correlators on both sides of
(4.15) are replaced by expectation values in a typical energy
eigenstate of the CFT. Explicitly, this is the statement that
in a typical eigenstate of the CFT jEiwith energy E ≫ N ,
we again have

hEjOðt1;Ω1Þ…Oðt2n;Ω2nÞjEi

¼ 1

ZðβÞTr½e
−βHOðt1;Ω1Þ…Oðt2n;Ω2nÞ� þ O

�
1

N

�
;

where β is the temperature corresponding to the energy E.
At high temperatures in the CFT we expect that this is
given by
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β ¼ fβ

�
E
N

�
; ð4:17Þ

where fβ is a smooth function. For example, in the N ¼ 4
super-Yang-Mills with SUðNÞ gauge group at high temper-
ature and at strong coupling on a sphere of volume V, we
have

β ¼
�

8E
3π2N2V

�
−1
4

:

Therefore, in particular, correlators in an energy eigenstate
also factorize, and the eigenstate two-point function is close
to the thermal one. We use this important fact to switch
freely between thermal and pure state expectations below.
Now consider the modes of these generalized free fields.

Oωn;m ¼ 1

T
1
2

b

Z
Tb

−Tb

Oðt;ΩÞeiωntY�
mðΩÞdtdd−1Ω: ð4:18Þ

Here we have discretized the modes by introducing a time
band ½−Tb; Tb�, and correspondingly we have introduced a
discrete frequency ωn ¼ n

Tb
. This is necessary because if we

consider the strict Fourier modes of the CFToperators, they
do not have the behavior that we need below. In [8,9], we
performed this discretization by “clubbing together” these
Fourier modes, whereas here we have reverted to a time
band that has some other advantages. We also need a UV
cutoff on n because if we consider very high energy modes
then the 1

N corrections that we have neglected above
become important.
Now we find that in eigenstates

hEj½Oωn;m;O
†
ωn0 ;m

0 �jEi ¼ Cβðωn; mÞδωnω
0
n
δmm0 þ OðN −1Þ:

On the right-hand side the delta functions follow from the
fact that both sides have the same CFT energy and CFT
angular momentum. The nontrivial coefficient Cβðωn; mÞ is
a function of the temperature β corresponding to E by
(4.17). Now we define the operators

aωn;m ¼ Oωn;mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cβðωn; m

p Þ þ OðN −1Þ: ð4:19Þ

These operators are the natural candidates for creation
and annihilation operators in the bulk. By construction we
have that up to N −1 corrections

½H; aωn;m� ¼ −ωnaωn;m; ½aωn;m; a
†
ω0
n;m0 � ¼ δωn;ω0

n
δm;m0 :

It is not difficult to check that they have the right thermal
two-point function.

1

ZðβÞTrðe
−βHaωn;ma

†
ωn;mÞ ¼

1

ZðβÞTrða
†
ωn;me

−βHaωn;mÞ

¼ eβωn
1

ZðβÞTrðe
−βHa†ωn;maωn;mÞ

¼ eβωn
1

ZðβÞTrðe
−βHaωn;ma

†
ωn;mÞ

− eβωn
1

ZðβÞTrðe
−βHÞ;

where we have used the cyclicity of the trace and the
commutation relations above. A little algebra now shows
that

1

ZðβÞTrðe
−βHaωn;ma

†
ωn;mÞ ¼ hEjaωn;ma

†
ωn;mjEi ¼

1

1 − e−βωn
;

where we have used the equivalence of ensembles and the
relations above hold only up to 1

N and other corrections
from discretizations.
Now consider the CFT operator

ϕðt; r�;ΩÞ ¼
X
ωn;m

1ffiffiffiffiffiffi
ωn

p aωn;mfωn;mðt; r�ÞYmðΩÞ þ H:c:

ð4:20Þ

where fωn;m is a solution of the Klein-Gordon equation in
the metric (4.1) with the boundary condition at the horizon

fωn;m !
r→r0

ðeiδeiωnr� þ e−iδe−iωnr� Þ;

and normalizable boundary conditions at infinity. The
expansion (4.20) not only fulfils the necessary near-horizon
conditions that we derived above; it also correctly repro-
duces the behavior of a bulk field propagating in a smooth
spacetime in the rest of AdS. This completes our con-
struction of local operators in a high energy eigenstate. As
we mentioned in Sec. III B 3, we obtain a bonus, and a
consistency check, from AdS/CFT. The fields constructed
in (4.20), with the aid of (4.19), automatically satisfy

lim
r→∞

r2ΔZ2hEjϕðt1; r�;Ω1Þϕðt2; r�;Ω2ÞjEi
¼ Wβðt1 − t2;Ω1;Ω2Þ;

where Z is a numerical factor and Wβ is defined in (4.16).
Note that we did not put this relation in by hand. It follows
from, and is a prediction of, the claim that the eigenstate is
dual to the black hole geometry.

2. A state-independent minisuperspace bulk-boundary
map outside the horizon

In (4.19), we explicitly put in the commutator in the
energy eigenstate. The modes in (4.20) also contain
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information about the state. Therefore, as written the
expression (4.20) is state dependent and will not correctly
reproduce local correlation functions in states corresponding
to black holes with macroscopically different properties.
Now we consider whether it is possible to write down an

expansion that will work outside the horizon in a larger
class of states. The basic idea is to use projectors to try and
“detect” the state. We show how one can generalize (4.20)
so that it works in all high energy spherically symmetric
eigenstates.
Given a spherically symmetric energy eigenstate jEi, we

can associate a temperature to the energy eigenstate by
means of (4.17), and also an associated metric via (4.1). We
denote this metric as gE;μν. We also consider modes fE;ω;m;
these are the same as the modes fω;m in (4.20), except that
we have displayed their energy dependence explicitly.
Now, consider

ϕstate-indðt; r�;ΩÞ

¼
X
E

X
ω;m

1ffiffiffiffiffiffi
ωn

p
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cβðωn; mÞp Oωn;mjEihEj

�

× fE;ωn;mðt; r�ÞYmðΩÞ þ H:c:; ð4:21Þ

where, as we emphasized above, the expectation of the
commutator that we have used to normalize the mode also
depends on the energy eigenstate. The claim is that this
generalizes the construction (4.20) so that, as long as we
stay away from the horizon, it works in spherically
symmetric states of the CFT corresponding to an arbitrary
temperature.
To verify this, note that the expression (4.21) is

designed so that when it acts directly on an energy
eigenstate its action reduces to that of (4.20). Now
consider an excitation of an energy eigenstate by a
polynomial in the modes (4.18),

Oω1;m1
…Oωn;mn

jEi ¼
X
i

αijEii:

If
P

n ≪ N and
P

nωn ≪ N , then all states jEii that
appear above have E−Ei

N ¼ 0þ Oð 1N Þ and therefore, from
(4.17), the coefficients αi are restricted in support to states
that have the same macroscopic temperature and correspond
to the same macroscopic metric. Therefore, (4.21) again acts
on this superposition as (4.20) away from the horizon. This is
the expected behavior since we do not expect these excita-
tions to have any significant backreaction on the geometry.
It is easy to verify that the action of (4.21) is also

consistent with the fact that we expect states of the form
(3.4) to behave like classical superpositions of different
geometries.
If we approach too close to the horizon, then not all

quantities of physical interest are smooth functions of the
energy. For example, there has been some debate in the

literature on highly spacelike modes [37] where the ratio of
value of the mode function near the horizon to its value at
the boundary can vary exponentially with temperature.
Although we showed in [7] that these modes do not present
an obstruction to reconstructing the field near the horizon in
the thermal state, it is less clear how to deal with this
difficulty in the putative state-independent expression
(4.21). It is also not clear whether (4.21) can be refined
to work in all nonspherically symmetric situations.

V. ARGUMENTS AGAINST STATE-
INDEPENDENT OPERATORS

In the previous section we explicitly found operators
aωn;m in the CFT that were dual to propagating modes in the
bulk. However, if we want to describe local operators
behind the horizon, then we also need to locate the operator
~aωn;m in the CFT. Alternately, we could find operators
~Oωn;m related to ~aωn;m by a relation analogous to (4.19). At
this order in 1

N , we do not have to consider corrections to
(4.19) and we switch freely between ~Oω;m and ~aω;m.
In this section, we review and refine some of the

arguments that suggest that these operators cannot be state
independent in the CFT. In [2–4], these arguments were
used to argue that the CFT could not look past the black
hole horizon, or even more dramatically that the horizon
was just a cloak for a “firewall.” Our interpretation is,
instead, that these arguments tell us that the bulk to
boundary map is state dependent. From this point of view,
the objective of this section is to prove that one must either
accept state-dependence or firewalls.

A. Some general results regarding projectors

Before we continue with this analysis, let us remind the
reader of some elementary properties about matrix elements
of projection operators. Eigenvalues of projection operators
are either 1 or 0, so the operator norm of a projection
operator is ∥P∥ ¼ 1. As a result projectors are bounded
operators and this implies that the map from state vectors jΨi
into expectation values hΨjPjΨi is a continuous map.
Hence, to the extent that we can characterize the physical

properties of a state by evaluating expectation values of
projectors, nearby state vectors must have nearby physical
properties.
Let us try to make this a bit more precise. Suppose that

we have two unit-normalized states jΨ1i and jΨ2i in the
Hilbert space and we denote their difference as jδΨi ¼
jΨ1i − jΨ2i. We define δ ¼ ∥jδΨi∥. We consider a pro-
jector and estimate the difference of its expectation value on
the two nearby states,

jhΨ1jPjΨ1i − hΨ2jPjΨ2ij
¼ jhδΨjPjΨ2i þ hΨ2jPjδΨi þ hδΨjPjδΨij
≤ jhδΨjPjΨ2ij þ jhΨ2jPjδΨij þ jhδΨjPjδΨij
≤ 2δþ δ2:
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Notice that it may also be useful to think of two nearby
states as those obeying

jhΨ1jΨ2ij ¼ 1 −
ϵ2

2
; ð5:1Þ

with small positive ϵ. Since physical states are repre-
sented by rays on the Hilbert space, we are free to
chose the phase of the vectors as we like. It is easy to
check that there is a choice where ϵ ¼ δ and the same
result as before follows i.e. for any two vectors obeying
(5.1), we have

jhΨ1jPjΨ1i − hΨ2jPjΨ2ij ≤ 2ϵþ ϵ2: ð5:2Þ

We use these results below.

B. Na ≠ 0 argument

First, let us consider the Na ≠ 0 argument [4]. The
essence of this argument is as follows. We would like the
set of states in the CFT to obey two conditions, both of
which seem motivated on physical grounds.
(1) Typical superpositions of energy eigenstates are not

excited states from the point of view of the infalling
observer.

(2) If we consider states that are eigenstates of a
Schwarzschild number operator Nωn

≡ a†ωn;maωn;m,
for the modes introduced in (4.18)–(4.19), then these
are excited states from the point of view of the
infalling observer.

To phrase the first condition more precisely consider the
following set of energy eigenstates,

RE ≡ fjEii∶ E − Δ ≤ Ei ≤ Eþ Δg;

where E is some mean energy andΔ is a spread. We use the
same symbol RE to denote the Hilbert space spanned by
these states and the meaning should be clear from the
context. We also denote

DE ≡ dimðREÞ:

Finally we introduce

PE ≡ projector ontoRE:

Now consider a projection operator PF corresponding to
the measurement of the infalling observer, defined so that
PF ¼ 0 corresponds to a smooth and empty interior. This
projector can be constructed as an ordinary projector in
the CFT Hilbert space if the bulk to boundary map is state
independent. The authors of [4] used the number oper-
ator, as measured by the infalling observer, to detect
whether the horizon was smooth but it is possible to use
other operators and therefore we keep the analysis here
general.

From the first physical assumption mentioned above, we
expect that for typical states inRE the expectation value of
PF should be small. Hence we expect

1

DE
TrRE

ðPFÞ ¼ 0þ O

�
1

N

�
: ð5:3Þ

The second condition means that for eigenstates jNii of the
Schwarzschild number operator Nωn

we have

hNijPFjNii ¼ Oð1Þ: ð5:4Þ

In the large-N limit we have ½H;Nωn
� ¼ 0þOðN −1Þ, so

we intuitively expect that we can find a basis of the Hilbert
space RE spanned by number operator eigenstates jNii.
The trace of an operator can be evaluated in any basis, so
we can evaluate the trace (5.3) in the jNii basis. For each of
the basis vectors (5.4) gives a significant contribution. Then
it seems that we get

1

DE
TrRE

ðPFÞ ¼ Oð1Þ þ small error ð5:5Þ

and that hence typical states are not smooth, in contra-
diction to the first assumption above. This concludes the
Na ≠ 0 argument of [4]. The result was interpreted by [4] as
an indication that typical pure states do not have a smooth
interior. The small error above is due to the fact that the
operators H and Nωn

can be simultaneously diagonalized
within RE only in an approximate sense, in the large-
N limit.
One might attempt to find a loophole in this argument by

looking more carefully at the error terms mentioned above.
Could it be that, contrary to what was assumed in [4], these
error terms are significant enough to make the rhs of
Eq. (5.5) close to zero? In the following subsection, we
perform a systematic analysis of the error terms and
exclude the possibility that they can invalidate the
Na ≠ 0 argument.

1. Bounding errors in the Na ≠ 0 argument

The linear algebra literature contains several results
on “almost commuting matrices” [44], which could be
used to make the argument above rigorous. Here, rather
than taking this path, we follow an approach motivated
by perturbation theory to make the Na ≠ 0 paradox
sharper.
We assume that

H ¼ H0 þ
1

N
V; ð5:6Þ

where the “infinite N ” Hamiltonian, H0, has the property
that ½H0;Nωn

� ¼ 0 and V is a “perturbation,” whose matrix

elements have the property that hEjVjEi
E ¼ Oð1Þ for nearby
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high energy eigenstates of energy of order E.13 Note that
(5.6) is somewhat stronger than our original starting
point—which was simply that hEj½H;Nωn

�jEi ¼ Oð 1N Þ.14
If (5.6) is correct, then by standard arguments from

perturbation theory we expect that groups of eigenstates of
H can be reorganized into eigenstates of Nωn

and vice
versa. Now consider the set of all number eigenstates that
can be accurately approximated by energy eigenstates in
RE. We call this set of Nωn

eigenstates R− and denote its
dimension by D−. The projector ontoR− is denoted by P−.
By definition,

hNijPEjNii ¼ 1 − O

�
1

N

�
; ∀ jNii ∈ R−:

The structure of these two sets is shown in Fig. 6.
The key physical consequence of (5.6) is that to form

eigenstates of H0 with an eigenvalue E, we have take
eigenstates of H with H-eigenvalues E� Δ, where
Δ ¼ OðEN Þ ¼ Oð1Þ. Therefore if we take the original spread
of energies Δ in RE to be large, Δ ≫ Oð1Þ, then we have

DE −D−

DE
≪ 1: ð5:7Þ

If we accept these statements, then it is easy to produce a
contradiction. From the assumptions above, given a
jNii ∈ R−, we have

jNii ¼
X
m

U�
mijEmi ¼

X
m∈RE

U�
mijEmi þ

X
m∉RE

U�
mijEmi

≡ jMii þ jRii;

where U�
mi is some matrix that implements the change in

the two eigenvalue bases and where hRijRii ¼ Oð 1NÞ. Here,
we have divided the sum into two parts and used the
definition ofR− which is precisely that its elements can be
reexpressed as elements in RE. Moreover, using (5.2) we
find that hMijPFjMii ¼ hNijPFjNii þ Oð 1NÞ. But this
implies that

1

DE
TrðP−PEPFPEP−Þ ¼

1

DE
TrðP−PFP−Þ

¼ 1

DE
TrðPFP−Þ ¼ κ

D−

DE
;

where κ is some constant of Oð1Þ which determines the
probability for an infalling observer to see an excitation in a
number eigenstate and which follows from (5.4). Here we
have neglected Oð 1N Þ corrections.15
Second, notice that the original trace in the micro-

canonical ensemble can be transformed by a sequence of
elementary manipulations to

TrðPFPEÞ ¼ TrðPEPFPEÞ ¼ Trðð1 − P− þ P−ÞPEPFPEÞ
¼ Trðð1 − P−ÞPEPFPEÞ þ TrðP−PEPFPEÞ
¼ Trðð1 − P−ÞPEPFPEð1 − P−ÞÞ
þ TrðP−PEPFPEP−Þ:

Here we have repeatedly used the cyclicity of the trace, and
the fact that projectors square to themselves. Now notice
that given any product of projectors X ¼ P1…Pn, we find
that TrðXÞ ¼ TrðX†XÞ ≥ 0. Therefore the first term in the
last line above is positive and we find

TrðPFPEÞ ≥ TrðP−PEPFPEP−Þ ¼ κ
D−

DE
: ð5:8Þ

Combing the result of (5.8) and the physical assumption
(5.3), we seem to find

FIG. 6. The schematic structure of the two relevant sets. The
solid circular set is the set of energy eigenstates. The smaller set
of number eigenstates, shown as an elliptical patterned set, is
almost completely contained inside the set of energy eigenstates.

13Note that if we wish to ensure that we can carry out
perturbation theory to higher orders, we would also like V to
obey the eigenstate thermalization hypothesis described in greater
detail in (7.15).

14It is subtle to consider perturbations of the Hilbert space at
high energies in 1

N because the Hilbert space changes discontin-
uously with N and its dimension goes off to ∞ as N → ∞. So
we are assuming that (5.6) holds at each N and some properties
of these operators, such as the ratio of the dimensions of different
sets below have a well-defined large-N limit.

15In the equation above, the first equality can be understood
as follows: we have 1

DE
TrðP−PEPFPEP−Þ¼ 1

DE

P
i∈R−

hNijPE

PFPEjNii¼ 1
DE

P
i∈R−

hMijPFjMii and on the other hand we have
1
DE
TrðP−PFP−Þ¼ 1

DE

P
i∈R−

hNijPFjNii¼ 1
DE

P
i∈R−

hMijPFjMiiþ
1
DE

P
i∈R−

2Re½hRijPFjMii�þ 1
DE

P
i∈R−

hRijPFjRii�. Now, PF is a
projector operator so from the discussion of Sec. VA and the fact
that the norm of the state jRii is Oð 1N Þ we learn that each of the
terms in the sums over i is small. Finally, the number of terms in
this sum isD− so from (5.7) we learn that the last two sums on the
rhs are unimportant, thus establishing the desired result.
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0 ¼ TrðPFPEÞ ≥ κ
D−

DE
: ð5:9Þ

This is clearly a contradiction, if we recall (5.7). Note that
the difference between the left and right sides of (5.9) is O
(1), and so the errors, which we have bounded to be Oð 1N Þ
using the construction above cannot affect this result.
This was used by [4] to suggest that (5.3) should be

abandoned. We show below how a more plausible explan-
ation is that PF does not exist as a fixed (state-independent)
linear projector; rather the question of whether a firewall
exists or not depends on a state-dependent measurable.

C. Negative occupancy argument

We now present an argument that is closely related to the
counting argument (or the lack of a left-inverse argument).
As originally stated in [3], the counting argument is as
follows. First, we consider a mode behind the horizon with
creation and annihilation operators obeying the algebra

½~aωn;m; ~a
†
ωn;m� ¼ 1: ð5:10Þ

Notice that this equation unambiguously selects ~a†ωn;m as
the creation operator, since we can rewrite it as
½ð1þ ~a†ωn;m ~aωn;mÞ−1 ~aωn;m�~a†ωn;m ¼ 1, which means that the

operator ~a†ωn;m has a left inverse and hence it does not
annihilate any state.
Then we notice that, as explained in Sec. IV, modes

behind the horizon obey inverted commutators with the
CFT Hamiltonian

½H; ~a†ωn;m� ¼ −ωn ~a
†
ωn;m: ð5:11Þ

This means that the operator ~a†ωn;m, despite being a creation
operator, lowers the energy of the CFT. Hence, it maps the
space of states of energy E into that of energy E − ωn.
However, the density of states in the CFT increases
monotonically with energy. This implies that the operator
~a†ωn;m maps the larger Hilbert space of energy E into a
smaller one of energy E − ωn. The linear operator ~a

†
ωn;m can

do this only if it annihilates a fraction of the states of energy
E. But this is in contradiction with the prediction of (5.10)
that ~a†ωn;m has a left inverse.
Hence it seems that imposing the algebra (5.10)–(5.11)

for state-independent linear operators is inconsistent with
the growth of entropy in the CFT. This concludes the
counting argument of [3].
One apparent difficulty with this argument is that it is

phrased in terms of operator relations (5.10)–(5.11). One
might wonder whether it is possible to satisfy these
relations, not as operator equations, but only within simple
correlation functions. We now present a closely related
argument that is phrased entirely within the context of low
point correlation functions.

Let PE be the projector onto a narrow band of energy
states. Define DE ¼ TrðPEÞ, which counts the number of
states in this band. We consider the expectation value of the
occupation level of the mode in this ensemble of states,

h ~Nωn
i ¼ D−1

E TrðPE ~a
†
ωn;m ~aωn;mÞ ¼ D−1

E Trð~aωn;mPE ~a
†
ωn;mÞ

¼ D−1
E TrðPEþωn ~aωn;m ~a

†
ωn;mÞ þ δ1

¼ eβωn þD−1
E TrðPEþωn ~a

†
ωn;m ~aωn;mÞ þ δ1 þ δ2:

ð5:12Þ

In the first line we used the cyclicity of the trace. In the
second line we used that (5.11) should hold inside simple
correlators, which implies ~aωn;mPE ¼ PEþωn ~aωn;m up to
some small error δ1. In the last line we used that (5.10)
should hold in simple correlators, up to some small error δ2.
Since the trace above consists just of a sum of low point
correlators we expect that δ1; δ2 ∼ Oð 1NÞ. This assumption
allows us to ignore these errors in deriving the contradiction
that follows. The factor outside the trace of eβωn arises
because

D−1
E TrðPEþωnÞ ¼

DEþωn

DE
¼ eβωn :

We also use the fact that for a reasonably smooth operator
~Nωn

, we have

D−1
E TrðPEþωn ~a

†
ωn;m ~aωn;mÞ ¼ eβωnh ~Nωn

i þ OðN −1Þ:

Replacing this in (5.12) and dropping all subleading error
terms we arrive at our final relation

h ~Nωn
i ¼ eβωn þ eβωnh ~Nωn

i ⇒ h ~Nωn
i ¼ −

1

1 − e−βωn
;

which is negative. In some sense, this unphysical result is
not surprising, because ~aωn;m is an annihilation operator
with positive energy, and the thermal properties of such an
operator seem to be ill defined.
To summarize, the argument above demonstrates that

there cannot exist linear, state-independent operators in the
CFTwhich approximately satisfy the relations (5.10)–(5.11)
inside simple correlation functions. One might conclude
from this that the black hole does not have an interior that the
CFT can describe. Instead, we advocate [7–9] that the
desired relations (5.10)–(5.11) can be consistently realized
by allowing the operators ~aωn;m, ~a

†
ωn;m to depend on the state.

For state-dependent operators the counting argument does
not apply [9] and the negative occupancy argument pre-
sented above does not apply since it is meaningless to
evaluate the trace, if the operators vary as a function of the
state in the ensemble.
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D. The generic commutator

Now we consider the fact that there is not enough space
in the CFT Hilbert space to accommodate the commutant of
the ordinary operators if they are finely spaced enough.
There are two ways in which this argument can be phrased.
One point, which was originally made in [3] is as follows. If
we assume that the algebra of the mirror operators is given
by some “scrambling’’ unitary transform of the ordinary
operators so that we have

~a†ωn;m ¼ Ua†ωn;mU
†;

then we find that, for a generic unitary operator U,
we have

j½~a†ωn;m; aωn;m�j2 ∼ Oð1Þ:

This by itself is not a proof of the lack of existence of the
commutant. In particular, if the Hilbert space has a
factorization into coarse and fine pieces, as was discussed
originally in [7], then this would break down.
In what follows, we discuss how finely an observer has

to measure generalized free fields on the boundary, in order
to exhaust the space of the CFT. However, first, we turn to
two toy models: the spin chain and a set of decoupled
harmonic oscillators.
Consider a chain of spins. We denote the operators acting

on this chain by σia as in [9]. We assume that the spins are
all decoupled. The index i ¼ 1…N, where N is the length
of the spin chain, and a ¼ x, y, z as usual. We normalize
them to satisfy ½σia; σjb� ¼ i

2
δijϵabcσ

i
c. A complete set of

operators for the Hilbert space is obtained by taking
arbitrary products of these single-spin operators.
Nevertheless, even if we consider the significantly smaller
set of just the N single-spin operators, the commutant of
this smaller set is trivial and consists only of the identity
operator.
One might hope that there exist (state-independent)

operators ~σ, apart from the identity, which approximately
commute with all single-spin operators. We now demon-
strate that this is not possible: if ~σ has small commutators
with all single-spin operators, then ~σ is small as an operator.
To show this, we consider an arbitrary operator ~σ acting on
the spin chain. In order to factor out the identity operator,
which is trivially in the commutant, we assume that ~σ is
traceless, which means that we can represent it as a
polynomial in the atomic spin operators

~σ ¼
X

im;am;n

ca1…an
i1…in

σi1…in
a1…an ;

where σi1…in
a1…an ≡ σi1a1…σinan , and we impose the constraint

that i1 < i2 < …in to avoid overcounting.

We find that we have the following relation:

½ ~σ; σjb� ¼
i
2

X
ca1…an
i1…in

× ðδji1ϵa1bcσ
i1
c σ

i2…in
a2…an þ δji2ϵa2bcσ

i2
c σ

i1i3…in
a1a3…an þ � � �Þ:

While we have written a sum of delta functions on the right,
note that at most one of them is nonvanishing. A natural
norm of an operator to consider in this space is
jXj2 ¼ 1

2n
TrðX†XÞ. With this definition

j½ ~σ; σjb�j2 ¼
1

4

X
jca1…an

i1…in
δji1ϵa1bcj2 þ jca1…an

i1…in
δji2ϵa2bcj2 þ � � �

Note that there is no interference between the different
terms in the sum due to the observation above. However,
when we sum over b we find that there are two values for
which the completely antisymmetric tensor is nonzero.
This leads to

X
j;b

j½ ~σ; σjb�j2 ¼
1

2

X
jca1…an

i1…in
j2 ¼ 1

2
j ~σj2:

The physical implication of this is as follows. If an
observer can measure the various single-spin operators,
then given any operator ~σ, the observer can detect that it
fails to commute with these ordinary operators. In par-
ticular, it is not necessary for the observer to measure
very complicated observables. Even if the observer does
not have access to more complicated products of these
spin operators, she can determine that the commutant is
trivial.
The argument presented above shows that an operator of

unit norm, j ~σj2, must have an order 1 commutator with at
least one single-spin operator, or alternatively it could have
Oð1SÞ commutators with all the single-spin operators. In
either case, the important point is that it cannot simulta-
neously have smaller commutators with all the σia.
Now, we consider a similar argument for the case of

decoupled harmonic oscillators. The setup was described in
more detail in [9]. We have unbounded creation and
annihilation operators. The frequencies of the oscillators
are given by ω1…ωN and their respective creation and
annihilation operators are specified by a1…aN. The only
nonzero commutators are ½ai; a†j � ¼ δij. The Hilbert space
is a Fock space indexed by the eigenvalues of the number
operators Ni ¼ a†i ai.
We can still write any operator of interest as

~a ¼
X
pj;qj

Aðp1; q1…pn; qnÞap1

1 ða†1Þq1…apN
N ða†NÞqN :

Once again we factor out factors of Ni from each
monomial in the polynomial above so that either
pi ¼ 0 or qi ¼ 0 for all i. the most general operator then
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lives in the direct product of the vector space of poly-
nomials of Ni and the space of operators above. But note
that the sum above can also accommodate operators where
a particular frequency, say ωi, does not appear simply by
setting pi ¼ qi ¼ 0.
Now in a typical equilibrium state, we see that the only

nonzero expectation values are products of Ni. This implies
that

h ~a† ~ai ¼
X

jAðp1; q1…pn; qnÞj2haq11 ða†1Þp1ap1

1

× ða†1Þq1…aqNN ða†NÞpNapN
N ða†NÞqN i;

where the … indicate similar terms for all the other
frequencies and cross terms vanish.
Evaluating the expectation value above in a state

jN1…NNi we find that

h ~a† ~ai ¼
X
pj;qj

jAðp1; q1…pn; qnÞj2ðN1 þ 1Þq1

× ðN1 þ q1 − p1 þ 1Þp1
…ðNN þ 1ÞqN

× ðNN þ qN − pN þ 1ÞpN
;

where the Pochhammer symbol is ðxÞn ≡ xðxþ 1Þ…
ðxþ n − 1Þ.
Next we notice that

½ ~a; aj� ¼ −
X

Aðp1; q1;…pn; qnÞqjap1

1

× ða†1Þq1…a
pj

j ða†jÞqj−1…apN
N ða†NÞqN :

½ ~a; a†j � ¼
X

Aðp1; q1;…pn; qnÞpja
p1

1 ða†1Þq1…a
ðpj−1Þ
j

× ða†jÞqjapN
N …ða†NÞqN :

Defining a new function, by the recursion relations

Bðp1; q1…pj; qj;…pn; qnÞ
¼ ðpj þ 1ÞAðp1; q1;…pj þ 1; qj;…pn; qnÞ;

Bðp1; q1…pj; qj;…pn; qnÞ
¼ ðqj þ 1ÞAðp1; q1;…pj; qj þ 1;…pn; qnÞ;

we see that we haveX
j

hj½ ~a; aj�j2i þ hj½ ~a; a†j �j2i

¼
X

½jBðp1; q1…pn; qnÞj2ðN1 þ q1 − p1 þ 1Þp1

× ðN1 þ 1Þq1…ðNN þ qN − pN þ 1ÞpN
ðNN þ 1ÞqN �:

In this case, we do not have a simple result like that of the
simple harmonic oscillator. Indeed for some operators ~a
that are comprised of creation and annihilation operators,
which have a very high occupancy in the state, it seems

possible to make h ~a† ~ai ≫ hPjhj½ ~a; aj�j2i þ hj½ ~a; a†j �j2i.
However, in most configurations and for almost all oper-
ators ~a, these two terms are comparable.
Note that in order to build an entire effectively iso-

morphic commuting algebra, we need a ~a operator for each
ordinary operator. Therefore even if, in some states, some
of these operators have a small commutator with the
ordinary operators, it is clear that there is not enough
space in this chain of simple harmonic oscillators to
accommodate mirror operators for each oscillator.
It is this intuition that carries over to the CFT.

Consider the set of modes of generalized free fields.
For simplicity, imagine separating them in frequency by
ω0, so that these modes all appear to be Onω0;m. As usual,
there could be other GFFs, while we are displaying
only one of them. The main observation is the following.
By putting a cutoff at the stretched horizon, we can limit
the maximum angular momentum m that can appear for a
given ωn ¼ nω0. Second, as we take ω0 ∝ 1

N α, where the
precise power α depends on how we impose the cutoff
above, then we find that these modes are already enough
to account for the entropy of the CFT. (This is similar to
the “brick wall” explanation of the black hole entropy in
flat space [45].) Dimension counting, and the intuition
from the simple harmonic oscillator above, would then
suggest that there are no operators ~Oωn;m that commute
with all these modes.
While this commutator argument is a powerful constraint

in practice, and was an important guiding principle in our
construction [8,9], as the reader will notice it is hard to
make it rigorous beyond this level. Moreover, power law
suppressed commutators may be justified and even needed
on physical grounds since the fields in the bulk are not
strictly local. If we are willing to accept these small
commutators, then the “commutator argument” above loses
its power somewhat. For example, the reader can consult
the talk [46] for an example that predates [8,9] and explores
a model with such commutators.
This concludes our summary of the arguments that

suggest that ~Oωn;m cannot be found as state-independent
operators in the CFT. A logical possibility is to accept that
black holes have no interior. However, we believe that a
more compelling alternative is that the black hole interior is
described by state-dependent operators in the CFT.

VI. PARADOXES FOR THE ETERNAL
BLACK HOLE

In this section, we show how versions of the paradoxes
discussed in Sec. V also appear in the thermofield double
state. It is sometimes believed, even by those who advocate
that the single-sided black hole does not have an interior,
that the thermofield double state nevertheless does corre-
spond to an eternal black hole with a smooth horizon. For
example, see [4].
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We now show that this position is inconsistent. If we
assume that the thermofield double state is dual to the
eternal black hole, and demand only that the bulk theory
respects diffeomorphism invariance—which is a minimal
requirement in a theory of quantum gravity—then we can
set up a large new class of states, all of which are dual to
smooth black holes. This new class of states is obtained by
performing one-sided diffeomorphisms on the geometry.
We argue that diffeomorphisms that die off at the right
boundary (but not, possibly, on the left boundary) should
not affect the value of observables defined relationally
from the right. This is a robust statement, and relies only
on the fact that the gravity dual is diffeomorphism
invariant—and not, in any way, on the equations of
motion.
We then show that demanding that we find operators that

behave correctly in all the states above leads to the same
paradoxes that one finds in the single-sided case. Therefore
a map between the bulk and the boundary, which can
successfully describe the black hole interior in all these
states, must be state dependent.
Our analysis is also useful because it indicates what

state-dependence really means. To obtain the paradoxes
above, we have to perform “extremely large” diffeomor-
phisms on one side—shifting the left boundary by time
scales of order eN × lAdS before gluing it back to the
geometry. What the analysis below shows is that it is not
possible to use the same operator in the original state, and
in all states that are obtained by deforming it with diffeo-
morphisms that could be exponentially large.
We start by reviewing the thermofield double state, and

the geometry of the eternal black hole. Then we examine a
class of “phase shifted” states, which are natural to consider
from the point of view of the CFT, and show that they are
also smooth because they are related to the original
geometry by diffeomorphisms. We then set up analogues
of the single-sided paradoxes. We defer the construction of
state-dependent operators to Sec. VII.
A shorter version of the arguments of this section was

also presented in [23]. In this section we elaborate on the
arguments there and fill some gaps.
The paper [47] also discussed some subtleties of the map

between the thermofield doubled state and the eternal black
hole, and argued that the thermofield-eternal black hole
duality is either incomplete or incorrect. While the argu-
ment presented here is similar to that of [47], our con-
clusion is different, as we show that if we consider a given
state from (1) and small fluctuations about this state, then
we can explicitly write down boundary operators that are
dual to local bulk operators.

A. Review of the eternal black hole and the
thermofield double

We start by reviewing the eternal black hole geometry
and the duality proposed in [40]. The important point that

we want to emphasize is the time reversal that is involved in
gluing the geometry to the CFT, which is sometimes
underemphasized.
A schematic figure of the eternal black hole is shown in

Fig. 7. For the eternal black hole, the metric is again given
by (4.1) outside the horizon. Just as in Sec. IVA we
introduce tortoise coordinates with the property that r� →
−∞ at the future horizon. The difference with the dis-
cussion in Sec. IVA is that after introducing the Kruskal
coordinates, and extending the geometry inside the black
hole we now extend the metric in a maximal way while
assuming that there is no matter anywhere. This leads to the
eternal black hole shown in Fig. 7, which also contains
regions III–IV as shown in the figure. We can introduce
Schwarzschild coordinates in all regions, and the relation-
ship between the Kruskal and Schwarzschild coordinates is
given below.

Region Signs of ðU;VÞ Relationship toðt;r�Þ
I U<0;V >0 U¼−e

2π
β ðr�−tÞ;V¼e

2π
β ðr�þtÞ

II U>0;V >0 U¼e
2π
β ðr�−tÞ;V¼e

2π
β ðr�þtÞ

III U>0;V <0 U¼e
2π
β ðr�−tÞ;V¼−e

2π
β ðr�þtÞ

IV U<0;V <0 U¼−e
2π
β ðr�−tÞ;V¼−e

2π
β ðr�þtÞ

ð6:1Þ

The boundary, in these coordinates, is determined by the
hyperbolaUV ¼ −1. On the other hand, the singularity lives
at another hyperbola UV ¼ positive constant. The two null
rays U ¼ 0, V ¼ 0 determine all four horizons. The horizon
between region I and II, which would be the future horizon
for the right-infalling observer, is at U ¼ 0. This same null
ray also demarcates the boundary between regions IVand III
and is therefore the “past horizon” for the left observer. The
ray V ¼ 0 is the future horizon for the left-infalling observer,
and the past horizon for the right observer.
The advantage of the choice of coordinates in (6.1) is

that, in the UV plane, surfaces of t ¼ const are simply
straight lines running through the origin. This includes the

IIII

II

IV

VU

FIG. 7. Eternal black hole in AdS.
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horizons, which are t ¼ ∞ and t ¼ −∞ respectively.
Therefore, in these coordinates, geometrically we can think
of time translations as “rotations” of the Kruskal diagram
about the bifurcation point. Of course, we caution the
reader that no finite rotation can rotate a line past the
horizons. On the other hand, surfaces of constant r� are
hyperboloids that always stay within a single region.
Now, we mention an important point. When we associate

the Schwarzschild time with the CFT time, we must “glue”
the geometry to the left CFT with a flip in the time
coordinate in region III. Therefore, denoting the time in
CFTR by tR and the time in CFTL by tL we have the
identifications

tL ¼ −t; tR ¼ t; ð6:2Þ
where t is the Schwarzschild time. An alert reader might
ask, given that there is no natural choice of the origin of
time, why one should not glue the geometry on the left as
tL ¼ −tþ T, where T is some constant. This is indeed
possible, and is a central point in our discussion below.
We now turn to a description of the thermofield double

state of the CFT. Maldacena conjectured [40] that the
geometry we have described above is dual to an entangled
state of two identical, noninteracting CFTs,

jΨtfdi ¼
1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp X

E

e−
βE
2 T jE;Ei: ð6:3Þ

Here ZðβÞ is the partition function of a single CFT at the
inverse temperature β and jE;Ei≡ jEiL ⊗ jEiR is a
tensor-product state of two energy eigenstates. Although
the CFTs are entangled, they are noninteracting, and T is
the time-reversal operator, which acts on left energy
eigenstates.16 The formula (6.3) is usually written with a
tacit choice of the time-reversal operator

T jEi ¼ jEi;

in which case (6.3) reduces to the standard form

jΨtfdi ¼
1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp X

E

e−
βE
2 jE; Ei:

We denote the Hamiltonian of the left CFT byHL while we
denote that of the right CFT by H.17

We immediately see that jΨtfdi has a symmetry,

ðHL −HÞjΨtfdi ¼ 0 ⇒ eiðHL−HÞT jΨtfdi ¼ jΨtfdi: ð6:4Þ

This symmetry of the thermofield double state corresponds
to the isometry of the bulk geometry under t → tþ T.
However, as is clear from the equation above, this sym-
metry corresponds to a shift in the CFT time in opposite
directions in the two CFTs.

t → tþ T ⇒ tR → tR þ T; tL → tL − T:

Now, let us examine why the eternal black hole, glued to
the boundary as described above, is dual to the thermofield
state jΨtfdi, which involves a time-reversal on the left rather
than a time-reversal combined with a time translation.
Consider mixed correlators of a single trace operator in the
thermofield state with one point ðt1; r1;Ω1Þ in region III
and the other point ðt2; r2;Ω2Þ in region I. We would like to
ensure that the bulk two-point function in this geometry has
a limit that leads to these correlators.

Z2 lim
r1;r2→∞

ðr1ÞΔðr2ÞΔhϕðt1; r1;Ω1Þϕðt2; r2;Ω2ÞiEBH
¼ hΨtfdjO1ð−t1;Ω1ÞORðt2;Ω2ÞjΨtfdi; ð6:5Þ

where the left-hand side is computed using bulk effective
field theory in a metric that behaves asymptotically on both
the right and the left as (4.1), and the right-hand side is
computed as an expectation value in the thermofield state.
Computing the bulk two-point function in the eternal

black hole metric is nontrivial, but we can do it patchwise
as follows. We write down expansions for the field in
regions I–III of the eternal black hole geometry. Only the
near-horizon expansions are relevant and, with a short
extension of the analysis of Sec. IV these expansions can be
written as follows:

ϕðt; r�;ΩÞ !V>0
U→0−

X
m

Z
∞

0

dωffiffiffiffi
ω

p aω;me−iωtYmðΩÞ

× ðeiδeiωr� þ e−iδe−iωr� Þ þ H:c: ð6:6Þ

ϕðt; r�;ΩÞ !V>0
U→0þ

X
m

Z
∞

0

dωe−iδffiffiffiffi
ω

p

× ðaω;me−iωðtþr�ÞYmðΩÞ þ ~aω;meiωðt−r�ÞY�
mðΩÞÞ þ H:c:

ð6:7Þ

ϕðt; r�;ΩÞ !U>0

V→0þ

X
m

Z
∞

0

dωe−iδffiffiffiffi
ω

p

× ð ~aL;ω;me−iωðtþr�ÞYmðΩÞ þ aL;ω;meiωðt−r�ÞY�
mðΩÞÞ

þ H:c: ð6:8Þ

ϕðt; r�;ΩÞ !U>0

V→0−

X
m

Z
∞

0

dωffiffiffiffi
ω

p aL;ω;meiωtYmðΩÞ

× ðeiδeiωr� þ e−iδe−iωr� Þ þ H:c: ð6:9Þ

16For simplicity, we assume that the CFT under consideration
is invariant under time reversal and direct the reader to [48] for
comments about the more general case.

17We use the notation ðHL;HÞ instead of what would be the
more symmetric ðHL;HRÞ in order to keep the notation consistent
with Sec. IX and also because we try to define right-relational
observables, thus breaking the symmetry between the two CFTs.
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Here we have introduced two new operators aL;ωm and its
mirror ~aL;ω;m. At the horizon between region III and region
II, the field is defined using a left-relational coordinate
system using the techniques of (3.1.1) and at the horizon
between region I and II, it is defined using a right-relational
coordinate system as usual.
The phase factors of eiδ in the expansion above are

slightly subtle. In (6.6) the two phase factors are fixed by
the behavior of the mode at infinity by demanding (6.5) and
by scattering in the bulk. In (6.7) the factor of e−iδ

multiplying the left mover is fixed but we have a choice
of convention for the right movers. In region IV we have the
same geometry but time reversed and this fixes the phase
factors in (6.9) once again. We once again have some
freedom in (6.8) for left-relational mirror.
Now notice that (6.7)–(6.8) have an overlapping regime

of validity near the bifurcation point. Imposing the con-
dition for the regularity of the two-point function that was
discussed in Sec. IV we find that we must have

haω;maL;ω0;m0 i ¼ e−
βω
2

1 − e−βω
δðω − ω0Þδmm0 :

Since the two-point function of the generalized free fields is
the same in both CFTs, we can assume that (4.19) holds on
both sides after we appropriately discretize the CFT modes.
Therefore, from the bulk geometry and from (6.5) and after
taking (6.2) into account we find that from the bulk we
obtain the prediction for the boundary two-point function

hΨtfdjOωn;mOLωn;mjΨtfdi ¼ e−
βωn
2 Gβðωn; mÞ: ð6:10Þ

Note that here we have used a relationship between the
boundary two-point function Gβðωn; mÞ and the boundary
commutator Cβðωn; mÞ that appears in (4.19). This follows
from the Kubo-Martin-Schwinger condition and is
reviewed in [7].
To prove this we allow the matrix elements of these

operators to be cji so that

Oωn;m

X
i

e−
βEi
2 jEi; Eii ¼

X
i;j

e−
βEi
2 cjijEi; Eji: ð6:11Þ

If the time-reversal symmetry acts as T jEi ¼ jEi then
using the fact that T Oωn;mT ¼ Oωn;m, it follows that the
cji must be real. Therefore

OLωn;m

X
e−

βEj
2 jEj; Eji ¼

X
e−

βEj
2 cijjEi; Eji:

Since the matrix elements of cji are concentrated around
Ei − Ej ¼ ωn we see that this is indeed true in the CFT
because we can show that

OLωn;mjΨtfdi ¼ e−
βωn
2 O†

ωn;mjΨtfdi:

From here (6.10) follows automatically.

We have therefore shown that the thermofield double
state corresponds to the eternal black hole geometry glued
with the specific identification (6.2). We return to this
question below. We see that states with different correlators
between the left and right boundary can also correspond to
smooth geometries, albeit ones which are glued differently
to the boundary.

B. Time-evolved thermofield states

We start by examining the effect of time evolution on the
thermofield state. We consider the state

jΨTi ¼ eiðHLþHÞT
2jΨtfdi ¼ eiHLT jΨtfdi: ð6:12Þ

This is obtained by performing Hamiltonian evolution on
the base thermofield state. We now perform both a geo-
metric and a CFT analysis of these states. Our main results
about these states come from understanding their geometry,
as we do in the next subsection. However, we then provide
some supporting arguments for these conclusions directly
from the CFT.

1. Geometric analysis of time-shifted states

The action of the global symmetry group of the theory
(which includes the Hamiltonian, of course) has been the
subject of significant analysis in the general relativity
literature [49]. The reader may find it useful to recall the
analysis of Brown and Henneaux [50] who used such
diffeomorphisms to analyze the action of the conformal
group on the AdS3 vacuum. For some more recent appli-
cations see [51]. The point is that Hamiltonian evolution—or
evolution by some other global charge—corresponds to
large diffeomorphisms. These operations may change the
state of the theory.
A quick way to see this is as follows. Consider a nice

slice that runs through the interior of the black hole and is
anchored at the points ðtL; tRÞ. According to the standard
analysis of the Hamiltonian constraint [25], the bulk
Hamiltonian (including that of gravity and the other matter
fields) must satisfy HbulkjΨtfdi ¼ 0. Therefore, time evo-
lution of this slice is generated only by the boundary
Hamiltonians H and HL. The action of eiHLT evolves this
slice to another slice that is anchored at ðtL þ T; tRÞ. This is
shown in Fig. 8.
To summarize the geometric action of the left and right

Hamiltonians is as follows.
(1) eiHLT↔ large diffeomorphisms that die off at the

right boundary, but not at the left boundary. On the
left boundary, these diffeomorphisms shift points
by ðtL;ΩLÞ → ðtL þ T;ΩLÞ.

(2) eiHT↔ large diffeomorphisms that die off at the left
boundary, but not on the right boundary. On the right
boundary, these diffeomorphisms shift points by
ðtR;ΩRÞ → ðtR þ T;ΩRÞ.

We emphasize two important points. First, note that
the operation eiHLT does not correspond to a unique
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diffeomorphism. Rather there is an equivalence class of
diffeomorphisms, all of which have the property outlined
above. All diffeomorphisms in this equivalence class differ
by trivial diffeomorphisms, which are those that die off at
both boundaries. In terms of the nice slice picture of Fig. 8,
this corresponds to the fact that we can choose to extend the
nice slice in any way we like in the bulk, and a particular
choice of nice slices is related to a choice of gauge. The left
Hamiltonian must nevertheless evolve these slices forward in
time. It achieves this because its Dirac brackets with
operators in the interior depend on the choice of gauge.
Therefore gauge-invariant statements about the diffeomor-
phism can only make reference to its action on the boundary
and not in the interior.
Second, from the CFT we can see that while eiHLT

and eiHT change the state, an operation by eiðHL−HÞT leaves
the thermofield state invariance, since it satisfies
ðHL −HÞjΨtfdi ¼ 0. Geometrically, this has the following
meaning. Apart from the form of the metric itself, the
thermofield state also has an additional piece of information
that specifies the relative placement of the two boundaries.
More specifically, there is an entire class of states—all of
which correspond to the same gauge-invariant geometric
quantities—which differ in how the left boundary is glued
to the geometry.
To make this more precise, we describe a specific

element of the class of diffeomorphisms that induces the
action of eiHLT . In the Kruskal coordinates U, V described
above, we consider the following diffeomorphism U →
UT , V → VT , where UT , VT are defined by

UT ¼ Uðe2πT
β θ̂ðU − VÞ þ θ̂ðV −UÞÞ;

VT ¼ Vðe−2πT
β θ̂ðU − VÞ þ θ̂ðV −UÞÞ;

where θ̂ðxÞ is an infinitely differentiable version of the theta
function with the property that

θ̂ðxÞ ¼
�
1 x > ϵ

0 x < −ϵ:

In the intermediate region −ϵ ≤ x ≤ ϵ we can take f to
be any smooth interpolating function between 0 and 1.
For example, a function that satisfies all these criteria is
given by

θ̂ðxÞ ¼ θðxþ ϵÞ
1þ θðϵ − xÞe ϵ

ϵþxþ ϵ
x−ϵ

:

Since this is just a diffeomorphism, it does not actually
change any gauge-invariant quantity that we can calculate
in the bulk geometry. The correct way to picture the gauge-
invariant effects of this diffeomorphism is to think of it as
one that slides the left boundary by an amount T. Figure 9
may help the reader think of the effect of this diffeo-
morphism which, as we emphasized above, just changes
the relation between the bulk and the boundary.
It is clear from the analysis above that the states jΨTi are

also smooth states. This is an exact statement that does not
rely on the bulk equations of motion and should be respected
in any theory of quantum gravity that is diffeomorphism
invariant. In particular, this implies that even for very large T,
such as T ¼ eN , the geometry remains smooth.
Time-shifted states for an infalling observer: Consider

the experience of an infalling observer in the time-shifted
thermofield state. This observer starts from region I, and
falls towards the singularity. For example, such an observer
could measure CFT correlators

hΨTjϕðt1; r1;Ω1Þ…ϕðtn; rn;ΩnÞjΨTi;

FIG. 9. Another diffeomorphism in the equivalence class of the
diffeomorphism of Fig. 8: it slides points on the boundary but acts
trivially in the bulk. This can be achieved by composing the
diffeomorphism of Fig. 8 with a trivial diffeomorphism that
cancels its action everywhere except for a region that is
infinitesimally close to the boundary.

FIG. 8. The action of eiHLT is a large diffeomorphism that does
not vanish on the left boundary. Its action on one nice slice is
shown above.
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where all the points along his trajectory are defined
relationally with respect to the right boundary as in
Sec. III A 1.
We consider the relational observables, and the mirror

creation and annihilation operators a little more carefully in
the next subsection. However, for now we note an impor-
tant property of the unshifted, standard thermofield state
jΨtfdi: if the observer jumps “earlier” or “later” in jΨtfdi,
according to the classical geometry, he will measure the
same correlators. As the reader can verify, using classical
geometry and quantum field theory quantized around this
geometry we have

hΨtfdjϕðt1; r1;Ω1Þ…ϕðtn; rn;ΩnÞjΨtfdi
¼ hΨtfdjϕðt1 þ T; r1;Ω1Þ…ϕðtn þ T; rn;ΩnÞjΨtfdi:

Next, we note that

jΨTi ¼ eiHLT jΨtfdi ¼ eiHT jΨtfdi:

This results from the isometry (6.4) of the eternal black
hole. So

hΨtfdje−iHLTϕðt1; r1;Ω1Þ…ϕðtn; rn;ΩnÞeiHLT jΨtfdi
¼ hΨtfdje−iHTϕðt1; r1;Ω1Þ…ϕðtn; rn;ΩnÞeiHT jΨtfdi
¼ hΨtfdjϕðt1 − T; r1;Ω1Þ…ϕðtn − T; rn;ΩnÞjΨtfdi:

Therefore, if we combine the isometry of the eternal black
hole with the fact that an infalling observer from the right
observes the same geometry whenever he jumps in, then we
obtain the same conclusion: the states jΨTi are smooth for
all times. This is a second method to reach the conclusion
that we already reached above. We now discuss these states
from the perspective of the CFT.

2. CFT analysis of time-shifted states

We emphasize that the statement that we have made
above—namely that the eternal black hole geometry should
appear to be smooth under arbitrarily large diffeomor-
phisms—could be considered to be rather strong. Since we
do not usually make statements about quantities that are
exponentially large, using the geometry, let us understand
these time-shifted states directly from the CFT.
The point we are making above is equivalent to the

assertion that there is no natural common origin of time for
the two CFTs. Usually, the origin of time is not relevant to
any experiment. On the right CFT, for example, we declare
some point in time to be t ¼ 0, pick some basis of operators
that we can measure at that time, which we denote by
Oð0;ΩÞ and declare that these are the Schrödinger oper-
ators. We can then classify states, using the eigenstates of
these operators.

In our case, we have two CFTs. Roughly speaking, the
original thermofield state involves entanglement between
Oð0;ΩÞ and OLð0;ΩÞ. The relation

hΨtfdjOð0;ΩÞOLð0;Ω0ÞjΨtfdi
¼ hΨTjOð0;ΩÞOLðT;Ω0ÞjΨTi

tells us that the shifted states involve entanglement between
Oð0;ΩÞ and OLðT;ΩÞ. We can make an even stronger
statement, as follows. Let us consider eigenstates of the
Schrödinger picture operators which satisfy

Oð0;ΩÞjOLðΩÞ; OðΩÞi ¼ OðΩÞjOLðΩÞ; OðΩÞi;
OLð0;ΩÞjOLðΩÞ; OðΩÞi ¼ OLðΩÞjOLðΩÞ; OðΩÞi;

where OLðΩÞ, OðΩÞ are c-number functions that specify
the eigenstate. We have a corresponding basis of eigen-
states for the time-shifted Schrödinger basis operators,
which are given by

Oð0;ΩÞjOLðΩÞ; OðΩÞiT ¼ OðΩÞjOLðΩÞ; OðΩÞiT;
OLðT;ΩÞjOLðΩÞ; OðΩÞiT ¼ OLðΩÞjOLðΩÞ; OðΩÞiT:

Then the thermofield state and the time-shifted thermofield
state are identical when considered as wave functions on
these states,

hΨtfdjOLðΩÞ; OðΩÞi ¼ hΨTjOLðΩÞ; OðΩÞiT:

So, unless we have some means of preferentially choosing
the states jOLðΩÞ; OðΩÞi over the states jOLðΩÞ; OðΩÞiT ,
we must treat both the thermofield state and the time-
shifted thermofield state on the same footing.
One distinguishing principle that is sometimes invoked

in problems of this kind is to appeal to the “environment.”
We could state that the environment picks out the operators
OLð0;ΩÞ and distinguishes them from the operators
OLðT;ΩÞ. However, this would tacitly break the time-
translational invariance on the boundary. Moreover, from
the point of view of gravity this would be very unusual; we
would like the two coupled CFTs to autonomously describe
the bulk geometry, and it would be unusual if some tacit
reference to an external environment was important for
deciding whether the geometry was smooth or not.
Let us consider some other methods that appear to

uniquely pick the thermofield state but, on closer inspec-
tion, do not actually do so.
Euclidean path integral: The thermofield state can be

defined by a Euclidean path integral on an interval of length
β. More precisely we specify

hΨtfdjOLðΩÞ; OðΩÞi ¼
Z

Oðβ;ΩÞ¼OðΩÞ

Oð0;ΩÞ¼OLðΩÞ
e−S½DO�;
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where we have used ½DO� to schematically represent the
measure over fields in the theory, and placed boundary
conditions so that, at time 0, the field is in the state specified
by OLðΩÞ and at Euclidean time β it is in the state OðΩÞ.
However, we see immediately that while the path integral
on the right side has an unambiguous value, the interpre-
tation of the path integral as a wave function on the left
requires us to choose an origin of time. We could also write

hΨTjOLðΩÞ; OðΩÞiT ¼
Z

Oðβ;ΩÞ¼OðΩÞ

Oð0;ΩÞ¼OLðΩÞ
e−S½DO�:

So, using the Euclidean path integral to define the wave
function begs the question of whether we should privilege
jOLðΩÞ; OðΩÞiT versus the states jOLðΩÞ; OðΩÞi.
Time-reversal invariance: Another ostensible method of

choosing the phases is to use invariance under the time-
reversal operation. If we define the time-reversal operator in
the left CFTas T jEi ¼ jEi, then the thermofield state is the
only one of the family of time-shifted states that satisfies

T jΨtfdi ¼ jΨtfdi:
For the other states, recalling that the time-reversal operator
acts antilinearly, we have

T jΨTi ¼ jΨ-Ti:

However, it is clear that this time-reversal operator itself
involves the choice of an origin of time. We could just as
well define a new time-reversal operation by a shift of the
time-reversal above and a time translation. On the basis of
energy eigenstates, we define

T T jEi ¼ e2iET jEi;

and extend this operation antilinearly on linear combina-
tions of energy eigenstates. It is clear that

T T jΨTi ¼ jΨTi:
The new operator T T is as valid a time-reversal operator as
the operator T . Therefore, the idea that time-reversal
invariance picks a particular origin of time is also specious;
it can only do so if the origin of time is built into the time-
reversal operator.
Time-shifted states as phase-modified states: We now

turn to another property of the time-shifted states. This
property is again suggestive of the fact that nothing very
special happens if we take a long time limit of the time
translation. Note that we can write the time-shifted states as

jΨTi ¼ eiHLT jΨtfdi ¼
1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp X

E

e−
βE
2 eiϕE jE;Ei; ð6:13Þ

where ϕE are real phases. Since we expect the spectrum of
the CFT to be chaotic at the high energies that dominate the

state (6.13), we can obtain almost any choice of phases ϕE
by choosing a suitable time translation. The relevant
equation that we need to satisfy is

ET mod2π ¼ ϕE;

and we can satisfy this to arbitrary accuracy for a chaotic
collection of energies, if we are allowed to choose T from a
large enough range.
There are some exceptions to the kinds of phases we can

generate. For example, the energies of supersymmetric
states are quantized integrally, and therefore we cannot
choose their phases all independently. However, the set of
supersymmetric states constitutes an exponentially unim-
portant subset in the thermofield state jΨtfdi. More impor-
tantly, the energies within a conformal representation are
integrally quantized. Therefore, by time evolution with the
Hamiltonian,18 we can only generate phases that satisfy

ϕ½E� − ϕ½Eþ 1� ¼ ϕ½Eþ 1� − ϕ½Eþ 2� mod 2π:

The statement that there is no natural common origin of
time translates, in this language, to the statement that there
is no natural choice of phases for the energy eigenstates on
both sides. (This is subject, of course, to the relations
above.) The advantage of thinking in this language is that it
is clear that the phases do not have any special behavior at
late times. Therefore if we accept the standard interpreta-
tion that eiHLT acts as a large diffeomorphism in the bulk,
for O(1) times, and preserves a smooth geometry, then it is
natural to expect that this also happens for arbitrarily
long T.
We caution the reader however that the argument

above is a “naturalness” argument. It is predicated on
the assumption that a natural bulk to boundary map should
not privilege one pattern of random phases [obtained by
translations of O(1)] from another pattern of random phases
[obtained by translations of OðeN Þ]. So it is suggestive and
not a proof.

C. Relational observables in time-shifted states

We now turn to a detailed discussion of relational
observables in time-shifted states. These operators are
particularly important in our discussion of the eternal black
hole.
We have already carefully defined relational observables

in Sec. III A 1. The key point is as follows. These
observables are defined relationally with respect to the
right boundary. Therefore, if we consider diffeomorphisms
that die off at the right boundary, then right-relational
observables are invariant under such diffeomorphisms,

18The reader might notice that we can generate a slightly more
general class of phases using other diffeomorphisms, such as
those that rotate the Sd−1, but this is not relevant to our discussion.
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even if the diffeomorphisms do not die off at the left
boundary.
This point may be slightly confusing if one thinks of

diffeomorphisms that shift the left boundary as acting
everywhere in the spacetime. However, as we pointed
out, these diffeomorphisms belong to an equivalence class,
and a limiting element of the class is the diffeomorphism
that simply “slides” the left boundary up and down while
leaving the rest of the geometry invariant. If we consider
this element of the class, it is clear that right-relational
observables are left invariant.
Let us check this more explicitly by carefully repeating

the derivation of Sec. III A 1. We start by defining points in
the bulk as intersection points of null geodesics which end
on the boundary. We introduce asymptotically AdS coor-
dinates, so near the boundary the metric coincides with
(3.12). These coordinates are ðt; ρ;ΩÞ and the boundary is
at ρ ¼ 1. We now consider two solutions to the geodesic
differential equation parametrized by ordinary AdS time
(not necessarily an affine parameter) with the property that

~x1ðt1Þ ¼ ðt1; ρ ¼ 1;Ω1Þ; _~x1ð0Þ ¼ ð1;−1; 0Þ;
~x2ðt1 þ τÞ ¼ ðt1 þ τ; ρ ¼ 1;Ω1Þ; _~x2ðt1 þ τÞ ¼ ð1; 1; 0Þ:

ð6:14Þ

We then tune Ω1 so that the geodesics meet. Given a
particular value of t1,Ω1ðt1Þ, we varyΩ2ðt1 þ τÞ so that the
geodesics intersect at some ti with t1 < ti < t1 þ τ,

ρ2ðtiÞ ¼ ρ1ðtiÞ; Ω2ðtiÞ ¼ Ω1ðtiÞ;

and we denote the intersection point by ~Piðt1;Ω1; τÞ as in
Sec. III A 1.
Let us now make a large diffeomorphism that dies off at

the right boundary,

~x → ~ξð~xÞ: ð6:15Þ

To implement this diffeomorphism in a quantum field
theory, we can act on all fields (including the metric),
rather than points, with the inverse transformation. The new
scalar fields ϕ̄ð~xÞ are given by

ϕ̄ð~xÞ ¼ ϕð~ξ−1ð~xÞÞ:

The action of the diffeomorphism on the metric is

gμ̄ ν̄ð~xÞ →
∂xμ
∂ξμ̄

∂xν
∂ξν̄ gμνð~ξ

−1ð~xÞÞ: ð6:16Þ

Now if we transform the entire geodesic trajectory specified
by the solution to the geodesic equation with initial
conditions (6.14) by means of the diffeomorphism

(6.15), then we get a new trajectory that is a geodesic
with respect to the new metric (6.16).
The boundary conditions (6.14) remain invariant under

the diffeomorphism since, by assumption, ξ turns into the
identity at the boundary. Moreover, if the original geodesics
intersected, then the new geodesics also intersect. In
particular the new intersection point, P̄i, is just given by
the transform of the original intersection point

~̄Piðt1;Ω1; τÞ ¼ ~ξð~Piðt1;Ω1; τÞÞ;
where we are using the same notation as (3.16).
Now consider evaluating a scalar field at this intersection

point. Clearly we have

ϕ̄ð ~̄PiÞ ¼ ϕð~ξ−1ð~ξð~PiÞÞÞ ¼ ϕð~PiÞ;
which is the same value as it had before the diffeomor-
phism. Therefore, scalar observables defined at points
which are related relationally to the right boundary are
invariant under left diffeomorphisms.
This logic extends to points behind the horizon. Recall

that these points were defined by solutions to the geodesic
equation, where the affine parameter was normalized by
using the points outside the horizon already defined above.
Clearly, in the new metric the new geodesics are again
given by ~ξð~xðλÞÞ, and by the same logic scalar variables
evaluated inside the horizon are invariant under any diffeo-
morphism that dies off at the right boundary.

1. Commutator of mirror operators

Note that, in the analysis above, it was important that the
boundary conditions (6.14) were not altered by the diffeo-
morphisms. If we consider diffeomorphisms that do not die
off at the right boundary, then the right-relational observ-
ables do transform, but in a simple manner. Under a
diffeomorphism that shifts points on the right boundary
by tR → tR þ T, we have

~̄Piðt;Ω; τÞ ¼ ~ξð~Piðt − T;Ω; τÞÞ:

For the field operators, defined relationally with respect to
the right boundary, this leads to

eiHLTϕðtR;Ω; λÞe−iHLT ¼ ϕðtR;Ω; λÞ;
eiHTϕðtR;Ω; λÞe−iHT ¼ ϕðtR þ T;Ω; λÞ; ð6:17Þ

where HL and H are the left and right boundary
Hamiltonians respectively.
We now write down a mode expansion for the fields in

front of and behind the horizon, as in (6.6)–(6.7). The
conditions (6.17) imply that when we try and find CFT
operators that can play the role of these mirrors then they
must have the CFT commutation relations
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½H; aω;m� ¼ −ωaω;m; ½HL; aω;m� ¼ 0;

½H; ~aω;m� ¼ ω~aω;m; ½HL; ~aω;m� ¼ 0: ð6:18Þ

We remind the reader that the asymmetry above arises
because these are right-relational modes. The relation
(6.18) must hold approximately within low point correla-
tion functions, and not necessarily as operators. However,
within correlators they are crucial to ensure that the field
operators transform correctly under large diffeomorphisms.
We proceed to now argue that it is impossible to find

state-independent operators ~aω;m that have the right proper-
ties to play the role of mirror operators behind the horizon
in the entire family of time-shifted states.

D. Naive construction of local operators in the
thermofield double

We start by considering the naive construction of local
operators in the thermofield double. We show that this does
not satisfy the conditions above and, therefore, cannot be
correct. In particular we identify CFT operators ~aωn;m with
the properties that we derived from the bulk above.
The naive construction of local operators proceeds by

simply identifying discretized mirror modes with modes on
the left CFT,

~aωn;m !
naive

aLωn;m:

However, this is clearly wrong as a computation of the two-
point function across the horizon shows. If we now
compute this two-point correlator in the time-shifted state,
we find that

hΨTjaLωn;maωn;mjΨTi ¼ eiωnT
e−

βωn
2

1 − e−βωn
;

hΨTja†Lωn;m
a†ωn;mjΨTi ¼ e−iωnT

e−
βωn
2

1 − e−βωn
:

Let us call the CFT operator obtained by using this naive
mode ϕn. Now, repeating the computation of the two-point
function that we performed in Sec. IV, with point 1 outside
the horizon and point 2 behind the horizon we find that

lim
V1−V2→0

hΨTj∂UϕnðU1; V1;Ω1Þ∂UϕnðU2; V2;Ω2ÞjΨTi

¼ c
δd−1ðΩ1 −Ω2Þ
ðU1 −U2e

−2πT
β Þ2

;

lim
U1−U2→0

hΨTj∂VϕnðU1; V1;Ω1Þ∂VϕnðU2; V2;Ω2ÞjΨTi

¼ c
δd−1ðΩ1 −Ω2Þ
ðV1 − V2Þ2

; ð6:19Þ

where c is a normalization constant. Clearly this is not the
correct result. In particular, the first line of (6.19) does not

have the right behavior whenU1 → U2. We obtain a similar
pathology by considering the boundary between region II
and region III.
This was only to be expected since the operators aLω

clearly do not obey the correct commutators with the
Hamiltonian that we demanded above. Therefore, it is
incorrect to identify ~aωn;m with aL;ωn;m as has been done
commonly in the literature.

E. Paradoxes for the eternal black hole

We now set out various paradoxes, similar to the ones
outlined by [2–4], which show that the relational observ-
able defined above cannot be realized by a linear operator.
These paradoxes were already outlined concisely in [23],
and we suggest that the reader consult that paper alongside
this section. Our arguments here are more detailed variants
of the arguments there.
Let us assume that some state-independent operators

~aωn;m exist with the properties that we derived earlier. If so
we can multiply them with the appropriate modes and
construct state-independent operators ϕðU;V;ΩÞ in the
thermofield double state and in a right-relational gauge.
Then, consider

CðU1; V1;Ω1;…Un; Vn;ΩnÞ
¼ hΨTjϕðU1; V1;Ω1Þ…ϕðUn; Vn;ΩnÞjΨTi:

From the arguments above we have

d
dT

CðU1; V1;Ω1;…Un; Vn;ΩnÞ ¼ 0:

Second, from the discussion in Sec. III, we expect this
T-independent answer to correspond to the correlators
computed by effective field theory in the eternal black
hole. This expectation is indicated in (3.10). Now, for any
operator Aα we have

hΨTjAαjΨTi ¼
1

ZðβÞ
�X

E

e−βEhE;EjAαjE; Ei

þ
X
E0≠E

e
−βðEþE0Þ

2 eiðE−E0ÞThE0; E0jAαjE; Ei
�
:

Even if we know that this expectation value is T indepen-
dent, we must be careful not to immediately discard the
second term above. This is because, if Aα happens to be an
operator with support on narrowly separated eigenstates
E − E0 ¼ Oðe−S

2Þ, then the time variation of the second term
will be negligible and so it may appear to be time
independent for short times. However, if we demand

hΨTjAαjΨTi ¼ hΨtfdjAαjΨtfdi;
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even for exponentially long times, then the contribution to
the expectation value can only come from diagonal terms.
In the case of the correlator under consideration this

implies that

1

ZðβÞ
X
E

e−βEhE; EjϕðU1; V1;Ω1Þ…ϕðUn; Vn;ΩnÞjE;Ei

¼ CðU1; V1;Ω1;…Un; Vn;ΩnÞ:

Using the standard arguments from the equivalence of the
canonical and the microcanonical ensemble this means that
for a typical eigenstate pair jE;Ei at the energy relevant to
the eternal black hole

hE;EjϕðU1; V1;Ω1Þ…ϕðUn; Vn;ΩnÞjE;Ei
¼ CðU1; V1;Ω1;…Un; Vn;ΩnÞ:

At an intuitive level this is already a strange conclusion
because the energy-eigenstate pair that appears above has
no entanglement. We have shown above that no state-
independent operators ϕðU;V;ΩÞ can reproduce the effec-
tive field theory correlators in arbitrary single-sided energy
eigenstates. How can such operators correctly reproduce
this answer in two-sided eigenstate pairs?
We can turn this into a sharp contradiction as follows. In

the eigenstate pair jE; Ei with no entanglement, we expect
that there is no geometric wormhole. Therefore no exci-
tation generated by the left observer can affect the corre-
lators observed by the right-infalling observer. In particular,
if the left observer decides to act with an arbitrary unitary,
UL, we should have

hE;EjU†
LϕðU1; V1;Ω1Þ…ϕðUn; Vn;ΩnÞULjE;Ei

¼ hE;EjϕðU1; V1;Ω1Þ…ϕðUn; Vn;ΩnÞjE;Ei: ð6:20Þ

We can use this freedom to map the left energy eigenstate to
some fixed state, ULjE;Ei ¼ jF;Ei, where F could even
correspond to the left CFT vacuum. This means that the
operators ϕðU;V;ΩÞ must reproduce the correct correla-
tors in all states jF;Ei and must be independent of F. This
can only be if they are ordinary operators in the right CFT.
But we have already proved that there are no state-
independent operators in the right CFT. Therefore our
starting assumption—that such operators exist in the
doubled CFT—must be wrong.
The reader may consult [23] for concrete versions of the

Na ≠ 0 argument, and the negative occupancy argument
phrased directly in the doubled CFT. Here, we conclude by
briefly reemphasizing the importance of (6.20), which
states that there is no wormhole in eigenstate pairs.
In Sec. VII we review the construction of state-

dependent operators in a single CFT that can correctly
reproduce effective field theory correlators about a black

hole. This construction was first described in [8,9]. Let us
denote such operators acting only in the original (right)
CFT, and defined about an energy eigenstate jEi by
ϕfEgðU;V;ΩÞ. The superscript E indicates that they
reproduce the expected effective field theory answers when
evaluated in correlators about jEi and reasonable excita-
tions of this state. Now, consider the following state-
independent operator, which acts in the Hilbert space of
two CFTs,

ΘðU;V;ΩÞ ¼
X
E

PEL
⊗ ϕfEgðU;V;ΩÞ;

where PEL
is the projector onto the energy eigenstate on

the left, PEL
≡ jELihELj, and the sum is over all energy

eigenstates.
Now ΘðU;V;ΩÞ has some interesting properties. When

evaluated in the thermofield double, we find

hΨtfdjΘðU1; V1;Ω1Þ…ΘðUn; Vn;ΩnÞjΨtfdi

¼ 1

ZðβÞ
X
E

e−βEhEjϕfEgðU1; V1;Ω1Þ…ϕfEg

× ðUn; Vn;ΩnÞjEi: ð6:21Þ

Note that the sum on the right is in a single CFT since the
PEL

term simply makes cross terms vanish and gives 1 for
the diagonal terms.
Since ϕfEgðU;V;ΩÞ is only evaluated in the state jEi

and its excitations, the expression above does yield the
answer expected from effective field theory. Note that
ΘðU;V;ΩÞ also produces the following correlators about
eigenstate pairs:

hE;EjΘðU1; V1;Ω1Þ…ΘðUn; Vn;ΩnÞjE;Ei
¼ hEjϕfEgðU1; V1;Ω1Þ…ϕfEgðUn; Vn;ΩnÞjEi:

Using the equivalence between the canonical and micro-
canonical ensemble, these correlators are approximately the
same as the thermofield correlators in (6.21). These
correlators would suggest that the geometry in eigenstate
pairs, as seen by the right-infalling observer, is almost the
same in eigenstate pairs as in the thermofield. While this
conclusion is correct, as we see below, the operator
ΘðU;V;ΩÞ cannot be the correct CFT operator dual to
local bulk fields.
This is because ΘðU;V;ΩÞ violates the no wormhole

condition and keeps the wormhole open even when there is
no entanglement. In particular, using a left unitary that acts
as ULjE;Ei ¼ jF;Ei we find that

hE;EjU†
LΘðU1; V1;Ω1Þ…ΘðUn; Vn;ΩnÞULjE;Ei

¼ hEjϕfFgðU1; V1;Ω1Þ…ϕfFgðUn; Vn;ΩnÞjEi:
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But these are correlators of ϕfFgðU;V;ΩÞ evaluated about
a different eigenstate and, in general, these lead to expo-
nentially small answers. Therefore, ΘðU;V;ΩÞ cannot be
the correct field operators in the eternal black hole because
they would predict that even in eigenstate pairs, by
performing the unitary transformation discussed above a
left observer could alter the correlators of a right-infalling
observer. So we see that condition (6.20) is important in
ruling out such putative state-independent operators. In the
next section, we show how the interior of the eternal black
hole can be correctly constructed using state-dependent
bulk to boundary maps.
Before concluding this section, we should mention that

our arguments should be distinguished from those of
[52,53], who suggested that the duality between the eternal
black hole and the thermofield double does not hold.
Although we do not engage with this in detail, we briefly
indicate our point of disagreement. The authors of [52]
suggested that there was an ambiguity in the duality
between the thermofield double and the eternal black hole.
In particular, they argued that the CFT cannot distinguish
between this case and another bulk geometry where the
bulk Hamiltonian has been modified by removing the
interaction between the left and the right at the bifurcation
point. Alternately, this corresponds to adding a delta-
function source there in a manner that appears to be hidden
from both CFTs. They argued that this leads to an
ambiguity that invalidates the duality.
While this argument may have been plausible if

the bulk theory had been an ordinary quantum field
theory, it is inapplicable to a theory of quantum gravity.
The Hamiltonian constraint rules out the alternate bulk
Hamiltonian considered above. It is this crucial feature
of the bulk that allows the boundary to know the details of
the bulk Hamiltonian and allows the duality to be
consistent.

VII. DEFINITION OF THE MIRROR
OPERATORS

In the past sections, we have set up paradoxes that show
that no state-independent operator can correctly satisfy the
conditions outlined in Sec. IV. We have shown that these
paradoxes apply to both the single-sided CFT and the
thermofield double.
We now review and extend the definition of the mirror

operators provided in [8,9]. These operators are state
dependent. What this means, in our context, is as follows.
Say that we are computing expectation values of a mirror
operator within a correlation function

hΨjOω1;m1
… ~Oωp;mp

…Oωn;mn
jΨi;

where jΨi is an equilibrium state. Then the statement is that
the operator ~Oω;m depends in a subtle manner on the
sandwiching state jΨi.

This would imply that when one speaks of local
operators in gravity, or of their modes, then at least behind
the horizon of a black hole it is important to specify the
state that one is referring to. A given local operator is good
to describe physics in a given state and in small excitations
about that state. If we consider another microstate which is
“far away,” in the sense that it cannot be obtained from the
original microstate by the action of a small number of
single-trace operators, then we must use a different operator
to describe the “same physical quantity.”
In this section we first review the construction that

we presented in [8,9] both for equilibrium and near-
equilibrium states. We show how this completely resolves
all the paradoxes of [2–4]. Our review will be brief, and
we direct the reader to those papers for a more detailed
exposition.
A significant new element in this paper is that we discuss

the action of our operators on superpositions of states. This
is important because we show that even though our
operators are state dependent, the infalling observer does
not observe any deviations from linearity for small super-
positions of equilibrium or near-equilibrium states.
Next, we also describe the construction of mirror

operators for the thermofield double and its time-shifted
cousins. This construction can be obtained as a special case
of our construction, as applied to an entangled state.
However, in this section we also show how one could
guess this solution independently. The analysis of (7.6) is
useful because it helps to elucidate the nature of state-
dependence.

A. The set of natural observables and the little
Hilbert space about a state

Consider the modes of the generalized free field oper-
ators that were defined in (4.18). As we explained there, we
have discretized these modesOωn;m both by selecting some
discrete set of frequencies, and also by choosing a time
band on the boundary that we integrate over to transform to
frequency space.
We now consider the set of polynomials in these modes

that we denote by

Agff ¼ spanfOω1;m1
;Oω1;m1

Oω2;m2
;…;

Oω1;m1
Oω2;m2

…OωK;mK
g: ð7:1Þ

This means that this set comprises all monomials of the
form displayed above, and arbitrary linear combinations of
these monomials. In addition, we consider the set of
polynomials—limited to small orders—in the CFT
Hamiltonian.19

19For a more careful treatment of other conserved charges,
including in cases where the CFT has a non-Abelian symmetry,
we refer the reader to Sec. III B 4 of [9].
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AH ¼ spanfH;H2…Hng:

We then consider the set of observables involving insertions
of both the generalized free fields and the CFT Hamiltonian

A ¼ Agff ⊗ AH: ð7:2Þ

The dimension of this set is denoted by

DA ¼ dimðAÞ:

We often refer to arbitrary elements of this set, comprising
generalized free fields by

Aα ∈ Agff :

We emphasize by default that the notation Aα does not
include the CFT Hamiltonian. If we want to consider an
element from A that might include H, we state this
explicitly.
We want to restrict A to be the set of reasonable

experiments that one can perform in the bulk, and still
expect to observe effective field theory about a given
background. This excludes any monomial in (7.2) that
has a very high total energy

X
ωi ≪ OðN Þ:

Similarly, this also excludes any monomial that has a very
large number of insertions. So

K ≪ OðN Þ;
for all monomials displayed in (7.2). These restrictions
imply, as a consequence, that

DA ≪ OðeN Þ:
The set A is approximately an algebra because we can
usually multiply two of its element to obtain another
element. However, this is not always the case because of
edge effects—where such a multiplication may take us
beyond the cutoff we have imposed. In this paper we
usually do not keep track of these edge effects.
The set of “reasonable operators” can be used to excite a

state. This leads us to consider the space

HΨ ¼ AjΨi≡ span
nX

αpApjΨi
o
;

where Aα may include H. We denote the projector on this
subspace by PHΨ

. The fact that A is approximately an
algebra implies that we can consider the action of its
elements as Aα∶ HΨ → HΨ. This is subject to the same
edge-effect caveat above.
We sometimes call the space HΨ the little Hilbert space

about the space jΨi, since it contains the part of the Hilbert

space that is accessible within effective field theory.
Conceptually, this little Hilbert space is very important.
We show a schematic figure of this set in Fig. 10.

B. Equilibrium and near-equilibrium states

The next ingredient in our construction is the classifi-
cation of states. First, we consider equilibrium states.
Intuitively, these are states where a black hole in the bulk
has not been disturbed for a long time. We then expect that
all excitations both outside and inside the horizon have died
off, leaving behind a smooth horizon and an empty interior.
We now want to make this precise in the CFT.
Let us review some necessary conditions for us to

classify a state as being in equilibrium. (As we discuss
in Sec. VIII these conditions are not quite sufficient.) The
first is that correlation functions in an equilibrium state
should be invariant under time translation.
We consider the expectation value of an element of the

set of observables Ap ∈ A, as a function of time. This is
defined as

χpðtÞ ¼ hΨjeiHtApe−iHtjΨi; ð7:3Þ

where it is important that Ap may include H. Intuitively,
while there may be small fluctuations in this expectation
value, we expect that in an equilibrium state, these
fluctuations are extremely unlikely. The size of the fluc-
tuations is measured by

νp ¼ 1

Tb

Z
Tb

0

jðχpðtÞ − χpð0ÞÞjdt: ð7:4Þ

An estimate of these fluctuations [9] suggests that a state
should be classified as being in equilibrium if

νp ¼ Oðe−S
2Þ; ∀ p: ð7:5Þ

Note that the definition requires this to hold for all
observables in A.
The condition for time independence of correlators can

be imposed very accurately. However, this condition is
necessary but not sufficient in order for us to apply our
definition of the mirror operators. In particular, to apply our

FIG. 10. A cartoon of the little Hilbert spaceHΨ as the relevant
subspace in the full Hilbert space.
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definition, we would also like the state to correspond to a
state at a single temperature. For example, consider the
state 1ffiffi

2
p ðjE1i þ jE2iÞ where E1, E2 are two distinct energy

eigenstates at substantially separated energies. For exam-
ple, we could take E2 ≈ 10E1. It is easy to verify, using the
eigenstate thermalization hypothesis, that this state meets
the criterion (7.5) above. However we think of this as a sum
of two separate equilibrium states.
Now we describe near-equilibrium states. Near-

equilibrium states are simply obtained by exciting an
equilibrium state with an exponentiated Hermitian element
of the set of observables A.

jΨnei ¼ UjΨi; U ¼ eiAp ; A†
p ¼ Ap: ð7:6Þ

In [8,9], we showed that given a state jΨnei of this kind, the
decomposition into a unitaryU and a base-equilibrium state
jΨi was essentially unique. The reason for this is very
simple. Given an equilibrium state jΨi, if we excite it with a
unitary we necessarily spoil the time-translational invari-
ance criterion of (7.5). Therefore, given a state jΨnei, once
we have found a decomposition (7.6) that works to make all
correlators time-translationally invariant in the base state
jΨi, we know that it must be the right one.

C. Mirrors for equilibrium and near-equilibrium states

We now consider the definition of mirror operators for
the states considered above. We start with an equilibrium
state jΨi with inverse temperature β. First we consider
excitations of this state with Aα ∈ Agff . This set was
defined in (7.1) and excludes the Hamiltonian. We now
define mirror operators on this subspace ofHΨ through the
linear equations

~Oωn;mAαjΨi ¼ e−
βωn
2 AαO

†
ωn;mjΨi: ð7:7Þ

We can use this definition recursively to define the mirrors
of products of operators as well,

~AαAβjΨi ¼ Aβe−
βH
2 A†

αe
βH
2 jΨi:

These relations specify the action of ~Oωn;m on HΨ. The
action of this operator outside this space is irrelevant for
questions within effective field theory. We expect (7.7) to
hold at leading order in 1

N .
However, we do specify its commutator with the

Hamiltonian and this fixes some 1
N corrections.

½ ~Oωn;m;H�AαjΨi ¼ −ωn
~Oωn;mAαjΨi: ð7:8Þ

Note that this means that ~Oωn;m has positive energy. It is
possible to check that (7.8) implies certain corrections to
(7.7) at Oð 1NÞ.

It is easy to check that (7.8) is equivalent to

~Oωn;mAαHjΨi ¼ Aαe−
βωn
2 O†

ωn;mHjΨi: ð7:9Þ
This equation is equivalent to (7.7) when jΨi is an energy
eigenstate satisfying HjΨi ¼ EjΨi. In other situations
HjΨi is an independent descendant and (7.9) gives an
independent set of constraints on the definition of ~Oωn;m.
We pause to make a slightly subtle point related to a

discussion in [12]. The operator product expansion in the
CFT implies that the stress tensor always appears in
the one-pion exchange of two local generalized free fields.
The Hamiltonian is the zero mode of the stress tensor.
Nevertheless, it is consistent for the mirrors to effectively
commute with the modes of these operators, but not with
the Hamiltonian. This is because if we attempt to express
the CFT Hamiltonian in terms of the modes of the GFFs we
expect to get an expression involving not just quadratic but
also higher order terms.

H≐X
n

ωna
†
ωn;maωn;m þ � � � þ Oð 1

N
Þ; ð7:10Þ

where the … are similar quadratic terms from other fields
and the Oð 1NÞ terms can be obtained from bulk interactions.
As usual, the ≐ in the equation above indicates that this
holds within low point correlators. The form of (7.10) is
dictated by bulk effective field theory, but a similar
expression arises from a careful analysis of boundary
correlators.
Now, due to the cutoffs on the set A above, there is no

strict relation between H and other elements Aα ∈ A.
Therefore it is mathematically consistent to define the
mirrors to have a zero commutator to very high order with
ordinary operators but have a nonzero commutator with the
Hamiltonian.
However, we must mention another physical point. The

~Oωn;m operators that we have defined above are auxiliary
variables, which do not have any direct physical signifi-
cance. This is because there is no left asymptotic region in
the geometry. It is the ~aωn;m operators that appear in right-
relational observables. Since these observables are defined
relationally, they are not strictly local. Therefore, depend-
ing on the precise choice of gauge, it is possible—without
any loss of locality in the bulk—to consider operators that
have a nonzero commutator with aωn;m at subleading Oð 1N Þ.
This may even be convenient from some perspectives. We
comment more on this issue in forthcoming work.
We now return to the definition of the mirror operators.

Equations (7.7) can be considered to be linear equations
that define the operator ~Oωn;m. We now explain why these
equations are consistent.
First, note that if Ap ∈ Agff then, in general, we cannot

annihilate an equilibrium state by its action,

ApjΨi ≠ 0; ∀ Ap ∈ Agff : ð7:11Þ
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This is simply a consequence of the fact that dimðAgffÞ ≪
eN and therefore the space of states annihilated by an
element of Agff is of a very high codimension.
For physical reasons we consider energy eigenstates,

which can be annihilated by elements ofAH. In such cases,
we might have ðH − EÞjΨi ¼ 0 for some eigenvalue E.
However, as we noted above, in such cases (7.9) reduces to
(7.7), and therefore does not lead to an inconsistency.20

To summarize (7.7) and (7.9) specify the action of the
mirror operator, ~Oωn;m, on a set of linearly independent
vectors. This guarantees that we can find a linear operator
with the desired action. We can even write down an explicit
solution for these linear equations as follows.
We consider a basis of HΨ given by

A1jΨi…ADA
jΨi;

and denote an element of this basis by jvpi, where the
corresponding Ap may include H. The linear equa-
tions (7.7) and (7.9) specify the action of the operator
~Oωn;m on this basis as

~Oωn;mjvpi ¼ jupi;

where jupi can be read off from the right-hand side of (7.7)
and (7.9). With gpq ¼ hvpjvqi, we can simply define

~Oωn;m ¼
X
p;q

gpqjuqihvpj; ð7:12Þ

where gpq is the inverse of gpq. The solution (7.12) has the
property that it acts only within HΨ. If PHΨ

jwi ¼ 0 for a
state jwi, then ~Oωn;mjwi ¼ 0.
This definition directly extends to near-equilibrium

states. Given a state of the form (7.6), we define the action
of the mirrors by

~Oωn;mAαjΨnei ¼ e−
βωn
2 AαUO†

ωn;mU
−1jΨnei: ð7:13Þ

The commutator with the Hamiltonian is unchanged.

~Oωn;mHAαjΨnei ¼ H ~Oωn;mAαjΨnei − ωn
~Oωn;mAαjΨnei;

where all elements on the right-hand side can be computed
using (7.13).

D. Resolution of paradoxes

We emphasize that our construction above resolves all of
the paradoxes set out by AMPSS in [2–4]. We reviewed and
sharpened these paradoxes in Sec. V but none of these
arguments apply to state-dependent operators.
Our construction resolves the Na ≠ 0 argument as

follows. It is true that typical energy eigenstates are smooth,
whereas number eigenstates may not be smooth. However,
as we saw in (5.2) to obtain a contradiction we have to
perform a basis change to go from (5.3) where the trace is
evaluated in the energy eigenbasis to (5.5) where the trace
is evaluated in the number eigenbasis. If the operator PF
that appears there is state dependent, then this change of
basis is impermissible because it is a different operator in
each eigenstate. We can see this immediately if we make
the state-dependence explicit by adding a small superscript

1

DE

X
RE

hEjPfEg
F jEi ≠ 1

DE

X
RE

hNijPfNig
F jNii;

even if these two sets of eigenstates span the same
space RE.
In (5.3) we refined the original “lack of a left inverse

paradox” of [3] to argue that no state-independent operator
could have the commutator required of ~aωn;m with its
adjoint and with the CFT Hamiltonian. However, the
argument breaks down if we attempt to apply it to state-
dependent operators. In (5.12) we had to use the cyclicity of
the trace. But if the operator ~aωn;m that appears varies as we
vary the energy eigenstate then we cannot use this.
As we explained in Sec. V D, the commutator argument

is not really a paradox but more of a “genericity argument.”
Our construction sidesteps this because our mirrors are
designed to explicitly commute with the ordinary operators
within correlation functions as (7.7) shows.
Finally, consider the strong-subadditivity paradox of [1,2].

Our construction resolves this through a version of black
hole complementarity [45,54]. The statement is that it is
impossible to define mirror operators so that they exactly
commute with all CFT operators in any finite time band.
From the CFT this is clear from general principles of local
quantum field theory. Therefore the mirror operators that
describe the interior of the black hole must appear to
commute with simple observables within correlation func-
tions but cannot do so exactly. This is a precise version of the
colloquial statement that the “interior is a scrambled version
of the exterior.” The strong-subadditivity paradox assumes
that the Hilbert space of gravity factorizes exactly into parts
that can be associated with the outside and inside of the black
hole. If complementarity is correct, then this assumption is
wrong and the strong-subadditivity paradox vanishes.
Note that this resolution to the strong-subadditivity

paradox also implies that for some questions—in particular
for bulk correlation functions involving OðN Þ insertions—
the notion of locality breaks down completely in the bulk.

20Here we have been careful to consider these special states
where some descendants obtained by the action of conserved
charges are null. In the rest of the paper, when we consider the
action of the mirror operators in other settings, we do not always
consider this case separately. However, our construction can
smoothly accommodate charge or energy eigenstates in all cases.
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This is consistent with the widely held belief that locality is
not exact in quantum gravity. However, it is also consistent
with various other arguments that suggest a breakdown of
locality at this order. For example, it is not difficult to
estimate that when one considers correlators with OðN Þ
insertions on the boundary, the 1

N expansion breaks down
[55]. Since bulk locality is generally considered to be
synonymous with the 1

N expansion, this indicates that bulk
locality breaks down at this order. Alternately, from a
consideration of scattering amplitudes in bulk effective
field theory, it is not difficult to show directly that bulk
perturbation theory breaks down when the number of
insertions becomes very large [56]. It is possible to see
these nonlocal effects even about empty AdS, as we
describe in forthcoming work [57]. This nonlocality clearly
indicates a rather unusual and profound property of
quantum gravity, which deserves further attention.
We direct the reader to [8,9] for further discussion of the

resolution of these paradoxes.

E. Small superpositions of equilibrium and
near-equilibrium states

We now describe how our construction extends to small
superpositions of states. Such superpositions are important,
and obtain a direct observational significance, when we
consider entangled states of the CFT with an external
system of qubits in Sec. IX E. For now we are interested in
the following abstract question.

Question: Is exciting a superposition of states by a
mirror operator the same as superposing the excited
states.

We show that the answer to this question is affirmative.
This follows almost trivially from the definition above and
ensures that the infalling observer does not observe any
departures from linearity.

1. Superpositions of equilibrium states

Consider a superposition of equilibrium states jΨki,

jΨsi ¼
XM
k¼1

jΨki; ð7:14Þ

whereM is an O(1) number and we assume that hΨkjΨpi ¼
0 for k ≠ p and also that

P
kjhΨkjΨkij2 ¼ 1 so that the

state (7.14) is normalized.
We first show that for generic jΨki, the superposition

(7.14) is also in equilibrium. Let us assume that each
equilibrium state can be expanded jΨki ¼

P
iαk;ijEii, so

that the entire superposition is

jΨsi ¼
X
i;k

αk;ijEii:

We now consider Ap ∈ A and assume that it obeys the
eigenstate thermalization hypothesis [43].

hEijApjEji ¼ AðEiÞδij þ e−
1
2
SðEiþEj

2
ÞBðEi; EjÞRij: ð7:15Þ

Here, the quantity SðEiþEj

2
Þ is the log of the density of states

at the mean energy, for which we just write S. The functions
A, B are “smooth” functions, and Rij is a matrix with
erratically varying phases in its entries but with magnitudes
of order 1.
We see now that

hΨsjApjΨsi ¼
X
i;k;n

α�k;iαn;iAðEiÞ

þ
X
i≠j;k;n

e−
1
2
SðEiþEj

2
ÞBðEi; EjÞRijα

�
k;iαn;j:

Consider the first term in the sum above. This involves a
sum over OðeSÞ energy eigenstates, but for k ≠ n the terms
in this sum are erratic. Since each αk;i ¼ Oðe−S

2Þ, this turns
into an erratic sum over eS terms over size e−S. We expect it
to typically be only of size Oðe−S

2Þ. The same argument
applies to the second term in the sum, involving R. This
term, irrespective of whether n ¼ k or n ≠ k, turns into an
erratic sum over e2S terms, each of size e−

3S
2 . This is again

expected to typically only be of size e−
S
2. This leads to the

conclusion that

hΨsjApjΨsi ¼
XM
k¼1

hΨkjApjΨki þ Oðe−S
2Þ:

Therefore if the equilibrium criterion (7.2) applies to
each state jΨki it also applies to the superposition jΨsi,
as long asM ¼ Oð1Þ. Therefore the superposition is also in
equilibrium.
The interesting case is where the jΨii are microstates

corresponding to the same black hole.21 We can now define
the mirrors independently for jΨsi and each of the jΨii.
We display this state-dependence explicitly with a super-
script below.
We now notice the following simple fact:

~Ofsupg
ωn;mAαjΨsi ¼ e−

βωn
2 AαO

†
ωn;mjΨsi:

This follows because jΨsi is also in equilibrium and at the
temperature β−1. On the other hand

~Ofkg
ωn;mAαjΨki ¼ e−

βωn
2 AαO

†
ωn;mjΨki:

21The case where they correspond to different geometries
simply leads to a classical probability distribution over the
various possibilities as we described around (3.5). This situation
is not of significant physical interest but, in any case, it can be
dealt with easily by extending the results obtained here.

REMARKS ON THE NECESSITY AND IMPLICATIONS OF … PHYSICAL REVIEW D 93, 084049 (2016)

084049-41



Therefore we find that

~Ofsupg
ωn;mAαjΨsi ¼

XM
k¼1

~Ofkg
ωn;mAαjΨki:

This equation shows that the mirror operators act consis-
tently with the superposition principle, as long as we are
looking at small superpositions of equilibrium states. As we
see later, this is important in order for the infalling observer
not to be able to detect any violations of quantum
mechanics.

2. Superpositions of near-equilibrium states

Now, we consider an O(1) superposition of near-
equilibrium states

jΨne
s i ¼

XM
k¼1

UkjΨki; ð7:16Þ

where jΨki are orthogonal equilibrium states, as previously,
and we again assume that the sum in (7.16) is normalized
to 1. Here, as in (7.6), Uk ¼ eiAk , where Ak are Hermitian
elements of Agff .
We now define the action of the tildes via

~Oωn;mAαjΨne
s i ¼

XM
k¼1

AαUke−
βωn
2 O†

ωn;mjΨki: ð7:17Þ

Note that, strictly speaking, (7.17) is an extension of our
definition of mirror operators since a superposition of near-
equilibrium states is not itself a near-equilibrium state by
the definition of such states in (7.6).
We also note that in this case the action of ~Oωn;m is not

closed within the span of AjΨne
s i. This can be seen from

(7.17) where the right-hand side is not just an ordinary
operator acting on jΨne

s i. It is convenient to imagine that we
expand the little Hilbert space to the direct sum of the little
Hilbert spaces produced by acting on the equilibrium states
in (7.16),

HΨne
s
¼ ⨁

k
HΨk

:

This may be used as a general rule when the space obtained
by acting with A does not contain any equilibrium state
at all.
Let us check that (7.17) immediately passes a consis-

tency check. The decomposition of a state in the form
(7.16) is not unique. As we explained above, almost all
sums of O(1) equilibrium states are also equilibrium states.
Correspondingly HΨne

s
contains many equilibrium states.

This implies that we can just as well write (7.16) as

jΨne
s i ¼

XM
k;q;p¼1

UkQ−1
kqQqpjΨpi ¼

XM
q¼1

VqjΨ0
qi;

with

Vq ¼
XM
k¼1

UkQ−1
kq ; jΨ0

qi ¼
XM
p¼1

QqpjΨpi:

Here Q is any invertible M ×M matrix and Q−1 is its
inverse:

P
qQ

−1
kqQqp ¼ δkp. It is important to us that the

matrices Vq also be invertible. This is true for generic
choices of the Uk and we only consider cases of this sort.
Now, since the state jΨ0

qi will also typically be in
equilibrium, it is equally natural to demand that

~Oωn;mAαjΨne
s i ¼ e−

βωn
2 Aα

XM
q¼1

VqO
†
ωn;mjΨ0

qi: ð7:18Þ

We ensure that (7.18) is consistent with (7.17). But this
follows immediately by inserting the definitions of V and
jΨ0

qi above.
We can also repeat the check we performed for equi-

librium states above. Using the definition (7.17) of mirror
operators on superpositions of near-equilibrium states on
the left-hand side of the equation below, we have

~OfΨne
s g

ωn;m jΨne
s i ¼

XM
k¼1

~Ofkg
ωn;mAαUkjΨki; ð7:19Þ

where on the right-hand side we use the standard definition
of the mirrors on nonequilibrium states given in (7.13), and
we have again indicated the state-dependence explicitly by
means of the superscript.
The result (7.19) shows that the infalling observer does

not observe any violation of linearity even for super-
positions of near-equilibrium states. This includes, as a
special case, a superposition of an equilibrium and a near-
equilibrium state, and thereby answers a question about
superposition raised in [58].

F. The interior of the eternal black hole

We conclude this section by constructing state-depen-
dent local operators in the eternal black hole. We already
showed in (6.4) that the naive state-independent construc-
tion of local operators where we identify ~Oωn;m ¼ OLωn;m
does not work correctly in the states jΨTi defined in (6.12).
We proceed as follows. We start by reviewing the

conditions that we need from the mirrors in the eternal
black hole. Based on these, we guess an appropriate
solution. We then verify that it meets the conditions that
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we outlined. We hasten to add that the formulas we present
here can be derived in a completely systematic fashion
using the formalism for entangled states that we present in
Sec. IX. We present this alternate method of obtaining the
answer only because it provides some additional insight
into the nature of state-dependence.
We suggest that the reader also consult [23]—where this

result is stated concisely—before examining the detailed
calculation below.
Constraints on ~Oωn;m: The precise conditions that

~Oωn;m
need to satisfy are given in Sec. VI. These modes need to be
correctly entangled withOωn:m in all states jΨTi; they need
to commute with the Oωn;m within correlators, and also
have the commutator with the Hamiltonians given in (6.17).
In fact all of these conditions would be met if

hΨTjAα
~Oωn;mAβjΨTi ¼ hΨTjAαOLωn;mðTÞAβjΨTi

þ O

�
1

N

�
; ð7:20Þ

where

OLωn;mðTÞ≡
1

T
1
2

b

Z
Tb

−Tb

OLðtþ T;ΩÞeiωntY�
mðΩÞdtdd−1Ω:

ð7:21Þ
Note that for small T we have OLωn;mðTÞ ¼ OLωn;me

−iωT .
However, this is no longer true when T ≫ Tb. Since we
allow exponentially large T in the states jΨTi, we must
adopt the more careful definition (7.21).
We can try and achieve (7.20) through the use of

projectors as in Sec. IV B 2. In particular, we use a projector
to detect the state as an excitation of jΨTi and then
modulate ~Oωn;m accordingly. We caution the reader that
this program is only partly successful. But to this end, we
investigate these projectors in some detail below. We have
to construct these projectors and then in order to put them
together correctly, we also need to examine their overlaps.
Projectors on HΨT

: We define the projector HΨT
as

follows:

PHΨT
AαjΨTi ¼ AαjΨTi;

if ∀ Aα; hvjAαjΨTi ¼ 0 ⇒ PHΨT
jvi ¼ 0:

In these equations we restrict Aα ∈ Agff and do not allow it
to include H.
We can construct the projector explicitly. Define

gαβ ¼ hΨTjA†
βAαjΨTi:

Note that gαβ is actually independent of T because the
operators above come from the right CFT and commute
with the left Hamiltonian that is used to evolve jΨtfdi to
jΨTi. Then the projector can be written as

PHΨT
¼

X
αβ

gαβAαjΨTihΨTjA†
β;

where gαβ is the inverse of gαβ. We can check that

PHΨT
AγjΨTi ¼

X
αβ

gαβAαjΨTigβγ ¼ AγjΨTi:

Obviously, in the orthogonal subspace, PHΨT
gives 0.

Overlaps of the projectors PHΨT
: Next we have to

account for the fact that the different projectors PHΨT
are

not quite orthogonal for different values of T. We can
calculate the overlap between the states jΨTi and their
descendants as follows. We have

hΨtfdjAαjΨTi ¼
1

ZðβÞ
X
E

e−βEhEjAαjEieiET; ð7:22Þ

where all cross terms have dropped out because the
operator Aα acts only within the right CFT, and we can
use the eigenstates in the left CFT to impose a delta
function in energy.
First, let us consider this quantity for T ≪ 1. In this

situation we can approximate (7.22) by

hΨtfdjAαjΨTi ¼
1

ZðβÞ
Z

e−βEeSðEÞAðEÞeiET;

where we have indicated the diagonal element of Aα by
AðEÞ as in (7.15).
We can compute this integral using a saddle-point

approximation. We write the exponent as

−βEþ SðEÞ ¼ −βE0 þ SðE0Þ þ
1

2
ðE − E0Þ2

∂2S
∂2E

����
E¼E0

;

where E0 satisfies

∂S
∂E

����
E¼E0

¼ β:

Consider the second derivative term. We write the
temperature as a function of energy τðEÞ, and then this
is just

∂ 1
τðEÞ
∂E ¼ −

1

τ2ðEÞ ∂
τðEÞ
∂E ¼ −

1

τ2ðEÞC ;

where C is the specific heat. Note that C ∝ N . Evaluated at
E ¼ E0, we find

∂2S
∂2E

����
E¼E0

¼ −
β2

C
:
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Therefore the integral above can be written

1

ZðβÞ
Z

exp

�
−
β2

C
ðE − E0Þ2

2
þ iET

�
AðEÞdE:

Now notice that if AðEÞ is a smooth function of E
N it varies

slowly over the energy scales
ffiffiffiffi
C

p
that are relevant here,

since E
N changes only by 1ffiffiffi

C
p over this scale. Second, since

we have assumed that T ≪ 1, we conclude that

hΨtfdjAαjΨTi ¼
�
hAαi þ O

�
1

N

��
e
−CT2

2β2 eiE0T; ð7:23Þ

where the expectation value on the right is the normal
expectation value taken in jΨtfdi. Note that we can actually
get the prefactor right, and it precisely cancels the factor of
1

ZðβÞ in the integral. In particular note that (7.23) also has the
correct limit at T ¼ 0. Below, we use

fðTÞ ¼ e
−CT2

2β2 eiE0T:

We caution the reader that the estimates for the overlap
between different projectors are no longer valid for
T ∼ Oð1Þ. We consider this case separately below.
Guess for ~Oωn;m: We can now use these projectors and

the idea explained above to write down a guess for the
~Oωn;m that will reproduce (7.20). We consider

~Oωnm ¼
ffiffiffiffiffiffiffiffi
C
πβ2

s Z
Tcut

−Tcut

OLωnmðTiÞPHΨTi
dTi; ð7:24Þ

where Tcut is a cutoff that we explore further below. The
idea of (7.24) is that the projector PHΨTi

detects the state it is

acting on as an excitation of jΨTi
i, and therefore the

insertion of ~Oωn;m effectively turns into an insertion of
OLωnmðTiÞ as required in (7.20).
We now verify in detail that the guess (7.24) does satisfy

all the conditions that we need in the state jΨtfdi and in
states jΨTi for jTj < Tcut. For states where T does not
satisfy this condition we need to change the operator (7.24)
as we describe below.
Correlators of ~Oωnm: We are interested in inserting the

proposed mirror defined in (7.24) in correlators. We find
that

hΨTjAα
~OωnmAβjΨTi

¼
ffiffiffiffiffiffiffiffi
C
πβ2

s Z
Tcut

−Tcut

dTi

× hΨtfdje−iHTAαOLωnmðTiÞPHΨTi
AβeiHT jΨtfdi:

To evaluate the integral on the right-hand side we consider
the integrand

hΨtfdje−iHTAαPHΨTi
AβeiHT jΨtfdi

¼ hΨtfdjAαPHΨT−Ti
AβjΨtfdi

¼
X
γδ

hΨtfdjAαgγδAγjΨT−Ti
ihΨT−Ti

jA†
δAβjΨtfdi;

where we have first used the factors of eiHT to convert the
projector to PHΨT−Ti

and then we have inserted the explicit
expression for the projector derived above. This quantity
can be further be simplified to

hΨtfdjAαPHΨT−Ti
AβjΨtfdi

¼ jfðT − TiÞj2
X
γδ

hΨtfdjAαgγδAγjΨtfdihΨtfdjA†
δAβjΨtfdi

¼ jfðT − TiÞj2hΨtfdjAαPHΨtfd
AβjΨtfdi

¼ jfðT − TiÞj2hΨtfdjAαAβjΨtfdi;

where we have used the expression for mixed correlators in
(7.23), then reabsorbed the sum over γ, δ into another
projector, and recognized that the projector acts as the
identity on descendants of jΨtfdi.
Plugging this into the original integral we find that

hΨTjAα
~OωnmAβjΨTi

¼
ffiffiffiffiffiffiffiffi
C
πβ2

s Z
Tcut

−Tcut

dTijfðT − TiÞj2

× hΨtfdje−iHTAαOLωnmðTiÞAβeiHT jΨtfdi

¼ hΨTjAαOLωnmðTÞAβjΨTi þ O

�
1

N

�
:

Here we have used the fact that OLωnmðTiÞ varies very
slowly with respect to the function fðT − TiÞ, provided
ωn ≪ N since C ∼ OðN Þ. Therefore, to leading order in 1

N
we can simply evaluate this integral in the saddle-point
approximation which leads to the result above. This result
is, of course, valid provided that jTj < Tcut and it agrees
with what was required in (7.20).
Note that this immediately leads to the right two-point

and higher point functions. For example,

hΨTjOLωnmðTÞOωnmjΨTi ¼ hΨtfdjOLωnmOωnmjΨtfdi
¼ e

−βωn
2 Gβðωn; mÞ;

which is precisely what is required.
Commutator with Hamiltonians: Finally we check the

behavior of the proposed ~Oωnm under time evolution with
the left and right Hamiltonians. Notice that

PHΨTi
e−iHT ¼ e−iHTPHΨTiþT

:
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Therefore,

eiHT ~Oωnme
−iHT ¼

ffiffiffiffiffiffiffiffi
C
πβ2

s Z
Tcut

−Tcut

OLωnmðTiÞPHΨTiþT
dTi

¼
ffiffiffiffiffiffiffiffi
C
πβ2

s Z
TcutþT

T−Tcut

OLωnmðTi − TÞPHΨTi
dTi;

where the last equality comes from a change of variables
inside the integral. Note that

OLωnmðTi − TÞ ¼ eiωnTOLωnm;

for T ∼ Oð1Þ, and as long as T ≪ Tb. Now, when inserted
into correlation functions, the cutoffs are exponentially
irrelevant as the analysis above shows. The dominant
contribution when ~Oωnm is inserted into a correlator always
comes from a saddle point in the interior of the integral.
Therefore we find that within correlation functions

eiHT ~Oωnme
−iHT≐eiωnT ~Oωnm;

which is precisely what is required as long as we do not
evolve for a very long time.
A very similar analysis shows that conjugation by eiHLT

leaves ~Oωnm invariant within correlators because of the
transformation of OLωnm in the integral above. This
completes our verification of (6.17).

1. Analysis of state-dependence in the
eternal black hole

The reader should note that our construction is explicitly
state dependent. The operators (7.24) fail to click correctly
when they are inserted in states jΨTi with T ≫ Tcut. It is
easy to verify this by repeating the exercise above. The
reader will find that when ~Oωn;m is inserted into a
correlator, the saddle point of the integral over Ti occurs
outside the range of integration, and therefore the correlator
is exponentially suppressed.
Now, we might naively believe that this can be fixed

simply by taking Tcut to infinity. However, we show below
that if we do this, then instead of behaving correctly in
every state, the integral (7.24) would fail to behave
correctly in any state. To see this we need to reconsider
the overlap estimate of (7.23). The expression in (7.23) is
not the correct answer for T ≫ 1 since our saddle-point
technique of evaluating the thermal correlator breaks down
if the phase factor that arises from the term involving T
varies too rapidly.
At large T, we simply note that the overlap is a sum over

approximately OðeSÞ uncorrelated complex numbers of
Oð1Þ.

hΨtfdjAαjΨTi ¼
1

ZðβÞ
X

e−βEeiETAðEÞ ¼ Oðe−S
2Þ;

T ≫ 1: ð7:25Þ

In particular for T ≫ 1, this overlap is much larger than the
overlap predicted by (7.23). It has a fat tail.
Therefore if we take Tcut to be exponentially large,

Tcut ≫ OðeSÞ, and insert (7.24) into a correlator, then the
contributions from this fat tail will overwhelm the con-
tribution of the dominant saddle. This is the reason that we
are forced to use state-dependence.
For the states jΨTi with T ≫ eS, we still write down

interior operators. These operators are given by

OfTg
ωn;m ¼

ffiffiffiffiffiffiffiffi
C
πβ2

s Z
TþTcut

T−Tcut

OLωnmðTiÞPHΨTi
dTi;

where we have explicitly moved the range of integration.
This discussion helps to shed light on the nature of state-

dependence. By performing these large diffeomorphisms
we have, in a sense, “geometrized” the microstates of the
black hole. The states jΨTi are all identical states from the
perspective of the right-infalling observer, but the left and
right modes are entangled differently in each of them. The
novel part of this situation is that these are also distinct and
well-separated solutions from the point of view of the
semiclassical theory if we keep track of how the solution is
glued to the boundary.
Now, classically the right-relational observables are well-

defined objects on each of these geometries. Often, in such
situations, it is possible to lift such classical observables to
operators as we describe in more detail in Appendix A. This
is usually done by identifying classical solutions as
coherent states in the Hilbert space, and using projectors
to map classical functions to operators. [See, for instance,
(A4).] However, if we consider the states jΨTi for expo-
nentially large ranges of T, then (7.25) tells us they are
“overcomplete.” This overcompleteness goes beyond the
usual overcompleteness of coherent states. In fact, we
believe that a computation using coherent states to re-
present the different states jΨTi in canonical gravity should
yield the overlap (7.23) but at large T this is very different
from (7.25). This forces us to use state-dependent operators
for the black hole interior, even in this one-parameter class
of states.
By considering time-shifted versions of the geon sol-

ution analyzed in [42], we believe that it should not be
difficult to find a similar one-parameter set in a single CFT
where state-dependence can be analyzed in detail.

VIII. REMOVING AMBIGUITIES IN THE
CONSTRUCTION

We now turn to the issue of some ambiguities in our
construction. There are two sorts of ambiguities that have
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been described in the literature. The first is related to an
observation about the eternal black hole byMarolf andWall
[47] and a similar observation by van Raamsdonk [11]
which was framed more directly in terms of our construc-
tion. We show here how this ambiguity should be resolved.
The second ambiguity was discussed by the authors of

[4] and some of these objections were expanded in a paper
by Harlow [12]. However, Harlow’s construction attempted
to add to this ambiguity by adopting a modified definition
of the mirror operators, which had a different commutator
with the Hamiltonian from the one in our construction. We
show that this alternate definition of the mirror operators of
[12] suffers from certain inconsistencies which we point
out below.
As a consequence of this, the alternate mirror operators

described by Harlow do not themselves have direct
physical significance. However, it is true that there is an
interesting class of excited states that we consider in
Sec. VIII C; these are related to the analysis of [12] but
we consider them independently so as to separate them
from the main claims of that paper.
We should mention that an additional class of ambi-

guities, involving only ordinary operators, was described in
[3]. The authors of [3] suggested that one could act with the
Schwarzschild number operator eiθNω jΨi on an equilibrium
state to obtain another state that was approximately time-
translationally invariant. We have addressed this issue
previously. (See page 46 of [9].) If we use a finite time
band to extract the modes of the CFT generalized free
fields, and then combine them into a number operator then
such an operator does not commute exactly with the CFT
Hamiltonian. One may attempt to improve this construction
by considering an extremely slow acting source, which
inserts only a finite amount of energy into the system over
an extremely long time scale. The action of such a source
might be consistent with our equilibrium condition but this
would not be a contradiction since the infalling observer
would also not see any excitation in this case.

A. Mirror unitary behind the horizon

Consider an equilibrium state jΨi and perform the
construction described in Sec. VII, leading to the mirror
operators. Now, consider the state

jΨexi ¼ eiα ~Ap jΨi≡ ~UjΨi: ð8:1Þ
Here ~Ap is the mirror of a Hermitian operator satisfying
ðApÞ† ¼ Ap. The parameter α is a real number that is
useful below.
In our construction above, we have not really defined the

exponentiated version of the mirror operators. To exponen-
tiate the mirror we need to be able to evaluate

eiα ~Ap jΨi ¼
X∞
n¼0

ðiαÞn
n!

ð ~ApÞnjΨi;

which involves arbitrarily high products of the mirror
operator and necessarily takes us outside the space HΨ.
To be precise, beyond some cutoff K, we expect
hΨj½ð ~ApÞK;As�jΨi ≠ 0. The precise value of K depends
on the precise definition of ~Ap. We return to this edge effect
below in the discussion of Harlow’s ambiguity.
The first putative ambiguity mentioned in the beginning

of Sec. VIII is the following: if we assume that the state jΨi
is a black hole in an equilibrium state, then the state jΨexi
should be an excited state. Intuitively we expect jΨexi to be
a state with an excitation behind the horizon as shown in
Fig. 11. In particular, an observer crossing the horizon in
the state jΨexi, within a suitable time range, should detect
this excitation. Now, the question is, suppose we are given
the state jΨexi without the additional information that it
came by acting with eiα ~Ap on some equilibrium state jΨi.
How can we directly detect that the state jΨexi is a
nonequilibrium state? The difficulty comes from the fact
that since ~U approximately commutes with elements of the
small algebra, we have

hΨj ~U†Oω1;m1
…Oωn;mn

~UjΨi
¼ hΨjOω1;m1

…Oωn;mn
jΨi þ R;

where R is the small remainder that we discussed above. We
neglect this remainder in what follows. Hence, simple
correlators of the small algebra on the state jΨexi seem to
be almost the same as those in the state jΨi. This might lead
to the erroneous conclusion that jΨexi is an equilibrium state.
This mistake would lead to the definition of mirror operators
as if jΨexi were equilibrium, and using these wrong mirror
operators would lead to the incorrect prediction that the
infalling observer will not detect any excitation behind the
horizon. In order to avoid this ambiguity in the mirror
operator construction, we need to find a way to detect from
the CFT that jΨexi is an excited state.
The key point is that we have also included the

Hamiltonian in our set of observables. The Hamiltonian
does not commute with the mirror operators. Hence,
correlators of operators in the small algebra, together with
insertions of the Hamiltonian, differ between typical

FIG. 11. A state jΨexi ¼ ~UjΨi corresponding to an equilibrium
state jΨi excited with a mirror unitary behind the horizon ~U.

KYRIAKOS PAPADODIMAS and SUVRAT RAJU PHYSICAL REVIEW D 93, 084049 (2016)

084049-46



equilibrium states and states which have been excited by
mirror unitary operators jΨexi ¼ ~UjΨi. We can use these
differences as a diagnostic of the nonequilibrium nature of
these states. This resolves the ambiguity of the mirror
unitaries behind the horizon.
To make this more clear, let us consider the state jΨexi

in (8.1) and let us define

~As ≡ ½H; ~Ap�: ð8:2Þ
We can detect the nonequilibrium nature of the state jΨexi
by considering the correlation function with H and the
corresponding As operator

hΨexjHAsjΨexi
¼ hΨj ~U†HAs

~UjΨi
¼ hΨjð1 − iα ~ApÞHAsð1þ iα ~ApÞjΨi þ Oðα2Þ
¼ hΨjHAsjΨi þ iαhΨj ~AsAsjΨi þ Oðα2Þ
¼ Oðe−S

2Þ þ iαhΨjAse−
βH
2 ðAsÞ†e

βH
2 jΨi þ Oðα2Þ: ð8:3Þ

Here we have used the fact the equilibrium expectation
value of the operator HAs is exponentially small, if As has
nonzero energy. On the other hand, we expect that the
expectation value in the second term of the last line above is
Oð1Þ. So, we see that for the observable in (8.3), we discern
a substantial deviation from its equilibrium value. This
allows us to classify the state jΨexi as an “excited state,” as
expected intuitively.
For a concrete example, let us take ~Ap in (8.1) to be

~Ap ¼ ~Oω;m þ ~O†
ω;m.

22 We consider (8.2) for this case, to

find ~As ¼ ωð ~Oω;m − ~O†
ω;mÞ. In an equilibrium state we

have

ωhΨjHðOω;m −O†
ω;mÞjΨi ¼ 0; ð8:4Þ

up to exponentially small corrections. On the other hand,

for the state eiαð ~Oω;mþ ~O†
ω;mÞjΨi we find to linear order in α

and up to exponentially small corrections that

ωhΨj ~U†HðOω;m −O†
ω;mÞ ~UjΨi

¼ ωhΨje−iαð ~Oω;mþð ~Oω;mÞ†ÞHðOω;m −O†
ω;mÞeiαð ~Oω;mþ ~O†

ω;mÞjΨi
¼ iαω2hΨjð ~Oω;m − ~O†

ω;mÞðOω;m −O†
ω;mÞjΨi þ Oðα2Þ

¼ iαω2hΨjðOω;m −O†
ω;mÞ

�
e−

βω
2 O†

ω;m − e
βω
2 Oω;m

�
jΨi

þ Oðα2Þ
¼ 2iαω2e−

βω
2 Gβðω; mÞ þ Oðα2Þ;

which is O(1). So this correlator is different on jΨexi from
that on the equilibrium state (8.4) and by measuring this
correlator we can detect the excitation by the mirror unitary
behind the horizon.
Uniqueness of the behind-horizon unitaries: We note that

given a state jΨexi of the form (8.1) it has an essentially
unique decomposition into an equilibrium state and a
unitary behind the horizon. The reason is as follows.
First, it is clear that we cannot have such a decomposition
with two different basis states, since in that case we would
have

~U1jΨ1i ¼ ~U2jΨ2i ⇒ jΨ1i ¼ ~U†
1
~U2jΨ2i:

As we have shown above, if jΨ2i is in equilibrium a
relation of the sort above implies that jΨ1i cannot be in
equilibrium, and vice versa.
Furthermore, with ~U1 ¼ ei ~A1 , and ~U2 ¼ ei ~A2 , it is clear

from a chain of reasoning that

~U1jΨi¼ ~U2jΨi⇒ ð ~U†
1
~U2ÞjΨi¼ jΨi⇒ ð ~A1− ~A2ÞjΨi¼ 0

⇒ ðA†
1−A†

2ÞjΨi¼ 0;

which is prohibited by (7.11) unless A1 ¼ A2, and so
~U1 ¼ ~U2. This concludes our proof of the uniqueness of the
decomposition.
Therefore, to summarize, given a state of the form (8.1)

we can not only detect that it is out of equilibrium, but even
detect the operator with which it has been excited.

B. Comments on the Harlow unitaries

Now, let us turn to a second set of unitaries described by
Harlow [12], who attempted to define a new set of mirror
operators ~XH

ω;m which act on an equilibrium state as
follows:

~XH
ω;mAβjΨi ¼ Aβe−

βω
2 ðOω;mÞ†jΨi; ð8:5Þ

½ ~XH
ω;m;H�AβjΨi ¼? 0: ð8:6Þ

Notice that the first equation, (8.5), is the same as the one in
our definition, (7.7), but the commutator with the
Hamiltonian given in (8.6) differs from ours, which is
specified by (7.8).
We now show that the definition of mirror operators

given by Harlow is inconsistent, and runs into difficulties in
several physical situations. We discuss an energy eigen-
state, and then a state drawn from the microcanonical
ensemble.23 We then discuss a more serious problem—
definition (8.6) leads to operators that do not satisfy the
Heisenberg equations of motion. Therefore, these operators

22In this section and in Sec. IX, to lighten the notation, instead
of ωn for the discretized frequencies, we drop the subscripts and
simply write ω.

23This was already noticed in [12] and discussed in Sec. II D of
that paper.
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~XH
ω;m cannot be used to build up gauge-invariant relational

observables.

1. Inconsistency of ~XH
ω;m mirrors in energy eigenstates

First, we point out that the second line above, (8.6), does
not have any solutions at all, when defined about energy
eigenstates. We find that

~XH
ω;mHjEi ¼ E ~XH

ω;mjEi ¼ e−
βω
2 EO†

ω;mjEi: ð8:7Þ

But24

H ~XH
ω;mjEi¼? e−

βω
2 HðOω;mÞ†jEi

¼ e−
βω
2 ½H; ðOω;mÞ†�jEi þ e−

βω
2 ðOω;mÞ†HjEi

¼ e−
βω
2 ωO†

ω;mjEi þ e−
βω
2 EO†

ω;mjEi
¼ e−

βω
2 ðEþ ωÞO†

ω;mjEi: ð8:8Þ

To understand the inconsistency of Harlow’s definition
for eigenstates, we consider the correlator hEjOω;m
½H; ~XH

ω;m�jEi. We can compute it in two ways. The first
is to subtract (8.7) from (8.8) and multiply the resulting
state with the bra hEjOω;m. This leads to the prediction

hEjOω;m½H; ~XH
ω;m�jEi ¼ e−

βω
2 hEjOω;mωO

†
ω;mjEi

¼ ωe−
βω
2 Gβðω; mÞ: ð8:9Þ

On the other hand, using directly (8.6), we find that

hEjOω;m½H; ~XH
ω;m�jEi¼? 0: ð8:10Þ

Clearly (8.10) and (8.9) are in contradiction, and therefore
Eq. (8.6), which was used by Harlow to define the mirrors,
is actually inconsistent in an energy eigenstate. Moreover
note that at this level the contradiction arises at O(1) and
cannot be resolved by 1

N corrections.
Now, we move away from a strict energy eigenstate and

turn to a state with an O(1) spread in energies. We show that
even in such a state, the modified definition of the mirror
operators in [12] cannot be used consistently.

2. Inconsistency of ~XH
ω;m in microcanonical states

We now show that the inconsistency in Harlow’s
unitaries is not restricted to energy eigenstates. It persists

in states that are drawn from a microcanonical ensemble
with an O(1) spread in energies. Consider a state of the
following kind,

jΨmici ¼
X
i

αijEii;

where the coefficients αi have the property that they are
peaked around a given energy, which we call E, but the
spread in energies is O(1). More precisely, we demand

hΨmicjHjΨmici ¼ E;

hΨmicjPEjΨmici ¼ 1 − OðN −1Þ;

where

PE ¼
Xi¼EþΔ

i¼E−Δ
jEiihEij ð8:11Þ

is the projector onto states in the range E� Δ, and Δ ≪ N
is some O(1) number.
Now, the key point is as follows. In (8.6) we have

imposed the relation that the commutator of the operator
~XH with the Hamiltonian annihilates the state. However, the
projector onto a range of energies, like the one that appears
in (8.11), is also a good observable. In fact, physically we
expect to be able to measure this observable rather easily
both on the boundary and in the bulk. On the boundary,
this observable is completely determined by considering
the zero mode of the stress tensor. In the bulk, it can be
determined by considering the subleading falloff in the
metric. This is in contrast to a projector onto a
Schwarzschild number eigenstate which, as we reviewed
in Appendix C of [9], requires an extremely long time to
measure and projects the final state onto a firewall.
Now, consider again the relation (8.6), but extended to

products of the operator ~XH
ω;m. As we discussed above,

unless we can define such products consistently to a high
order, it is not possible to consider unitaries made out of
this operator, which are required to produce the ambiguity
that was discussed in [12].
However, for any O(1) frequency ω, we have an O(1)

number nc, so that

ncω > 2Δ:

Now, following (8.6), we impose

ð ~XH
ω;mÞnc jΨmici ¼ e−

ncβω
2 ðO†

ω;mÞnc jΨmici þ
1

N
jRmicro

C i;

where we have included a small possible 1
N correction with

the property that

hRmicro
C jRmicro

C i ¼ Oð1Þ:

24Note that these results are unaffected by a possible small
correction to the commutator between the Hamiltonian and the
ordinary operator: RC ¼ ½H;O†

ω;m� − ωO†
ω;m. This may arise

because we define the modes by considering only a finite-time
interval as we discussed above. However, we expect that
∥RCjEijj2 ≪ 1, and particularly that hEjOω;mRCjEi ¼ Oð 1N Þ.
These statements just point out that the remainder is small and, in
particular, it does not have an overlap with O†

ω;mjEi at Oð1Þ.
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However, now we note that

e−ncβωhΨmicjðOω;mÞncPEðO†
ω;mÞnc jΨmici ≪ 1: ð8:12Þ

This is because the action of nc insertions of ~O†
ω;m raises

the energy by the state by ncω and so necessarily takes it
out of the band E� Δ. On the other hand, if the operator
~XH
ω;m is defined to commute also with PE then we would

expect

hΨmicj½ð ~XH
ω;mÞ†�ncPEð ~XH

ω;mÞnc jΨmici
¼? hΨmicjPE½½ð ~XH

ω;mÞ†�ncð ~XH
ω;mÞnc jΨmici þ OðN −1Þ:

¼ hΨmicjPEðO†
ω;mÞncðOω;mÞnc jΨmici þ OðN −1Þ

¼ Oð1Þ; ð8:13Þ

where in the final result we have noted that action of
ðOω;mÞnc followed by the action of its adjoint maps us back
to the same band of energies. Clearly the results of
(8.12)–(8.13) are in contradiction given the general results
about the expectation value of projectors in states that are
almost parallel, which we reviewed in Sec. VA.

3. Failure of ~XH
ω;m to satisfy the Heisenberg

equations of motion

Now we turn to an even more serious difficulty with the
mirror operators defined by (8.6): their failure to satisfy the
Heisenberg equations of motion. This failure persists even
in states with a canonical spread of energies. In such states,
the fundamental relation (8.6) does not suffer from an
obvious inconsistency, unlike in energy eigenstates or
states with a microcanonical spread. However, as we show
below these operators nevertheless do not have the correct
geometric properties to play the role of interior mirror
operators.
In particular, as we described in detail in Sec. VI C 1, if

the bulk operators are defined relationally with respect to
the boundary, in order to be gauge invariant, then they must
satisfy

eiHTϕðt; r;ΩÞe−iHT ¼ ϕðtþ T; r;ΩÞ:

It is clear that if we attempt to create these operators by
means of the operators defined in (8.6), then the local
operators will not obey the Heisenberg equations of
motion. Let us check this explicitly by computing a two-
point function across the horizon.
Outside the horizon we have the usual expansion of the

field in terms of CFT modes,

ϕHðt; r�;ΩÞ →
U→0−

X
m;ω

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωCβðω; mÞp

×Oω;me−iωtYmðΩÞðeiδeiωr� þ e−iδe−iωr�Þ þ H:c:

This expansion does not depend on our definition of the
mirror operators. Inside the horizon, however, using the
Harlow mirror operators we find

ϕHðt; r�;ΩÞ →
U→0þ

X
m;ω

e−iδffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωCβðω; mÞp ½Oω;me−iωðtþr�ÞYmðΩÞ

þ ~XH
ω;meiωðt−r�ÞY�

mðΩÞÞ þ H:c:�:

Now, let us compute correlation functions with this
operator in an equilibrium state, jΨi. Moving to the usual
Kruskal coordinates U, V, let us consider two points, so
that one of them, ðU1; V1;Ω1Þ, is just outside the horizon
whereas the other ðU2; V2;Ω2Þ is just inside. Then we find

hΨje−iHTϕHðU1; V1;Ω1ÞϕHðU2; V2;Ω2ÞeiHT jΨi

¼
X
m;ω

1

ωCβðω; mÞ

×

�
hOω;mO

†
ω;mi

�
V1

V2

�
iω
þ eiωThOω;m

~XH
ω;mi

�
−U1

U2

�
iω
�

× YmðΩ1ÞY�
mðΩ2Þ þ H:c:

Notice the extra factor of eiωT which appears in front of the
U1

U2
factor. In particular, this implies that if we compute the

derivative of the two-point function and take the two points
to be close then we find (using the techniques of Sec. IV),
substituting the relevant two-point functions and converting
the sum to an integral, that

lim
V1−V2→0

hΨje−iHT∂UϕHðU1; V1;Ω1Þ∂UϕH

× ðU2; V2;Ω2ÞeiHT jΨi

¼ c
δd−1ðΩ1 −Ω2Þ
ðU1 − U2e

−2πT
β Þ2

:

However, this is in explicit contradiction with the universal
short distance form of the correlator that we derived in
(4.3). In fact, such a correlator would suggest the presence
of a firewall.
Therefore, we have reached the following conclusion.

Even in an equilibrium state, where we expect correlation
functions to be time invariant, if one uses Harlow’s
definition of the mirror operators, this leads to the pre-
diction that if one starts with a state with no firewall, a
firewall appears immediately.
This is a straightforward consequence of the fact that

these putative mirror operators do not obey the Heisenberg
equations of motion. The commutator with the Hamiltonian
(8.6) was derived neither from a gauge fixing procedure,
which we carried out carefully in [9], nor a careful
consideration of relational observables in the geometry,
which we performed in Sec. VI C.
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In fact, the source of this error is apparent. The
motivation of [12] to propose the vanishing commutator
of the interior operators with the Hamiltonian (8.6) was
partly based on the analogy with the thermofield doubled
state. In fact, it was argued in [12] that in some specific pure
states, one may expect bulk correlators to approximate
thermofield correlators to high orders in 1

N . However, even
in the thermofield state, as we showed in Sec. VI, when one
carefully consider commutators of the right Hamiltonian
with the mirrors that are relevant for the right-relational
observables, one finds nonzero commutators. It is only if
one uses the naive but incorrect expansion of Sec. VI D that
one obtains the incorrect expectation for the commutator
used in (8.6).
One possible interpretation for ~XH

ω;m is that they actually
correspond to the operators from the left CFT in a thermo-
field doubled state and not to the operators behind the
horizon at all. This would explain why they do not satisfy
the properties expected of the ~Oω;m operators. However, as
we showed in Sec. VII F, the subtleties and paradoxes
associated with the ~Oω;m construction enter precisely when
one attempts to map operators from the left CFT into the
operators that a right-infalling observer would see behind
the horizon. So, if this alternate interpretation is correct,
then the operators ~XH

ω;m pertain to a formal construction that
is not directly relevant for the construction of the black hole
interior in AdS/CFT.

C. States in the “canonical” ensemble

We now turn precisely to an interesting class of exci-
tations of states in the canonical ensemble. The point is that
we need to refine our notion of equilibrium, since the time
independence of correlators of single-trace operators may
not be sufficient to classify these states into equilibrium
and nonequilibrium. We do not explicitly perform this
classification here, but we show that such a classification
should exist.
These states were also discussed in [12], but we phrase

the issue independently of Harlow’s mirror operators, since
these do not have any geometric significance as we pointed
out above.
Consider a state jΨcani that satisfies the following

condition. For any element Ap of the set of observables
A, we have

hΨcanjApjΨcani ¼ TrðρApÞ þ Oðe−SÞ; ð8:14Þ

where ρ is an invertible matrix. Note that if the state jΨcani
is in equilibrium then the density matrix ρ satisfies
½H; ρ� ¼ 0. This is important for correlation functions to
be time-translationally invariant.
We pause to make two important points. Given a state

jΨcani the density matrix that appears on the right of (8.14)
is not unique. In fact, the possible solutions to this equation
are the subject of entropy maximization [59]. Second, both

the energy eigenstate and the sharp microcanonical state
that we considered above are not relevant here. We cannot
find any invertible choice of ρ to satisfy (8.14) for these
states without making some matrix elements of the inverse
arbitrarily large.
Now, given any Hermitian element of the set of observ-

ables Ap, we consider the transformation

jΨ0
cani ¼ ρ

1
2eiApρ−

1
2jΨcani: ð8:15Þ

We can check that correlators of elements of A in the state
jΨ0

cani are the same as those in jΨcani. We see that

hΨ0
canjAmjΨ0

cani ¼ hΨcanjρ−1
2e−iApρ

1
2Amρ

1
2eiApρ−

1
2jΨcani

¼ Tr

�
ρ

�
ρ−

1
2e−iApρ

1
2Amρ

1
2eiApρ−

1
2

��
þ Oðe−SÞ ð8:16Þ

¼ TrðρAmÞ þ Oðe−SÞ ¼ hΨcanjAmjΨcani þ Oðe−SÞ:
ð8:17Þ

In obtaining (8.16), we simply used (8.14), and then we use
the cyclicity of the trace and (8.14) to obtain the final result
in (8.17). The question now is as follows: is the state jΨ0

cani
in equilibrium or not?
Consider a concrete example. Take the state that was

discussed in [12],

jΨcani ¼
1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp X

i

e−
βEi
2 eiϕi jEii; ð8:18Þ

where ϕi are arbitrary phases, the sum is over all energy
eigenstates and ZðβÞ is the partition function of the
boundary theory. As discussed in [12] for simple correla-
tors this state behaves like the canonical ensemble to
exponential accuracy, and for this state we can take
ρ ¼ 1

ZðβÞ e
−βH and satisfy (8.14).

To see this, consider any operator, Ap, obeying the
eigenstate thermalization hypothesis (7.15). Adopting the
notation of (7.15), we consider

hΨcanjApjΨcani¼
1

ZðβÞ
X
i

AðEiÞe−βEi

þ 1

ZðβÞ
X
ij

e−β
EiþEj

2 Rije−SBðEi;EjÞeiðϕj−ϕiÞ:

To convert the second term to a sum over i, we sum over all
j that can be connected by the cross terms. We make the
further reasonable assumption that the unitary links states
that are separated only by a finite band, i.e. BðEi; EjÞ ≪ 1

for jEi − Ejj ≫ 1. Now, we see that for each value of i, the
sum over j runs over effectively OðeSÞ states. However,
since these states contribute with varying phases the typical
size of this sum over j is suppressed by e−

S
2 compared to the

first term involving AðEiÞ. So we can estimate that
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hΨcanjApjΨcani ¼
1

ZðβÞ
X
i

AðEiÞe−βEi þ Oðe−S
2Þ

¼ 1

ZðβÞTrðe
−βHApÞ þ Oðe−S

2Þ:

Now, we consider the group of transformations of the form
(8.15) that we can make to this state, where now
ρ ¼ 1

ZðβÞTrðe−βHÞ,

MjΨcani≡ e−
βH
2 eiApe

βH
2 jΨcani: ð8:19Þ

The question is, if jΨcani is an equilibrium state, then is
MjΨcani in equilibrium or not?
We work with this concrete example to consider this

question. Of course, the reader can easily generalize this
discussion to states that mimic a density matrix that is
distinct from the thermal one.
At first sight, this question is a little puzzling because of

two seemingly contradictory facts. On the one hand, all
correlators of elements of A in this new state (8.19) are the
same as in the canonical ensemble

hΨcanjM†AmMjΨcani ¼
1

ZðβÞTrðe
−βHAmÞ þ Oðe−S

2Þ:

On the other hand, it is easy to verify that

hΨcanjM†e−i ~Ap jΨcani ¼ 1 − OðN −1Þ; ð8:20Þ

where here e−i ~Ap jΨcani is an excited state, as discussed in
Sec. VIII A. So if we declare the transformed state in (8.19)
as an equilibrium state, then we would have the unusual
situation of having equilibrium and excited states separated
by a distance 1

N in the Hilbert space (8.20). This would not
be a contradiction, since the operators ~O are state depen-
dent, but it would be a rather striking departure from the
behavior of state-independent operators.
Therefore, the better alternative is to enlarge the set of

observables A to include an operator that can distinguish
between the states MjΨcani and jΨcani. There are many
such operators because it is certainly not true that all
physical properties of these states can be captured by the
thermal density matrix. For example, if we take the
boundary to be on Sd−1 and ask for the entanglement
entropy of a subregion on this boundary, then in both states,
this entanglement entropy starts to decrease after the
volume of the subregion increases past half the volume
of the Sd−1, which would not be the case for a truly thermal
mixed state.
We return to the discussion of the appropriate operators

that can detect this excitation in future work. However, for
now, we perform an important consistency check. Consider
the set of states formed by the action of the group of
exponentiated unitaries

fjΨcani;MðA1ÞjΨcani;MðA2ÞjΨcani…MðAnÞjΨcanig;
ð8:21Þ

where A1;A2;…An are elements of A and MðApÞjΨcani≡
e−

βH
2 eiApe

βH
2 jΨcani as above. We show that it is consistent, in

principle, to have sets of this form, where only one element
of the set is an equilibrium state, and all others are
nonequilibrium states. The consistency check that we need
to perform is to ensure that such a classification will not
violate the rule that most states in the Hilbert space must be
equilibrium states.

1. Consistency condition for maps from equilibrium
to nonequilibrium states

Let us state this consistency condition more precisely. It
is applicable not only to this case, but to more general
statistical mechanical questions of classifying equilibrium.
Let us say that we have two regions of the Hilbert space,D,
and I . We have a function on the Hilbert space ΘEðΨÞ,
with the property thatΘEðΨÞ ¼ 0 for equilibrium states and
ΘEðΨÞ ¼ 1 for nonequilibrium states. This function pro-
vides a classification of equilibrium. Next, we have a
measure on the Hilbert space dμðΨÞ, which has the
property that by this measure most states in both D and
I are in equilibrium.

R
D dμðΨÞΘEðΨÞR

D dμðΨÞ ≪ 1; ð8:22Þ

R
I dμðΨÞΘEðΨÞR

I dμðΨÞ ≪ 1: ð8:23Þ

This means that the volume of nonequilibrium states as a
fraction of the total volume is very small both inD and in I .
Finally, consider a map M,

M∶ D → I ;

which has the property that it maps equilibrium to non-
equilibrium states.
LetMðDÞ be the image ofD under this map. Now, let ID

be the region of the Hilbert space that is within a distance ϵ
of the set I . More precisely, for ϵ ≪ 1,

jΨexi ∈ ID⇔∃jΨi ∈ D; s:t: jhΨexjMjΨij2 ≥ 1 − ϵ2:

ð8:24Þ

Then we have the following important consistency
condition on this map:

R
ID

dμðΨÞR
I dμðΨÞ ≪ 1: ð8:25Þ
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We explain this condition in a little more detail below.
Intuitively, it means that states that are close to the image of
D under M must have very small volume in I .
From this condition it follows immediately that an

invertible map D → D cannot map equilibrium to non-
equilibrium states consistently. For example, consider the
microcanonical measure where we pick states in an energy
band. (We define this more precisely below.) We expect
most such states to be in equilibrium. Now consider time
translations, which map this region back to itself.
Therefore, the image under time translations of the original
region is the region itself. Thus time translations do not
satisfy (8.25) and therefore cannot have the property.

2. Microcanonical ensemble and unitaries

To warm up for the problem of maps from canonical
states back to themselves, we consider a similar problem
for the microcanonical ensemble. We define this ensemble,
define an appropriate measure so that (8.22)–(8.23) are
satisfied and show how unitaries of simple operators do
satisfy (8.25).
Consider the set of all states of the form

jΨmici ¼
XEi¼EþΔ

Ei¼E−Δ
aijEii; ð8:26Þ

where
P

ijaij2 ¼ 1 for the state to be normalized. We now
write down an invariant Haar measure on this set, dμðΨmicÞ,
with the property that for any unitary that maps states of
the form (8.26) back to another state of the same
form, jΨ0

mici ¼ UjΨmici, we have dμðΨ0
micÞ ¼ dμðΨmicÞ.

Explicitly, to obtain the microcanonical ensemble, we
consider the uniform probability measure

dμðaiÞ ¼ δ

�
1 −

X
i

jaij2
�
d2a1…d2aD; ð8:27Þ

where D is the total number of energy eigenstates in this
range, andNμ is a normalization constant that we fix below.
In the measure above, note that we have not identified states
that differ by a phase.
In terms of the objects introduced in Sec. VIII C 1, the set

D is the set of all states of the form (8.26). We have not
specified a precise equilibrium function. However, with
almost any reasonable choice of ΘEðΨÞ, for example, we
can choose this function so that it implements our equi-
librium condition in (7.5), and with the measure (8.27), we
see that (8.22) is satisfied.
We can take the map under consideration to be the

unitary matrix,Um ¼ eiAm . Now one might naively imagine
that there are “as many” states of the form UmjΨmici as of
the form jΨmici. The reason this is still consistent with the
fact that most states are equilibrium states is that UmjΨmici
does not belong to the original microcanonical ensemble.

Even if we consider Am ¼ Oω þO†
ω where ω is a very low

frequency we see that the new state UmjΨmici contains
energy eigenstates of higher energies. The term Ak

m
k! in the

expansion of the unitary operator leads to a new ensemble
with states E� Δ� kω. The point is that even a small
increase in energy increases the volume of the ensemble by
a huge amount, and therefore the state UðAmÞjΨmici come
from a larger ensemble, where they are extremely atypical.
Let us see this more precisely; let us define I to be the set

of states that can be written in the form (8.26), but with a
width Δ0 > Δ. In the example above, if we take Δ0−Δ

ω ≫ 1,
then we can consistently think of the unitary as a map from
D to I . Strictly speaking the image of the lower dimen-
sional manifold in the higher dimensional manifold is
measure 0. However, this does mean that nonequilibrium
states are infinitely unlikely. To answer physical questions
we must examine how many states in the higher dimen-
sional manifold are within an ϵ distance of the states
obtained by exciting the lower dimensional manifold with a
unitary. The relevance of this condition is that by the
arguments of Sec. VA the expectation value of any
projector in states which have an almost unit inner product
is almost identical and therefore such states have similar
physical properties.
To verify (8.25), we consider the volume of the manifold

of all states of the form (8.26). This is just given by
integrating the measure (8.27) which results in

Vmicro ¼
πD

ΓðDÞ ;

the factor of ð2πÞ coming from the integral over the phases
in each coefficient in the state.
The action of the unitary maps this into a slightly larger

ensemble. The larger ensemble has dimension D0 and total
volume

Vexc ¼
πD

0

ΓðD0Þ :

Now we may consider the volume of the set of states that
are within a distance ϵ of the image of the unitary map, in
the sense of (8.24). This volume can be calculated through
the following integral:

V image ¼
Z

ϵ

0

2xdx
Z

δ
	
1 − x2 −

X
i

jaij2


d2a1…d2aD

×
Z

δ
	
x2 −

X
j

jbjj2


d2b1…d2bD0−D

¼ πD
0

ΓðDÞΓðD0 −DÞ
Z

ϵ2

0

dðx2Þðx2ÞD0−D−1ð1 − x2ÞD−1:

The last integral can be represented as an incomplete beta
function, but we can bound its value rather easily. First note
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that the integrand reaches a maximum at x2 ¼ D0−D−1
D0−2 . If ϵ is

sufficiently small, then this maximum value is out of the
region of integration and the integral is bounded above by

V image <
πD

0

ΓðDÞΓðD0 −DÞ ϵ
2ðD0−DÞð1 − ϵ2ÞD−1:

The ratio of the volume of this region to the volume of
the ensemble is given by

V image

Vexc
<

ΓðD0Þ
ΓðDÞΓðD0 −DÞ ϵ

2ðD0−DÞð1 − ϵ2ÞD−1:

In our case, D, D0, D −D0 are all very large and we
can approximate this using Stirling’s approximation to
obtain

V image

Vexc
< ð1 − ϵ2Þ−1

�
D0ð1 − ϵ2Þ

D

�
D
�

D0ϵ2

D0 −D

�
D0−D

:

In the regime where ϵ2 ≪ D0−D
D0 , we see that this ratio is very

small.25

Therefore even if the unitary increases the dimension of
the new ensemble by only a small fraction, it is completely
consistent with thermodynamic expectations to classify
almost all states both in the original ensemble, and in the
new ensemble, as equilibrium states.

3. Excitations of canonical states

Now we want to show that the same principle holds for
the canonical states that we discussed above. More pre-
cisely, we consider some possible measures on a subset of
the Hilbert space, so that typical states picked using this
measure are of the form (8.18). Then the action of the
operators M takes us to another subset of the Hilbert space
where the image of the original subset occupies a vanish-
ingly small volume. By the remark below (8.18), as a
corollary, this provides some evidence for the claim that
there is no subset of the CFT Hilbert space, with a nice
measure satisfying (8.22) which has the property that it is
left invariant by the action of M.
First, let us attempt to make precise what we mean by

states of the form (8.18). In (8.18) we ensured that each
coefficient was precisely the Boltzmann factor. This is
clearly a very special class of states and we would set
ourselves too simple a problem by focusing on these states.

So we can generalize this slightly to consider states of the
form

jΨcani ¼
XE2

E1

1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp aie−

βEi
2 jEii; ð8:28Þ

where the ai are complex numbers that are drawn from a
distribution so that their norms can each independently
fluctuate a little about 1 but

hjaij2i ¼ 1: ð8:29Þ

We comment more on the range of the sum ½E1; E2� below.
It is easy to verify, by repeating the argument above, that
even for the states (8.28) we have

hΨcanjApjΨcani ¼
1

ZðβÞTrðe
−βHApÞ þ Oðe−S

2Þ:

By the central limit theorem, since there is an exponentially
large number of energy eigenstates in (8.28), the fact that
the coefficients ai can fluctuate in magnitudes as well as
phases is unimportant. To see this consider a range of
energies of size e−

N
2 . Even this tiny range of energies has an

exponentially large number of eigenstates. In the notation
of (7.15), the expectation value AðEiÞ is constant over this
range, and therefore the fluctuations of jaij2 average out.
Therefore, for any smooth function, it is only the mean
magnitude of the jaij2 that matters, which is what leads to
the result above.
Now consider the action of an element of M on the state

(8.28). We write M ¼ e−
βH
2 Ue

βH
2 . If the matrix elements of

U are UjEii ¼
P

jUjijEji, then we reach the new state

jΨ0
cani≡ NMMjΨcani

¼ NM

XEi¼E2

Ei¼E1

X
Ej

1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp e−βEjaiUjijEji;

where the factor

NM ¼ hΨcanjM†MjΨcani−1
2

is required to normalize the state. If we neglect the edge
effects for the moment (these are important below), then we
see that we again have a state of the form (8.28), although
with coefficients

aj0 ¼ NM

X
i

Uijai:

From the argument above we can check that Nm ¼
1þ Oðe−S

2Þ. Therefore the action of the group of

25The reader should note that this regime is somewhat different
from the regime considered recently in [60]. Indeed, as pointed
out there, if we define nearby states by taking ϵ2 ∼ D0−D

D0 then the
volume of the image and nearby states is almost the entire volume
of the excited manifold. This is not in contradiction with our
result above that excited states are atypical. Rather it is the
statement that once we move a distance ðD0−D

D0 Þ12 from the excited
state, we are back in the set of typical states of the Hilbert space.
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transformations denoted by M is basically like that of a
unitary transformation on the elements ai.
We now see the following.
(1) Physically the range of energies that is relevant in

(8.28) is limited. So, we may truncate this range so
that the lower bound is E1 ¼ E − Δ and the upper
bound is E2 ¼ Eþ Δ. In that case, by an extension
of the arguments of the previous subsection we find
that M maps us to a slightly larger band of energies.
Under almost any reasonable measure, this larger
band has a much larger volume and therefore (8.25)
is met. The technical details of this argument are
identical to the previous subsection since, as we
noted, M acts precisely as a unitary transformation
on the coefficients ai.

(2) We may try and avoid this conclusion in the
following artificial manner. We extend the band of
energies ½E1; E2� in (8.28) so that it spans a very
large range. We now truncate the action ofM so that
it acts only within this large energy range. By
construction, now M maps this set back to itself.
This may suggest that (8.25) cannot be met. This
conclusion is clearly physically incorrect since the
higher energies in (8.28) are physically unimportant
and therefore artificially extending the band should
have no effect. However, there is another important
point. If we indeed take our original domain D to be
the subspace of this large range of energies, and
attempt to define a measure that is left invariant by
the action ofM, then as we show below we find that
the states (8.28) are extremely unlikely states and
themselves occupy only a small volume of the space.

The point is that there is a tension between the require-
ment (8.29) which mandates that all the ai must have equal
and approximately unit magnitude and the fact that M acts
as a unitary on this space. We now consider one particular
example to bring out this tension. In an attempt to write
down a measure that is invariant under the action of M we

may try and write the uniform measure on the space ai.
More precisely, we consider the measure

μcanðaiÞd2a1…d2aD

¼ 2πNμδ

�
ZðβÞ −

X
i

jaij2e−βEi

�
d2a1…d2aD: ð8:30Þ

Here, to make the measure well defined we had to truncate
the range of energies ½E1; E2� so that the total number of
eigenstates that enter the range isD. If we take this range to
be large enough so that E2 − E1 ≫

ffiffiffiffiffi
N

p
then, for the

purposes of its action on states (8.28), the action of M can
be consistently restricted to this range. Now, naively, one
might believe that this leads to a contradiction with (8.25).
However, we find that under (8.30) with a large range of
energies the states (8.28) are themselves very atypical.
Therefore the fact that the truncated version ofM maps the
energy range back to itself and also leaves the measure
(8.30) invariant still does not lead to a contradiction
with (8.25).
We now explicitly bring out the tension between mea-

sures like (8.30) which are the natural guesses for measures
invariant under M and the fact that we would like the
magnitudes of the ai to be approximately constant in (8.29).
We compute the reduced probability distribution, μred for
the coefficient a1 by integrating out a2…aD. We write the
delta function as

δ

�
ZðβÞ −

X
i

jaij2e−βEi

�

¼ lim
ϵ→0

Z
dl
2π

eilðZðβÞ−
P

i
jaij2e−βEi Þ−ϵl2 ;

where ϵ is a small regulator. We also add small regulators
ϵ0e−βEi jaij2 to make the integrals over a2…aD well defined.
Then we find

μredða1Þ≡
Z

μcanðaiÞd2a2…d2aD ¼ Nμ

Z
d2a2…d2aD lim

ϵ;ϵ0→0

Z
dleilðZðβÞ−

P
i
jaij2e−βEi Þ−ϵl2e−ϵ

0P
i
e−βEi jaij2

¼
�
Nμπ

D−1

e−β
P

i
Ei

�
lim
ϵ;ϵ0→0

Z
dl

eilðZðβÞ−ja1j2e−βE1 Þ−ϵl2

ðϵ0 þ ilÞD−1

¼
�

Nμπ
D−1

ΓðD − 1Þe−β
P

i
Ei

� Z
dldxxD−2e−xðilþϵ0ÞeilðZðβÞ−ja1j2e−βE1 Þ−ϵl2

¼
�

Nμπ
D−1

ΓðD − 1Þe−β
P

i
Ei

ffiffiffi
π

ϵ

r �Z
dxxD−2e−

ðxþZðβÞ−ja1 j2e−βE1 Þ2
4ϵ −xϵ0

¼ κ

�
1 −

ja1j2e−βE1

ZðβÞ
�

D−2
:

In the last step here, we have absorbed all the normalization factors into an irrelevant constant κ and taken all regulators to 0
and kept the part that is nonvanishing in this limit.
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Generalizing this computation to the other coefficients,
we find that the reduced probability distribution for the
coefficient jaij2 can be written as

μredðaiÞ ¼ κ

�
1 −

jaij2e−βEi

ZðβÞ
�

D−2
≈ κ exp

�
−
De−βEi jaij2

ZðβÞ
�
:

ð8:31Þ
Now, we see something interesting. If we take the range

of energies ½E1; E2� that appeared in (8.28) to be much
larger than

ffiffiffiffiffi
N

p
as we would need to make M act

effectively in this space then (8.31) suggests that the
different ai have very different typical magnitudes. To
ensure that the typical magnitudes of the coefficients ai are
the same in (8.31), we have to take the range of energies
E1 − E2 ≪ 1. However, in this case the ensemble is clearly
not invariant under the action of M.
Physical intuition: Let us briefly summarize the physical

intuition behind the analysis above. The action ofM is like
a unitary on the coefficients ai. Therefore, just like unitaries
in a microcanonical ensemble, M tends to move the
coefficients slightly from lower to higher energies. From
this point of view, in the states (8.28), as written, the high
energy states are weighted with coefficients that are
typically too small and the low energy states are weighted
with coefficients that are typically too large. If we truncate
the coefficients ai to a small range of energies, then M
simply moves us out of this range. This suggests that it may
be difficult to find a measure on the Hilbert space that
satisfies (8.22)–(8.23) for which M does not meet (8.25).
So, in principle it is consistent to expect that there may

exist further criteria, based on the magnitudes and the
phases of (8.28) which can be detected by various operators
beyond the simple operators in our algebra, which will
determine that in the set (8.21) at most one of the states is in
equilibrium whereas the others are not. We return to this
issue in future work.

D. Summary

We now summarize the results of this section.
(1) For ordinary excitations of an equilibrium state with

unitary operators, we can detect them using ordinary
correlators and modify the construction of our
mirrors accordingly.

(2) For the van Raamsdonk-type unitaries, which act
behind the horizon, we can detect them by using
correlators of the Hamiltonian.

(3) Harlow attempted to define new mirrors that could
evade detection by the Hamiltonian. However, we
have shown here that this was predicated on an error
in the computation of the Hamiltonian with the
mirror operators. Harlow’s operators do not have the
right geometric properties to play the role of mirror
operators, and do not even obey the Heisenberg
equations of motion.

(4) Nevertheless, for some states with a canonical
spread, we can find a group of transformations as
in (8.21) so that we can map one state to another
where the correlators are almost the same. There is
no strict ambiguity involved here, because none of
these states coincide exactly with the states obtained
by acting on an equilibrium state with a mirror
operator.

(5) However, while it is true that at the moment we do
not know how to classify the states in the orbit
(8.21), we have further shown that it is consistent
with statistical mechanics expectations to classify
one of these as equilibrium and the others as non-
equilibrium. Although it appears that all these states
are equally generic, this is specious, and such a
classification would be perfectly consistent with the
notion that most states are equilibrium states.

We return to this issue of the classification in further work.
However, we note that this is a broader question in AdS/
CFT—that of precursors. At the moment, we do not know
how to write down the bulk to boundary map for all
possible states but this is an issue that extends beyond our
construction, and is independent of the recent discussions
on the information paradox. We emphasize again that our
results in this subsection show that, within the class of
states we have considered—equilibrium states, near-
equilibrium states excited by the ordinary and mirror
operators, and small superpositions of these—there is no
ambiguity in our construction.

IX. STATE-DEPENDENCE IN ENTANGLED
SYSTEMS AND ER ¼ EPR

We now describe the construction of our operators in
general entangled systems. In Sec. VII F, we already
examined the construction of the interior in a specific
entangled state—the eternal black hole. Here we generalize
the construction to more general entangled states. We show,
also, that the construction of Sec. VII F follows automati-
cally from our generalized definition here.
We first present a general construction of interior

operators. This construction is a very natural generalization
of the one-sided interior constructed in Sec. VII and in fact
the defining equations for the mirror are unchanged. The
only difference is in the construction of the little Hilbert
spaceHΨen

. This is because for entangled systems we have
two sets of possible natural excitations: one, where we act
with excitations in the original CFT, and the other where we
act with excitations in the entangled system.
We then examine the consequences of this construction.

We divide this analysis into two parts. We first consider
states where the CFT is entangled with another CFT in a
maximal manner so that the entanglement entropy scales
withN . Next we consider states where the CFT is entangled
with a small “pointer,” which could be a collection of a few
qubits so that the entanglement entropy is O(1).
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In both cases, we obtain interesting results. When the
CFT is entangled with another CFT, our construction leads
to a precise and natural formulation of the ER ¼ EPR
conjecture [13]. When light operators on the right are
entangled with light operators on the left, we find that
excitations on the left can affect the experience of the right-
infalling observer in precisely that manner predicted by a
geometric wormhole. On the other hand, in a generic state
where there is no such entanglement we find that an
observer on the left CFT loses his power to affect the
region behind the right horizon by means of simple
operations, although he could possibly do so by using
some very complicated operators. This is consistent with
the heuristic notion that the wormhole becomes very long
for these states.
On the other hand, when the CFT is entangled with a

small system no such geometric wormhole appears for any
state. However, for this case, there is another crucial
question, which is as follows. As we show below, the
important test of whether there are any observable violations
of quantum mechanics for the infalling observer arises when
the observer entangles the CFT with a small system, jumps
into the black hole and observes whether the state-depend-
ence leads to any deviations from linearity. We show below
that such an experiment does not lead to any observable
departure from the predictions of quantum mechanics.
We wish to emphasize throughout this section that these

predictions arise as a natural consequence of our con-
struction and not because we have tailored the definition of
the interior operators to entangled systems. As we men-
tioned above, the only change in an entangled system is that
we have additional coarse or light operators to excite the
system from the left and therefore we must enlarge the
space HΨen

.
We should mention that our emphasis and approach is

complementary to the approach of directly studying density
matrices that was adopted in [17].
Notation and objective: In this section, we consider

entangled states,

jΨeni ¼
X
i

αij ~Ψii ⊗ jΨii: ð9:1Þ

Here αi are some coefficients, jΨii are orthonormal states in
the original CFT, and j ~Ψii are states in a second system that
may be another CFT or a collection of qubits. We refer to
this system as the left system. The sum may be over a small
number of states, or an exponentially large number.
In this section, our primary objective is to reconstruct the

experience of the infalling observer from the original CFT,
which we also call the right CFT. Our construction of the
mirrors, and also the little Hilbert space is appropriate for
right-relationally defined local observables. In many cases
where the left system is also a CFT, we can perform an
analogous construction to describe the experience of a

left-infalling observer. But apart from indicating this briefly
below, we do not focus on this.

A. Mirror operators for entangled systems

Summary of the construction: The construction can be
summarized as follows. We call A the small algebra of the
right CFT and AL for the algebra of observables of the left
system. We also define the product of the two alge-
bras Aproduct ¼ AL ⊗ A.
The little Hilbert space is defined as the span of states

fAproductjΨenig. In general this is bigger than just the span
of states fAjΨig, but there are some cases (like the
thermofield double state) where the two spaces are the
same. In the general case, the Hilbert space HΨen

can be
decomposed into the direct sum of subspacesHj

Ψen
, each of

which is closed under the action of the right algebra A,

HΨen
¼ ⨁

j
Hj

Ψen
:

For each j we can identify a unique state jΨj
eni ∈ Hj

Ψen

which is an equilibrium state with respect to the right
CFT.26 The rest of the subspace Hj

Ψen
can be generated by

acting on this equilibrium vector with elements of the
algebra A.
Hence, within each of these subspaces we have a

representation of the algebra A which obeys all the
conditions that we encountered in the case of nonentangled
systems. More precisely, no element of the algebra A can
annihilate the state jΨj

eni and the entire Hilbert space Hj
Ψen

can be generated by acting with A on jΨj
eni. The first

condition follows from our assumption that right-CFT
states in (9.1) are black hole states.
We can now define the mirror operators acting within

this subspace using exactly the same rules as in Sec. VII.
Finally, the mirror operators acting on the full little Hilbert
space HΨen

are just the sums of the individual mirror
operators on the subspaces Hj

Ψen
.

We emphasize that this is the natural extension of our
construction of the mirror operators for systems without
entanglement. As we see, this simple definition is able to
reproduce the expected physics for ER ¼ EPR and other
types of entangled states with or without wormholes.
Below we describe this construction in more detail.

1. Construction of the little Hilbert space for
entangled systems

We now discuss in detail how to construct the little
Hilbert space about an entangled state HΨen

. We first

26As in Sec. VII E 2 when considering superpositions, it may
happen that there is no equilibrium state inside Hj

Ψen
. In this case

we need to enlarge Hj
Ψen

to the direct sum of little Hilbert spaces
built on equilibrium states.
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discuss the set of allowed excitations. We then use this to
discuss the notion of equilibrium in entangled systems.
Finally we put these notions together to construct HΨen

.
Allowed excitations of entangled systems: There are two

differences from the single-sided construction. In an
entangled system, we have first the operators from the
original CFT, which are part of A. Additionally, observers
should also have the ability to excite the state by acting with
operators in the left system as well. In the left system, we
can again build up a set of operators, which we denote by
AL. If the left system is a holographic CFT, we should
restrict the set of allowed operators in the same way that we
restrict them for the original CFT. On the other hand if the
left system is a collection of qubits, then there is no notion
of light and heavy operators, and we can allow AL to
include all operators in the left theory. Since operators on
the left commute with operators on the right the full set of
allowed operators has the structure of a direct product

Aproduct ¼ AL ⊗ A:

We denote elements of the left algebra by AL;α ∈ AL, and
elements of the original algebra by Aα ∈ A as usual.
We explore this in greater detail below but we caution the

reader that unlike in the case of the single-sided CFT the
little Hilbert space HΨen

is not isomorphic to Aproduct.
Equilibrium in entangled systems: We now turn to the

notion of equilibrium in entangled systems. Since we are
now allowing excitations of the state by operators in
Aproduct it is natural to modify the notion of equilibrium
as well. This is a natural generalization of the definition of
equilibrium in Sec. VII B for the original CFT. We define
the deviation from equilibrium on the right using the same
parameters as in (7.3)–(7.4),

χpðtÞ ¼ hΨenjeiHtApe−iHtjΨeni;

νp ¼ T
−1
2

b

Z
Tb

0

jðχpðtÞ − χpð0ÞÞjdt;

where H is the right Hamiltonian. In addition, we consider
similar deviations from equilibrium in the left CFT.

χLpðtÞ ¼ hΨenjeiHLtAL;pe−iHLtjΨeni;

νLp ¼ T
−1
2

b

Z
Tb

0

jðχLpðtÞ − χLpð0ÞÞjdt:

A necessary condition for the system to be in equilibrium is
then that both left and right correlators are time-transla-
tionally invariant.

νp ¼ Oðe−S
2Þ; ∀ p;

νLp ¼ Oðe−S
2Þ; ∀ p: ð9:2Þ

As above this condition is necessary but not strictly
sufficient because of the class of excitations that we

discussed in Sec. VIII C. We also see below that (9.2) is
often superfluous and we can perform the construction of
the mirrors provided that the state is in right equilibrium
even if it is not in left equilibrium.
HΨen

for entangled states: We now turn to the con-
struction of the little Hilbert space, which describes the
space of simple excitations about the base state. The main
difference compared to our discussion above is that in the
presence of entanglement, it is not necessary that all
operators in Aproduct give rise to independent descendants
of the state jΨeni. In particular, it is possible that

ðAL;p − AqÞjΨeni ¼ 0;

for some correlated choices of AL;p and Aq. Let us consider
two examples of this.
In the thermofield state jΨtfdi, we have

ðOLω − e−
βω
2 O†

ωÞjΨtfdi ¼ 0: ð9:3Þ
It is understood, above and in other equations below, that
when we write an operator purely from the left system, it
can be lifted to an operator on the product system through
OL;ω ≡OL;ω ⊗ 1R and vice versa.
Next, consider the CFT entangled with a two qubit

system. This system has four states, which we denote by
j1i…j4i. Now we may have a state that is not maximally
entangled,

jΨeni ¼
1ffiffiffi
3

p ðjΨ1i ⊗ j1i þ jΨ2i ⊗ j2i þ jΨ3i ⊗ j3iÞ;

where jΨii are some orthogonal states in the original CFT.
Denoting the projector onto state j4i by P4 ¼ j4ih4j, we see
clearly that

P4jΨeni ¼ 0: ð9:4Þ
Note that both these kinds of states, where we obtain null
relations, are very special. States where relations of the
form (9.3) hold are special because the entanglement is
between simple operators on both sides. As we see below,
generic states do not have such relations. Similarly, when
the left system is small, relations of the form (9.4) also
occur only when the entanglement is nonmaximal.
Nevertheless, our construction is able to account for these
null relations correctly.
We now define HΨen

as follows. Starting with the state
jΨeni, we act with all elements of A to obtain the space

H0
Ψen

¼ span offA1jΨeni;…ADjΨenig; ð9:5Þ

where we remind the reader that the elements of A
displayed above form a complete basis for this linear
set. As usual we assume that there are no null vectors in
the set displayed in (9.5). We define P0

en to be the projector
onto this subspace. This means that

REMARKS ON THE NECESSITY AND IMPLICATIONS OF … PHYSICAL REVIEW D 93, 084049 (2016)

084049-57



jvi ∈ H0
Ψen

⇒ P0
enjvi ¼ jvi;

hvjApjΨeni ¼ 0; ∀ p ⇒ P0
enjvi ¼ 0:

Next we pick a Hermitian element, AL;1 of AL, and
construct

jΨ1
eni ¼ ð1 − P0

enÞAL;1jΨeni: ð9:6Þ

We pick AL;1 so that jΨ1
eni is nonvanishing and in right

equilibrium. Note that it is not necessary for jΨ1
eni to be in

left equilibrium. (The reason for the restriction that AL;1 be
Hermitian is explained below.) We now construct the space

H1
Ψen

¼ span offA1jΨ1
eni;…ADjΨ1

enig: ð9:7Þ

Then we define P1
en to be the projector on H1

Ψen
. Similarly,

we look for AL;2 ∈ AL so that

jΨ2
eni ¼ ð1 − P0

enÞð1 − P1
enÞAL;2jΨeni

is nonvanishing and in right equilibrium. We then construct
H2

Ψen
analogously to (9.5) and (9.7) and continue recur-

sively in this manner until it is no longer possible to find
any elements of AL which can produce descendants of
jΨeni that are orthogonal to all the previous subspaces.
To summarize this construction, we find elements

AL;1…AL;Dmax
(where Dmax may be smaller than the

dimension of the left algebra) with the property that

AL;1jΨeni…AL;Dmax
jΨeni

are all in right equilibrium and have the property that

hΨenjApAL;jjΨeni ¼ 0; ∀ p; j:

On each of these we construct the space Hm
Ψen

as shown in
(9.5) and (9.7). The full space HΨen

is then defined by

HΨen
¼ ⨁

j
Hj

Ψen
:

It is worth discussing the structure of the spaceHΨen
that

results from the construction above, and the examples that
we consider below will elucidate this. In the thermofield
state, an action by a simple operator in the left CFT
corresponds to the action of a simple operator on the right
CFT. Therefore in this case HΨen

coincides with H0
Ψen

. On
the other hand, in a generic entangled state of two CFTs,
there is no relation between the action of simple operators
on the left and the right, and thereforeHΨen

is isomorphic to
A ⊗ Aproduct. In intermediate cases where there is some
entanglement, but not maximal, we obtain an HΨen

that is
intermediate between these two cases: its dimension is
larger thanH0

Ψen
but not maximal. We describe this in detail

in several cases below.
The structure of HΨen

is directly related to whether we
obtain a wormhole on this. This is shown schematically in
Fig. 12 and explained further below.
Definition of the mirror operators: The mirror operators

are now defined via precisely the same linear equations as
Sec. VII C. Note that each vector inHΨen

can be written as a
linear combinations of vectors of the form ApjΨj

eni for
some choice of p and j. We define

~Oω;mApjΨj
eni ¼ Ape−

βω
2 ðOω;mÞ†jΨj

eni;
½ ~Oω;m;H�ApjΨj

eni ¼ −ω ~Oω;mApjΨj
eni: ð9:8Þ

As usual, these equations have a solution because we have
ApjΨj

eni ≠ 0; ∀ p; j. As the reader will note this is a direct
extension of our definition of the mirrors for the original
CFT. We now show how this simple extension has
remarkable properties and allows us to derive a precise
version of the ER ¼ EPR conjecture and also show that the
infalling observer will not observe any violations of
quantum mechanics.

FIG. 12. The structure of the wormhole is directly linked to the structure of HΨen
. In the case on the left above, whereHΨen

coincides
with H0

Ψen
, we obtain a geometric wormhole. The case on the right can be understood as an elongated wormhole. In the extreme case

where HΨen
becomes a direct product space, the geometric wormhole disappears.

KYRIAKOS PAPADODIMAS and SUVRAT RAJU PHYSICAL REVIEW D 93, 084049 (2016)

084049-58



B. The wormhole in the thermofield double state

We now show how the construction above leads to a
wormhole in the thermofield double state, where we take
jΨeni ¼ jΨtfdi. First, let us examine the construction of
HΨen

. In the thermofield state we have the following
relations:

OLω;mjΨtfdi ¼ e−
βω
2 O†

ω;mjΨtfdi;
O†

Lω;mjΨtfdi ¼ e
βω
2 Oω;mjΨtfdi: ð9:9Þ

Now consider an arbitrary polynomial in theOLω;m, which
we denote by AL;α. In the thermofield state we have the
relation

AL;αjΨtfdi ¼ e−
βH
2 A†

αe
βH
2 jΨtfdi;

where, on the right of the equation above, we have an
operator acting purely in the right CFT. If AL;α ∈ AL then,

barring edge effects, we have e−
βH
2 A†

αe
βα
2 ∈ A. Therefore, in

this case we start by constructing

H0
Ψtfd

¼ AjΨtfdi;

and then we do not get any new states by acting with AL.
As a result, the full little Hilbert space is simply

HΨtfd
¼ H0

Ψtfd
:

Then the construction of the mirror operators results in the
same answer as the construction in Sec. VII F but we repeat
it here from the general perspective of mirrors in entangled
systems that we have presented above. The action of the
mirror operators is specified by the linear equations (9.8).
Since in this case the structure of HΨtfd

is so simple, these
equations reduce to

~Oω;mAαjΨtfdi ¼ Aαe−
βω
2 O†

ω;mjΨtfdi;
½ ~Oω;m;H�AαjΨtfdi ¼ −ωAαe−

βω
2 O†

ω;mjΨtfdi: ð9:10Þ

Now the first point we note is that ~Oω;m does not
commute with elements of AL, and moreover that this
nonzero commutator is very special. We can check this
explicitly by considering the commutator of ½ ~Oω;

m;O†
Lω0;m0 �. We have

~Oω;mO
†
Lω0;m0 jΨtfdi ¼ e

βω0
2 ~Oω;mOω0;m0 jΨtfdi

¼ e
βðω0−ωÞ

2 Oω0;m0O†
ω;mjΨtfdi;

where in the first equality we used (9.9). And also

O†
Lω0;m0 ~Oω;mjΨtfdi ¼ e−

βω
2 O†

Lω0;m0O†
ω;mjΨtfdi

¼ e−
βω
2 O†

ω;mO
†
Lω0;m0 jΨtfdi

¼ e
βðω0−ωÞ

2 O†
ω;mOω0;m0 jΨtfdi:

This leads to an O(1) effective commutator,

½ ~Oω;m;O
†
Lω0;m0 �jΨtfdi ¼ Cβðω; mÞδωω0δmm0 jΨtfdi: ð9:11Þ

These are very special commutators, and suggest that
within correlators involving only elements of Agff , it is

possible to replace ~Oω;m withOLω;m. However, as we have
emphasized one cannot equate these operators. In particu-
lar, to compute the commutator of the mirrors with the left
Hamiltonian we consider

~Oω;mHLjΨtfdi ¼ ~Oω;mHjΨtfdi ¼ e−
βω
2 O†

ω;mHjΨtfdi
¼ e−

βω
2 O†

ω;mHLjΨtfdi
¼ HLe−

βω
2 O†

ω;mjΨtfdi ¼ HL
~Oω;mjΨtfdi:

In this chain of equalities we have first used the isometry of
the thermofield state, then used the definition (9.10) and
then manipulated this expression by using the isometry
again and the fact that HL commutes with right operators.
So we find that within simple correlators

½ ~Oω;m;HL�jΨtfdi≐0:

Therefore the mirror operators have a vanishing commu-
tator with the left Hamiltonian. Note that this follows as a
consequence of our defining relations and is not something
that we have to put in by hand.
For the sake of completeness, we can also evaluate the

two-point function

hΨtfdj ~Oω;mO
†
Lω;mjΨtfdi ¼ e

βω
2 hΨtfdj ~Oω;mOω;mjΨtfdi

¼ Gβðω; mÞ: ð9:12Þ

We can proceed to evaluate other correlators along the lines
of (9.11)–(9.12). If we now try and reproduce these
correlators from a geometry then the geometric picture
that arises from this is that of the standard thermofield
wormhole. See Fig. 13. Now we show how, in a generic
entangled state of the two CFTs, a very different geometric
picture emerges.

C. The generic entangled state of two CFTs

We now show how our construction works in the generic
entangled state of two CFTs. Consider scrambling the
thermofield double state with a left unitary. So we now
consider
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jΨgeni ¼ UL;gjΨtfdi; ð9:13Þ
where the unitary is not an exponentiated element of the
algebra of simple operator: UL;g ≠ eiAL;α , but rather some
generic unitary that changes the structure of entanglement
of the two sides. As a result, as shown in [4], simple
operators on the left and right are uncorrelated.

hΨtfdjU†
L;gAL;αAβUL;gjΨtfdi ¼ Oðe−S

2Þ; ∀ α; β: ð9:14Þ

The construction of HΨgen
proceeds according to the

algorithm described in the beginning of this section.
Notice that there is a qualitative difference from the thermo-
field double state, because we no longer have relations of the
form (9.9). The relation (9.14) implies that for an arbitrary
element AL;1 ∈ AL, the left descendant constructed via (9.6)
is non-null and in right equilibrium. Hence the little Hilbert
space HΨgen

will have the direct sum decomposition as
explained earlier. We select a set of operators AL;1…AL;DL

which form a basis of AL and generate the equilibrium
vector in each of these subspaces. Finally we find

HΨgen
¼ span offAβAL;αjΨgeni;

β ¼ 1…D; α ¼ 1…DLg:
Now, the definition of the mirror operators above reads

~Oω;mAβAL;αjΨgeni ¼ Aβe−
βω
2 O†

ω;mAL;αjΨgeni: ð9:15Þ

But since operators in A and AL commute this becomes

~Oω;mAβAL;αjΨgeni ¼ e−
βω
2 AβAL;αO

†
ω;mjΨgeni:

Therefore for the generic entangled state jΨgeni, we have

½ ~Oω;m;AL;α�jΨgeni ¼ 0; generic state: ð9:16Þ

We can also compute the two-point function

hΨgenj ~Oω;mO
†
Lω;mjΨgeni ¼ e

−βω
2 hΨgenjO†

Lω;mO
†
ω;mjΨgeni

¼ Oðe−S
2 Þ: ð9:17Þ

Other two-point functions of simple operators vanish in the
same manner. Therefore the mirrors not only effectively
commute, they are also uncorrelated with the simple left
operators.
Note that both (9.16)–(9.17)—just like (9.11)—came

automatically from our definition of the mirror operators
for entangled systems and the different structure ofHΨgen

in
these cases, without having to put anything in by hand.
Now, we may try and write down a geometry that

reproduces (9.17) and (9.16). We remind the reader that
correlators between the mirror operators and ordinary
operators are unchanged showing that the right-infalling
observer still perceives a smooth horizon. However, the
vanishing commutator (9.16) shows that in the generic state
it is not possible to affect the experience of the right-
infalling observer by simple operators on the left. Hence the
geometric wormhole has disappeared. Instead, geometri-
cally we obtain the Penrose diagram of Fig. 14. This
Penrose diagram was also conjectured in [61].

1. Mirrors as scrambled left operators in the
generic state

We conclude with a further observation on the mirror
operators in the generic state jΨgeni. The relation (9.16) is
somewhat deceptive. Our construction automatically leads
to the conclusion that the commutator of the mirror
operators for the right-infalling observer and simple left
operators, where simple is defined through membership in
AL, vanishes when inserted in low point correlation
functions. However, another interesting consequence is
that when we have a high degree of entanglement of the
CFT with another system, then generically the mirror
operators act on the left system as well. This follows as
an inevitable consequence of their defining equations. It is
easy to prove this as follows.
Let us write the generic entangled state in a Schmidt

basis so that

jΨgeni ¼
X
i

κij ~vii ⊗ jvii; ð9:18Þ

FIG. 14. The dual to the generic entangled state described in
Sec. IX C. Simple operators on the right ORðtÞ and left are not
correlated. This is indicated by the jagged broken line in the
middle and there is no geometric wormhole. But both sides see a
smooth horizon with the emergence of new mirror operators
behind the horizon.

FIG. 13. The standard wormhole described in Sec. IX B:
operators on the right ORðtÞ are entangled with left operator
OLð−tÞ.
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where the κi are arbitrary coefficients and we have
diagonalized the entanglement so that jvii are some
orthonormal states in the right CFT and j ~vii are some
states in the left CFT. Now consider just one of the defining
equations for ~Oω;m,

~Oω;mAαjΨgeni ¼ Aαe−
βω
2 O†

ω;mjΨgeni; ð9:19Þ

and look for a solution to (9.19) with the ~Oω;m acting
entirely within the Hilbert space of the right CFT. We
emphasize that (9.19) is just a special case of (9.15) with
the element of the left algebra that appears there set to the
identity. Let us denote this putative solution by X ¼ ~Oω;m.
We see that this demand that X is an operator in the right

CFT means that for each α, the single equation (9.19) leads
to a system of linear equations given by

XAαjvii ¼ Aαe
−βω
2 O†

ω;mjvii; ∀ α; i: ð9:20Þ

However, if the set i in (9.18) runs over a large enough
range, then in general (9.20) has no solutions. For example,
consider the situation where the states jvii provide a basis
of the Hilbert space. Then, with Aα ∈ Agff , the states

jwα;ii ¼ Aαjvii

provide an overcomplete basis for the space if we span over
all i and all α. Therefore in (9.20) we are trying to specify
the action of the putative purely right mirror operator on an
overcomplete basis and this is not possible in general.
For example, we can find coefficients zαi so that

X
α;i

zαiAαjvii ¼ 0;

and in general it will not be the case that (9.20) map this
vector to 0. In particular on this vector we would find

0 ¼ X
X
α;i

zαiAαjvii ¼
X
α;i

zαie−
βω
2 AαO

†
ω;mjvii ≠ 0?

Here we have used the fact that generically the right-hand
side of the relation above will not vanish with the same
coefficients zα;i.
So we have shown that in the situation with a high

entanglement entropy the ~Oω;m operators must act on the
left as well and the operator X that acts only in the right
CFT does not exist.
We conclude with some speculative comments on the

possible physical implications of this fact. The authors of
[13] suggested that the generic state jΨgeni may never-
theless be understood through a very long wormhole. Now
note that our discussion of the generic commutator in
Sec. V D suggests that if we take a generic operator in the
left CFT, Y, then we would find that

hΨgen∥½Y; ~Oω;m�j2jΨgeni ¼ Oð1Þ: ð9:21Þ

We emphasize that Y is not one of the simple operators that
are part of AL which commute with the mirrors within low
point correlators. Now (9.21) suggests that with a suitably
complicated operation the left observer can affect the
experience of the right-infalling observer. This may be
taken as some evidence of the existence of a long wormhole
although it would be nice to make this more precise.

D. A superposition of the thermofield
and a generic state

As a further example, we now show how our construc-
tion works in the superposition of the thermofield and a
generic state. We consider

jΨsi ¼ κðjΨtfdi þ jΨgeniÞ: ð9:22Þ

For the generic left unitary of the sort discussed in (9.13),
we have κ ¼ 1ffiffi

2
p þ Oðe−SÞ.

We start with

H0
Ψs

¼ AjΨsi:

On the other hand, on acting with an element ofAL we find
that

jΨ1
si ¼ ð1 − P0

sÞAL;1jΨsi
¼ κð1 − P0

sÞðe−
βH
2 A†

1e
βH
2 jΨtfdi þ AL;1jΨgeniÞ

¼ κAL;1jΨgeni −
1

2
κhAL;1iðjΨgeni þ jΨtfdiÞ

þ κ

2
e−

βH
2 A†

1e
βH
2 ðjΨtfdi − jΨgeniÞ: ð9:23Þ

Here hAL;1i≡ hΨgenjAL;1jΨgeni. In deriving this result, we
have used two intermediate results.

P0
sðAL;1 − hAL;1iÞjΨgeni ¼ 0;

P0
sAmjΨgeni ¼ P0

sAmjΨtfdi

¼ 1

2
ðAmjΨgeni þ AmjΨtfdiÞ;

where Am is any element of A.
In the final expression in (9.23) we have, once again, a

superposition of an equilibrium and a near-equilibrium
state from the point of view of observables in A. This is a
special case of the superposition of near-equilibrium states
that was considered in Sec. VII. In such states, as explained
there, we must enlarge the little Hilbert space slightly and
upon doing that we find
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HΨs
¼ HΨtfd

⊕HΨgen
:

The action of the mirror operators can be deduced in a
straightforward way from the definition provided in (9.8).

~Oω;mAL;αAβjΨsi ¼ κAβe−
βH
2 A†

αe
βH
2 e−

βω
2 O†

ω;mjΨtfdi
þ κAβAL;αe−

βω
2 ~O†

ω;mjΨgeni:

Consequently correlators involving mirrors and ordinary
operators separate into

hΨsj ~Aα3AL;α2Aα1 jΨsi
¼ jκj2ðhΨtfdj ~Aα3AL;α2Aα1 jΨtfdiþhΨgenj ~Aα3AL;α2Aα1 jΨgeniÞ:

Therefore the superposition of states (9.22) acts like a
classical mixture of a thermofield and a state with no
wormhole. This is precisely what is expected. Note that
standard Penrose diagrams cannot capture this superposition
of two geometries, although the correlators are very simply
related to the correlators in the two individual geometries.

E. The microcanonical double state and
a low-pass wormhole

We now consider a modification of the thermofield state:
a microcanonical double state. We show that in the
appropriate regime this leads to a new kind of wormhole
with interesting properties.
Consider a range of energy E� Δ that contains DE;Δ

states. Here Δ ¼ Oð1Þ. It is also useful to consider energies
that are high enough so that the associated temperature
satisfies βΔ ≪ 1. These are all hierarchies between O(1)
quantities and neither β nor Δ scale with N . Now consider

jΨmdi ¼
1ffiffiffiffiffiffiffi
DE

p
XEi¼EþΔ

Ei¼E−Δ
jEi; Eii: ð9:24Þ

This state was also considered in [12] (see page 15), but we
reach a conclusion that is different from the conclusion
reached there. In particular, the state (9.24) does have a
smooth interior and, contrary to the suggestion made in
[12], our construction generates it correctly. The error made
in [12] follows from the error alluded to in Sec. VIII B: an
incorrect expectation that the mirror operators must corre-
spond to simple operators in the left CFT.
Consider a frequency ωl ≪ Δ. The subscript indicates

that this is a low frequency. For correlators involving such
modes, the fact that the entanglement has been truncated is
invisible. Let us denote the matrix elements of this operator
in the energy eigenbasis by cji as in (6.11) so that we have

XEi¼EþΔ

Ei¼E−Δ
Oωl;mjEi; Eii ¼

XEi¼EþΔ

Ei¼E−Δ

X
Ej

cjijEi; Eji:

Note that, as we explained around (6.11), we can choose
these matrix elements cji to be real because of the
T-invariance of the modes of local operators. While the
sum over j above technically runs over all energies, since
we know that the matrix elements cji should be peaked
around Ei − Ej ¼ ωl, we can write

Oωl
jΨmdi ¼

1ffiffiffiffiffiffiffi
DE

p
XEi¼EþΔ

Ei¼E−Δ

" XEj¼EþΔ−ωl

Ej¼E−Δ−ωl

cjijEi; Eji
#
:

Now, notice that we also have

XEi¼EþΔ

Ei¼E−Δ
O†

Lωl;m
jEi; Eii ¼

XEi¼EþΔ

Ei¼E−Δ

" XEj¼EþΔþωl

Ej¼E−Δþωl

cijjEj; Eii
#

¼
XEi¼EþΔþωl

Ei¼E−Δþωl

XEj¼EþΔ

Ej¼E−Δ
cjijEi; Eji:

In the last step, we have interchanged i and j above to bring
it into a form where we can compare it with the action of the
right operator. However, the ranges of the sums over i, j are
different. In the case where ωl ≪ Δ and βωl ≪ 1 we can
approximately neglect this to obtain

Oωl;mjΨmdi ¼ O†
Lωl;m

jΨmdi þ O
�
ωl

Δ

�
þ OðβωlÞ;

ωl ≪ Δ: ð9:25Þ

On the other hand, for large ωh ≫ Δ we see that

hΨmdjO†
Lωh

Oωh
jΨmdi ≪ 1; ωh ≫ Δ: ð9:26Þ

Note that the result (9.26) holds even if βωh ≪ 1.
We can now perform the construction above to define

the right-relational mirrors on this state. The relations
(9.26) and (9.25) then tell us that inside correlation
functions evaluated on (9.24) (except those involving
the Hamiltonian, where 1

N corrections are important) we
can approximately perform the replacement for low
frequencies,

~Oωl;m → OLωl;m; ωl ≪ Δ:

However, no such replacement is possible for high fre-
quency modes ~Oωh;m, which cannot be related to the action
of simple left operators. These are independent operators
that can be constructed using the algorithm that we have
outlined. Using this we can compute correlators involving
both ordinary operators on the left and the right, and the
mirror operators precisely.
It would be interesting to develop a more precise picture

of the geometric dual to this state. However, some quali-
tative properties are clear. The state (9.24) is a low-pass
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wormhole—where low frequency modes on the left and
right are entangled, but the mirrors for high frequency
modes on both sides are independent operators. In this
geometry both the left- and the right-infalling observer see
smooth horizons. These observers can “communicate”
using low frequencies but not high frequencies.
It may also be possible to think of these wormholes as

“elongated wormholes.” It is interesting to notice that the
geometries described in [62], which were also considered
in [13] have somewhat similar properties. However, these
geometries involve infalling matter and cannot be a precise
dual to jΨmdi, since the state jΨmdi is invariant under
eiðHL−HÞT jΨmdi ¼ jΨmdi and this isometry is not evident in
these geometries.

F. Entangled qubits and linearity

We now consider a final case in some detail: the situation
where the CFT is entangled with a few qubits. In this
situation not only is there no geometric wormhole, but we
find that it is possible to select the interior operators to
strictly commute (as operators) with all operators in the
qubit system.
For now we make no assumption about the Hamiltonian

of the qubit system. However, the combined CFT and qubit
system can be in equilibrium only in states of the form

jΨqubi ¼
X
i

αijEqii ⊗ jΨii; ð9:27Þ

where jEqii are energy eigenstates in the qubit system and
jΨii are equilibrium states in the CFT, and the coefficients
αi obey

P
ijαij2 ¼ 1.

The reason that the entanglement structure has to be of
this form in an equilibrium state is because in the qubit
system, we assume that we have access to all operators.
Therefore the only equilibrium states in this system are
strict energy eigenstates which remain invariant under time
evolution. If, upon tracing out the CFT, we were to obtain
any significant off-diagonal terms in the qubit density
matrix, then it would be possible to find an appropriate
operator whose expectation value would be time dependent.
These energy eigenstates must be entangled with states that
are independently in equilibrium in the CFT. This fixes
equilibrium states to be of the form (9.27).
We now find that

H0
Ψqub

¼
X
i

αijEqii ⊗ AjΨii:

We now act with an arbitrary operator from the qubit
system AL;1 to obtain

AL;1jΨqubi ¼
X
i;j

αiA
ji
L;1jEqji ⊗ jΨii; ð9:28Þ

where Aji
L;1 are the matrix elements in the qubit-energy

eigenbasis of the left operator. This state is not in left

equilibrium but because a small superposition of equilib-
rium state is still an equilibrium state we see that (9.28) still
represents a right-equilibrium state and does not lie
in H0

Ψqub
.

Proceeding in this manner, we find that the little Hilbert
space has the form

HΨqub
¼ ⨁

i;j
jEii ⊗ AjΨji:

Now, using the prescription above, we find that the action
of the mirrors is given by

~Oω;mðjEii ⊗ AαjΨjiÞ ¼ jEii ⊗ Aαe−
βω
2 O†

ω;mjΨji: ð9:29Þ
Therefore in this situation the mirror operators are entirely
operators within the right CFT and do not act in the qubit
system at all. Moreover the mirror operators above can be
understood as follows. We construct mirror operators on
each of the equilibrium states jΨii. We then take the union
of these operators and this yields the operators above.
Avoiding possible superluminality in the presence of

state-dependence: Let us briefly mention the significance
of the observation above. Our state-dependent operators are
sometimes conflated with notions of “nonlinear” quantum
mechanics that have been proposed earlier. Gisin [63] and
Polchinski [64] pointed out sharp difficulties with one such
idea that was advanced by Weinberg [65]. In particular,
Gisin noted that nonlinear evolution in quantum mechanics
could lead to superluminal communication.
We emphasize that in our proposal we do not add any

nonlinear terms to the Hamiltonian, which is simply the
CFT Hamiltonian. Nevertheless, one may still be concerned
about this issue of superluminality. We now show that this
also does not arise in our construction.
Consider the following experiment. An experimenter

entangles black hole microstates in the CFTwith states of a
“small pointer” comprising a few qubits. Then the qubits
and the CFT are separated by a large distance. An observer
from the CFT now jumps into the black hole and makes a
measurement. Physically, we expect that such an observer
should not be able to send messages to another observer
who has access only to the qubits.
To make this more precise, consider a qubit system with

M þ 1 states, that we denote by j1i; j2i;…jM þ 1i, where
M ≪ N . Now, we consider M equilibrium states of the
CFT, jΨ1i…jΨMi, and take them to be orthogonal without
loss of generality. Let us prepare the joint qubit-CFT
system in the state

jΨqubi ¼
XM
i¼1

αijii ⊗ jΨii þ jM þ 1i ⊗
�X

j

βjjΨji
�
:

ð9:30Þ
In order for the state to be normalized correctly, we have the
condition
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X
i

jαij2 þ jβij2 ¼ 1:

Now, we act with a unitary of the mirror operators on
jΨqubi. Let us call this unitary ~U. We see that from (9.29)
we have

~UjΨi ¼
XM
i¼1

αijii ⊗ ~UjΨii þ jM þ 1i ⊗ ~U

�X
j

βjjΨji
�
:

ð9:31Þ

The key physical requirement to ensure that no messages
can be sent from the black hole interior to the qubit system
is that this process should leave the density matrix of the
pointer invariant. The density matrix of the pointer in (9.30)
has the following components:

hM þ 1jρinitjM þ 1i ¼
X

jβij2;
hijρinitjii ¼ jαij2;

hijρinitjM þ 1i ¼ αiβ
�
i ;

hM þ 1jρinitjii ¼ α�i βi: ð9:32Þ

For convenience, let us denote jχi ¼ ~UðPjβjjΨjiÞ. Then
the components of the density matrix of the pointer in the
final state (9.31) are

hM þ 1jρfinjM þ 1i ¼ hχjχi;
hijρfinjii ¼ jαij2;

hijρfinjM þ 1i ¼ αihχj ~UjΨii;
hM þ 1jρfinjii ¼ α�i hΨij ~U†jχi: ð9:33Þ

Demanding that the infalling observer cannot send
messages is equivalent to setting ρfin ¼ ρinit. From
(9.32)–(9.33) we see that this implies

hχjχi ¼
X

jβij2;
hχj ~UjΨii ¼ β�i ;

hΨij ~U†jχi ¼ βi:

In fact, since the states ~UjΨii also give an orthogonal set,
we see that we are forced to the conclusion that

jχi ¼ βi ~UjΨii:

This implies that the operator ~U must act linearly on a
superposition of a small number of states.
This is precisely what is ensured by the construction

above. As we mentioned, this construction proceeds by
constructing mirrors for each of the individual equilibrium
states and then just taking the union of their actions, which

ensures that the constraint above is satisfied. The reader
may recall the discussion of Sec. VII E where we verified
that our operators naturally respect linearity in their action
on small superpositions.
This result is important because it shows that in the

context of entanglement with pointers, and experiments of
the kind considered above, the state-dependence of our
operators is completely transparent to the infalling
observer. Therefore, in no experiment that can be described
within effective field theory does the observer detect a
violation of linearity.
We conclude by remarking on a slightly subtle point. We

have now described two situations where there is entan-
glement but no geometric wormhole between the CFT and
the system that it is entangled with. However, from the
point of view of the microscopic operators, this is attained
rather differently when the left system is a CFT, and when it
is just a collection of qubits. In the case where the left
system is a CFT and the entanglement entropy is large, the
right mirror operators commute with simple left operators
but not with all operators on the left. On the other hand, in
the case where the CFT is entangled with a few qubits or
with a system that does not have OðeN Þ states, then we can
indeed find mirrors entirely within the original CFT. As we
saw above this was important to ensure the absence of
superluminal effects in such cases.

G. Refining the notion of equilibrium for
entangled states

In some cases, the fact that our notion of equilibrium as
time independence of simple correlators is necessary but
not sufficient—as we discussed in Sec. VIII C—is also
relevant to the discussion of entangled states. Consider the
state

MðAαÞjΨeni ¼ e−
βH
2 ðeiAαÞ†eβH

2 jΨeni: ð9:34Þ

In the thermofield state, correlation functions of this state
are time invariant on the right, but not on the left. This is
because we have

MðAαÞjΨtfdi ¼ eiAL;α jΨtfdi:

Therefore, in this case, this lack of equilibrium can be
detected by our left-equilibrium criterion.
On the other hand, in a generic entangled state there is no

such relation between these states and left-excited states.
Therefore, in such states the ambiguity from the single-
sided case carries over. The reason we imposed the
restriction that the left excitation in (9.6) be Hermitian
was to prevent this ambiguity in descendants. Given the
state in (9.6) we can dress it with a left unitary to obtain
another valid descendant, which also appears to be in
right equilibrium. With AU

L;1 ¼ eiAL;αAL;1, we could have
considered
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jΨ1;U
en i ¼ ð1 − P0

enÞAU
L;1jΨeni

in (9.7). However, when AL;α is entangled with a right
operator, we want to ensure that we do not mistake jΨ1;U

en i
for an equilibrium descendant. However, the restriction that
the left excitation be Hermitian excludes operators of the
form AU

L;1.
As we explained in Sec. VIII C, even though all

correlators on the right are left invariant under the excita-
tion (9.34), it should still be possible to find measurables
that can detect this excitation. Although we have not yet
identified such measurables precisely, it is possible that the
physical quantity that is capable of detecting the excitation
in (8.21) in a single-sided CFTwill also be able to detect the
excitation (9.34) in the two-sided case.

X. DISCUSSION

In this paper we have presented strong evidence for the
claim that the black hole interior must be described using
state-dependent bulk-boundary maps. We showed that a
state-independent construction of the interior was impos-
sible, not only for single-sided AdS black holes, but even
for the eternal black hole. It is possible that this indicates
that AdS/CFT does not describe black hole interiors at all.
However, this is in contradiction with many other calcu-
lations that suggest that the eternal black hole, at least, does
have a smooth interior that can be probed by the CFT.
State-dependent bulk to boundary maps provide a

solution to these versions of the information paradox that
preserves the predictions of effective field theory. Our state-
dependent construction of the black hole interior explicitly
identifies the duals of bulk local operators in the CFT.
These bulk probes do not see any sign of a pathology at the
horizon, and so this should be taken as additional evidence
that generic states do not correspond to firewalls.
In this paper, we demonstrated that our construction does

not lead to any violation of quantum mechanics or the Born
rule. We also successfully resolved some of the ambiguities
in our definition of an equilibrium state.
Furthermore, we showed that our construction admitted a

natural extension to entangled systems. This extension
leads to a surprising bonus: a precise version of the ER ¼
EPR conjecture emerges automatically from our construc-
tion without having to put anything in by hand.
We have described our construction in significant detail

and discussed how it works in equilibrium states—which
are generic at high energy. We have also considered a large
class of nonequilibrium states, including those that have
been excited outside and inside the horizon. Although it is
possible to consider other special classes of states in the
CFT, we believe that our results provide persuasive
evidence for the consistency of our construction.
There are several natural questions that arise from this

analysis. It would be interesting to examine local operators

outside the horizon in greater detail. Although we presented
a state-independent description of such operators, in the
minisuperspace approximation in Sec. IV B 2, the question
of whether state-dependence is also required outside the
horizon is open. We comment more on this in [39].
It would also be interesting to understand whether our

construction can shed some light on the nature of the black
hole singularity. So far we have used techniques from
effective field theory to motivate the bulk to boundary map.
Any investigation of the singularity requires new ideas.
Recent studies [66] have shown that the naive 1

N
expansion can often break down unexpectedly. We would
like to understand the implications of this breakdown for
effective field theory on the nice slices and for the
limitations of locality in quantum gravity.
Finally, as we have explained, while the use of state-

dependent operators is perfectly consistent with quantum
effective field theory, they are both unusual and interesting.
It would be very useful to develop a more comprehensive
measurement theory for these objects and understand
whether they appear in other settings.
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APPENDIX A: STATE-DEPENDENCE AND
SEMICLASSICAL QUANTIZATION

In this appendix, we explore the semiclassical origins of
state-dependence. Some of the ideas in this appendix were
anticipated in [14], although our analysis differs in some
eventual details. As we mentioned in Sec. III, the belief that
geometric quantities such as the metric should be repre-
sented by state-independent operators in the CFT is
predicated on intuition from geometric quantization. We
elaborate on this intuition here. But we also explain why
this intuition fails because of important ways in which the
Hilbert space of the CFT differs from what one might
expect from a semiclassical linearized analysis of gravity.

1. Review of semiclassical quantization

We briefly remind the reader of the elementary concepts
involved in quantizing the phase space of a system so as to
make the classical limit manifest. We closely follow the
excellent review by Yaffe [67].
Before we proceed to the analysis for gravity, we briefly

remind the reader of the elementary notions that are
involved in semiclassical quantization. Consider a system
with canonical variables xi, pi, with i ¼ 1…n, obeying the
classical Poisson bracket relations fxi; pigP:B: ¼ 1, and
some classical functions on the phase space fmð~x; ~pÞ.
We assume that all the first class constraints have been
converted to second class constraints by gauge fixing and
that all the second class constraints have been solved to
eliminate the dependent variables. So the phase space is
unconstrained.
Here we have denoted the coordinates on phase space by

two vectors ~x; ~p, with ~x ¼ ðx1;…xnÞ and ~p ¼ ðp1;…pnÞ.
We also define ~z ¼ ð 1ffiffi

2
p ðx1 þ ip1Þ;… 1ffiffi

2
p ðxn þ ipnÞÞ. Now,

we want to show that in the quantum theory it is possible to
find (a) an appropriate set of operators f̂m and (b) a set of
semiclassical coherent states j~x; ~pi in one to one corre-
spondence with the phase space so that, when evaluated on
these states the operators f̂m behave like the classical
functions fmðx; pÞ as we discuss more precisely below.
First, since we already have a simple and explicit

description of the phase space and symplectic form in this
setting, we quantize the system and define the canonical
operators x̂i; p̂i satisfying ½x̂i; p̂j� ¼ iδij. This provides us
with eigenstates of the operators x̂i that satisfy

x̂ij~xi¼ xijx1;…xni. We also define âi ¼ 1ffiffi
2

p ðx̂iþ ip̂iÞ; â†i ¼
1ffiffi
2

p ðx̂i− ip̂iÞ.
With the vacuum jΩi defined as aijΩi ¼ 0, we consider

the coherent states

j~zi ¼ e−
P

i
jzi j2

2 e
P

i
a†i zi jΩi:

The wave function of this state in the basis of eigenvectors
of x̂i can be calculated by noticing that aij~zi ¼ zij~zi. With
Ψzð ~xiÞ ¼ h~xj~zi, and using the fact that in the position
eigenbasis p̂i ¼ −i ∂

∂xi, this turns into the differential
equation �

xi þ
∂
∂xi

�
Ψ~zð~xÞ ¼ ðzxi þ izpiÞΨ~zð~xÞ;

where we have written the components of zi as zi ¼ zxi þ
izpi to avoid confusion with the xi variable on the left. This
is solved by the normalized position space wave function
for the coherent states.

Ψ~zð~xÞ ¼
�
2

π

�n
4

exp

�
−
X
i

½ðxi − zxiÞ2 þ izpiðxi − zxiÞ�
�
:

ðA1Þ

These states play the role of semiclassical states, and we
can place them in a bijective correspondence with the
phase space.
These coherent states have several important properties.

They are not orthonormal; in fact, it is important that they
form an overcomplete basis of the Hilbert space. We have

h~uj~zi ¼ e−
j~zj2
2 e−

j~uj2
2 hΩje~a·~̄ue~a†·~zjΩi ¼ e−

j~zj2
2
−j~uj2

2
þ~̄u·~z;

jh~uj~zij2 ¼ e−j~z−~uj2 : ðA2Þ
Nevertheless, we can partition the identity by using
projectors onto these states.

1 ¼ 1

ð2πÞn
Z

d2~zP~z; P~z ¼ j~zih~zj: ðA3Þ

This identity can be easily proved using, for example, the
position space representation of the coherent states in (A1).
Next, we need a way of lifting functions from the phase

space to operators. Consider a function fð~zÞ on the phase
space. (We have suppressed the dependence on ~̄z simply to
lighten the notation; we do not necessarily consider only
holomorphic functions.) We now consider the operator
defined by

f̂ ¼
Z

fð~zÞj~zih~zj d
2n~z

ð2πÞn : ðA4Þ
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This representation of operators is the so-called Sudarshan-
Mehta P-representation [68]. It differs from the more
commonly used Weyl representation of operators, by
operator ordering. The Weyl representation is sometimes
favored in the literature, since this map also allows one to
represent the product of operators in the quantum theory by
a Moyal star product of functions on the phase space.
However (A4) yields more insight for our discussion, and
has the same classical limit as the Weyl representation.
Note that when this operator is inserted back into a

coherent state we have

h~ujf̂j~ui ¼
Z

fð~zÞe−j~z−~uj2 d2n~z
ð2πÞn :

Therefore, the expectation value of the quantum operator is
a slightly smeared version of the classical function. We
have suppressed factors of ℏ here, but if we consider
classical functions that do not vary rapidly within a volume
of ℏ about a point in phase space, then the expectation value
of the corresponding quantum operators faithfully repro-
duces their behavior.
Furthermore, if we consider the expectation value of the

product of two operators then by using (A3)

h~yjf̂ ĝ j~yi ¼ 1

ð2πÞ2
Z

fð~zÞgð~uÞh~yj~uih~uj~zih~zj~yid2~zd2~u

¼ 1

ð2πÞ2
Z

fð~zÞgð~uÞe−j~zj2−j~uj2−j~yj2þ~̄u·~zþ~̄y·~uþ~̄z·~y

× d2~zd2~u:

We see that this integral is peaked around z ¼ u ¼ y and
expanding gð~uÞ ¼ gð~yÞ þ ð~u − ~yÞ · ∂~ygð~yÞ þ…, and sim-
ilarly for f, we see that the leading term is obtained by
doing the Gaussian integral and we find

h~yjf̂ ĝ j~yi ≈ fð~yÞgð~yÞ:
On the other hand, we can also compute the commutator
between two functions, in which case we need to keep the
first subleading term to obtain a nonzero answer. Here, we
find

h~yj½f̂; ĝ�j~yi ¼ iff; ggP:B:ð~yÞ:

2. Geometrical quantities as classical functions
on the phase space

We now turn to the case of gravity where we first discuss
the classical phase space and then describe coherent states
in the linearized theory. In this subsection we are interested
in establishing the following

Claim: “the metric gμνð~xÞ is a well-defined function on
the classical phase space of gravity.”

The phase space of gravity is often discussed in
canonical terms, where we specify the three-metric and
the extrinsic curvature on a spacelike slice. This provides
Cauchy data that we can evolve forward and backward in
time. However, a covariant description of the phase space is
given by considering the set of all classical solutions to
gravity with asymptotic AdS boundary conditions [69–71].
The map between these two pictures is straightforward.
Given a solution to the classical equations of motion, and

a metric with a dþ 1 split,

ds2 ¼ −N2dt2 þ γijðdxi þ NidtÞðdxj þ NjdtÞ; ðA5Þ

one may simply evaluate the fields at the spacelike slice
t ¼ 0. Then the variables,

γijð~x; 0Þ; πijð~x; 0Þ ¼ −γ1
2ðKij − γijKÞ;

provide the standard parametrization of gravitational phase
space. Here K is the extrinsic curvature

Kij ¼
1

2
N−1ð∂jNi þ ∂iNj − ∂tγijÞ; ðA6Þ

and for the purposes of this dþ 1 split we have displayed
the time coordinate separately in ð~x; tÞ.
Conversely, given the variables γijð~x; 0Þ and πijð~x; 0Þ,

one may use the equations of motion to evolve them
forward in time and generate the entire metric in the form
(A5). Of course, such a solution requires a choice of gauge,
as we have already discussed.
It is also possible to write down a symplectic form on the

phase space described covariantly as the set of classical
solutions, and this was done by [70].
For us the important point is that each point on the phase

space corresponds to an entire spacetime. Now, evidently
given the entire spacetime, classically, we may ask any
question we wish, even one that involves global notions
like an event horizon. For example, we may set up
relational coordinates as in Sec. III A 1 and just evaluate
the metric at a point gμνð~x; tÞ. The same is true of other
propagating light fields in the theory.
Therefore, all of these observables are well-defined

classical functions on the phase space. This is an important
point. We now extend the discussion above to gravity to
show that, explicitly, within the linearized theory, we may
indeed expect such questions to be answered by state-
independent operators.

3. Coherent states in linearized gravity

We now turn to an analysis of gravity. Here we are
interested in establishing the following.

Claim: If we consider two nearby points in the gravi-
tational phase space with metrics gbμνð~xÞ and geμνð~xÞ then
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one can define a covariant inner product on the
corresponding coherent states in the Hilbert space
which behaves like e−N υðgb;geÞ where we can compute
the function υ in the linearized approximation.

First we remind the reader how the discussion of A 1
generalizes to linearized gravity. We are only able to work
in the linearized setting, and although it would be interest-
ing to explore this construction further in a fully nonlinear
setting, we do not know how to do this.
We consider fluctuations of the metric, about a back-

ground metric, defined by

gμν ¼ gbμν þ
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
hμν;

and the normalization is chosen so that the kinetic term of
hμν is canonically normalized. Here gbμν may be any
background metric that is a solution of the equations of
motion and is asymptotically AdS. We do not take it to be
necessarily the AdS-Schwarzschild solution.
Now, on general grounds, we expect that solutions to the

classical equations of motion will be given by

hμνð~xÞ ¼
X
i;ω

aiωg
ðiÞ
μν ðω; ~xÞ þ H:c:;

where i runs over the different ðdþ1Þðd−2Þ
2

possible polar-
izations of the graviton, where d is the boundary dimension
and aiω are just linear coefficients at the moment. The
different eigenfunctions are denoted by ω. In empty AdS or
AdS Schwarzschild, for example, this would constitute a
set of integers to pick out the spherical harmonic on the
Sd−1 and a “radial momentum.” We do not require the
detailed form of these eigenfunctions, or even of their
eigenvalues. We are not assuming that there is a timelike
isometry in the space, and so, in principle, ω may not
correspond intuitively to a frequency.
We also assume that we have picked a basis set of

distinct solutions gðiÞμν , which are not equivalent under gauge
transformations, and we normalize the functions gðiÞμν ðω; ~xÞ
so that the canonical Poisson brackets translate into the
statement

faiω; aj;†ω0 gP:B: ¼ −iδijδω;ω0 :

We quantize the theory and obtain a vacuum state
aiωjΩi ¼ 0. Note that now aiω is an operator on the
Hilbert space of the linearized theory. We then define
coherent states by labeling them with a set of functions
χiðωÞ. Starting with the vacuum,

jχi≡N χe
P

i;ω
ai;†ω χiω jΩi;

where N χ is a normalization factor. We see that

hχjχi ¼ jN χ j2e
P

i;ω
jχiωj2 :

So for the state to be normalized, we should set

N χ ¼ e−
1
2

P
i;ω
jχiωj2 : ðA7Þ

Note that jχiωj2 can also be interpreted as the “occupation
number” in the mode ω; so the exponent in the normali-
zation factor is just the total occupation number in the state.
One measure of how large the deviation of the field is

from the background metric is given by

hΩjχi ¼ N χ : ðA8Þ

Here the vacuum is just the original background metric. So
we see that this coherent state is substantially different from
the original background metric, as a quantum state, if the
occupation number is large. In this state the metric has an
expectation value

geμν ¼ hχjgμνð~xÞjχi ¼ hχjgbμνð~xÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
hμνð~xÞjχi

¼ gbμνð~xÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
×
X
i;ω

ðχiωgðiÞμν ðω; ~xÞ þ H:c:Þ: ðA9Þ

So we see that the space jχi represents a nearby point in
phase space, where the value of the metric has changed to
geμνð~xÞ. Therefore (A7) shows how the corresponding inner
product in Hilbert space varies.
Now, in deriving (A7) we made explicit reference to a set

of mode functions. But we would like it to depend only on
the two metrics geμνð~xÞ and gbμνð~xÞ. To check that this is
covariant, let us consider how this changes under a
Bogoliubov transformation of the modes. We make a
canonical transformation of the aiω variables to

biω ¼
X
ω0

ðβωω0aiω0 þ γω;ω0a†;iω0 Þ;

b†;iω ¼
X
ω0

ðβ�ωω0a†;iω0 þ γ�ω;ω0aiω0 Þ: ðA10Þ

In this analysis, we assume that the polarization index i
does not enter the Bogoliubov coefficients. This is just to
lighten the notation and does not represent any loss of
generality.
For the new modes to have the canonical commutators

½biω; b†;iω0 � ¼ δω;ω0 ;

we see that we must have

X
ω00

ðβω;ω00β�ω0;ω00 − γω;ω00γ�ω0;ω00 Þ ¼ δω;ω0 : ðA11Þ
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An observer using these creation and annihilation operators
would also use a new basis of modes to represent the metric
fluctuations that we call ~gðiÞðω; ~xÞ. In particular, we haveX

ω

βωω0 ~gðiÞðω; ~xÞ þ γ�ω;ω0 ð~gðiÞðω; ~xÞÞ� ¼ gðiÞðω0; ~xÞ;
X
ω

β�ωω0 ð~gðiÞðω; ~xÞÞ� þ γω;ω0 ð~gðiÞðω; ~xÞÞ ¼ ðgðiÞðω0; ~xÞÞ�:

ðA12Þ

Such an observer would set up a different set of coherent
states

j~χiBog ¼ e~χ
i
ωb

†;i
ω jΩiBog;

where the vacuum is now defined to satisfy biωjΩiBog ¼ 0.
To get the same expectation value for the metric field, this
observer could use a coherent state excitation with param-
eters ~χiω so thatX

ω

~χiω ~giðω; ~xÞ þ ð~χiωÞ�ð~giðω; ~xÞÞ�

¼
X
ω0

χiω0gðiÞðω0; ~xÞ þ ðχiωÞ�gðiÞðω0; ~xÞ:

Using (A12), we see that we need

~χiω ¼
X
ω0

ðβωω0χiω0 þ γω;ω0 ðχiω0 Þ�Þ:

Therefore we see thatX
i;ω

j~χiωj2 ¼
X

i;ω;ω0;ω00
½βωω0β�ωω00χiω0 ðχiω00 Þ� þ γω;ω0γ�ω;ω00χiω00 ðχiω0 Þ�

þ βωω0γωω00χiωχ
i
ω00 þ β�ωω0γ�ωω00 ðχiω0 Þ�ðχiω00 Þ��:

ðA13Þ

For a general Bogoliubov transformation thereforeX
i;ω

j~χiωj2 ¼
X
i;ω

jχiωj2 þ R; ðA14Þ

where the remainder R does not vanish.
However, in AdS/CFTwe have an additional advantage:

the presence of the boundary Hamiltonian. So we can
define positive and negative energy with respect to the
boundary Hamiltonian and demand that in terms of
boundary energy eigenstates, both the sets of creation
operators have strictly positive energy and the annihilation
operators have negative energy.27

PEþaiωjEi ¼ 0; PEþbiωjEi ¼ 0;

PE−ai;†ω jEi ¼ 0; PE−bi;†ω jEi ¼ 0; ðA15Þ

where PEþ (PE−) indicates the projector on the subspace
formed by eigenstates with energy larger (smaller) than E.
If we restrict to such operators then we see that γωω0 in
(A10) must vanish. From (A11), we then find that βωω0

must be unitary. For this set of transformations, which
obeys the natural AdS/CFT constraint (A15), we see from
(A13) that R ¼ 0 in (A14).
To summarize, the conclusion is that using the AdS/CFT

Hamiltonian to define positive energy, the notion of the
distance of a coherent excitation from the background is
robust in linearized gravity.
Now, let us examine this distance a little more closely.

Let us write the initial metric in a nice coordinate system so
that all its components are of order the AdS radius squared
l2. In this case, we see that to make a substantial
perturbation, we must take hμν ∼ αl2ffiffiffiffiffiffiffiffiffi

8πGN

p ¼ αN , where α

is an O(1) parameter that we have introduced. At this point,
the linearized theory is still valid if we keep α ≪ 1. If we
apply (A8) to such a perturbation, we see that the coherent
state construction predicts the following. The semiclassical
states in the quantum theory, corresponding to two distinct
solutions geμνð~xÞ and gbμνð~xÞ, are almost orthogonal and have
an inner product

hgeμνð~xÞjgbμνð~xÞi ¼ e−N υðge;gbÞ; ðA16Þ

where υ is a smooth O(1) functional on the space of metrics.
To compute this function, we write geμνð~xÞ as an excitation
over gbμνð~xÞ using (A9) and compute the inner product given
in (A7)–(A8). The choice of mode functions that we use to
express the excited state in terms of the background is
unimportant by the argument above.

a. Difficulties with state-independent operators

Now the formula for the inner product (A16) above
might seem encouraging. It may suggest the following
naive program. In the full theory of quantum gravity, we
identify points on the phase space with coherent states jgi,
write down a completeness relation analogous to (A3) and
then write a full state-independent metric operator as in
(3.28): gμνð~xÞ ¼

P
ggμνð~xÞjgihgj. This is the basis for the

expectation that we can find state-independent operators to
represent the metric and other bulk fields.
However, recall that (A3) was consistent only because

the inner product (A2) died off to arbitrarily small values to
compensate for the infinite volume of phase space. It
appears that this does not happen for the case of gravity:
rather, intuition from the CFT suggests that in some cases
the inner-product between different coherent states may

27Here, we are not concerned with the small tails that we
discussed in the text, which may appear in these relations because
we restrict observations to a finite time on the boundary.
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saturate at a small but finite value even when the corre-
sponding volume in classical phase space is very large.
We have seen an example of this in the case of the

thermofield double. There the states jΨTi all represented
metrically distinct geometries. If we identify these states
with points on the phase space, then the parameter T
parametrizes an infinite direction in the classical phase
space. However, even if we take T to be large, the inner
product saturates at hΨtfdjΨTi ¼ O½e−S

2� where S is the
entropy.
This suggests that the classical limit in AdS/CFT

emerges somewhat differently than the intuition from
canonical gravity would suggest. Specifically, the follow-
ing phenomenon occurs. We can identify states in the CFT
dual to metrics jΨgi↔jgi. However, when the distance
between these states becomes large, the inner product in the
CFT differs from the inner product predicted by semi-
classical gravity. We have only been able to compute this
semiclassical inner product reliably for small separations
on the phase space. If we extrapolate this to the entire phase
space then we can find cases where the semiclassical inner
product is exponentially different from the CFT inner
product.

e−N υðge;gbÞ

jhΨge jΨgbij
¼ Oðe−N Þ:

Returning to the example of the thermofield double,
which is the source of our intuition, we note that the
formula (7.24) is precisely analogous to (A4). In both cases
we know the action of an operator on a set of states that are
almost orthogonal to one another. However, while in (A4)
we are able to extend the integral to all of phase space and
thereby obtain a state-independent operator; we cannot
extend the limits on T in (7.24) to �∞ because of the
saturation of the inner product.
Another manifestation of this obstacle is as follows. In

the thermofield double, given a sequence eS states shifted
by fT1…TeSg, so that all of them are pairwise distinct, we
can still find coefficients αi so that

����jΨtfdi −
XeS
i¼1

αieiHLTi jΨtfdi
����
2

¼ Oðe−N Þ: ðA17Þ

Note that (A17) is not due to Poincare recurrence, which
occurs after a much longer time scale ee

S
. The linear

dependence indicated in (A17) means that one geometry
can be written as a linear combination of eS completely
different geometries. The semiclassical theory does not see
any signs of (A17). This prevents a naive use of projectors
on coherent states to build up a state-independent operator.
Summary The picture that we get in this manner is shown

in Fig. 15. A slogan that would summarize this appendix is
that “coherent states are always overcomplete, but the states

in the CFT that correspond to coherent states of the metric
are even more overcomplete than one would expect from a
semiclassical analysis.” This is what prevents us from
lifting some well-defined classical observables to state-
independent operators. This issue is important and inter-
esting and deserves further investigation.

APPENDIX B: MIRROR MODES FROM BULK
EVOLUTION

One possible proposal to define the mirror operators may
proceed as follows. Consider black holes formed by
collapse in AdS. In each such classical solution, we can
trace the right moving modes behind the horizon to their
origin to their support on the boundary of AdS in the past.
This is what was done by Hawking in flat space [5] using a
geometric optics approximation.
Hawking’s computation suffers from a trans-Planckian

problem because the geometric optics calculation tells us
that, at late times, even low frequency right-moving modes
behind the horizon come from an extremely small time
band on the boundary. (See Fig. 16.) Therefore, in the past
these low frequency modes must have had ultra-Planckian
frequencies.
Even if we ignore this issue and proceed with the naive

calculation, we find that we can only attain a small number
of microstates by considering black holes formed from
collapse. Page and Phillips estimated the number of
possible configurations of massless radiation inside anti–
de Sitter space [72]. Their calculation can be summarized
as follows. Consider a gas of radiation in AdSdþ1 and, as
usual, set its radius to 1. Then, Page and Phillips considered
a self-gravitating gas of radiation assuming that it was
locally in thermal equilibrium at all points. Their con-
clusion was that one recovers the standard thermodynamic

FIG. 15. When we quantize the theory we can put states in the
Hilbert space in correspondence with the classical phase space.
However, we may have to use different operators in different
regions of phase space to represent a single classical function.
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relation between the entropy and the energy at high
energies for a gas in dþ 1 dimensions,

Srad ¼ κradE
d

dþ1; ðB1Þ
where κrad is an O(1) constant which depends on the
number of light degrees of freedom in the theory. On the
other hand for high energies E ≫ N , we know that
the entropy of the black hole is given by

Sbh ¼ N κbh

�
E
N

�d−1
d

; ðB2Þ

which is the result for a gas withN degrees of freedom in d
dimensions. We remind the reader that N is the central
charge, and so N ¼ N2 in the SU(N) supersymmetric
Yang-Mills theory.
Comparing (B2) with (B1) for energies of order E ∝ N ,

we find that

Sbh
Srad

¼ κbh
κrad

N
1
dE

−1
dðdþ1Þ ∝ N

1
dþ1:

Therefore the entropy of the radiation is always subleading
in this range.

We caution the reader that (B1) is a little artificial in the
regime in which we have applied it because the temperature
that follows from (B1) is

Trad ¼
1

ð∂Srad∂E Þ ¼ κ−1radE
1

dþ1:

If we consider the case of the duality between AdS5 and
supersymmetric Yang-Mills theory, with a ’t Hooft cou-
pling λ, then we do not expect the result (B1) to be valid
beyond the string scale λ

1
4, at which point we expect to find

a Hagedorn transition in the bulk. So, in reality we do not
even expect to be able to attain as many microstates as we
considered above for the radiating star.
This is a rather robust result: following the collapse of

black holes from reasonable geometric configurations
allows us to explore only a small fraction of the Hilbert
space at high energies. Now if we do decide to restrict to
such a sector of the Hilbert space, the firewall paradoxes
vanish since they can only make reference to generic states.
Correspondingly, there is no difficulty in obtaining state-
independent mirror operators that have the correct behavior
on this sector.
We now note a second important point. In some cases, it

may be possible to geometrize the microstates of the black
hole as we did in Sec. VI. There, we were able to explore a
significant fraction of the microstates of the eternal black
hole classically by considering a one-parameter family of
eternal black hole solutions. All of these were glued to the
boundary with different time shifts, and we had to allow
this time shift to be exponentially large to ensure that the
corresponding states in the CFT Hilbert space spanned a
subspace of exponentially large dimension.
However, in this situation we ran into the obstruction

explored in Sec. VII F and also in Appendix A. This
obstacle is as follows. Any method of obtaining the mirror
modes by analyzing classical solutions can, at most, specify
these modes as functions on the classical phase space. For
example in Sec. VII F, in each solution left shifted by the
time T, the mirrors were the modes of OLtþT;Ω. However,
in this situation we encountered the fat tail of (7.25). This
fat tail prevents us from lifting a classical function on this
large phase space to a corresponding linear operator in the
Hilbert space.
Therefore, the study of classical solutions cannot help in

obtaining state-independent mirror operators.

FIG. 16. Tracing the mirrors back to their origin on the
boundary is difficult because of the trans-Planckian problem.
However, even neglecting this issue does not help in constructing
state-independent operators because of the fat tail in the inner
product of different solutions.
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