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We revisit the “state-dependence” of the map that we proposed recently between bulk operators in the
interior of a large anti—de Sitter black hole and operators in the boundary CFT. By refining recent versions
of the information paradox, we show that this feature is necessary for the CFT to successfully describe local
physics behind the horizon—not only for single-sided black holes but even in the eternal black hole. We
show that state-dependence is invisible to an infalling observer who cannot differentiate these operators
from those of ordinary quantum effective field theory. Therefore the infalling observer does not observe any
violations of quantum mechanics. We successfully resolve a large class of potential ambiguities in
our construction. We analyze states where the CFT is entangled with another system and show that the
ER = EPR conjecture emerges from our construction in a natural and precise form. We comment on the

possible semiclassical origins of state-dependence.
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I. INTRODUCTION

Recent work by Mathur [1], Almbheiri et al. [2,3] and
then by Marolf and Polchinski [4] has sharpened the
information paradox [5,6] and highlighted some of the
difficulties in analyzing questions about local bulk phys-
ics in the AdS/CFT correspondence. Put briefly, these
authors argued that the CFT does not contain operators
with the right properties to play the role of local field
operators behind the black hole horizon. Their arguments
were phrased in terms of various paradoxes, and they
interpreted these apparent contradictions to mean that
generic high energy states in the CFT do not have a
smooth interior; and even if they do, the CFT cannot
describe it meaningfully.

If correct, this conclusion would be a striking violation
of effective field theory. A semiclassical analysis performed
by quantizing fluctuations about the classical black hole
solution would suggest that for a large black hole, quantum
effects detectable within effective field theory are confined
to the neighborhood of the singularity. However, the papers
above suggest that the range of quantum effects, visible to a
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low energy observer, may spread out all the way to the
horizon.

In previous work [7—-10], we analyzed these arguments in
detail. We found that they made two tacit assumptions. The
first, which was important for the strong subadditivity
paradox of Mathur [1] and the first paper of Almheiri et al.
[2], was that locality holds exactly in quantum gravity. We
showed how a precise version of black hole complemen-
tarity, where the commutator of operators outside and
inside the black hole vanishes within low point correlators
but is not exactly zero as an operator, allow one to resolve
this paradox. We review this resolution briefly at the end of
Sec. VIID below.

We emphasize that this resolution is consistent with the
belief that locality is not absolute in theories of quantum
gravity; so a nonvanishing commutator between operators
outside and inside is not surprising by itself. What we
found, however, was that it was possible to construct
interior operators so that this nonvanishing commutator
only shows up in very delicate observations involving an
extremely large number of quanta. The reader may wish to
look at Sec. VII D and then at [9] for further discussion of
these nonlocal effects.

Our focus in this paper is on a second aspect of the
information paradox that was emphasized in [3]. Here,
Almbheiri et al. argued that even large black holes in anti—de
Sitter (AdS) should contain firewalls. To make this argu-
ment they had to make a second tacit assumption, which
was that local bulk observables like the metric are repre-
sented by fixed linear operators in the CFT. More precisely,
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this is the idea that even in two different states one may use
the same CFT operator to represent the metric at a
“given point.”

By identifying and discarding this assumption in [8,9], we
were able to resolve all the paradoxes alluded to above.
Furthermore, we were able to explicitly identify CFT
observables that were dual to local correlation functions
in the black hole interior. This construction allowed us to
probe the geometry of the horizon and show that the horizon
was smooth—as predicted by effective field theory, and in
contradiction with the firewall and fuzzball proposals.

The operators in our construction are state dependent.
This means that they act correctly about a given state, and
in excitations produced on that state by performing low
energy experiments. If one moves far in the Hilbert space—
even just by changing the microscopic and not the macro-
scopic degrees of freedom—then one has to use a different
operator to represent the “same” local degrees of freedom.

Our resolution to the firewall paradox has encountered
two kinds of objections. A technical point is that our
construction relies on a notion of equilibrium. It was first
noticed by van Raamsdonk [11] that our equilibrium
conditions were necessary but not sufficient; Harlow [12]
later elaborated on this point. This leads to a potential
“ambiguity” in our construction where, at times, we cannot
definitively identify the right operators in the black hole
interior.

The second is more fundamental. Is it acceptable at all,
within quantum mechanics, to use state-dependent bulk to
boundary maps so that the metric at a given point in space
may be represented by different operators in different
microstates and backgrounds? It has been argued
[3.4,12] that state-dependence is inconsistent with linearity
in quantum mechanics. Is this correct, and in particular, is it
possible for any observer (bulk or boundary) to detect
measurable violations of linearity?

This is the context for our paper. In this work we make
the following advances.

(1) In Sec. V, we revisit and sharpen the arguments of
Almbheiri et al. [3]. We believe that this strongly
suggests that there is no alternative to firewalls
except for a state-dependent construction of the
black hole interior. In fact, we show in Sec. VI that
the paradoxes of [3] also arise for the eternal black
hole. We show that it is necessary to use state-
dependent operators, which we construct explicitly,
to rule out a scenario where even the eternal black
hole does not have a smooth interior.

(2) In Sec. VIII, we resolve a large class of ambiguities
in our construction by refining our notion of an
equilibrium state, including all of those pointed out
by van Raamsdonk [11]. We point out difficulties
with Harlow’s analysis [12] that attempted to accen-
tuate these ambiguities.
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(3) We show how our analysis extends naturally to
superpositions of states in Sec. VII. We reiterate and
expand on the point, already made in [8,9] that the
infalling observer does not observe any violations of
quantum mechanics or the “Born rule.”

(4) In Sec. IX, we show how our construction extends
naturally to entangled systems. This leads to a new
and interesting outcome: a precise version of the
ER = EPR conjecture [13] emerges automatically
from our analysis. In particular our construction
shows—without any additional assumptions—why
one should expect a geometric wormhole in the
thermofield double state, and a somewhat “elon-
gated” wormhole in states with less entanglement.
Our analysis also shows why there is no geometric
wormhole in a generic entangled state of two CFTs,
or when the CFT is entangled with a system of a few
qubits.'

We also initiate an investigation into the semiclassical
origins of state-dependence in Appendix A. We show that
local observables like the metric are well-defined classical
functions on the phase space of canonical gravity.
Ordinarily such functions would lift to state-independent
operators in the quantum theory. However, our analysis of
state-dependence in the eternal black hole suggests an
interesting obstacle to this map: the inner product between
states in the CFT representing different geometries does not
die off as fast as a naive analysis of coherent states in
canonical gravity would suggest. Instead it saturates at a
nonperturbatively small but finite value. We present some
evidence that it is this overcompleteness that prevents
the existence of state-independent operators behind the
horizon.?

Apart from the new results mentioned above, we also
present some material that we hope will help to clarify
some conceptual issues and be of pedagogical utility. For
example, in Sec. III we present a discussion of relational
observables in AdS quantum gravity. This concept is
important throughout this paper to understand the geo-
metric properties of operators behind the horizon, but we
believe that it may be of broader significance. This idea has
often been used in discussions of the subject (and was first
described to us by Donald Marolf) but we attempt to
present a pedagogical and precise definition here.

We also present a derivation of the properties of
operators behind the horizon from a pedagogically new
perspective in Sec. IV. We consider the two-point function
of a massless scalar field propagating in the geometry. By
using the properties of this two-point function, when the

'We limit our assertions to wormholes that can be probed
geometrically using effective field theory. Therefore we do not
have any comment on the strong form of the ER = EPR
conjecture, which posits that any entanglement should be
accompanied by a wormhole.

’A similar idea was suggested earlier by Motl [14].
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two points are almost null to each other, we are able to
derive the correct formula for the entanglement of modes
behind and in front of the horizon. One concern about our
previous analysis [7] was that even though a black hole in a
single CFT does not have a second asymptotic region, we
had to appeal to the analogy with the thermofield double, to
derive the properties of our operators behind the horizon.
We now perform this derivation from a purely local
calculation.

We believe that the results of this paper present compel-
ling evidence in favor of the claim that there are no firewalls
in generic states, and also that the map between bulk and
boundary operators is state dependent behind the horizon.

The recent literature on the information paradox is
extensive [15]. In particular, Erik Verlinde and Herman
Verlinde also reached the conclusion that state-dependence is
required to construct the black hole interior from a different
perspective [16,17]. We direct the reader to [18] for a
discussion of the relation between our approach and theirs.
The effects of the backreaction of Hawking radiation were
discussed in [19], and Nomura et al. also presented another
perspective in [20]. For a precursor of the firewall paradox,
see [21] and for approaches using complexity see [22].

II. SUMMARY

In this section, we briefly summarize the contents of
various sections and suggest different paths that could be
taken through the paper.

Reconstructing the bulk and state-dependence: Section 111
is partly devoted to clarifying some conceptual issues related
to bulk to boundary maps. We quickly review what it means
for such a map to be state independent or state dependent.
We also point out that all existing methods of extracting bulk
physics from the boundary, as currently formulated, are state
dependent. Experts in the subject may wish to look only at
Sec. Il A 1 where we define the relational observables that
we use in the rest of the paper and at Sec. III B 1 where we
describe the state-dependence of prescriptions to relate
geometric quantities to entanglement.

Need for operators behind the horizon: Section IV is
largely devoted to a detailed derivation of the fact that we
require new modes that can play the role of “right moving”
excitations behind the horizon to describe the interior of a
black hole. We derive the two-point function of these
modes with modes outside the horizon from a local
calculation, thereby removing the need to make an analogy
to the thermofield double state and also sidestepping the
trans-Planckian issues in Hawking’s original computation.
In this section, we also review the standard construction of
local operators outside the horizon. Experts may be
interested in Sec. IVB 2 where we describe a state-
independent construction of local operators outside the
horizon in the minisuperspace approximation.

Either state-dependence or firewalls: The objective of
Sec. Vis to try and show that we must accept one of two
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possibilities: either the black hole interior is mapped to the
CFT by a state-dependent map, or generic microstates have
firewalls. Our arguments here are extensions and refine-
ments of the arguments presented in [3,4]. In particular, we
strengthen the argument of [4] by bounding potential errors
in that calculation. We also rephrase the “counting argu-
ment” of [3] entirely within the context of two-point
correlation functions to remove potential loopholes. This
section can be skipped, at a first reading, by a reader who
already accepts the validity of the arguments of [3,4].

State-dependence for the eternal black hole: In Sec. VI we
show that these versions of the information paradox also
appear in the eternal black hole. Therefore it is inconsistent
to adopt the position that the eternal black hole in AdS has a
smooth interior whereas the large single-sided black hole
does not. We would urge the reader to consult [23]—where a
concise version of these arguments has already appeared—in
conjunction with this section, which contains some addi-
tional details. Since there is substantial evidence that the
interior of the eternal black hole is smooth, this provides
strong support for state-dependence behind the black hole
horizon.

Definition of mirror operators, consistency with super-
position principle: In Sec. VII, we review the state-
dependent construction of the black hole interior that
was first presented in [8,9]. Experts may be interested in
Sec. VIIE where we check the linearity of this map for
superpositions of a small number of states. In Sec. VII F we
construct the interior of the eternal black hole. This
construction is of interest since it provides some insight
into state-dependence as arising from the “fat tail” of the
inner product between different microstates of a black hole.

Detecting unitaries behind the horizon: In Sec. VIII, we
show how to remove some of the ambiguities in our
definition of equilibrium. This section will be of interest
to experts. We point out that by using the CFT Hamiltonian,
we can detect excitations behind the horizon in states that
we might otherwise have classified as being in equilibrium.
We also point out, in some detail, that the effort made in
[12] to sharpen this ambiguity by considering a new class
of excitations is based on an erroneous analysis of local
operators in the eternal black hole. While, for this reason,
the analysis of [12] does not have direct physical signifi-
cance, it does point to an interesting new class of excited
states that we discuss in some detail.

Entangled systems and relation to ER = EPR: In
Sec. IX, we extend our construction to account for cases
where the CFT is entangled with another system. The
equations that describe modes in the interior do not change
at all. The only new element that we need to introduce is
that the “little Hilbert space” of excitations about a base
state may get enlarged since we can also act with operators
in the other system. Surprisingly we show that a precise
version of the ER = EPR conjecture emerges automatically
from our analysis. We are able to show that when two
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entangled CFTs are in the thermofield state the modes
observed by the right-infalling observer inside the black
hole are the same as those observed by the left observer
outside. However, when the CFTs are entangled in a
generic manner this is no longer true.

We also consider cases where the CFT is entangled with
a small system—say a collection of qubits. Our analysis of
this setup, together with our verification of linearity in
Sec. VII establishes that the infalling observer cannot detect
any departures from ordinary linear quantum mechanics.

III. GENERALITIES: STATE-DEPENDENT VS
STATE-INDEPENDENT OPERATORS

Since this paper focuses on state-dependent bulk-boun-
dary maps, it is useful to first clarify the meaning of state-
dependence and, conversely, what we would require of a
putative state-independent operator. Since this issue has
been the cause of significant confusion—some of which
has arisen because of the use of imprecise terminology—
we have tried to make this section as precise and detailed as
possible.

A brief summary of this section is as follows. We define
state-dependence. We point out that state-dependent bulk-
boundary maps are already common in the AdS/CFT
literature. Finally we explain the origin of the naive
expectation that the bulk and boundary are related in a
state-independent manner, and also indicate why this
intuition fails.

Apart from the pedagogical definitions, we also pay
some attention to the techniques of extracting bulk physics
using entanglement entropy. These are all state dependent
since entanglement entropy does not correspond to a linear
operator on the boundary. This includes, for example, the
well-known Ryu-Takayanagi (RT) relation [24] between
the entanglement entropy of a region on the boundary and
the corresponding area of an extremal surface in the bulk.
As we emphasize repeatedly in this paper, as a result of
very robust statistical properties of the Hilbert space of the
CFT at large V- 2t is perfectly natural for such a state-
dependent formula to emerge within effective field theory,
and its use does not lead to any violation of quantum
mechanics.

While the use of state-dependent operators may be
common in AdS/CFT, from a broader viewpoint it is true
that this is a rather special situation in physics. So it would
be incorrect to go to the other extreme and dismiss state-
dependence as mundane or unremarkable.

In this section, we point out that based on intuition from
canonical gravity, one may have naively expected that
there is some overarching linear operator in the CFT that

*In this paper we adopt notation that is consistent with [8,9].
So A is proportional to the central charge of the CFT. In the
commonly considered case of the maximally sugersymmetric
SU(N) Yang-Mills theory, we would have A/ o N2.
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includes, in various limits, all these state-dependent pre-
scriptions. If one were to obtain gravity through phase
space quantization, then one may naively expect that many
reasonable functions on the phase space of gravity—such
as the metric at a point—would lift to operators. We show
why this naive intuition runs into difficulty in the context of
AdS/CFT. We complete this analysis in greater detail in
Appendix A. The semiclassical origins of state-dependence
that we outline in this section and in the appendix are, we
believe, an important and interesting subject of study.

In this section and later in the paper we often speak of
CFT operators that also have a dual geometric interpreta-
tion. To avoid confusion, we adopt the following notational
convention.

Notation: A CFT operator is denoted with a bold symbol;
for example an operator in the CFT corresponding to the
bulk metric would be denoted by g,,, as opposed to the
value of the semiclassical metric for a geometry g,,, which
is written in ordinary font.

A. State-independent operators

We consider an AdS/CFT duality, where we expect a
number of “effective fields” to propagate in the bulk. One
of these is the metric g,, but in general there are other
fields, which can include scalars but also fields of higher
spin. We collectively denote these fields by ¢p. We then have
the following definition.

Definition of a state-independent bulk-boundary map:
We say that there is a state-independent map between the
bulk and the boundary if there exist CFT operators g, (X)
and ¢(X) parametrized by d + 1 real numbers, which we
denote by X, so that in all CFT states that are expected to be
dual to a semiclassical geometry, which we denote by |¥),
the CFT correlators involving both the metric and other
light fields,

-

C(;Cl, ....Xm+p)
= <\Il|g/4]u1 (}1) .. 'gﬂ,,,u,n (}m>¢(:€m+l>" '¢(;Cm+p) |\Il>’
(3.1)

have the right properties to be interpreted as “effective field
theory correlators.”

This definition has many parts that we unpack below,
where we explain what it means for a state to be dual to a
semiclassical geometry, and what one expects from effec-
tive field theory.

An immediate issue—but one that does not have
significant physical ramifications—is that the bulk theory
has diffeomorphism invariance. The d 4 1 real numbers
above play the role of coordinates in the bulk. Given any
valid diffeomorphism, x — &(X), the distinct CFT operators
¢ (£71(X)) give an equally valid bulk to boundary map. So
we must always discuss equivalence classes of bulk-
boundary maps. Maps that are related by diffeomorphisms
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belong to the same equivalence class. Later in this section,
we also describe various physical choices of gauge that help
to remove this redundancy, and pick a preferred element of
the equivalence class. We now turn to other aspects of the
definition above.

Semiclassical states: We now explain what we mean by
semiclassical states in the definition above. In the AdS/CFT
duality, we often identify certain states with dual bulk
geometries. These maps have been developed as a result of
various calculations. Schematically, we may represent this
process of identifying a metric dual to a state by

[2,) g0 (3). (3:2)

Two examples may help in elucidating this concept.
Consider the vacuum of the CFT, |0). In this case, the
expectation is that

0) <> g2

where the metric on the right-hand side is the metric of
empty global AdS.

In this paper, we are particularly interested in a second
example of such maps: a generic state at high energies in
the CFT is believed to be dual to a large black hole in
the bulk.

Consider a set of energy eigenstates centered around a
high energy E, > N, and with a width A < \/. The set of
all energy eigenstates in this range is called

REO = {|El>.E0—A SEZ S E0+A}

We denote the dimension of this space by Dp,. By taking
all linear combinations of these states, we get a subspace of
the Hilbert space of the CFT,

) = 3 alE).

We assume above (and whenever we use «; to take
superpositions of states) that they are chosen so that the
state is correctly normalized. We can place an additional
restriction on |¥) above that it has vanishing SO(d) and
R-charges.

Next, we consider the set of unitary matrices that acts
entirely within this subspace. This is a very large unitary
group U(Dg). For A=0(1), we expect that
Dg, = O(e"). The Haar measure on this unitary group
now defines a measure for the coefficients a; in (3.3), and
we can pick a “typical” state in the microcanonical
ensemble by using this measure. Then the expectation is
that almost all states chosen in this manner, except for an
exponentially small fraction of states, correspond to a dual
Schwarzschild black hole geometry in the bulk:

|E;) € Reo- (3.3)

|¥)<>ght.
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We can get other kinds of black holes by varying the other
charges. This is the central class of “semiclassical states”
that we are interested in this paper.

The example above also points to an additional important
fact, which the reader should keep in mind. While we write
|W,) to prevent the notation from becoming unwieldy the
state dual to a geometry is far from unique. There are
several microstates that represent the same geometry.

Two additional classes of states are of some interest to us,
and are entirely derivative from the class above.

(1) Superpositions of semiclassical states

First, given states corresponding to different
metrics |V, )<y 4. ..., |V, ) <> Gy, W may con-
sider a superposition of such states,

w,) = (Z i),

If the geometries above are reasonably distinct, then
the states are almost orthogonal. This is also the case
if we pick two generic microstates corresponding to
the same geometry. As we see below we expect that

(3.4)

<\Ilgl |\IJ!12> = O(e_N)7

<\Ilgl |g;41v1 (;Cl) . 'gumvm (}m)¢(;cm+1)‘ . ’¢(;Cm+p> |\Ilgz>
— O(e_N), (35)

both for states corresponding to distinct geometries,
and for generic microstates corresponding to the
same geometry. Therefore, we require Y |a;|> =
1 + O(e™) in this situation. The important point is
as follows. The smallness of the off-diagonal matrix
elements above implies that a quantum superposi-
tion of a small number of geometries, or a small
number of microstates corresponding to the same
geometry, corresponds in effect to a classical prob-
ability distribution over these states. On the other
hand, it is clear that if we take m = O(e’V) in the
superposition above, then this intuition breaks down,
and the cross terms become important.
(2) Excitations of semiclassical states

Furthermore, given a state |¥,), which we have
identified with a metric g,,, one can consider
“excitations” of this state. For example, one may
“act” on this state using some of the operators
corresponding to the metric or other light fields.
These new states correspond to excitations of the
original state,

'3

(UG = 8wy (X1)- -8y, (i) D (Kis1) -

¢(;Cm+n>|\1lg>'

In the large N limit, after subtracting off the
contribution of the background metric, this state

(3.6)
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should be interpreted as an excitation with n + m <«
N quanta on a background with metric g. Although
these excited states occupy a very small fraction of
the volume of the Hilbert space at any energy, they
are important because there are several interesting
physical questions about the response of equilibrium
states to excitations.

Coherent states vs metric eigenstates: Although we have
taken a CFT perspective on the states above, in principle we
could also have viewed these states as solutions of the
Wheeler de Witt equation that live in a Hilbert space
obtained by quantizing gravity and the other light fields.
From this perspective we should emphasize, to avoid any
confusion, that the semiclassical states |V ) that we refer to
here are “coherent states,” which correspond to an entire
semiclassical spacetime; these states are distinct from
metric eigenstates that are sometimes considered in conven-
tional analyses of canonical gravity.”

Let us make this more precise. We start by performing a
d + 1 split of the geometry

ds* = =N?di* + y;;(dx" + N'dr)(dx/ + Nidt),

and promote the d-metric y;; to an operator. The canoni-
cally conjugate momentum is

w1 = (K = /UK).

where K/ is the extrinsic curvature [25]. [See (A6) for an
explicit expression.] Given a CFT operator g,, we can
therefore define two related CFT operators y;; and #'/. Now
the key point is that the semiclassical/coherent states that
we are discussing satisfy

<‘Il9|yhj1 (;Cl)yl'zjz (}2)|\Ilg>
> - 1
- <\I}9|7i1j1 <x1)|q!g><\1}g|7i2jz <x2)|\:[!g> = O(N) ,
(Wl (%) )a'> (%) W)
— (W |7 (%)) W ) (U |72 (%) |0,) = O</i/)
(3.7)

4Strictly speaking, if we think of the degrees of freedom in
gravity as being obtained from tracing out stringy and other heavy
degrees of freedom, then we would expect a generic CFT state to
correspond to a density matrix for the gravitational degrees of
freedom, and not a pure state at all. However, because off-
diagonal matrix elements of light operators between different
coherent states are very small, a sum of coherent states effectively
behaves like a classical superposition. Therefore we can neglect
this complication here. Indeed, it is because of this fact that
canonical gravity—where the entanglement with these heavier
degrees of freedom is ignored even in excited background
geometries like the black hole—makes sense at all.
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We can specify the O(ﬁ) terms precisely, as we do in the
next section. But for now we emphasize that these states
have a small but finite uncertainty for both the three-metric
and its canonically conjugate variable. Therefore they are
distinct from metric eigenstates which would have satisfied

7 (X)) =73y, metric eigenstate.
Such metric eigenstates would, on the other hand, have a
large variance for '/,

It is these coherent states that have a natural semi-
classical interpretation. Metric eigenstates, on the other
hand, have maximum uncertainty in the value of 7"/ and
therefore, under time evolution, they quickly disperse into a
superposition of several different eigenstates.

Expectations from effective field theory: We now turn to
the other term used in the definition above: the expectations
from effective field theory for correlators of these operators.

Let us assume that we are given a state |¥,) which is
believed to be dual to a geometry by the relation (3.2).
Then, the most basic expectation from a putative CFT
operator that could yield the metric in the bulk is that

(Vylgy (5) W) = gy (%)- (3.8)

Further, we demand that the n-point correlators of these
operators have the property that

(W18, (X1) -8y, (%) P)
= Gy, (1) Gy, (¥2) -Gy, (%)
+ Gpuyvprs (X1 X2) Gy (X3) . 9,0, (X,,) + perm
+ Guypapys (X15 %25 X3) Gy (X4) -G, (%) + perm

o (3.9)

where G, 0, (%1, ...X;) are the connected j-point cor-
relators as calculated by perturbatively quantizing metric
fluctuations on the background of the metric g,, and ... are
the higher point functions which we have not shown
explicitly. Note that this also fixes the ﬁ corrections that
appeared in (3.7), because the connected correlators are
subleading in ﬁ

Similarly, we declare that other bulk excitations are
realized by state-independent operators, if there exist
operators ¢h(x) in the CFT, with the property that n-point
correlators of these operators have an expansion

<\Ilg|¢(}l)¢(}2)¢(;cn)|\l’g>
= G()_'Cl,iz)G(%,)?4)...(}'(55,,_1,;6,,) + perm
+ G(Xy, X3, X3)G (X4, X5, X ) G (X7, Xg) ... G(X,_1, X,)

+perm + - - -, (3.10)

where the functions G are the perturbative j-point con-
nected correlation functions as obtained by quantizing the
field ¢ about the metric g.
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In this expansion, we emphasize that we are not
interested in gravitational loop corrections at the moment,
but would be satisfied if the n-point correlators of the CFT
operators have an expansion that agrees with that obtained
from perturbative quantum field theory carried out at tree
level. This tree-level contribution is already enough to fix
the leading ﬁ terms. It is also important to note that even the
two-point function already knows about the background
metric. This is simply because the graviton and matter
propagators depend on the metric background. Therefore,
in a sense, in the expansions (3.9)—(3.10) we have already
resummed the ﬁ series. It is in this resummed series that we
are only interested in tree-level correlators.

Second, let us make a comment about superpositions of
distinct geometries as in (3.4). Then we expect that

(0l G = S 2T, g, ()T, ) + O(e™).
i=1

A similar relation holds for n-point correlators, provided
that n << V. This is the statement that cross terms between
macroscopically distinct geometries are very small. So, a
superposition of the form above essentially behaves like a
classical mixture for our purposes.

This is an important point since there is no canonical way
to speak of the “same point” in different macroscopic
geometries. Stated precisely, this is the statement that
quantum field theory in curved spacetime does not lead
to any prediction for cross-correlators

<\Ilg|g;w(}1 )gyv(}2)|‘l,g’>’

where g,,(x) and g, (X) are metrics corresponding to
macroscopically different geometries.5 However, (3.5) tells
us that we never need to consider such cross terms in
correlators of the metric, which are exponentially sup-
pressed and do not have any semiclassical interpretation.

Finally, let us point out that if we declare that we do have
a construction of state-independent local operators, then we
should take it seriously. Therefore, if we find a state | V), in
which n-point correlators of the operator ¢(X) cannot be
reorganized as perturbative correlators about any metric,
then we must declare that the state | ) does not correspond
to a semiclassical geometry.

Gauge invariance and coordinates: We now turn to the
last remaining point in our definition of state-independent
operators. The d+ 1 real parameters parametrize CFT
operators and are to be interpreted as coordinates in
AdS. This is a tractable issue but two points sometimes
lead to confusion: the fact that the metric and other local
observables are not gauge invariant, and the fact that we are

SFor the case where these metrics are so close that one can be
considered to be a coherent excitation of gravitons on the other,
we refer the reader to Appendix A.
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using a uniform coordinate system to represent all metrics.
Both of these issues can be resolved simultaneously by an
appropriate gauge fixing, as we now describe.

First, as we have already noted, given a family of CFT
operators labeled by coordinates X, so that the family of
operators satisfies (3.8)—(3.9) we can clearly simply con-
sider another family of CFT operators, which is related to
the previous one by diffeomorphisms.

L goE oy
g (x) = aip aigﬂ”(é ().

$(3) = (&' (%))

The operators on the left-hand side of (3.11) are distinct
CFT operators, but they obviously encode the same bulk
physics. We can choose to simply live with this lack of
uniqueness, while keeping in mind that to extract any
physics from the operator (3.8) we need to form gauge-
invariant quantities. But from a physical point of view, it is
more convenient to pick a gauge so that the CFT operators
that we are discussing become unambiguous.

A related problem has to do with the “range” of the real
numbers in x. Usually, we tailor the coordinate system
to the metric. So it is often the case that the AdS
Schwarzschild metric and the empty AdS metric are written
in terms of coordinates that have different ranges.

In addressing these two issues, it is useful to recognize
that they also arise in numerical general relativity. There we
are given a grid of points, drawn from R%!, with a fixed
range and we place different metrics on this grid so that the
resultant spacetime describes an entire range of physics,
from empty AdS to black holes.

To make this more precise, note that the empty AdS
metric is given by

(3.11)

dr?
dsy = —(1 4 r)dr* + a2 r?dQi_,.

By a coordinate transformation, r = -2

=

boundary to a finite coordinate distance

we can bring the

1
fp)

1 A
dsgy, = =pp (‘f(ﬂ)df2 + dp? +ﬂ2d931_1>,
(3.12)

with f(p) = (1 — p)? + p?. The boundary is at p = 1, and
manifold in (3.12) is [0, 1) x R x S9~!. In this paper we are
only interested in different metrics placed on this manifold
that asymptotically tend to the metric in (3.12), although
they may differ in the bulk. Even if black holes are present,
we simply consider nice slices that are parametrized by the
coordinates [0,1) x S%°!, as shown in Fig. 1, and then
consider their evolution in time for a finite range of time.
Note that by this finite-time restriction, we also avoid
questions of “topology changes.”
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_____________________

AT

FIG. 1. Even in the presence of a black hole, nice slices can be
parametrized by coordinates on [0,1) x S*"!. We examine
physics for a finite interval AT so that the future singularity is
irrelevant.

Having chosen a uniform coordinate system to describe
the metrics that we are interested in, we can further choose
a gauge to unambiguously specify the CFT operators we are
interested in. A convenient choice of gauge is given by the
“generalized harmonic gauges.” In these gauges, we set

Ox* = HX(X). (3.13)
A choice of the “source functions” H*(X) gives a choice
of gauge.

Note that once (3.13) is imposed as an additional
operator equation that must be satisfied by the CFT
operators that appear in (3.8)—(3.9), then this removes
the redundancy (3.11) in the identification of these oper-
ators in the CFT. So, if such operators exist then (3.13)
picks out a specific family of them.

For the specific case of AdS, an appropriate choice of
source functions is discussed in detail in [26]. These details
are not important here. The point that we can take away
from the numerical analysis of [26] is that it is possible to
describe a very broad range of metrics in AdS, including
empty AdS and excited black holes that are dual to fluid
dynamical situations on the boundary with a uniform
choice of coordinate system and gauge.

1. Relational observables

There is another class of coordinate systems, which is
particularly convenient in AdS. This is the class of
coordinate systems that is defined relationally with respect
to the boundary. Here, we assume that we are already given
the metric in some coordinate system, such as the ones
above. We then describe a coordinate transformation to a
more convenient relational coordinate system.

PHYSICAL REVIEW D 93, 084049 (2016)

Intuitively, we consider an experiment where an observer
jumps from the boundary, with no initial velocity along the
§9-1, falls for a given amount of proper time, and then
makes a measurement. In fact this notion is a little hard to
make concrete in this form because if we drop the observer
from a point that is infinitesimally close to the boundary, he
very rapidly approaches the speed of light. This problem
cannot be solved by using an affine parametrization of null
geodesics either, since any affine parameter that is finite in
the bulk goes to infinity as we reach the boundary.

So, it is convenient to use the following slightly more
complicated construction. We start from a given point on
the boundary, which we label by (#,, Q). We know that the
metric is of the asymptotically AdS form given by (3.12).
We now consider a null geodesic, parametrized by ordinary
asymptotic AdS time, that extends into the bulk, with no
velocity along the S9~!. More precisely, let us consider a
null geodesic trajectory given by

Q (1)),
Ql(fl) =V,

pi(t) =1,
pln) =—1,

X1 (1) = (t.p1 (1),

Qi (1) =Q, (3.14)
where by a slight abuse of notation we have used Q; both
for the solution to the geodesic equation, and for the initial
value of the solution. Note that initial “velocity” in the
radial direction is fixed since the geodesic is null and the
sign indicates that the geodesic is ingoing and moves into
the bulk as time advances. This geodesic reaches a finite
coordinate distance in the bulk in finite time. Second, note
that while we are starting with no angular momentum,
intrinsic properties of the geometry may cause the geodesic
to start moving on the sphere as well after it departs from
the boundary.

We now consider a second null geodesic that intersects
the boundary at a later point (t; +17,€,) and also has
Q, = 0 at its final point. This is the geodesic trajectory

= (1,(1), p2(1)),

: (3.15)

and the sign of the radial derivative indicates that the
geodesic is outgoing at the time #; + 7. Now given a
particular value of #;, Q, (1,), we vary Q,(#, + 7) so that the
geodesics intersect. We expect that

392 and Elti,
Hh < ti < tl +7
Q,(1;) = (1))

such that p(t;) = pi(t;);
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Intuitively, the existence of such a solution seems clear. For
example, in the case where the geometry has no angular
momentum at all, we can solve the equation above simply
by setting Q, = Q. If we start deforming the geometry so
that it is rotating, we should still be able to tune €2, so that
the two geodesics intersect. Even for other, more compli-
cated geometries, we expect that the intersection point
should be well defined at least as long as we are close
enough to the boundary and we see below that this is all that
we need.

We denote the point of intersection by

Pi(t.Qy,7) = (1, Q (1), p1 (1)) (3.16)
This is a bulk point that is parametrized by the starting point
of the first geodesic and the time difference to the ending
point of the second geodesic.

Note that by means of such a process we cannot reach
behind the black hole horizon. However, once we have a
parametrization of points in the exterior, it is simple to
extend them behind the horizon. We once again consider
geodesics that start from a point (z;,Q;) on the boundary
but this time we parametrize them using an affine parameter
so that the geodesic satisfies the equation

P |y (D) ()

=0.
di? dA di

This is just a reparametrization of the geodesic in (3.14),
and so we have denoted it with the same symbol x;(4).
The key point is that we can use our previous para-
metrization (3.16) to normalize the affine parameter. We set
x1(0) = Pi(t1,Qy,71), X1(1) = Pi(t1,Q1,72).
A choice of the intervals 7}, 7, gives a specific normalization
of the affine parameter. The reader can, for her convenience,
think of any concrete value: say 7, = €4 70 = 28 a4s-
Once this normalization is fixed we obtain the set of
points

P(1,Q1,4) = (;(4),Q(2),p1(2)).

The difference between (3.17) and (3.16) is that the points
in (3.17) can also reach inside the horizon. The entire
process above is summarized in Fig 2.

The advantage of this prescription is that, classically,
measurements of a scalar field defined in such a relational
manner are gauge invariant. We recall that when we define
quantum gravity in anti-de Sitter space, we have to
consider the set of all field configurations modulo trivial
diffeomorphisms. The trivial diffeomorphisms are those
that vanish at the boundary of anti—de Sitter space. Large
gauge transformations—which leave the boundary in
asymptotically AdS form, but yet move points on the

(3.17)
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(tl + 727523)

(t1+71,80)

(t1,)

FIG. 2. The relational gauge fixing proceeds in two steps: first
we use intersecting geodesics to parametrize points outside the
horizon. Then we use this set of points to normalize the affine
parameter and follow null geodesics into the horizon.

boundary—correspond to symmetries in the boundary
theory, and induce a change of the physical state.

So, gauge-invariant observables are those that are
invariant under trivial diffeomorphisms. In the relational
observables described above, we start with a point on the
boundary—which is left fixed because the diffeomorphism
vanishes there—and then follow a gauge-invariant pre-
scription to reach a point in the interior. Evidently, scalar
fields evaluated at this point are themselves gauge invariant.

There is an important stronger statement that we can
make. Consider a large diffeomorphism that induces a
conformal transformation on the boundary (7,Q)—
C7!(1,Q), where C denotes an element of the conformal
group. Geometrically, under the diffeomorphism the geo-
desic trajectories in (3.14)—(3.15) get mapped to new
geodesic trajectories. Therefore we expect that the rela-
tionally defined points in (3.17) will transform under the
diffeomorphism as

Py(t,Q,2) = P,(C71(2,Q),1).

The important point is that this transformation of the
relational points does not depend on the details of the
diffeomorphism in the bulk, but merely on how it acts on
the boundary.

Now consider a scalar field operator ¢p(P,(t, ), A) with
the bulk point defined as in (3.17). Corresponding to the
conformal transformation C, there is a unitary operator U,
on the boundary. Then, in order to be consistent with the
geometric intuition, we expect that the CFT operator ¢b will
satisfy

UL (P,(1,2,1))Uc = ¢ (P,(C(1,Q), 4).

We use this relation several times to obtain the commutator
of bulk operators with the Hamiltonian which arises
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from the special case where C is just taken to be the
time translation above. In Sec. VI, we apply this analysis
in a more general setting where there are two boundaries.

The disadvantage of the relational prescription is that it is
harder to make this precise at subleading order in ﬁ
Clearly, the affine parameter along a geodesic from the
boundary to another point may itself be expected to
fluctuate at order ﬁ In this paper, these subtleties are

not important.

B. The alternative: state-dependent
bulk-boundary maps

An alternative to the state-independent possibility above
is that geometric quantities like the metric do not arise by
evaluating a Hermitian operator, but correspond to more
general “measurables.” More precisely, we would be led to
state-dependence if there are no globally defined Hermitian
operators g, (X) and ¢(X). Rather, about a given state |¥ )

we would have operators gﬁ}(}) and ¢} (X) so that the

correlators

Cq}(}l 5. -;CnH»p)
— (Ulgl (3)). b G Gt Y (o) | 0)
(3.18)

reproduce the predictions of effective field theory
that we outlined above. This definition is identical to the
definition (3.1) in terms of the semiclassical states |¥) that
appear here and the expectations we have for the values

of the correlators. The difference is in the nature of the

operators gf,Z’} which now depend on the state.

One possible way to think about (3.18) is that the
geometry emerges as a “function of correlation functions™®
and not by measuring linear operators. However, we have
some additional structure in (3.18). Since the bulk observer
must see quantum effective field theory, it must be the case

that to an excellent approximation the operators g,J;LD} (X) and
¢ (X) act as linear operators. In terms of the classes of states
that we have defined above, this can be turned into a sharp
restriction: the same operators that represent the metric and
other excitations in a state |¥,) must also represent these
excitations in superpositions (3.4) and (3.6). We show below
that, in our construction, this is indeed the case.

To lighten the notation we now usually omit the super-
script ¥ in gf,gl} even when we are considering state-
dependent operators. Although in several cases we discuss
explicitly whether a given operator is state dependent or state
independent, in others it should be clear from the context.

We now point out that many of the existing methods of
associating a geometry to a state as in (3.2) are state

®We thank Nima Lashkari for this phrase.
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dependent in practice.7 We hasten to add that this, by itself,
does not mean that the map (3.2) can only be realized in a
state-dependent manner. Our discussion in this subsection
does not rule out the possibility that there may be an
overarching state-independent prescription which encap-
sulates all of these state-dependent approaches in some
approximation, or that the realizations of (3.2) that are
discussed below cannot be interpreted as constructions
which only hold in a limited class of states. Our purpose in
this subsection is to use these examples to explain the
distinction between state-dependent and state-independent
realizations of the maps.

We now proceed to discuss the Ryu-Takayanagi formula,
the procedure for extracting the Einstein equations from the
first law of entanglement, and the smearing function
construction of operators outside the black hole.

1. State-dependence in geometry from entanglement

The RT formula [24] and its generalization [27] by
Hubeny, Rangamani and Takayanagi provide a method of
reading off geometric quantities from a state. We review the
formula, and show how it is state dependent. We also show
how to interpret it correctly and that this state-dependence
does not imply any contradiction with quantum mechanics.

In particular these formulas provide a relation between
the entanglement entropy of a region on the boundary, and
the area of an extremal surface in the bulk which is
homologous to the boundary region. So, given a region
R on the boundary and a semiclassical metric g,,, we can
calculate the area of this extremal area surface A(g, R).
The Ryu-Takayanagi formula now states

1
—A(91 R) = SR?

Gy Ryu-Takayanagi

(3.19)
where Sy is the entanglement entropy of the region R.

We now show the following.

(1) The formula (3.19) cannot be interpreted as an
operator relation for the area, because there is no
entanglement entropy operator.

(2) However, even though the entanglement entropy
cannot, in general, be interpreted as the expectation
value of a Hermitian operator, because of properties
of the large-\ CFT Hilbert space, we expect to find
a state-dependent operator A in the CFT which has
the property that

(WlAR|¥) = Sk(|¥)),

both in states (3.2) and in superpositions of a small
number of such states (3.4).

"We cannot help making the curious observation that, within
the string theory literature, this fact hardly attracted any attention
or controversy until the recent discussions on the black hole
interior.
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We start by noting that if the metric is a state-indepen-
dent operator, then the area of the minimal area surface,
which is a functional of the metric, is also a state-
independent operator. In fact, as we see below, from the
point of view of a semiclassical quantization of gravity—
which is what yields the justification for expecting the
metric to be an ordinary operator—the area of the minimal
area surface should be as good an operator as the metric.
Therefore, we might expect the existence of some operator
Ap, so that in the state dual to the geometry with metric g,
we have

Agl¥,) = A(g R)|W,) + o@).

However, on the other hand, the entanglement entropy is
not a linear operator. The standard proof is as follows.
Consider the division of the CFT Hilbert space into that of
the region and its complement: H = Hy ® Hjy. Say that
we want an operator S so that V|U) € H; we have
(w|Sg|¥) = S(|¥)), where S is the entanglement entropy
between R and its complement in that state. Now we note
the following facts. Since S(|¥)) is always non-negative,
the expectation value of the putative S, operator is non-
negative in all states; therefore it can have no negative
eigenvalues. Second, we can find a complete basis of
unentangled states

W) =

where i€ [l,...dim(Hg)],j € [1,...dim(Hy)]. Clearly
we expect (¥;;|Sg|¥,;) = 0. Moreover, since |V;;) is a
basis, we also have Tr(Sg) = 0. Since Sk has no negative
eigenvalues, and its trace is zero, it must be the case that
Sk = 0 identically. This is absurd. Therefore, there is no
operator Sk whose expectation value equals the entangle-
ment entropy in general. A simple extension of this
argument shows that this is also true for the Renyi entropies
Tr(p}), where pg is the reduced density matrix of the
region.

The fact that the entanglement entropy does not corre-
spond to an ordinary linear operator may appear to be a
formal statement, but it becomes acute in the following
situation in the AdS/CFT correspondence. Consider a
superposition of two different classical geometries, as in
(3.4). For simplicity, we can consider a pure state which is a
superposition of a pure state corresponding to a black hole
at temperature f, with a corresponding metric g,
and another pure state corresponding to a black hole at a
temperature ﬂ’ with a corresponding metric gy . Provided
that g — > 7 we see that the corresponding pure states
are almost orthogonal. We write the superposed state as

R:) ® |R;), (3.20)

|\Il‘> = a1|\I/gﬂ> + aZl\Ijg/,/>’
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and normalizability requires |, |*> + |ay|? = 1 +O(e™V).
This is not a state that we usually consider, but it is certainly
possible to consider such superpositions in the CFT since
distinct geometries do not belong to strict superselection
sectors.

From the bulk point of view, quantum mechanics
provides the following prediction. If one measures the
area in this state, one expects to find the answer A(gy, R)
with probability |a;|* and A(gy, R) with probability |a|*

While the entanglement entropy cannot reproduce this
probability distribution, with some work we can show that
the entanglement entropy does correctly reproduce the
expectation value of the area. The argument is as follows.
Consider the reduced density matrix of the region R in all
three states,

pr(B) = Trg([0,,) (W, ).
pr(F) = Trgl[%,, ) (W, .
Pr(,) = Trg(|T,) (1))

where R is the complement of R.
We can write both the states in terms of a Schmidt basis,

)= 31K @ RE)
v,,) Zr” RY) ® IR]),

(3.21)

where, by the definition of the Schmidt basis, we have

<Rﬂ|Rﬁ> - 51]’ <Rﬁ|R/j> = 51/’

p
(RIRY) =6 (RUIR]) = o

SNIPr=1 S P=1
i i

To simplify the analysis, without sacrificing anything of
importance, let us truncate the range of i in (3.21) so that it
runs over O(e/V) states. In almost any state, where the
energy scales like V, it is in fact true that even if the exact
expansion of the state involves an infinite number of
eigenvectors, all but an O(e") number of them are
exponentially unimportant.

Now, the key point is that in a very large Hilbert space
we expect that the Schmidt basis decomposition for the
state ¥, ) and the state |\IJ ) is typically uncorrelated.
This 1mphes that
(RYRT)P = 0(eN);  [(RRT)P = O(e™).  (3.22)
Strictly speaking (3.22) is valid if one takes a large Hilbert
space and divides it into two parts. In a local quantum field
theory, it is possible that the very short distance modes in
the two regions are entangled in a universal manner.
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This does not affect any of our results since in considering
the entanglement entropy we, in any case, must subtract off
this universal part.

Now the first two reduced density matrices are given by

(B) = ZIY?IZIRWR{”I,
Pr(P) =Y Il PIRY)(RY .
The corresponding entanglement entropies are given by
- 2% IR
= —Tr(pr(f") Inpr(p')) = —2Z|}/j i),

Sp= ~Tr(pg(B) Inpr(B))

Moreover, we see that

pR<\Ils) = |a1|2pR(ﬂ) + |a2|2pR(ﬂl) + Peross

where we see that the matrix involving the cross terms is

Pcross = Z (Zl(lzyﬂ Vﬂ)

|Rﬁ><Rﬂ|+Hc

. d
SR(\IIS) = _’Einl %TT(I’R(‘IG)M)

= —[oy [* In(|ay [*) Tr[pg (B)] -
= Jey |2TrV’R(ﬁ) In(pg(B))] =
| |* In(|az|?) + |y [*Sg(B) + [l * Sk (B).

= =l P In(|ey[*) =

Therefore we see that

1

Sp(¥,) = Gy

(A(R)) = |y P In(Jey [*) = | * In(Jexz ).

where (A(R)) = |a1|*A(gs. R) + |a2|*A(gp. R) is the ex-
pectation value of the area obtained from a naive analysis.

In fact the additional term that we have obtained is
always subleading even if we take a superposition of a large
number of states. This is because the leading term is O(N)
as we can see from the explicit factor of Gy in the formula
above. Now, even if we superpose m-states in the form (3.4)
with coefficients > | |;|* = 1, then the additional term is
bounded by

=" Jai In(la?) < In(om).
i=1

Therefore, unless we take a superposition of an ¢V

number of states, we see that we can still consistently
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Now even though this is an ¢V x ¢ sized matrix, we can
check using (3. 22) that Tr(perss) = O(e™) and also that
Tr(p2oss) = O(e™). Therefore the cross terms have an
exponentially small effect in the computations below, and
we neglect them.

Now consider two positive integers m;, m,. We see that

Tl6R (Pl (9)) = 3t P (R P

Therefore, from (3.22), we see that

Tr(pj (Ao () = O(e™). i my.m, > 0.
This allows us to evaluate the entanglement entropy of
the superposed state. In particular, using the result above,
we see that mth Renyi entropy for the superposed state is

given by

oy " Tr(pr(B)™) + | Tr(pr(F)™)
+0(e™N).

Tr(pp(¥,)") =

Therefore the entanglement entropy is given by

| | In(lz |*) Trlp (B')]
oo [*Trlpr(8') In(pr (')

|

interpret the entanglement entropy as the expectation value
of the operator that, classically, would correspond to the
area,

1

S A
k= 35 e

(3.23)
If we do take a superposition of an exponentially large
number of states, then the cross terms become important
even for the area operator, and we must reevaluate the entire
expression.

To summarize, we have concluded that once the original
Ryu-Takayanagi formula is interpreted as a relation
between an expectation value and the entanglement entropy
as in (3.23), then it holds consistently even in states that are
superpositions of classical geometries as advertised. Our
analysis here does not rule out the existence of a state-
independent area operator Ay but such a state-independent
operator cannot be dual to the entanglement entropy in
general.
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Before concluding, we should mention that there are
several approaches that attempt to construct other bulk
geometric quantities by massaging or refining the Ryu-
Takayanagi formula. For example, the authors of [28] related
the differential entropy—obtained by considering the varia-
tion of the entanglement entropy as the interval on the
boundary is altered—to the area of a hole in the bulk. This
can be used to read off the bulk metric more directly than the
minimal area prescription. Of course, all of these approaches
are also explicitly state dependent. However, just as in our
discussion above, we expect that when we interpret them
appropriately they do not present any observable contra-
diction with quantum mechanics in the bulk.

2. Equations of motion from the first law
of entanglement

Another approach to deriving the bulk from the boun-
dary, which has attracted attention, is the program of
deriving the bulk equations of motion from the “first
law of entanglement” [29-31]. Consider, once again, a
region R on the boundary, and a CFT in the vacuum state.
Then we may define the modular Hamiltonian of the region
by demanding that the reduced density matrix of R has the
form

e~

mod
PR = TrHR (e_Hﬁod )

where the reader should note that the trace is in Hy only.
In this case, if we consider the vacuum of the CFT and

take the region R to be a ball of radius a centered around a

point yy, then the modular Hamiltonian is given by [32]

2 ;o
HR = zﬂAdd—lﬁuTm (3.24)

2a

where T, is the time-time component of the stress tensor.
But this is a state-dependent formula that is obtained by
defining the modular Hamiltonian about the vacuum.

Using this formula it was shown [29,33] that one can
relate the linearized Einstein equations in the bulk to the
first law of entanglement entropy under small changes of
the state. By considering a generalization of the Ryu-
Takayanagi conjecture, where the area is replaced by a
Wald functional, this was extended to higher derivative
theories in [30] and 1/ interactions were included in [34].

However, although (3.24) looks like an operator equa-
tion, the modular Hamiltonian is also a state-dependent
operator. There is no globally defined operator H glob in the
theory so that its action equals that of the modular
Hamiltonian on every possible state. The proof is similar
to the one above. Let us say that we had an operator

Hglob‘\l}> =H§10d‘\1/>, (325)
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so that its action on Hp was that of the modular
Hamiltonian and it acted as the identity on Hj.
Consider again the unentangled states in (3.20). The
density matrix of R in this state is pure: pp(|¥;;)) =
|R;)(R;|. We can see that this implies that the putative
modular Hamiltonian operator must have the action
HY,|V;j) = 0. However, if HY , is a linear operator, then

on any state Hgobzija,-jhl/ij) = 0. This suggests that

HR

olob = 0 as an operator, which is absurd. Therefore

(3.25) cannot hold for any state-independent operator H' glob.

Therefore, (3.24) must be interpreted as a relation that is
true within expectation values taken in the vacuum or small
fluctuations about the CFT vacuum. No operator generali-
zation of this equation exists as we have shown above.
Nevertheless, it should be possible to obtain similar
formulas about different states by defining the action of
the modular Hamiltonian relative to that state. Such
formulas also work for superpositions of a small number
of states, as we showed above in the case of the entangle-
ment entropy, but this entire process is fundamentally state
dependent.

The authors of [35] proposed that HR |U) = A,|¥)
should hold as an operator equation. However, as they
noted explicitly this is a state-dependent relation which
works in the neighborhood of a given state. As we
discussed above we would also expect it to work in
superpositions of a small number of semiclassical states.

3. Smearing function construction of local operators

Another commonly used method—and one that we use
in this paper—of extracting local physics from a state uses a
smearing function to represent bulk operators as smeared
versions of boundary operators [36]. We review this
approach in greater detail in Sec. IVB, where we also
derive the expressions below for some states. In this
approach, given a state |¥ ), we guess a smearing function
and conjecture that local fields in the bulk have the form

o) = / OGMK,G* a5, (3.26)

where X is a bulk point, ¥ is a boundary point, O is a
single-trace operator on the boundary, and K, is an
appropriately chosen smearing function. Strictly speaking,
there are some difficulties in interpreting (3.26) in position
space, having to do with the convergence of the integral,
which has led to some confusion in the literature [37,38].
However, as we showed in [7], these difficulties go away if
we work in momentum space and this subtlety is irrelevant
for our present discussion.

One may object that one is putting in the answer by hand
in (3.26) in the kernel K. However, it is a nontrivial fact
that the operators ¢b(x) do obey (3.10), and also have the
right boundary values (as one approaches the boundary of
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AdS) as CFT correlators. In particular for an operator O of
dimension A, we require that

(OGY)...0G) = Z"lim ri .y (7. 1) p (55 7))
(3.27)

where Z is a numerical wave-function renormalization
factor, and we have written the bulk points as a boundary
point combined with a radial coordinate » which can be
identified with the coordinate r in (4.1). The fact that both
(3.26)—(3.27) hold simultaneously involves a delicate inter-
play between the kernel and the correlators of O in the
state |W,).

As written, the expression (3.26) is explicitly state
dependent because the kernel K, depends on the metric,
and is therefore different in different states |¥,). So, for a
given kernel K, this expression works only in a state that
corresponds to this semiclassical geometry.

In Sec. IV, we discuss whether it may be possible to lift
(3.26) to a state-independent prescription, at least, outside
the horizon. While this is possible in a minisuperspace
approximation as we show around (4.21), we are agnostic
about whether this works in general, even outside the
horizon. In [3] it was argued that the 1/N corrections may
automatically resum to give the correct smearing function
on a general semiclassical background. It would be
interesting to explore this possibility further and we com-
ment more on this issue in [39].

C. A semiclassical obstruction to state-independence

Given that all existing examples of extracting local
physics from the boundary involve various measurables,
which are nevertheless not linear operators, why should we
expect that the metric is given by an ordinary operator in the
CFT? More precisely, what is the basis for the naive
expectation that operators satisfying (3.8) and (3.10) should
exist in the CFT? In this subsection, we try and explain the
basis for this naive expectation, although, as we point out
immediately, we believe that this intuition is flawed.

For simplicity, we consider whether one should expect a
state-independent metric operator g, (X) to exist. A similar
argument applies to other light fields in the theory.

The key point is that the classical metric g, (X) is a well-
defined function on the classical phase space of the theory.
Recall that the classical phase space can be put in 1-1
correspondence with the set of all classical solutions of the
theory. Given initial data for the canonical variables, and
their conjugate momenta, we can evolve it forward to
generate the entire classical solution. Conversely, given a
classical solution, we can take a section by evaluating the
variables and their momenta at some point in time to obtain
a point on the phase space.

As we have explained above, once we go to a well-
defined gauge, the value of the metric g, (X) is well-defined
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in any classical geometry. Therefore the metric is a well-
defined function on the phase space of the theory. Now, one
usually expects that quantization takes functions on the
phase space to well-defined operators in the Hilbert space.
Therefore one might expect the metric g,w(}) in relational
gauge to lift to a state-independent operator in the theory.

As we review in Appendix A, this is usually done as
follows. In the quantum theory, we obtain coherent states,
|g) corresponding to each semiclassical geometry. We then
lift the classical function to an operator through

8w(®) ~ Y g, (®)9)(gl, (3.28)

where the sum is over all metrics, discretized in some
fashion.®

Now, the analysis of Appendix A and Sec. VI shows that
for such a construction to work, it is very important that if
we consider the inner product of two distinct geometries, it
dies off to arbitrarily small values

(g1]gp) = e Nolora),

We can compute the function » on the right-hand side in
linearized gravity but in order for (3.28) to converge we
require that for sufficiently distinct g¢;, ¢,, we can
have v > 1.

On the other hand, in the CFT, as we have discussed
coherent states of the metric |g) correspond to CFT states
|W,). However, for generic states at the same energy
E «x N, we have

<\Il91 |\Ij.f]2> = O(e_%>7

where S o« AV is the thermodynamic entropy of the CFT at
the energy E.

This fat tail in the inner product of coherent states in the
CFT subtly violates the expectation from a semiclassical
quantization of gravity.9 As a result of this tail, we cannot
write down an expression of the form (3.28) with the
putative coherent states replaced by |¥,) because interfer-
ence from distant microstates implies that the operator
8,,,(X) on the left of (3.28) does not behave like the classical
function g, (X).

We direct the reader to Sec. VI for an example where this
can be seen very clearly. In Appendix A we discuss the
single-sided case in more detail and describe why we

8For a concrete example of a formula of this sort, the reader
may wish to look at (4.21) although we caution the reader that
(4.21) sums only over spherically symmetric metrics and works
only outside the horizon. In contrast, we would like (3.28) to
work for all kinds of metrics, and both inside and outside the
horizon.

This is reminiscent of the fact [40] that thermal correlators in
the CFT decay down to O(e™5), in contrast to the naive expect-
ation from semiclassical gravity that the exponential decay in
time should continue forever.
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(a) Hawking’s
derivation

(b) The analogy to the Eternal
Black hole

FIG. 3. Two ways of arguing that new right movers are
necessary behind a black hole horizon. Hawking’s original
derivation is on the left, where the right movers are modes that
have “bounced” off r = 0 and propagated through the infalling
matter. The analogy to the eternal black hole is on the right, where
the right movers come from a left asymptotic region. Both of
these suffer from difficulties, and so we perform a purely local
derivation leading to the same result.

believe that the same obstruction prevents one from writing
down state-independent operators for well-defined classical
geometric quantities.

IV. LOCAL BULK OPERATORS IN ADS/CFT:
CONDITIONS FOR A SMOOTH INTERIOR

In this section, we review the conditions that are required
to obtain a smooth exterior and interior geometry for a
black hole in AdS/CFT. The central point that we empha-
size in this section is that a smooth interior requires the
existence of operators in the CFT, with specific properties
that we enumerate below. We have dealt with this question
in our previous papers [7-9], but we present a slightly new
perspective here to buttress the same conclusion.

Before we proceed to the analysis, we briefly state our
result and emphasize the difference with previous deriva-
tions. Consider a black hole horizon, which may have been
formed due to gravitational collapse or may be part of an
eternal black hole. If we quantize a field on both sides of the
horizon, we find that while the Schwarzschild left movers
cross the horizon smoothly, the Schwarzschild right movers
do not. The claim is that to obtain a smooth horizon, we
must find new operators, which play the role of right
movers behind the horizon, and are appropriately entangled
with the right movers in front of the horizon.

There are various ways to reach this conclusion. These
right movers were identified in Hawking’s original analysis
of this question as modes from past null infinity that are
concentrated in the time, just after the last null ray to escape
the horizon. In Hawking’s geometric analysis, these modes
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FIG. 4. We derive the necessity of new modes just by
demanding a regular two-point function for points Py, P, across
the horizon without invoking another asymptotic region or
tracing these modes back into the past.
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bounce from r» = 0 to play the role of right movers behind
the horizon. One can also argue for the existence of these
right movers and the appropriate entanglement—as we did
in [7]—by using the semiclassical intuition that, at late
times, the collapsing geometry approaches the eternal black
hole where these right movers originate from a left
asymptotic region, which we call region III. Figure 3
displays the intuition for these arguments.

These derivations suffer from certain difficulties.
Hawking’s original work has a trans-Planckian problem
because tracing these modes back to past null infinity
boosts them to very high energies. Similarly, the intuition
that these modes come from an effective region III is
somewhat confusing because we do not expect any such
region to exist for a collapsing geometry.

To solve these problems, in this section, we perform a
purely local derivation that reveals the necessity of the
existence of appropriate entangled right-moving modes
behind the horizon. Our picture in this paper is shown in
Fig. 4. We start with the sole assumption that the field in
the near-horizon region outside and inside the horizon has
an effective perturbative description. This assumption
implies the universality of a certain two-point function.
By Fourier transforming this universal two-point function,
we infer that the right movers behind the horizon must
exist, and also infer their two-point functions with modes
in front of the horizon. We start by performing this
analysis in the bulk, and then discuss the implications
in the CFT.

A. Bulk analysis of the mirror operators

Let us start from the bulk perspective. We then examine
how this must be translated to the boundary. For simplicity,
let us consider a massless scalar field in the bulk. This
analysis carries over, almost entirely unchanged to the case
of the graviton and other fields.
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FIG. 5. We are interested in the late-time physics of the black
hole geometry, schematically denoted by the rectangular patch P
above.

Consider a big black hole in AdS. In the past this black
hole could have been formed from the collapse of a star or
some other physical process. However, we are interested in
the late-time region shown schematically as the rectangular
patch P in Fig. 5. This patch of spacetime overlaps with the
region both in front of, and behind, the horizon. Classically,
we expect that the initial collapsing matter, and any
perturbations, have died away and are irrelevant for physics
in this region. In the analysis below, we assume the validity
of this classical expectation and derive various results for
correlators of fields. Later we need to check the consistency
of these results by ensuring that it is possible to construct a
bulk to a boundary map that reproduces these correlators.

Geometry: The metric, at late times, outside the horizon
is given by

ds* = —f(r)dr* + ]%dﬂ +r2dQy |, (4.1)
where
fr)y=r*+1 —Cd%,
.- 87T (d/2) .
d—1

The numerical constant, c,, arises from the volume of the
d — 1-dimensional sphere. and we have set the radius of
AdS to 1.

The horizon is defined implicitly by the equation
f(ry) = 0. As usual, it is convenient to introduce tortoise
coordinates by ‘gr* = f~!(r). Unlike in the case of the
Schwarzschild black hole in flat space, we cannot usually
express the tortoise coordinates in terms of the original
coordinates using elementary functions. But we can choose

the differential equation to satisfy
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r.,=0, atr= 0.
As r — 1y, we see that f~!(r) diverges and r, - —co.
In order to approach the future horizon we have to take the
limit », - —co and at the same time ¢ — +oco.

We introduce the following coordinates:

U=—er; V= ernt,
The horizon is given by U = 0, but with V being finite. We
can check that with the factors of %, the horizon is smooth
in the U, V coordinate system. Near the horizon, with
(r—ry) < 1, we have f(r) = k(r — ry). The constant k is
related to the temperature. A shortcut to determine the
relation is to continue to Euclidean time, ¢t — iz, identify

7~ 17+ f and make the change of variables x = 2, /™.

Near the horizon, the analytically continued metric then
takes the form

2
ds} — di® + 522 + R .

For the Euclidean circle 7 to smoothly cap off at x = 0, we

. 23
require “2- = (27)? or x = 47”.

In the near-horizon region, we now have the following
relations:

ﬂnz%w—m,

=>r, = ﬁln (r — r0> + const.
47 o

4zry .
From here, it follows that f(r) — «'(3)*¢ 7, where «’ is
r,—00

another (irrelevant) constant.
In Kruskal coordinates the metric takes the form

BN f(r)
dS2 == (%) U—VdUdV+ rzdgé_],

and we see that the factor of ULV precisely cancels off the
growing exponential in f(r) near the horizon to ensure that
the metric is regular.

G ;2 ™ K'dUdV + rgdQ_,.

After we cross the horizon, we can introduce a second
Schwarzschild patch. Since U > 0 in the region inside the
black hole (which we sometimes also call region II), we
write

U— e%"(r*—l). V= e%"(rﬂrt)

’

, in region II.

Inside the horizon, the tortoise coordinate, r,, rises from its
value of —oo at the horizon, while the Schwarzschild time
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decreases from its values of co as one goes from right
to left.

Two-point scalar correlators: Now, we consider a mass-
less scalar field propagating in this background. We define
this field using the relational prescription of Sec. III A 1. We
derive various consequences of the fact that the horizon is
smooth, simply by demanding that the two-point function
both outside and inside the horizon be smooth.

We expect that the two-point scalar function has the form

(BG)b () = Gl T) + o<%)

We are interested in the regime where X, and X, approach
the light cone, but always remain spacelike with respect to
each other. In this regime the Wightman and time-ordered
Green functions coincide and so we do not have to keep
track of factors of ie. In the expression above, we have also
used the fact that corrections to this expression come from
interactions that are suppressed by 1/N. However, we do
not need the full form of the propagator. For a large black
hole, provided that the geodesic distance 7}, between x
and x, is small in comparison to the scale of curvature
£, < 1 we expect that

N 1
o)~ [9 (x1 = x2),, (%1 = Xz)u]%’

71| < pt.

(4.2)

Recall that the dimension of the bulk theory is d 4+ 1. The
exponent above is the engineering dimension of the field,
which is W. The relation (4.2) above is a powerful
constraint, which holds in the short distance limit for any
field theory in the bulk that is controlled by a free
ultraviolet fixed point.10

Now we consider the correlation function as one point
approaches the light cone of the other in the UV plane.ll
We work in the regime where the two points are separated

on this plane so that —(U; — U,)(V; = V,) > 0.

(Ov,0(U1,V1,91)0y,0(Us, V,,2,))

=0y Oy ! o

(K (U = U)(Vi = Vo) + Q)T

:<d+1)(d_1)(K/)2 (UI_U2)2
4 (=K' (U1 =U) (V) = V,) + Q)T

190f course here we are talking about the intermediate regime,
where 71, < 7! but at the same time £, > [ »» I where the
latter are the Planck and string scales in the bulk.

'As we see below, to take this limit for correlators of the scalar
itself is delicate, as a result of the usual complications of dealing
with a massless scalar in two dimensions. This is the reason for
taking correlators of its derivatives instead.
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where QF, is defined as the distance between the points Q;
and Q, on the sphere of radius r,. We argue that this two-
point function is actually proportional to a delta function in
the coordinates on the sphere, as we take U, U, — 0. If the
transverse space had been planar, this would have been a
planar delta function.

First note that we clearly have that

_ 2
lim (Ul U2) 5 \di3
U,.U,—0 (—(U1 - Uz)(vl - VZ) + QIZ)T
for Q; # Q,.

-0,

But on the other hand, let us consider

(U, —U,, V, = V,)

_ /dd—lgz (U, - Uy)?
- d+3 *
(=K' (U = Uy)(Vy = Vy) + Q)7

The integral above is on a sphere of radius r,, but we can
rescale the sphere by introducing a new variable Q) = 2
with 8 = —(U, — U,)(V, = V), (<9)

>
l—|

(U= Uy, Vi = V)

_ / [(Kfa)%(ul —Us)® i 9’2}

i3 Q2 L3
(Ko)=(1+33)°

_ 1 / dd—lQ/2
WP =VaP ) (1 (@)

The final integral is clearly a constant independent of €;.
This leads to the conclusion that

v ligl_)()(avﬁ(Uh V1,Q)0v,p(U,. V5, Q,)

1
5 Q) - ),
Kn <V1 _ V2)2 ( 1 2)

where «, is a normalization constant that we do not fix
here. In the same way, we also have

v li‘gn 0<8U1¢<U17V1’QI)8U2¢(U27 V5. Q)
1= V2=

1
=ky ——5 01 Q) — Q).
Ky (U] _ U2)2 ( 1 2)

(4.3)
This is a powerful and broadly applicable result. The
ultralocality that we see in the transverse directions was
also noted and used in the papers [41].

Now, let us see what this result implies for the correlation
functions of the Schwarzschild creation and annihilation
operators. Consider again the region near the horizon of a
black hole, but this time in the original time and tortoise
coordinates. Outside the horizon, we have the expansion
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Pt r..Q) _}02/

is —i6 ,—ior,
X (el + e=¢~ior) + H.c.,

a) m _lthm (Q)
(4.4)

where Y,,(Q) are spherical harmonics that we normalize
below. The left and right movers get related to each other,
and the phases ¢ depend on scattering in the black hole
geometry [7]. As we noted above, and see again below, we
can only use (4.4) for correlators of derivatives of the field.

Note that the canonical conjugate to the field outside the
horizon is

x(t,r,, Q) = g”w/—gggb(t, r,, Q) = rd-! %gﬁ(l‘, r., Q).

We must impose the canonical commutation relations

0
_¢(t’ T2, QZ)

Q
P11 Q). 5

i _
= Fé(r*l - r*2)5d I(Ql - QZ)

Since the modes take this plane wave form in the near-

horizon region, as r — r,, by imposing these commutation

relations we find that they are satisfied only if

[aa),mv al’.m’] = 5(60 - w/)émm’v

provided that we normalize the spherical harmonics by

Zym )Y (Q) = — dléd HQ-q).
o

Now the two-point function, with both points outside the
horizon but close to it, is given by

(Ou,d(Uy, V1,2)0y,¢(Us, V,,))
p? o
= d
4220, U, Em:[) wdew

[Vt D210 ()

Ny Y (1) () <U2> /} .

U (4.5)

Here we have defined the two-point expectation value

<az),maw’m’> = Nw,m(s(w - w/)é‘m.m’

in the black hole state and assumed that it is proportional to
a delta function which is reasonable at late times when
nothing depends on the time or the angular position.
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Note that the expansion in two-point function (4.5)
would not have converged without the derivatives on
U,, U,. These derivatives pull down two factors of @
and ensure that the integrand is well behaved at w = 0.
Now we show that we must have

Nom =7—"Z%"

To see this, note that

|7 wdo e (BVE, L (UNE
0 1 —e P \U, 1 —e P \U,
o ~po o
= / a)da)e— U2 .
—c0 1- e‘ﬂ“’ Ul

This integral can be completed in the lower half plane if
|U,| > |U,| and in the upper half plane otherwise. Picking

up the poles at o = 2’;}”, we find that this integral

evaluates to

o0 —/}w U2 '/}“
/_oo‘”dwl—e-ﬂ“' <_> :"Z < )

U1U2
pU = Us)*

Second, note that the sum over m in (4.5) automatically
leads to a delta function proportional to §91(Q; — Q,).
From the results above, we therefore find that (4.5)
and (4.3) coincide provided that

1

<aw,maz,’,m’> = mé(w - a)/)émm/’
+ e—ﬁ(u
(aw,mam/’mQ = mé(a) — w/)(smm" (46)

Two caveats are in order. Note that (4.3) was derived in the
near-horizon limit where U, U, — 0 and therefore our
derivation above for the value of N, is not valid for low
frequencies @ <« /lj It is also not valid for Planckian
frequencies @ = O(N'), where we do not expect effective
field theory to give reliable results.

We now turn to the expansion behind the horizon. Here,
as we quantize the field in region II, and approach the
horizon from inside, we find an expansion.

P1.r..Q) — ;Amd—\/g

X (aw’me—iﬁe—iw(tw*) Ym (Q)

+ Gy pe P @) YE (Q)) 4 Hec. (4.7)

Several points are worth noting in (4.7).
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(1) By continuity of the mode e®(+") = V3, the
operators a in region II must be the same as the
operators in region L.

(2) Second, we need some operators to multiply the
right-moving modes that vary as ¢/*("~"-)_In (4.4) we
identified these modes with a,, ,,, but we find that
this cannot be correct here. We call the a,,,
operators the mirror operators.

(3) Note that the timelike coordinate inside the black
hole is r,. Therefore, the operator multiplying
e!®(=) is classified as an “annihilation” operator.
This is in spite of the fact that it has positive
frequency with respect to f; the relevant point is
that it has negative frequency with respect to r.,.

(4) Note that we have also conjugated the spherical
harmonic Y, for this mode. This is just a matter of
choosing a convenient convention.

Inside the horizon, the canonical conjugate to the field is
given by

0
a(t,r, Q) =g""y _98_r¢(t’ r., Q)

0
_ d-1
=r ar. ot r,, Q).

The canonical commutation relations are

0
#(t1. erl),a—r*éb(Iz’ e Q)

i

= —6(1 — )5 (Q — Q).

By repeating the analysis of the canonical commutation
relations we find that

[aw’m, &ju’,m’] = 5(0) - w/)émm/,

where we have tacitly assumed that the possible mixed
commutator [d,, ,,, a;,.m,] vanishes. The mirror annihilation
operator d,,,, and the ordinary creation operator aI,,m have
the same energy under the CFT Hamiltonian as we show in
(4.13). So in a state that is time-translationally invariant, we
do not expect this commutator to have a nonzero expect-
ation value.'?

We now consider a two-point function with one point in
front of the horizon, and another point behind the horizon.
This calls into play both the expansions (4.4) and (4.7).
Recalling the fact that the relation between the Kruskal and
Schwarzschild coordinates inside and outside the horizon
differs by a minus sign, and repeating the derivation above
for this case, we find that

This assumption of time-translational invariance on the
boundary is not true in some cases, like in the geon geometry
considered in [42] where the mirror operators can be identified
with the ordinary ones.
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(0u,¢(U1. V1. Q1)0y,(U>. V2. Q)

B © .
:mz ; a)zda)(w/)ida)/zw’w,’m,m,, (4.8)

m'

with

Iw.w’.m,m’ = <aa),m&w’.m’>Ym(Ql)Y;’(QZ)(_UI)Z” (UZ) 2

+ (dam@yy ) (=U1) > (Uy)
+ H.c.

Note that the result (4.3) is valid regardless of whether the
points are on opposite sides, or the same side of the
horizon. Now we find, repeating the contour integral
argument above, that (4.8) agrees with (4.3) only if the
two-point function between the two annihilation operators
(and the two creation operators) is nonzero, whereas the
mixed two-point function vanishes.

po
e 2
=t
P
e 2
1 —ehw

<aa),maw’,m'> 5(60 - a)l)ﬁmm’; <aw,le;’,m’> =0,

5((0 - a)/)amm’; <a(thmgla)’,m’> =0.

(4.10)

<az,,mc~l;,.m,)

W

The additional factor of e~z arises because of the relative
minus sign between U; and U, in (4.9).

We can also consider the case where both points are
inside the black hole. This is very similar to the cases
above, so we just state the result. The smoothness of the
two-point function of ¢ requires

1
Zla)leT/ ' :7_6(‘1_@/ 5mm’?
M w m 1 P
’ — e
—po
(sl ) = 80— )3 (4.11)
—e

Finally, recall from the discussion of Sec. IIl A1 that
relationally defined observables in the bulk must obey the
Heisenberg equations of motion. Consider a bulk point
obtained considering a geodesic that originates on the
boundary at point (7, €,), with no initial velocity along the
sphere, and following it for an affine parameter A. In (3.17),
this point was denoted by P,;(t,,€,,4). By solving the
geodesic equation in the metric given by (4.1), we can trade
these coordinates for Schwarzschild coordinates.

P)b(tbvgbvl) = (t, Q, r*).

Then it is easy to check that the isometry of the metric
under time translations implies that if we follow another
geodesic that originates at ¢, + 7, then
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Pl(tbﬂ’T,Qh,/l) = (I+T,Q, r*). (412)
The relation (4.12) holds for points both outside and inside
the horizon. In terms of the field this means that for the field
written in Schwarzschild coordinates,

et r, Qe T = ¢p(t+T,r,,Q),

where H is the boundary Hamiltonian that translates times
on the boundary. This translates into the following com-
mutation relations for the modes introduced above:

[H’ aw,m] = —WAag ;s [H5 al}m] = a)al-),m,

[H, Gy ] = @Gy [H, &lym] = =0 m. (4.13)

Note the opposite signs in the two lines of (4.13). This is a
result of the fact that we mentioned above—the operator
a,., multiplies a mode that is positive frequency with
respect to the Schwarzschild time.

Summary: In this section we considered a scalar field
propagating in the geometry of a Schwarzschild black hole.
By simply imposing the requirement that the two-point
function had the correct short distance behavior we were
able to derive necessary conditions on the two-point
functions of the modes of the field in the black hole state.
These conditions are given by (4.6) and (4.10)—(4.11). If
the field is defined relationally with respect to the boun-
dary, then the modes must also have the Hamiltonian
commutators (4.13).

In the CFT we must find operators that satisfy these
conditions in any state that is dual to a smooth geometry.

B. Local operators in the CFT

Let us now understand what the analysis above implies
for the CFT. As discussed in Sec. III, we would like a
family of operators in the CFT, parametrized by a set of real
numbers, ¢ (U, V,Q), so that the correlation functions of
these operators reproduce the correlators of a perturbative
field in AdS. In this subsection, we discuss how to find such
correlators outside the horizon. We turn to the issue of the
nature of these operators inside the horizon in Sec. V.

1. Local operators outside the horizon

For the CFT to successfully reproduce effective field
theory correlators outside the horizon, it must have oper-
ators which play the role of the modes a, , that we
encountered in (4.4). If we allow ourselves to use state-
dependent operators, then this can be done in a straightfor-
ward way, as we show below.

Dual to each propagating field in the bulk, we have a
generalized free field (GFF), O on the boundary—usually
it is a single trace operator in a gauge theory. The fact that
bulk correlators factorize because the bulk theory is
perturbative is reflected in the large-N factorization of
boundary correlators. When evaluated in the vacuum,
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0]O(t1,Q1)...O(t24, 2,,)]0)
1

T
b/

(010(t7,, 27, )O1,,21,)[0)...

< (010(tr, 1D, )05, 22,)10) +0 ().

(4.14)

where # sums over all possible permutations. A similar
relation holds for thermal correlators.

—Z(lﬂ) Tr[e‘ﬁHO(tl, Q))...0(tp,. Q,,)]
1 1
— AN yferH
5 3 (g5 e 01, 9)00.2,)
1 —pH
X Z(ﬂ) TI‘[@ p O(tﬂzn_| ’ £27f2n-1 )o(tﬂzn ’ Q”Zn)]>

1
+0 <N> . (4.15)
Note that (4.15) is subtly different from (4.14) and does not
follow from it directly. In particular, in (4.15), the thermal
two-point functions have already resummed the ﬁ series
about the vacuum that appears in (4.14) into a different ﬁ
series. In particular, the thermal two-point function

Gy(t1,9,15,) = Tr[e 7 O(1),Q,)O(t2, Q)]

b
Z(p)
(4.16)

where Z(f3) is the partition function, is very different from
the vacuum two-point function

Gvac(tlv Q, t2792) = <0‘O(Zl’ Ql)o(t2’ Q2)|0>

Also, note that the large-N factorization of the thermal
correlators (4.15) may break down if the operators are
separated by large distances in time.

Finally, by the usual equivalence of ensembles, and the
eigenstate thermalization hypothesis [43], a similar state-
ment holds when the thermal correlators on both sides of
(4.15) are replaced by expectation values in a typical energy
eigenstate of the CFT. Explicitly, this is the statement that
in a typical eigenstate of the CFT |E) with energy E > N/,
we again have

(E|O(t1,Q)...0(t20, ,) | E)

1 o X
= mTr[e PHO(11,Q1)...0(t2,, Q2] +O<ﬁ>’

where f is the temperature corresponding to the energy E.
At high temperatures in the CFT we expect that this is
given by
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(4.17)

p=ii(5:).

where f is a smooth function. For example, in the N =4
super-Yang-Mills with SU(N) gauge group at high temper-
ature and at strong coupling on a sphere of volume V, we

have
8E \
= <3fc2N2V> '

Therefore, in particular, correlators in an energy eigenstate
also factorize, and the eigenstate two-point function is close
to the thermal one. We use this important fact to switch
freely between thermal and pure state expectations below.

Now consider the modes of these generalized free fields.

T .
PO, Qe Y (Q)dtd'Q. (4.18)

Here we have discretized the modes by introducing a time
band [T}, T}], and correspondingly we have introduced a
discrete frequency w, = 7 This is necessary because if we
consider the strict Founer modes of the CFT operators, they
do not have the behavior that we need below. In [8,9], we
performed this discretization by “clubbing together” these
Fourier modes, whereas here we have reverted to a time
band that has some other advantages. We also need a UV
cutoff on n because if we consider very high energy modes
then the ﬁ corrections that we have neglected above
become important.
Now we find that in eigenstates

<E|[Ow,,,m’ OZ,",‘m’]|E> = Cﬂ(a)n’ m)(sm,,mi,émm’ + O('/\/_l)

On the right-hand side the delta functions follow from the
fact that both sides have the same CFT energy and CFT
angular momentum. The nontrivial coefficient Cy(w,,, m) is
a function of the temperature f corresponding to E by
(4.17). Now we define the operators

Own m

Sy m)

These operators are the natural candidates for creation
and annihilation operators in the bulk. By construction we
have that up to A/'=! corrections

a, +O(NT). (4.19)

— il —
[H’ awn,m] = —W,Qy, s [aw,,,ma aw;“m/] - 5mn.a)£,5m,m’-

It is not difficult to check that they have the right thermal
two-point function.
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1
Tr(e"Ha ay, maZ? m) =
Zp) " )

1
Z(ﬂ) TI’((IZ)” m e_/}Hawn m )
1
= &P ——Tr(ePH
Z

()

+
aa)n,mawmm)

el eﬁwn Tr( _ﬂH w ,maZ)n,m)

—_ eﬂwn

T e_ﬂH
Zp) e

where we have used the cyclicity of the trace and the
commutation relations above. A little algebra now shows
that

1

Tr(eMa,, ,ab, m) = 1= e P’

1
20} (Elay, @b, m|E) =
where we have used the equivalence of ensembles and the
relations above hold only up to %\/ and other corrections
from discretizations.

Now consider the CFT operator

G(1,7,Q) =Y ——ay wfu,m(t: 7)Y ,(Q) + He.

1
w,,mV w”
(4.20)

where f, ,, is a solution of the Klein-Gordon equation in
the metric (4.1) with the boundary condition at the horizon

(etéetw,,r* + e—zée—zwnr* )7

—
fwmmr

=T

and normalizable boundary conditions at infinity. The
expansion (4.20) not only fulfils the necessary near-horizon
conditions that we derived above; it also correctly repro-
duces the behavior of a bulk field propagating in a smooth
spacetime in the rest of AdS. This completes our con-
struction of local operators in a high energy eigenstate. As
we mentioned in Sec. III B 3, we obtain a bonus, and a
consistency check, from AdS/CFT. The fields constructed
in (4.20), with the aid of (4.19), automatically satisfy

rli_)IB)FZAZZ<E|¢([l’ Ty Ql)¢(t2’ r*’QZ)|E>

= Wp(t; — 1.9, Q,),
where Z is a numerical factor and Wy is defined in (4.16).
Note that we did not put this relation in by hand. It follows
from, and is a prediction of, the claim that the eigenstate is
dual to the black hole geometry.

2. A state-independent minisuperspace bulk-boundary
map outside the horizon

In (4.19), we explicitly put in the commutator in the
energy eigenstate. The modes in (4.20) also contain
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information about the state. Therefore, as written the
expression (4.20) is state dependent and will not correctly
reproduce local correlation functions in states corresponding
to black holes with macroscopically different properties.

Now we consider whether it is possible to write down an
expansion that will work outside the horizon in a larger
class of states. The basic idea is to use projectors to try and
“detect” the state. We show how one can generalize (4.20)
so that it works in all high energy spherically symmetric
eigenstates.

Given a spherically symmetric energy eigenstate |E), we
can associate a temperature to the energy eigenstate by
means of (4.17), and also an associated metric via (4.1). We
denote this metric as g ,,. We also consider modes f ,, 5
these are the same as the modes f,,, in (4.20), except that
we have displayed their energy dependence explicitly.
Now, consider

¢state—ind(tv Iy, Q)

1 1
- Ow mE E
3 (e O-2E)
S fE,wn,m(t’ r*)Ym<Q> + H.C.,

(4.21)

where, as we emphasized above, the expectation of the
commutator that we have used to normalize the mode also
depends on the energy eigenstate. The claim is that this
generalizes the construction (4.20) so that, as long as we
stay away from the horizon, it works in spherically
symmetric states of the CFT corresponding to an arbitrary
temperature.

To verify this, note that the expression (4.21) is
designed so that when it acts directly on an energy
eigenstate its action reduces to that of (4.20). Now
consider an excitation of an energy eigenstate by a
polynomial in the modes (4.18),

Owl,m] .. 'Own,m,, |E> = Zai|Ei>'
i

If Y n<N and Y nw, <N, then all states |E;) that
appear above have % =0+ O(ﬁ) and therefore, from
(4.17), the coefficients «; are restricted in support to states
that have the same macroscopic temperature and correspond
to the same macroscopic metric. Therefore, (4.21) again acts
on this superposition as (4.20) away from the horizon. This is
the expected behavior since we do not expect these excita-
tions to have any significant backreaction on the geometry.

It is easy to verify that the action of (4.21) is also
consistent with the fact that we expect states of the form
(3.4) to behave like classical superpositions of different
geometries.

If we approach too close to the horizon, then not all
quantities of physical interest are smooth functions of the
energy. For example, there has been some debate in the
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literature on highly spacelike modes [37] where the ratio of
value of the mode function near the horizon to its value at
the boundary can vary exponentially with temperature.
Although we showed in [7] that these modes do not present
an obstruction to reconstructing the field near the horizon in
the thermal state, it is less clear how to deal with this
difficulty in the putative state-independent expression
(4.21). It is also not clear whether (4.21) can be refined
to work in all nonspherically symmetric situations.

V. ARGUMENTS AGAINST STATE-
INDEPENDENT OPERATORS

In the previous section we explicitly found operators
a, »inthe CFT that were dual to propagating modes in the
bulk. However, if we want to describe local operators
behind the horizon, then we also need to locate the operator
a, n in the CFT. Alternately, we could find operators
O, n related to a,, ,, by arelation analogous to (4.19). At
this order in ﬁ, we do not have to consider corrections to
(4.19) and we switch freely between O,,,, and a,, .

In this section, we review and refine some of the
arguments that suggest that these operators cannot be state
independent in the CFT. In [2-4], these arguments were
used to argue that the CFT could not look past the black
hole horizon, or even more dramatically that the horizon
was just a cloak for a “firewall.” Our interpretation is,
instead, that these arguments tell us that the bulk to
boundary map is state dependent. From this point of view,
the objective of this section is to prove that one must either
accept state-dependence or firewalls.

A. Some general results regarding projectors

Before we continue with this analysis, let us remind the
reader of some elementary properties about matrix elements
of projection operators. Eigenvalues of projection operators
are either 1 or 0, so the operator norm of a projection
operator is ||[P|| = 1. As a result projectors are bounded
operators and this implies that the map from state vectors |¥)
into expectation values (U|P|W) is a continuous map.

Hence, to the extent that we can characterize the physical
properties of a state by evaluating expectation values of
projectors, nearby state vectors must have nearby physical
propetrties.

Let us try to make this a bit more precise. Suppose that
we have two unit-normalized states |¥;) and |U;) in the
Hilbert space and we denote their difference as |6¥) =
|U;) —|W,). We define 6 = |||6%)]||. We consider a pro-
jector and estimate the difference of its expectation value on
the two nearby states,

[(W1[P[W) = (W5 |P|W,)]
= [(V|P|W;) + (V1| P|6W) + (8¥|P|6V)]
< [(OU[P|Wa)| + [(Us|P|6W)] + [(V|P|6W)]
<26+ 8.

084049-22



REMARKS ON THE NECESSITY AND IMPLICATIONS OF ...

Notice that it may also be useful to think of two nearby
states as those obeying

2

€
|<‘I’1|‘1’2>| =1-=,

: (5.1)

with small positive e. Since physical states are repre-
sented by rays on the Hilbert space, we are free to
chose the phase of the vectors as we like. It is easy to
check that there is a choice where € = 6 and the same
result as before follows i.e. for any two vectors obeying
(5.1), we have
(2P| ) —

(U, |P|W,)| < 26 + €. (5.2)

We use these results below.

B. N, # 0 argument

First, let us consider the N, # 0 argument [4]. The
essence of this argument is as follows. We would like the
set of states in the CFT to obey two conditions, both of
which seem motivated on physical grounds.

(1) Typical superpositions of energy eigenstates are not
excited states from the point of view of the infalling
observer.

(2) If we consider states that are elgenstates of a
Schwarzschild number operator N, = @u, m@y,, m»
for the modes introduced in (4.18)— (4 19), then these
are excited states from the point of view of the
infalling observer.

To phrase the first condition more precisely consider the

following set of energy eigenstates,

REE{|E1'>: E-ASE,§E+A},

where E is some mean energy and A is a spread. We use the
same symbol R to denote the Hilbert space spanned by
these states and the meaning should be clear from the
context. We also denote

D =dim(Rg).
Finally we introduce
P = projector onto R.

Now consider a projection operator P corresponding to
the measurement of the infalling observer, defined so that
Pr = 0 corresponds to a smooth and empty interior. This
projector can be constructed as an ordinary projector in
the CFT Hilbert space if the bulk to boundary map is state
independent. The authors of [4] used the number oper-
ator, as measured by the infalling observer, to detect
whether the horizon was smooth but it is possible to use
other operators and therefore we keep the analysis here
general.
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From the first physical assumption mentioned above, we
expect that for typical states in R g the expectation value of
Pr should be small. Hence we expect

1 1
D_ETrRE(PF) =0+ O(ﬁ)-

The second condition means that for eigenstates |N;) of the

(5.3)

Schwarzschild number operator N, we have
(Ni|Pp|N;) = O(1). (5.4)
In the large-\" limit we have [H,N,, | =0+ O(N 1), so

we intuitively expect that we can find a basis of the Hilbert
space Ry spanned by number operator eigenstates |N;).
The trace of an operator can be evaluated in any basis, so
we can evaluate the trace (5.3) in the |N;) basis. For each of
the basis vectors (5.4) gives a significant contribution. Then
it seems that we get

1

D—TrRE(PF) = O(1) + small error (5.5)
E

and that hence typical states are not smooth, in contra-
diction to the first assumption above. This concludes the
N, # 0 argument of [4]. The result was interpreted by [4] as
an indication that typical pure states do not have a smooth
interior. The small error above is due to the fact that the
operators H and N,, can be simultaneously diagonalized
within Rz only in an approximate sense, in the large-
N limit.

One might attempt to find a loophole in this argument by
looking more carefully at the error terms mentioned above.
Could it be that, contrary to what was assumed in [4], these
error terms are significant enough to make the rhs of
Eq. (5.5) close to zero? In the following subsection, we
perform a systematic analysis of the error terms and
exclude the possibility that they can invalidate the
N, # 0 argument.

1. Bounding errors in the N, # 0 argument

The linear algebra literature contains several results
n “almost commuting matrices” [44], which could be
used to make the argument above rigorous. Here, rather
than taking this path, we follow an approach motivated
by perturbation theory to make the N, # 0 paradox
sharper.
We assume that

1
H:H0+—V,

v (5.6)

where the “infinite N/’ Hamiltonian, H),, has the property
that [H,,N,, | = 0 and V is a “perturbation,” whose matrix

elements have the property that (EIVIE) ‘V|E> = O(1) for nearby
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FIG. 6. The schematic structure of the two relevant sets. The
solid circular set is the set of energy eigenstates. The smaller set
of number eigenstates, shown as an elliptical patterned set, is
almost completely contained inside the set of energy eigenstates.

high energy eigenstates of energy of order E."* Note that
(5.6) is somewhat stronger than our original starting
point—which was simply that (E|[H.N,, ]|E) = O(3)."

If (5.6) is correct, then by standard arguments from
perturbation theory we expect that groups of eigenstates of
H can be reorganized into eigenstates of N, and vice
versa. Now consider the set of all number eigenstates that
can be accurately approximated by energy eigenstates in
Rp. We call this set of N, eigenstates R_ and denote its
dimension by D_. The projector onto R _ is denoted by P_.
By definition,

(Ni|PgIN;) =1 —O<%>, V IN)) ER_.

The structure of these two sets is shown in Fig. 6.

The key physical consequence of (5.6) is that to form
eigenstates of H, with an eigenvalue E, we have take
eigenstates of H with H-eigenvalues E + A, where
A = O(£) = O(1). Therefore if we take the original spread
of energies A in Ry to be large, A > O(1), then we have

DE_D_

1. 5.7
— (5.7)

If we accept these statements, then it is easy to produce a
contradiction. From the assumptions above, given a
IN;) € R_, we have

PNote that if we wish to ensure that we can carry out
perturbation theory to higher orders, we would also like V to
obey the eigenstate thermalization hypothesis described in greater
detail in (7.15).

“It is subtle to consider perturbations of the Hilbert space at
high energies in ﬁ because the Hilbert space changes discontin-
uously with A and its dimension goes off to co as N — o0. So
we are assuming that (5.6) holds at each A/ and some properties
of these operators, such as the ratio of the dimensions of different
sets below have a well-defined large-A/ limit.
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IN;) = Zanz|Em> = Z Upil En) + Z Upil Em)

meRg méR g
= [M;) +|R;),

where Uj,; is some matrix that implements the change in
the two eigenvalue bases and where (R;|R;) = O(;). Here,
we have divided the sum into two parts and used the
definition of R_ which is precisely that its elements can be
reexpressed as elements in Rg. Moreover, using (5.2) we
find that (M;|Pz|M;) = (N;|Pp|N;) + O(4). But this
implies that

1 1
D—ETr(P_PEPFPEP_) — D_ETr(P_PFP_)

1 D
=——Tr(PpP_) = x—,
D, r(PrP_) KDE

where « is some constant of O(1) which determines the
probability for an infalling observer to see an excitation in a
number eigenstate and which follows from (5.4). Here we
have neglected O(3-) corrections. "

Second, notice that the original trace in the micro-
canonical ensemble can be transformed by a sequence of
elementary manipulations to

Te(PpPy) = Tr(PpPrPy) = Tr((1 — P_ + P_)PyPpPy)
r(( _)PpPpPp) + Tr(P_PgPrPp)
r(( _)PpPrPg(1-P_))

4 Tr(P_PyP P,P.).

Tr((1-P
Tr((1-P

Here we have repeatedly used the cyclicity of the trace, and
the fact that projectors square to themselves. Now notice
that given any product of projectors X = P;...P,, we find
that Tr(X) = Tr(X'X) > 0. Therefore the first term in the
last line above is positive and we find

D
Tr(PFPE) 2 Tr(P_PEPFPEP_) — KD—_. (58)
E
Combing the result of (5.8) and the physical assumption
(5.3), we seem to find

"In the equation above, the first equality can be understood
as follows: we have DLETr(P_PEPFPEP_) :DLEZieR, (N;|Pg
PPg|N;) :ﬁZieR, (M;|Pr|M;) and on the other hand we have
Dy THP_PrP_) =53 icr (Ni|PpINi) =53 icr (MilPF|M;)+
D, ier 2Re[(Ri|PrIM)| +5-3icr_(Ri|Pr|R;)]. Now, Pp is a
projector operator so from the discussion of Sec. VA and the fact
that the norm of the state |R;) is O(4;) we learn that each of the
terms in the sums over i is small. Finally, the number of terms in

this sum is D_ so from (5.7) we learn that the last two sums on the
rhs are unimportant, thus establishing the desired result.
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D
0 = Tr(PFPE> Z K'D—_. (59)

E

This is clearly a contradiction, if we recall (5.7). Note that
the difference between the left and right sides of (5.9) is O
(1), and so the errors, which we have bounded to be O(%)
using the construction above cannot affect this result.
This was used by [4] to suggest that (5.3) should be
abandoned. We show below how a more plausible explan-
ation is that P does not exist as a fixed (state-independent)
linear projector; rather the question of whether a firewall
exists or not depends on a state-dependent measurable.

C. Negative occupancy argument

We now present an argument that is closely related to the
counting argument (or the lack of a left-inverse argument).
As originally stated in [3], the counting argument is as
follows. First, we consider a mode behind the horizon with
creation and annihilation operators obeying the algebra

~ ~F

@y, mo,m] = 1. (5.10)
Notice that this equation unambiguously selects &I,”,m as
the creation operator, since we can rewrite it as

(1 + @by, g, )~ @s, m)@l,m = 1, which means that the
operator &Z,n,m has a left inverse and hence it does not
annihilate any state.

Then we notice that, as explained in Sec. IV, modes
behind the horizon obey inverted commutators with the
CFT Hamiltonian

[H.al, ] = =0, . (5.11)
This means that the operator &;n.m, despite being a creation
operator, lowers the energy of the CFT. Hence, it maps the
space of states of energy E into that of energy E — w,,.
However, the density of states in the CFT increases
monotonically with energy. This implies that the operator
&I,wm maps the larger Hilbert space of energy E into a
smaller one of energy E — w,,. The linear operator &Z,mm can
do this only if it annihilates a fraction of the states of energy
E. But this is in contradiction with the prediction of (5.10)
that &I,n,m has a left inverse.

Hence it seems that imposing the algebra (5.10)—(5.11)
for state-independent linear operators is inconsistent with
the growth of entropy in the CFT. This concludes the
counting argument of [3].

One apparent difficulty with this argument is that it is
phrased in terms of operator relations (5.10)—(5.11). One
might wonder whether it is possible to satisfy these
relations, not as operator equations, but only within simple
correlation functions. We now present a closely related
argument that is phrased entirely within the context of low
point correlation functions.
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Let P be the projector onto a narrow band of energy
states. Define D = Tr(Pg), which counts the number of
states in this band. We consider the expectation value of the
occupation level of the mode in this ensemble of states,

<Nw"> - DEITI"(PE&Z,”M&%M) = DEITI(&wn,inPEdZ),wvm)
= DEITr(PEJra)n&a},,.de)n,m) + 61
= &P + DTt (Pr ity mly, m) + 61 + 5.
(5.12)

In the first line we used the cyclicity of the trace. In the
second line we used that (5.11) should hold inside simple
correlators, which implies a,, ,,Pg = Pg.,,a, » up to
some small error J;. In the last line we used that (5.10)
should hold in simple correlators, up to some small error d,.
Since the trace above consists just of a sum of low point
correlators we expect that §;, 5, ~ O(4). This assumption
allows us to ignore these errors in deriving the contradiction
that follows. The factor outside the trace of efr arises
because

D
DEITr(PE+(un) =—Lton - eﬂmn'

E

We also use the fact that for a reasonably smooth operator
N, , we have

DEITr(PE+mn&jl-)mmda),,,m) = eﬁmn <]~Vm,,> + O(N_l ) °

Replacing this in (5.12) and dropping all subleading error
terms we arrive at our final relation

- ~ ~ 1
<Nw > = efon +eﬁw”<Nw > = <N(u > =TT .
n n n l_e ﬂa}n

’

which is negative. In some sense, this unphysical result is
not surprising, because a,, , is an annihilation operator
with positive energy, and the thermal properties of such an
operator seem to be ill defined.

To summarize, the argument above demonstrates that
there cannot exist linear, state-independent operators in the
CFT which approximately satisfy the relations (5.10)—(5.11)
inside simple correlation functions. One might conclude
from this that the black hole does not have an interior that the
CFT can describe. Instead, we advocate [7-9] that the
desired relations (5.10)—(5.11) can be consistently realized
by allowing the operators @, ,,, @, .m to depend on the state.
For state-dependent operators the counting argument does
not apply [9] and the negative occupancy argument pre-
sented above does not apply since it is meaningless to
evaluate the trace, if the operators vary as a function of the
state in the ensemble.
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D. The generic commutator

Now we consider the fact that there is not enough space
in the CFT Hilbert space to accommodate the commutant of
the ordinary operators if they are finely spaced enough.
There are two ways in which this argument can be phrased.
One point, which was originally made in [3] is as follows. If
we assume that the algebra of the mirror operators is given
by some “scrambling” unitary transform of the ordinary
operators so that we have

é:f)n,m = UaZ)n,mUTy

then we find that, for a generic unitary operator U,
we have

|[~z)nam7awn,m]|2 ~ O(l)

This by itself is not a proof of the lack of existence of the
commutant. In particular, if the Hilbert space has a
factorization into coarse and fine pieces, as was discussed
originally in [7], then this would break down.

In what follows, we discuss how finely an observer has
to measure generalized free fields on the boundary, in order
to exhaust the space of the CFT. However, first, we turn to
two toy models: the spin chain and a set of decoupled
harmonic oscillators.

Consider a chain of spins. We denote the operators acting
on this chain by ¢/, as in [9]. We assume that the spins are
all decoupled. The index i = 1...N, where N is the length
of the spin chain, and a = x, y, z as usual. We normalize

them to satisfy [6}.0)] = 8Ve .0l A complete set of

operators for the Hilbert space is obtained by taking
arbitrary products of these single-spin operators.
Nevertheless, even if we consider the significantly smaller
set of just the N single-spin operators, the commutant of
this smaller set is trivial and consists only of the identity
operator.

One might hope that there exist (state-independent)
operators o, apart from the identity, which approximately
commute with all single-spin operators. We now demon-
strate that this is not possible: if 6 has small commutators
with all single-spin operators, then ¢ is small as an operator.
To show this, we consider an arbitrary operator ¢ acting on
the spin chain. In order to factor out the identity operator,
which is trivially in the commutant, we assume that ¢ is
traceless, which means that we can represent it as a
polynomial in the atomic spin operators

~ ay...a, _ij...0,
o= E Ci,...i, Oay...ays
il"’arll‘n
where o =04, ...04, and we impose the constraint
that i; < i, < ...i, to avoid overcounting.
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We find that we have the following relation:

. l P
o — [e-ely
[G’GL] ) § Ciiiy
J i ... j iy iz
X (5i1€a]bco-cl O-az...gn + 5i2€a2bc0'c O-ll]d}.,."a" + - .)‘

While we have written a sum of delta functions on the right,
note that at most one of them is nonvanishing. A natural
norm of an operator to consider in this space is
|X[* = 5 Tr(X"X). With this definition

= 1 ety 5] ity 5]
6.03) > =3 D leil i8] €aynel* + 165708, eagpel® + -

Note that there is no interference between the different
terms in the sum due to the observation above. However,
when we sum over b we find that there are two values for
which the completely antisymmetric tensor is nonzero.
This leads to

~ j 1 ap...a, 1 ~
ZHQ 0‘£]|2 = EZ |ci1...i,, > = §|0|2-
j.b

The physical implication of this is as follows. If an
observer can measure the various single-spin operators,
then given any operator 6, the observer can detect that it
fails to commute with these ordinary operators. In par-
ticular, it is not necessary for the observer to measure
very complicated observables. Even if the observer does
not have access to more complicated products of these
spin operators, she can determine that the commutant is
trivial.

The argument presented above shows that an operator of
unit norm, |&|%, must have an order 1 commutator with at
least one single-spin operator, or alternatively it could have
O(%) commutators with all the single-spin operators. In
either case, the important point is that it cannot simulta-
neously have smaller commutators with all the ¢,.

Now, we consider a similar argument for the case of
decoupled harmonic oscillators. The setup was described in
more detail in [9]. We have unbounded creation and
annihilation operators. The frequencies of the oscillators
are given by w;...wy and their respective creation and
annihilation operators are specified by a;...ay. The only
nonzero commutators are [a;, a;] = 0;;. The Hilbert space
is a Fock space indexed by the eigenvalues of the number
operators N; = aja,-.

We can still write any operator of interest as

a= ZA(pl, Gr-.-Puqn)al (a))n...aky (a},)9x.
Pj.4qj

Once again we factor out factors of N; from each
monomial in the polynomial above so that either
p; =0 or g; =0 for all i. the most general operator then
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lives in the direct product of the vector space of poly-
nomials of N; and the space of operators above. But note
that the sum above can also accommodate operators where
a particular frequency, say w;, does not appear simply by
setting p; = q; = 0.

Now in a typical equilibrium state, we see that the only
nonzero expectation values are products of N;. This implies
that

(@a) =>_|A(p1.q1---Pu qa)*al (a})Pral"
x (ay)™r...afl (ay)Pragy (ay)™),
where the ... indicate similar terms for all the other
frequencies and cross terms vanish.

Evaluating the expectation value above in a state
IN|...Ny) we find that

(@ay => |A(p1. gy -Par a0) PNy + 1),
Pj-dj
X(Ny+qr—pr+1),...(Ny+1),,
X (Ny+gqn—py+1),,,
where the Pochhammer symbol is (x),=x(x+1)...
(x+n-1).
Next we notice that
(@ aj]==> A(p1.qi.--Pu 4a) ;07"

x (a})n ...afj(a;)qf‘l...all\’,N(a}L\,)qN.

- ¥ —1
@.al]l = Alpr.qi.opaegn)psal (a])o..al ™

\q) P ¥
x (a;)ay...(ay)™.
Defining a new function, by the recursion relations

B(p1.q1---PjsQjs --Pn>dn)

= (pj + DA(p1.q1. .2 + 1.qjs . Pn q)
B(p1.q1---Pjs4js-Pn-4n)

= (qj + DA(p1, g1, Pjq;t 1, cePnsqn),

we see that we have
> (@ aj]P?) + (@ aj)?)
J
= Z[|B(P17Q1---qun)|2(N1 +q1—pi+1),
X (Nl + l)ql"'(NN +4qy—PnNv T l)pN(NN + l)qN]'
In this case, we do not have a simple result like that of the
simple harmonic oscillator. Indeed for some operators a

that are comprised of creation and annihilation operators,
which have a very high occupancy in the state, it seems
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possible to make (a'a) > (3 (|[a.a;)P?) + (|[a.a}]|?).
However, in most configurations and for almost all oper-
ators a, these two terms are comparable.

Note that in order to build an entire effectively iso-
morphic commuting algebra, we need a a operator for each
ordinary operator. Therefore even if, in some states, some
of these operators have a small commutator with the
ordinary operators, it is clear that there is not enough
space in this chain of simple harmonic oscillators to
accommodate mirror operators for each oscillator.

It is this intuition that carries over to the CFT.
Consider the set of modes of generalized free fields.
For simplicity, imagine separating them in frequency by
@y, so that these modes all appear to be O, ,,. As usual,
there could be other GFFs, while we are displaying
only one of them. The main observation is the following.
By putting a cutoff at the stretched horizon, we can limit
the maximum angular momentum m that can appear for a
given w, = nw,. Second, as we take o x /\% where the
precise power a depends on how we impose the cutoff
above, then we find that these modes are already enough
to account for the entropy of the CFT. (This is similar to
the “brick wall” explanation of the black hole entropy in
flat space [45].) Dimension counting, and the intuition
from the simple harmonic oscillator_above, would then
suggest that there are no operators O,, ,, that commute
with all these modes.

While this commutator argument is a powerful constraint
in practice, and was an important guiding principle in our
construction [8,9], as the reader will notice it is hard to
make it rigorous beyond this level. Moreover, power law
suppressed commutators may be justified and even needed
on physical grounds since the fields in the bulk are not
strictly local. If we are willing to accept these small
commutators, then the “commutator argument” above loses
its power somewhat. For example, the reader can consult
the talk [46] for an example that predates [8,9] and explores
a model with such commutators.

This concludes our summary of the arguments that
suggest that O,, ,, cannot be found as state-independent
operators in the CFT. A logical possibility is to accept that
black holes have no interior. However, we believe that a
more compelling alternative is that the black hole interior is
described by state-dependent operators in the CFT.

VI. PARADOXES FOR THE ETERNAL
BLACK HOLE

In this section, we show how versions of the paradoxes
discussed in Sec. V also appear in the thermofield double
state. It is sometimes believed, even by those who advocate
that the single-sided black hole does not have an interior,
that the thermofield double state nevertheless does corre-
spond to an eternal black hole with a smooth horizon. For
example, see [4].
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We now show that this position is inconsistent. If we
assume that the thermofield double state is dual to the
eternal black hole, and demand only that the bulk theory
respects diffeomorphism invariance—which is a minimal
requirement in a theory of quantum gravity—then we can
set up a large new class of states, all of which are dual to
smooth black holes. This new class of states is obtained by
performing one-sided diffeomorphisms on the geometry.
We argue that diffeomorphisms that die off at the right
boundary (but not, possibly, on the left boundary) should
not affect the value of observables defined relationally
from the right. This is a robust statement, and relies only
on the fact that the gravity dual is diffeomorphism
invariant—and not, in any way, on the equations of
motion.

We then show that demanding that we find operators that
behave correctly in all the states above leads to the same
paradoxes that one finds in the single-sided case. Therefore
a map between the bulk and the boundary, which can
successfully describe the black hole interior in all these
states, must be state dependent.

Our analysis is also useful because it indicates what
state-dependence really means. To obtain the paradoxes
above, we have to perform “extremely large” diffeomor-
phisms on one side—shifting the left boundary by time
scales of order eV x £,45 before gluing it back to the
geometry. What the analysis below shows is that it is not
possible to use the same operator in the original state, and
in all states that are obtained by deforming it with diffeo-
morphisms that could be exponentially large.

We start by reviewing the thermofield double state, and
the geometry of the eternal black hole. Then we examine a
class of “phase shifted” states, which are natural to consider
from the point of view of the CFT, and show that they are
also smooth because they are related to the original
geometry by diffeomorphisms. We then set up analogues
of the single-sided paradoxes. We defer the construction of
state-dependent operators to Sec. VIL

A shorter version of the arguments of this section was
also presented in [23]. In this section we elaborate on the
arguments there and fill some gaps.

The paper [47] also discussed some subtleties of the map
between the thermofield doubled state and the eternal black
hole, and argued that the thermofield-eternal black hole
duality is either incomplete or incorrect. While the argu-
ment presented here is similar to that of [47], our con-
clusion is different, as we show that if we consider a given
state from (1) and small fluctuations about this state, then
we can explicitly write down boundary operators that are
dual to local bulk operators.

A. Review of the eternal black hole and the
thermofield double

We start by reviewing the eternal black hole geometry
and the duality proposed in [40]. The important point that
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I I

FIG. 7. Eternal black hole in AdS.

we want to emphasize is the time reversal that is involved in
gluing the geometry to the CFT, which is sometimes
underemphasized.

A schematic figure of the eternal black hole is shown in
Fig. 7. For the eternal black hole, the metric is again given
by (4.1) outside the horizon. Just as in Sec. [IVA we
introduce tortoise coordinates with the property that r, —
—oo at the future horizon. The difference with the dis-
cussion in Sec. IVA is that after introducing the Kruskal
coordinates, and extending the geometry inside the black
hole we now extend the metric in a maximal way while
assuming that there is no matter anywhere. This leads to the
eternal black hole shown in Fig. 7, which also contains
regions III-IV as shown in the figure. We can introduce
Schwarzschild coordinates in all regions, and the relation-
ship between the Kruskal and Schwarzschild coordinates is
given below.

Region | Signsof (U,V) | Relationship to(z,r,)

[ U<0,V>0 | U=—er") y=¢slnt)
1 U>0,V>0 |U=ef" ™ yv=ernt)
111 U>0,V<0 U= F =)y — _ ot
v U<0,V<0 |U=-er" y=—eitt)

(6.1)

The boundary, in these coordinates, is determined by the
hyperbola UV = —1. On the other hand, the singularity lives
at another hyperbola UV = positive constant. The two null
rays U = 0, V = 0 determine all four horizons. The horizon
between region I and II, which would be the future horizon
for the right-infalling observer, is at U = 0. This same null
ray also demarcates the boundary between regions IV and III
and is therefore the “past horizon” for the left observer. The
ray V = 0 is the future horizon for the left-infalling observer,
and the past horizon for the right observer.

The advantage of the choice of coordinates in (6.1) is
that, in the UV plane, surfaces of # = const are simply
straight lines running through the origin. This includes the
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horizons, which are f = oco and ¢t = —oco respectively.
Therefore, in these coordinates, geometrically we can think
of time translations as “rotations” of the Kruskal diagram
about the bifurcation point. Of course, we caution the
reader that no finite rotation can rotate a line past the
horizons. On the other hand, surfaces of constant r, are
hyperboloids that always stay within a single region.

Now, we mention an important point. When we associate
the Schwarzschild time with the CFT time, we must “glue”
the geometry to the left CFT with a flip in the time
coordinate in region III. Therefore, denoting the time in
CFTy by tz and the time in CFT; by #; we have the
identifications

t, = —t, tr =1, (6.2)

where ¢ is the Schwarzschild time. An alert reader might
ask, given that there is no natural choice of the origin of
time, why one should not glue the geometry on the left as
t; = —t+ T, where T is some constant. This is indeed
possible, and is a central point in our discussion below.

We now turn to a description of the thermofield double
state of the CFT. Maldacena conjectured [40] that the
geometry we have described above is dual to an entangled
state of two identical, noninteracting CFTs,

e 5T|E.E). (6.3)

W) = vh_zj
Here Z(f) is the partition function of a single CFT at the
inverse temperature f and |E,E)=|E); ® |E)p is a
tensor-product state of two energy eigenstates. Although
the CFTs are entangled, they are noninteracting, and 7 is
the time-reversal operator, which acts on left energy
eigenstates.]6 The formula (6.3) is usually written with a
tacit choice of the time-reversal operator

T|E) = |E),

in which case (6.3) reduces to the standard form

“Z|E, E).

Wigq e
|Wiga) = \/72

We denote the Hamiltonian of the left CFT by H; while we
denote that of the right CFT by H."
We immediately see that |W,) has a symmetry,

(H,—H)|Vyy) =0= ¢ iH,~H T|\I’ttd>

Vi) (6:4)

"For simplicity, we assume that the CFT under consideration
is invariant under time reversal and direct the reader to [48] for
comments about the more general case.

""We use the notation (H;,H) instead of what would be the
more symmetric (H, Hy) in order to keep the notation consistent
with Sec. IX and also because we try to define right-relational
observables, thus breaking the symmetry between the two CFTs.
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This symmetry of the thermofield double state corresponds
to the isometry of the bulk geometry under t — t + 7.
However, as is clear from the equation above, this sym-
metry corresponds to a shift in the CFT time in opposite
directions in the two CFTs.
t=>t+T=>tp o>t +7T; tp >t —T.

Now, let us examine why the eternal black hole, glued to
the boundary as described above, is dual to the thermofield
state | W,z ), which involves a time-reversal on the left rather
than a time-reversal combined with a time translation.
Consider mixed correlators of a single trace operator in the
thermofield state with one point (¢, 7, ;) in region III
and the other point (7,, r,, €,) in region I. We would like to
ensure that the bulk two-point function in this geometry has
a limit that leads to these correlators.

Z2 Lim (r))2(ry)2(@(t1. r1, Q1) (12, 12, ) )epr

7|, rp—>00
= (Vita| O1 (=11, Q1) Or(12, )| W5a). (6.5)
where the left-hand side is computed using bulk effective
field theory in a metric that behaves asymptotically on both
the right and the left as (4.1), and the right-hand side is
computed as an expectation value in the thermofield state.

Computing the bulk two-point function in the eternal
black hole metric is nontrivial, but we can do it patchwise
as follows. We write down expansions for the field in
regions [-III of the eternal black hole geometry. Only the
near-horizon expansions are relevant and, with a short
extension of the analysis of Sec. IV these expansions can be
written as follows:

V>0
P.r.Q) = Z /
% (eiéelwr* + e—tée—twr*) +HC

V>O
ey

X (@m0 H—

wm _lth (Q)
(6.6)

dwe™"0

¢tr>k7

e @)Y (Q)) 4+ Hec.

(6.7)
U>0 dwe™"
(t.r,.Q
¢ d V—»OJr Z/
% (aL e—lw(tJrr* (.Q.) + a . la’<t_r*)an(Q))
+H.c. (6.8)
U>0 elot
¢tr*’ _}0_2/ aLa)m Y (Q)
X (eei+ + e=P¢~ior) + H.c. (6.9)
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Here we have introduced two new operators a; ,,, and its
mirror ay . At the horizon between region III and region
II, the field is defined using a left-relational coordinate
system using the techniques of (3.1.1) and at the horizon
between region I and 11, it is defined using a right-relational
coordinate system as usual.

The phase factors of e in the expansion above are
slightly subtle. In (6.6) the two phase factors are fixed by
the behavior of the mode at infinity by demanding (6.5) and
by scattering in the bulk. In (6.7) the factor of e~
multiplying the left mover is fixed but we have a choice
of convention for the right movers. In region IV we have the
same geometry but time reversed and this fixes the phase
factors in (6.9) once again. We once again have some
freedom in (6.8) for left-relational mirror.

Now notice that (6.7)—(6.8) have an overlapping regime
of validity near the bifurcation point. Imposing the con-
dition for the regularity of the two-point function that was
discussed in Sec. IV we find that we must have

Po
e 2

1—_ﬁw5(w - a)/)émm/.
—e

<aw,maL,w'$m’> =
Since the two-point function of the generalized free fields is
the same in both CFTs, we can assume that (4.19) holds on
both sides after we appropriately discretize the CFT modes.
Therefore, from the bulk geometry and from (6.5) and after
taking (6.2) into account we find that from the bulk we
obtain the prediction for the boundary two-point function

<\Iltfd|0wn,mOLwn,m|\Iltfd> -

Note that here we have used a relationship between the
boundary two-point function G4(@,,m) and the boundary
commutator Cy(w,, m) that appears in (4.19). This follows
from the Kubo-Martin-Schwinger condition and is
reviewed in [7].

To prove this we allow the matrix elements of these
operators to be cj; so that

_Pon
2 Gﬂ (wn s m)

(6.10)

/ l
Ze ) cJ,|E,~,Ej).

i.j

o,, ,,,Ze-ﬂEl,E (6.11)

If the time-reversal symmetry acts as 7 |E) = |E) then
using the fact that 70, ,7 = O,, ,, it follows that the
cj; must be real. Therefore

PE;
oLwane_7| Ej) =Y e 7cylELE)).

Since the matrix elements of c; ji are concentrated around
E; — E; = w, we see that this is indeed true in the CFT
because we can show that

ﬁ”n

OLw”,mqutfd> =e OZ} | iga)-

From here (6.10) follows automatically.
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We have therefore shown that the thermofield double
state corresponds to the eternal black hole geometry glued
with the specific identification (6.2). We return to this
question below. We see that states with different correlators
between the left and right boundary can also correspond to
smooth geometries, albeit ones which are glued differently
to the boundary.

B. Time-evolved thermofield states

We start by examining the effect of time evolution on the
thermofield state. We consider the state

|‘I’T> — pilH +H)]

da) = el | Wgy). (6.12)

This is obtained by performing Hamiltonian evolution on
the base thermofield state. We now perform both a geo-
metric and a CFT analysis of these states. Our main results
about these states come from understanding their geometry,
as we do in the next subsection. However, we then provide
some supporting arguments for these conclusions directly
from the CFT.

1. Geometric analysis of time-shifted states

The action of the global symmetry group of the theory
(which includes the Hamiltonian, of course) has been the
subject of significant analysis in the general relativity
literature [49]. The reader may find it useful to recall the
analysis of Brown and Henneaux [50] who used such
diffeomorphisms to analyze the action of the conformal
group on the AdS; vacuum. For some more recent appli-
cations see [51]. The point is that Hamiltonian evolution—or
evolution by some other global charge—corresponds to
large diffeomorphisms. These operations may change the
state of the theory.

A quick way to see this is as follows. Consider a nice
slice that runs through the interior of the black hole and is
anchored at the points (z;, ;). According to the standard
analysis of the Hamiltonian constraint [25], the bulk
Hamiltonian (including that of gravity and the other matter
fields) must satisfy Hyy|Pisq) = 0. Therefore, time evo-
lution of this slice is generated only by the boundary
Hamiltonians H and H, . The action of e/1T evolves this
slice to another slice that is anchored at (7, + T, t). This is
shown in Fig. 8.

To summarize the geometric action of the left and right
Hamiltonians is as follows.

(1) efiT < large diffeomorphisms that die off at the
right boundary, but not at the left boundary. On the
left boundary, these diffeomorphisms shift points
by (tL,QL) d (tL + T, QL)

(2) eMT < large diffeomorphisms that die off at the left
boundary, but not on the right boundary. On the right
boundary, these diffeomorphisms shift points by
(1R, Qg) = (1 + T, ).

We emphasize two important points. First, note that

the operation e:” does not correspond to a unique
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T

FIG. 8. The action of e™M:7 is a large diffeomorphism that does

not vanish on the left boundary. Its action on one nice slice is
shown above.

diffeomorphism. Rather there is an equivalence class of
diffeomorphisms, all of which have the property outlined
above. All diffeomorphisms in this equivalence class differ
by trivial diffeomorphisms, which are those that die off at
both boundaries. In terms of the nice slice picture of Fig. 8,
this corresponds to the fact that we can choose to extend the
nice slice in any way we like in the bulk, and a particular
choice of nice slices is related to a choice of gauge. The left
Hamiltonian must nevertheless evolve these slices forward in
time. It achieves this because its Dirac brackets with
operators in the interior depend on the choice of gauge.
Therefore gauge-invariant statements about the diffeomor-
phism can only make reference to its action on the boundary
and not in the interior.

Second, from the CFT we can see that while e
and e’ change the state, an operation by e!#:=H)T leaves
the thermofield state invariance, since it satisfies
(H; — H)|Vyy) = 0. Geometrically, this has the following
meaning. Apart from the form of the metric itself, the
thermofield state also has an additional piece of information
that specifies the relative placement of the two boundaries.
More specifically, there is an entire class of states—all of
which correspond to the same gauge-invariant geometric
quantities—which differ in how the left boundary is glued
to the geometry.

To make this more precise, we describe a specific
element of the class of diffeomorphisms that induces the
action of ¢H.T_ In the Kruskal coordinates U, V described
above, we consider the following diffeomorphism U —
Ur, V- Vg, where Uy, Vi are defined by

iH,T

Up = Ule7 (U —V) +8(V —U)),
27T A

Ve=V(e 70(U-V)+0(V-U)),

where 8(x) is an infinitely differentiable version of the theta
function with the property that
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T¢I

FIG. 9. Another diffeomorphism in the equivalence class of the
diffeomorphism of Fig. 8: it slides points on the boundary but acts
trivially in the bulk. This can be achieved by composing the
diffeomorphism of Fig. 8 with a trivial diffeomorphism that
cancels its action everywhere except for a region that is
infinitesimally close to the boundary.

X >€

=4y

In the intermediate region —e < x < e we can take f to
be any smooth interpolating function between O and 1.
For example, a function that satisfies all these criteria is
given by

- O(x +€)
O(x) = —.
(x) 1+ 6(e — x)eeti=

Since this is just a diffeomorphism, it does not actually
change any gauge-invariant quantity that we can calculate
in the bulk geometry. The correct way to picture the gauge-
invariant effects of this diffeomorphism is to think of it as
one that slides the left boundary by an amount 7. Figure 9
may help the reader think of the effect of this diffeo-
morphism which, as we emphasized above, just changes
the relation between the bulk and the boundary.

It is clear from the analysis above that the states |Ur) are
also smooth states. This is an exact statement that does not
rely on the bulk equations of motion and should be respected
in any theory of quantum gravity that is diffeomorphism
invariant. In particular, this implies that even for very large 7,
such as T = ¢/, the geometry remains smooth.

Time-shifted states for an infalling observer: Consider
the experience of an infalling observer in the time-shifted
thermofield state. This observer starts from region I, and
falls towards the singularity. For example, such an observer
could measure CFT correlators

<\I/T|¢(tly rl’Ql)-'-qﬁ(tn7 rn’Qn)|‘I/T>’
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where all the points along his trajectory are defined
relationally with respect to the right boundary as in
Sec. IITA 1.

We consider the relational observables, and the mirror
creation and annihilation operators a little more carefully in
the next subsection. However, for now we note an impor-
tant property of the unshifted, standard thermofield state
|Wysq): if the observer jumps “earlier” or “later” in |Wy),
according to the classical geometry, he will measure the
same correlators. As the reader can verify, using classical
geometry and quantum field theory quantized around this
geometry we have

(Wial (21, 71,Q21). . (L4, 1, Q) [Wisa)
= <\Ijtfd|¢(tl + Tv ry, Ql)"’¢(tn + T9 rnvgn)|\I/tfd>'

Next, we note that

(W) = el W) = T Wygq).
This results from the isometry (6.4) of the eternal black
hole. So

<\Ijtfd|e_iHLT¢(tlv Iy, Ql)"'¢(tn’ rn’Qn)eiHLT|\Ijtfd>
= <\Iltfd|e_iHT¢(tli ry, Ql)"'¢(tn’ Tns Qn)eiHT|\Iltfd>
= <\Iltfd|¢(tl - T’ rlvgl)"'(p(tn - T’ rn’Qn)|\Illfd>‘

Therefore, if we combine the isometry of the eternal black
hole with the fact that an infalling observer from the right
observes the same geometry whenever he jumps in, then we
obtain the same conclusion: the states |Ur) are smooth for
all times. This is a second method to reach the conclusion
that we already reached above. We now discuss these states
from the perspective of the CFT.

2. CFT analysis of time-shifted states

We emphasize that the statement that we have made
above—namely that the eternal black hole geometry should
appear to be smooth under arbitrarily large diffeomor-
phisms—could be considered to be rather strong. Since we
do not usually make statements about quantities that are
exponentially large, using the geometry, let us understand
these time-shifted states directly from the CFT.

The point we are making above is equivalent to the
assertion that there is no natural common origin of time for
the two CFTs. Usually, the origin of time is not relevant to
any experiment. On the right CFT, for example, we declare
some point in time to be ¢ = 0, pick some basis of operators
that we can measure at that time, which we denote by
O(0,Q) and declare that these are the Schrodinger oper-
ators. We can then classify states, using the eigenstates of
these operators.
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In our case, we have two CFTs. Roughly speaking, the
original thermofield state involves entanglement between
O(0,Q) and O;(0,Q). The relation

(Wi ©(0,2) O (0. Q') [Wysa)
= (Ur]O(0, Q)OL(T, Q) |¥r)

tells us that the shifted states involve entanglement between
0(0,Q) and O, (T,Q). We can make an even stronger
statement, as follows. Let us consider eigenstates of the
Schrodinger picture operators which satisfy

0(0,Q)[0.(Q), 0(Q)) = 0(Q)|0.(Q), 0(Q)),
OL(0,Q)[0.(Q),0(Q)) = 0L(Q)|0L(Q), 0(Q)),

where O (Q), O(Q) are c-number functions that specify
the eigenstate. We have a corresponding basis of eigen-
states for the time-shifted Schrodinger basis operators,
which are given by

O(0,Q)[0L(2), 0(Q))r = 0(Q)|0L(Q), O(Q))r.,
OL(T,Q)[0.(Q), 0(Q))r = 0.(Q)|0L(Q), O(Q))7.

Then the thermofield state and the time-shifted thermofield
state are identical when considered as wave functions on
these states,

<\Iltfd|0L(Q)’ O(Q)> = <\IIT|0L(Q)v O(Q)>T-

So, unless we have some means of preferentially choosing
the states |0 (Q), O(Q)) over the states |0, (Q), O(Q)),
we must treat both the thermofield state and the time-
shifted thermofield state on the same footing.

One distinguishing principle that is sometimes invoked
in problems of this kind is to appeal to the “environment.”
We could state that the environment picks out the operators
0,;(0,Q) and distinguishes them from the operators
O, (T,Q). However, this would tacitly break the time-
translational invariance on the boundary. Moreover, from
the point of view of gravity this would be very unusual; we
would like the two coupled CFTs to autonomously describe
the bulk geometry, and it would be unusual if some tacit
reference to an external environment was important for
deciding whether the geometry was smooth or not.

Let us consider some other methods that appear to
uniquely pick the thermofield state but, on closer inspec-
tion, do not actually do so.

Euclidean path integral: The thermofield state can be
defined by a Euclidean path integral on an interval of length
p. More precisely we specify

o(p.Q)=0(Q)
e~5[DO],
(0.2)=0.(Q)

(U] 0L(Q). 0(Q)) = /
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where we have used [DO] to schematically represent the
measure over fields in the theory, and placed boundary
conditions so that, at time 0, the field is in the state specified
by O, () and at Euclidean time £ it is in the state O(Q).
However, we see immediately that while the path integral
on the right side has an unambiguous value, the interpre-
tation of the path integral as a wave function on the left
requires us to choose an origin of time. We could also write

0(5.Q2)=0(Q)

(U] 0, (2). 0(Q))r = / ~5[po).

0(0.2)=0.(Q)

So, using the Euclidean path integral to define the wave
function begs the question of whether we should privilege
|0 (Q), 0(Q)) versus the states |0, (Q), O(Q)).
Time-reversal invariance: Another ostensible method of
choosing the phases is to use invariance under the time-
reversal operation. If we define the time-reversal operator in
the left CFT as 7 |E) = |E), then the thermofield state is the
only one of the family of time-shifted states that satisfies

|Wiga)-

For the other states, recalling that the time-reversal operator
acts antilinearly, we have

T"I’tfd> -

T|Wr) = [Vq).

However, it is clear that this time-reversal operator itself
involves the choice of an origin of time. We could just as
well define a new time-reversal operation by a shift of the
time-reversal above and a time translation. On the basis of
energy eigenstates, we define

TT|E> — €2iET|E>7

and extend this operation antilinearly on linear combina-
tions of energy eigenstates. It is clear that
T"|Wy) = [Pr).

The new operator 77 is as valid a time-reversal operator as
the operator 7. Therefore, the idea that time-reversal
invariance picks a particular origin of time is also specious;
it can only do so if the origin of time is built into the time-
reversal operator.

Time-shifted states as phase-modified states: We now
turn to another property of the time-shifted states. This
property is again suggestive of the fact that nothing very
special happens if we take a long time limit of the time
translation. Note that we can write the time-shifted states as

[Wp) = el | W) =

e“Tei?:|E,E), (6.13)

where ¢ are real phases. Since we expect the spectrum of
the CFT to be chaotic at the high energies that dominate the
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state (6.13), we can obtain almost any choice of phases ¢
by choosing a suitable time translation. The relevant
equation that we need to satisfy is

ET mod2z = ¢,

and we can satisfy this to arbitrary accuracy for a chaotic
collection of energies, if we are allowed to choose 7" from a
large enough range.

There are some exceptions to the kinds of phases we can
generate. For example, the energies of supersymmetric
states are quantized integrally, and therefore we cannot
choose their phases all independently. However, the set of
supersymmetric states constitutes an exponentially unim-
portant subset in the thermofield state | ¥ ¢y). More impor-
tantly, the energies within a conformal representation are
integrally quantized. Therefore, by time evolution with the
Hamiltonian,'® we can only generate phases that satisfy

[E]

The statement that there is no natural common origin of
time translates, in this language, to the statement that there
is no natural choice of phases for the energy eigenstates on
both sides. (This is subject, of course, to the relations
above.) The advantage of thinking in this language is that it
is clear that the phases do not have any special behavior at
late times. Therefore if we accept the standard interpreta-
tion that ™17 acts as a large diffeomorphism in the bulk,
for O(1) times, and preserves a smooth geometry, then it is
natural to expect that this also happens for arbitrarily
long T.

We caution the reader however that the argument
above is a “naturalness” argument. It is predicated on
the assumption that a natural bulk to boundary map should
not privilege one pattern of random phases [obtained by
translations of O(1)] from another pattern of random phases
[obtained by translations of O(eV)]. So it is suggestive and
not a proof.

—pl[E+ 1] =¢[E+ 1] - ¢[E+2] mod 2x.

C. Relational observables in time-shifted states

We now turn to a detailed discussion of relational
observables in time-shifted states. These operators are
particularly important in our discussion of the eternal black
hole.

We have already carefully defined relational observables
in Sec. IIIA1. The key point is as follows. These
observables are defined relationally with respect to the
right boundary. Therefore, if we consider diffeomorphisms
that die off at the right boundary, then right-relational
observables are invariant under such diffeomorphisms,

"®The reader might notice that we can generate a slightly more
general class of phases using other diffeomorphisms, such as
those that rotate the S?~!, but this is not relevant to our discussion.
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even if the diffeomorphisms do not die off at the left
boundary.

This point may be slightly confusing if one thinks of
diffeomorphisms that shift the left boundary as acting
everywhere in the spacetime. However, as we pointed
out, these diffeomorphisms belong to an equivalence class,
and a limiting element of the class is the diffeomorphism
that simply “slides” the left boundary up and down while
leaving the rest of the geometry invariant. If we consider
this element of the class, it is clear that right-relational
observables are left invariant.

Let us check this more explicitly by carefully repeating
the derivation of Sec. IIT A 1. We start by defining points in
the bulk as intersection points of null geodesics which end
on the boundary. We introduce asymptotically AdS coor-
dinates, so near the boundary the metric coincides with
(3.12). These coordinates are (t, p, ) and the boundary is
at p = 1. We now consider two solutions to the geodesic
differential equation parametrized by ordinary AdS time
(not necessarily an affine parameter) with the property that

X (1) = (t1.p=1,Q)); % (0) = (1,-1,0),
L +1)=(t +1.p=1.Q); %t +1)=(11,0).
(6.14)

We then tune €; so that the geodesics meet. Given a
particular value of #;, Q; (#;), we vary Q,(#; + 7) so that the
geodesics intersect at some #; with 1| < t; < t; + 7,
pa(ti) = pi(t:); Q(t;) = Qi (1),

and we denote the intersection point by i)i(tl ,Q,7) as in
Sec. IT A 1.

Let us now make a large diffeomorphism that dies off at
the right boundary,

¥ - (). (6.15)

To implement this diffeomorphism in a quantum field
theory, we can act on all fields (including the metric),

rather than po_ints, with the inverse transformation. The new
scalar fields ¢(X) are given by

<= 2-1 =
P(X) = (& (%))
The action of the diffeomorphism on the metric is

- OxH* Ox” -1 4
9up(X) = 8—55‘8—559"” (X)) (6.16)
Now if we transform the entire geodesic trajectory specified
by the solution to the geodesic equation with initial
conditions (6.14) by means of the diffeomorphism
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(6.15), then we get a new trajectory that is a geodesic
with respect to the new metric (6.16).

The boundary conditions (6.14) remain invariant under
the diffeomorphism since, by assumption, £ turns into the
identity at the boundary. Moreover, if the original geodesics
intersected, then the new geodesics also intersect. In
particular the new intersection point, P;, is just given by
the transform of the original intersection point

pi(tlﬁglﬁz-) = g(ﬁ[(tlyglar))y

where we are using the same notation as (3.16).
Now consider evaluating a scalar field at this intersection
point. Clearly we have

- o

P(P) = (' E(P))) = p(P,),

which is the same value as it had before the diffeomor-
phism. Therefore, scalar observables defined at points
which are related relationally to the right boundary are
invariant under left diffeomorphisms.

This logic extends to points behind the horizon. Recall
that these points were defined by solutions to the geodesic
equation, where the affine parameter was normalized by
using the points outside the horizon already defined above.
Clearly, in the new metric the new geodesics are again
given by £(x(4)), and by the same logic scalar variables
evaluated inside the horizon are invariant under any diffeo-
morphism that dies off at the right boundary.

1. Commutator of mirror operators

Note that, in the analysis above, it was important that the
boundary conditions (6.14) were not altered by the diffeo-
morphisms. If we consider diffeomorphisms that do not die
off at the right boundary, then the right-relational observ-
ables do transform, but in a simple manner. Under a
diffeomorphism that shifts points on the right boundary
by tx — tg + T, we have

- -

Py(t.Q.7) = E(P,(t — T.Q.7)).

For the field operators, defined relationally with respect to
the right boundary, this leads to

el (1, Q, ) e T = p(tp,Q, 1),

el P(tp, Q1) e T = Pt + T,Q, 1), (6.17)
where H; and H are the left and right boundary
Hamiltonians respectively.

We now write down a mode expansion for the fields in
front of and behind the horizon, as in (6.6)—(6.7). The
conditions (6.17) imply that when we try and find CFT
operators that can play the role of these mirrors then they
must have the CFT commutation relations
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[HLvaw.m] =0,
[HLv&w,m] =0.

[H’ aw,m] = —wa, p,

(H. ] = 0 . (6.18)
We remind the reader that the asymmetry above arises
because these are right-relational modes. The relation
(6.18) must hold approximately within low point correla-
tion functions, and not necessarily as operators. However,
within correlators they are crucial to ensure that the field
operators transform correctly under large diffeomorphisms.

We proceed to now argue that it is impossible to find
state-independent operators d,, ,, that have the right proper-
ties to play the role of mirror operators behind the horizon
in the entire family of time-shifted states.

D. Naive construction of local operators in the
thermofield double

We start by considering the naive construction of local
operators in the thermofield double. We show that this does
not satisfy the conditions above and, therefore, cannot be
correct. In particular we identify CFT operators a,, ,, with
the properties that we derived from the bulk above.

The naive construction of local operators proceeds by
simply identifying discretized mirror modes with modes on
the left CFT,

&a) m aLwn,m'

" naive

However, this is clearly wrong as a computation of the two-
point function across the horizon shows. If we now
compute this two-point correlator in the time-shifted state,
we find that

_bon

T 2

(Urlary, mp, n|Pr) = e 1= oo

_bon
¥ i ; €’
<\IIT|aLwn,mawn~m|\IlT> =e za),,T] _ e—/iwn :
Let us call the CFT operator obtained by using this naive
mode ¢". Now, repeating the computation of the two-point
function that we performed in Sec. I'V, with point 1 outside
the horizon and point 2 behind the horizon we find that

y li‘gn 0<\IIT|5‘U¢H(U17VI’QI)8U¢H(U27V2’QZ)|\IIT>
1= V2=

5HQ - Q)
c—

27T ’

(Ul - Uze_/_’)z
lim (Up|Oy@"(U;. Vi, Q2)0v@"(Us, Vo, )| Wr)

U,-U,-0
5N Q) - Q)

Sk (6.19)

where ¢ is a normalization constant. Clearly this is not the
correct result. In particular, the first line of (6.19) does not
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have the right behavior when U; — U,. We obtain a similar
pathology by considering the boundary between region II
and region III.

This was only to be expected since the operators ay,,
clearly do not obey the correct commutators with the
Hamiltonian that we demanded above. Therefore, it is
incorrect to identify a,, ,, with a; ,, , as has been done
commonly in the literature.

E. Paradoxes for the eternal black hole

We now set out various paradoxes, similar to the ones
outlined by [2-4], which show that the relational observ-
able defined above cannot be realized by a linear operator.
These paradoxes were already outlined concisely in [23],
and we suggest that the reader consult that paper alongside
this section. Our arguments here are more detailed variants
of the arguments there.

Let us assume that some state-independent operators
a,, » exist with the properties that we derived earlier. If so
we can multiply them with the appropriate modes and
construct state-independent operators ¢ (U, V,Q) in the
thermofield double state and in a right-relational gauge.
Then, consider

C(Ul, Vi,Q,...U,, Vn,Qn)
= (Ur|¢p(U1.V1.21)...0(U,. V,,. Q,) [ V).

From the arguments above we have

d
7 CWUL V1L QU Y, Q) = 0.

Second, from the discussion in Sec. III, we expect this
T-independent answer to correspond to the correlators
computed by effective field theory in the eternal black
hole. This expectation is indicated in (3.10). Now, for any
operator A, we have

L
Z(p)

+ ) T EET(E EA|E E) |
E'#E

<\IIT|A(1|\IIT> = |:ZE_I}E<E’ E|A(1|E’ E>
E

Even if we know that this expectation value is 7 indepen-
dent, we must be careful not to immediately discard the
second term above. This is because, if A, happens to be an
operator with support on narrowly separated eigenstates
E — E' = O(e™2), then the time variation of the second term
will be negligible and so it may appear to be time
independent for short times. However, if we demand

<‘I’T|Aa|‘I’T> = <\I/tfd|Aa|\I]tfd>v
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even for exponentially long times, then the contribution to
the expectation value can only come from diagonal terms.

In the case of the correlator under consideration this
implies that

ﬁze-ﬁd& Elp(U,.V1.&)..9(U,.V,.Q,)|E.E)
E

— C(U],V],Q],...Un,Vn,Q”).

Using the standard arguments from the equivalence of the
canonical and the microcanonical ensemble this means that
for a typical eigenstate pair |E, E) at the energy relevant to
the eternal black hole

<E7E|¢(Ul’ Vl’Ql)-'-¢(Un’ Vn’Qn)|E’ E>
- C(U], VI,QI, ...Un, Van)‘

At an intuitive level this is already a strange conclusion
because the energy-eigenstate pair that appears above has
no entanglement. We have shown above that no state-
independent operators ¢p(U, V, Q) can reproduce the effec-
tive field theory correlators in arbitrary single-sided energy
eigenstates. How can such operators correctly reproduce
this answer in two-sided eigenstate pairs?

We can turn this into a sharp contradiction as follows. In
the eigenstate pair |E, E) with no entanglement, we expect
that there is no geometric wormhole. Therefore no exci-
tation generated by the left observer can affect the corre-
lators observed by the right-infalling observer. In particular,
if the left observer decides to act with an arbitrary unitary,
U, , we should have

<E’ E|Uz¢(U]’ Vls Ql)¢(Um Vn’Qn)UL|E’ E>

= <E7 E|¢(U1 ) Vl s Ql) "¢(Un1 Vm Qn)|E’ E) (620)
We can use this freedom to map the left energy eigenstate to
some fixed state, U, |E, E) = |F, E), where F could even
correspond to the left CFT vacuum. This means that the
operators ¢ (U, V, Q) must reproduce the correct correla-
tors in all states |F, E) and must be independent of F. This
can only be if they are ordinary operators in the right CFT.
But we have already proved that there are no state-
independent operators in the right CFT. Therefore our
starting assumption—that such operators exist in the
doubled CFT—must be wrong.

The reader may consult [23] for concrete versions of the
N, # 0 argument, and the negative occupancy argument
phrased directly in the doubled CFT. Here, we conclude by
briefly reemphasizing the importance of (6.20), which
states that there is no wormhole in eigenstate pairs.

In Sec. VII we review the construction of state-
dependent operators in a single CFT that can correctly
reproduce effective field theory correlators about a black
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hole. This construction was first described in [8,9]. Let us
denote such operators acting only in the original (right)
CFT, and defined about an energy eigenstate |E) by
$!FH(U,V,Q). The superscript E indicates that they
reproduce the expected effective field theory answers when
evaluated in correlators about |E) and reasonable excita-
tions of this state. Now, consider the following state-
independent operator, which acts in the Hilbert space of
two CFTs,

O(U.V.Q) =) Py, @p\EHU.V.Q),
E

where Py, is the projector onto the energy eigenstate on
the left, Py, = |E;)(E.|, and the sum is over all energy
eigenstates.

Now O(U, V, Q) has some interesting properties. When
evaluated in the thermofield double, we find

<\Ijtfd|®(U1’ Vlv Q1)" G(Unv an Qn)‘\ytfd>

= Z(I‘B)Ze_ﬂE<E|¢{E}(U1’ V., Q).
E

X (U Vi ,)|E). (6.21)
Note that the sum on the right is in a single CFT since the
P, term simply makes cross terms vanish and gives 1 for
the diagonal terms.

Since ¢!} (U, V,Q) is only evaluated in the state |E)
and its excitations, the expression above does yield the
answer expected from effective field theory. Note that
O(U,V,Q) also produces the following correlators about
eigenstate pairs:

<E’E|®(U17 Vlv Ql>®(Un’ an Qn)|E’ E>
= (E|¢p'EH(U,, V1, Q). EH U, V,,Q,)|E).

Using the equivalence between the canonical and micro-
canonical ensemble, these correlators are approximately the
same as the thermofield correlators in (6.21). These
correlators would suggest that the geometry in eigenstate
pairs, as seen by the right-infalling observer, is almost the
same in eigenstate pairs as in the thermofield. While this
conclusion is correct, as we see below, the operator
O(U,V,Q) cannot be the correct CFT operator dual to
local bulk fields.

This is because (U, V,Q) violates the no wormhole
condition and keeps the wormhole open even when there is
no entanglement. In particular, using a left unitary that acts
as U, |E,E) = |F, E) we find that

(E.E|U;®(U,,V,.Q,)...0(U,.V,.Q,)U, |E.E)
= <E|¢{F}(U1’ Vlv Ql)¢{F}(Un’ Vn7Qn> E>
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But these are correlators of ¢!} (U, V, Q) evaluated about
a different eigenstate and, in general, these lead to expo-
nentially small answers. Therefore, @(U, V, Q) cannot be
the correct field operators in the eternal black hole because
they would predict that even in eigenstate pairs, by
performing the unitary transformation discussed above a
left observer could alter the correlators of a right-infalling
observer. So we see that condition (6.20) is important in
ruling out such putative state-independent operators. In the
next section, we show how the interior of the eternal black
hole can be correctly constructed using state-dependent
bulk to boundary maps.

Before concluding this section, we should mention that
our arguments should be distinguished from those of
[52,53], who suggested that the duality between the eternal
black hole and the thermofield double does not hold.
Although we do not engage with this in detail, we briefly
indicate our point of disagreement. The authors of [52]
suggested that there was an ambiguity in the duality
between the thermofield double and the eternal black hole.
In particular, they argued that the CFT cannot distinguish
between this case and another bulk geometry where the
bulk Hamiltonian has been modified by removing the
interaction between the left and the right at the bifurcation
point. Alternately, this corresponds to adding a delta-
function source there in a manner that appears to be hidden
from both CFTs. They argued that this leads to an
ambiguity that invalidates the duality.

While this argument may have been plausible if
the bulk theory had been an ordinary quantum field
theory, it is inapplicable to a theory of quantum gravity.
The Hamiltonian constraint rules out the alternate bulk
Hamiltonian considered above. It is this crucial feature
of the bulk that allows the boundary to know the details of
the bulk Hamiltonian and allows the duality to be
consistent.

VII. DEFINITION OF THE MIRROR
OPERATORS

In the past sections, we have set up paradoxes that show
that no state-independent operator can correctly satisfy the
conditions outlined in Sec. IV. We have shown that these
paradoxes apply to both the single-sided CFT and the
thermofield double.

We now review and extend the definition of the mirror
operators provided in [8,9]. These operators are state
dependent. What this means, in our context, is as follows.
Say that we are computing expectation values of a mirror
operator within a correlation function

<lll|ow] e 'Owl,,m,, . 'Ow,,,m,, |\I]>’
where | ) is an equilibrium state. Then the statement is that

the operator O,,,, depends in a subtle manner on the
sandwiching state |¥).

PHYSICAL REVIEW D 93, 084049 (2016)

This would imply that when one speaks of local
operators in gravity, or of their modes, then at least behind
the horizon of a black hole it is important to specify the
state that one is referring to. A given local operator is good
to describe physics in a given state and in small excitations
about that state. If we consider another microstate which is
“far away,” in the sense that it cannot be obtained from the
original microstate by the action of a small number of
single-trace operators, then we must use a different operator
to describe the “same physical quantity.”

In this section we first review the construction that
we presented in [8,9] both for equilibrium and near-
equilibrium states. We show how this completely resolves
all the paradoxes of [2—4]. Our review will be brief, and
we direct the reader to those papers for a more detailed
exposition.

A significant new element in this paper is that we discuss
the action of our operators on superpositions of states. This
is important because we show that even though our
operators are state dependent, the infalling observer does
not observe any deviations from linearity for small super-
positions of equilibrium or near-equilibrium states.

Next, we also describe the construction of mirror
operators for the thermofield double and its time-shifted
cousins. This construction can be obtained as a special case
of our construction, as applied to an entangled state.
However, in this section we also show how one could
guess this solution independently. The analysis of (7.6) is
useful because it helps to elucidate the nature of state-
dependence.

A. The set of natural observables and the little
Hilbert space about a state

Consider the modes of the generalized free field oper-
ators that were defined in (4.18). As we explained there, we
have discretized these modes O,, ,, both by selecting some
discrete set of frequencies, and also by choosing a time
band on the boundary that we integrate over to transform to
frequency space.

We now consider the set of polynomials in these modes
that we denote by

Agit = span{ O, 1.+ O i, Ooyys -+

O, O o (7.1)

@1,my > wy,my wK,mK}~

This means that this set comprises all monomials of the
form displayed above, and arbitrary linear combinations of
these monomials. In addition, we consider the set of
polynomials—Ilimited to small orders—in the CFT
Hamiltonian."’

For a more careful treatment of other conserved charges,
including in cases where the CFT has a non-Abelian symmetry,
we refer the reader to Sec. III B 4 of [9].

084049-37



KYRIAKOS PAPADODIMAS and SUVRAT RAJU
Ay = span{H,H*...H"}.

We then consider the set of observables involving insertions
of both the generalized free fields and the CFT Hamiltonian

.A - .Agff ® .AH. (72)

The dimension of this set is denoted by
D4 = dim(A).

We often refer to arbitrary elements of this set, comprising
generalized free fields by

A, € Ay

We emphasize by default that the notation A, does not
include the CFT Hamiltonian. If we want to consider an
element from .4 that might include H, we state this
explicitly.

We want to restrict A to be the set of reasonable
experiments that one can perform in the bulk, and still
expect to observe effective field theory about a given
background. This excludes any monomial in (7.2) that
has a very high total energy

Zwi < O(N).

Similarly, this also excludes any monomial that has a very
large number of insertions. So

K < O(N),

for all monomials displayed in (7.2). These restrictions
imply, as a consequence, that

D, < O(eV).

The set A is approximately an algebra because we can
usually multiply two of its element to obtain another
element. However, this is not always the case because of
edge effects—where such a multiplication may take us
beyond the cutoff we have imposed. In this paper we
usually do not keep track of these edge effects.

The set of “reasonable operators” can be used to excite a
state. This leads us to consider the space

Hy = A|¥) = Span{zapAp|\Il>}’

where A, may include H. We denote the projector on this
subspace by Py . The fact that A is approximately an
algebra implies that we can consider the action of its
elements as A,: Hy — Hy. This is subject to the same
edge-effect caveat above.

We sometimes call the space Hy the little Hilbert space
about the space |¥), since it contains the part of the Hilbert
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FIG. 10. A cartoon of the little Hilbert space H as the relevant
subspace in the full Hilbert space.

space that is accessible within effective field theory.
Conceptually, this little Hilbert space is very important.
We show a schematic figure of this set in Fig. 10.

B. Equilibrium and near-equilibrium states

The next ingredient in our construction is the classifi-
cation of states. First, we consider equilibrium states.
Intuitively, these are states where a black hole in the bulk
has not been disturbed for a long time. We then expect that
all excitations both outside and inside the horizon have died
off, leaving behind a smooth horizon and an empty interior.
We now want to make this precise in the CFT.

Let us review some necessary conditions for us to
classify a state as being in equilibrium. (As we discuss
in Sec. VIII these conditions are not quite sufficient.) The
first is that correlation functions in an equilibrium state
should be invariant under time translation.

We consider the expectation value of an element of the
set of observables A, € A, as a function of time. This is
defined as

2p(0) = (W] A& |). (7.3)
where it is important that A, may include H. Intuitively,
while there may be small fluctuations in this expectation
value, we expect that in an equilibrium state, these
fluctuations are extremely unlikely. The size of the fluc-
tuations is measured by

1 Ty
=1 / () g, O)ldr. (1.4)

An estimate of these fluctuations [9] suggests that a state
should be classified as being in equilibrium if
v, =0(e),

Y p. (7.5)

P
Note that the definition requires this to hold for all
observables in A.

The condition for time independence of correlators can
be imposed very accurately. However, this condition is
necessary but not sufficient in order for us to apply our
definition of the mirror operators. In particular, to apply our
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definition, we would also like the state to correspond to a
state at a single temperature. For example, consider the
state \/% (|E\) + |E,)) where E|, E, are two distinct energy
eigenstates at substantially separated energies. For exam-
ple, we could take E, ~ 10E|. It is easy to verify, using the
eigenstate thermalization hypothesis, that this state meets
the criterion (7.5) above. However we think of this as a sum
of two separate equilibrium states.

Now we describe near-equilibrium states. Near-
equilibrium states are simply obtained by exciting an
equilibrium state with an exponentiated Hermitian element
of the set of observables .A.

o) =U|T), U=er, AL=4, (7.6)
In [8,9], we showed that given a state | U"¢) of this kind, the
decomposition into a unitary U and a base-equilibrium state
|¥) was essentially unique. The reason for this is very
simple. Given an equilibrium state |¥), if we excite it with a
unitary we necessarily spoil the time-translational invari-
ance criterion of (7.5). Therefore, given a state | U"°), once
we have found a decomposition (7.6) that works to make all
correlators time-translationally invariant in the base state
|¥), we know that it must be the right one.

C. Mirrors for equilibrium and near-equilibrium states

We now consider the definition of mirror operators for
the states considered above. We start with an equilibrium
state | W) with inverse temperature f. First we consider
excitations of this state with A, € Ags. This set was
defined in (7.1) and excludes the Hamiltonian. We now
define mirror operators on this subspace of Hy through the
linear equations

_Pon

(b(u,,,mAa|\Il> =e TA(IOZ)an|\Il>- (77)
We can use this definition recursively to define the mirrors
of products of operators as well,

pH o+ pH

AAp|T) = Age 7 ALeT| D).

These relations specify the action of @a,mm on Hy. The
action of this operator outside this space is irrelevant for
questions within effective field theory. We expect (7.7) to
hold at leading order in 4.
However, we do specify its commutator with the
Hamiltonian and this fixes some % corrections.
[Ownm’H]Aa‘\I}> = _wnoa)mnlAa|\I]>' (78)
Note that this means that éwn.m has positive energy. It is

possible to check that (7.8) implies certain corrections to
(7.7) at O(3).
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It is easy to check that (7.8) is equivalent to

_pon

O,, wAM|V) =A™ O) LH|V).  (7.9)
This equation is equivalent to (7.7) when |W) is an energy
eigenstate satisfying H|W) = E|¥). In other situations
H|V) is an independent descendant and (7.9) gives an
independent set of constraints on the definition of O,, ,,.

We pause to make a slightly subtle point related to a
discussion in [12]. The operator product expansion in the
CFT implies that the stress tensor always appears in
the one-pion exchange of two local generalized free fields.
The Hamiltonian is the zero mode of the stress tensor.
Nevertheless, it is consistent for the mirrors to effectively
commute with the modes of these operators, but not with
the Hamiltonian. This is because if we attempt to express
the CFT Hamiltonian in terms of the modes of the GFFs we
expect to get an expression involving not just quadratic but
also higher order terms.

1

H=Y w,al, na, ,+ -+ 0(). (7.10)

v

where the ... are similar quadratic terms from other fields
and the O(4;) terms can be obtained from bulk interactions.
As usual, the = in the equation above indicates that this
holds within low point correlators. The form of (7.10) is
dictated by bulk effective field theory, but a similar
expression arises from a careful analysis of boundary
correlators.

Now, due to the cutoffs on the set A above, there is no

strict relation between H and other elements A, € A.
Therefore it is mathematically consistent to define the
mirrors to have a zero commutator to very high order with
ordinary operators but have a nonzero commutator with the
Hamiltonian.
_ However, we must mention another physical point. The
O, m operators that we have defined above are auxiliary
variables, which do not have any direct physical signifi-
cance. This is because there is no left asymptotic region in
the geometry. It is the a,, ,, operators that appear in right-
relational observables. Since these observables are defined
relationally, they are not strictly local. Therefore, depend-
ing on the precise choice of gauge, it is possible—without
any loss of locality in the bulk—to consider operators that
have a nonzero commutator with a,, ,, at subleading O(ﬁ)
This may even be convenient from some perspectives. We
comment more on this issue in forthcoming work.

We now return to the definition of the mirror operators.
Equations (7.7) can be considered to be linear equations
that define the operator O,, ,,. We now explain why these
equations are consistent.

First, note that if A, € Ay then, in general, we cannot
annihilate an equilibrium state by its action,

A W) #0, VA, E Ag. (7.11)
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This is simply a consequence of the fact that dim(Ayy) <
eV and therefore the space of states annihilated by an
element of Ay is of a very high codimension.

For physical reasons we consider energy eigenstates,
which can be annihilated by elements of .Ag. In such cases,
we might have (H — E)|¥) = 0 for some eigenvalue E.
However, as we noted above, in such cases (7.9) reduces to
(7.7), and therefore does not lead to an inconsistency.20

To summarize (7.7) and (7.9) specify the action of the
mirror operator, O,, ,, on a set of linearly independent
vectors. This guarantees that we can find a linear operator
with the desired action. We can even write down an explicit
solution for these linear equations as follows.

We consider a basis of Hy given by

D). Ap ),

and denote an element of this basis by |v,), where the
corresponding A, may include H. The linear equa-
tions (7.7) and (7.9) specify the action of the operator
o on this basis as

w,,m

Ou,mlvp) = up),

where |u,,) can be read off from the right-hand side of (7.7)
and (7.9). With g,, = (v,|v,), we can simply define

(;)a;,,,m = ngq|”q><vp ’ (712)
pPq

where g4 is the inverse of g,,,. The solution (7.12) has the
property that it acts only within Hy. If Py [w) = 0 for a
state |w), then O,, ,,|w) = 0.

This definition directly extends to near-equilibrium
states. Given a state of the form (7.6), we define the action
of the mirrors by

O, wA U™ = A U0}, U1 |Tme).

@, ,m

(7.13)

The commutator with the Hamiltonian is unchanged.

@wn,mHAa|\Ilne> = H@wn,mAa|\I}ne> - wn@wn,rnAa|\Ilne>’

where all elements on the right-hand side can be computed
using (7.13).

Here we have been careful to consider these special states
where some descendants obtained by the action of conserved
charges are null. In the rest of the paper, when we consider the
action of the mirror operators in other settings, we do not always
consider this case separately. However, our construction can
smoothly accommodate charge or energy eigenstates in all cases.
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D. Resolution of paradoxes

We emphasize that our construction above resolves all of
the paradoxes set out by AMPSS in [2—4]. We reviewed and
sharpened these paradoxes in Sec. V but none of these
arguments apply to state-dependent operators.

Our construction resolves the N, # 0 argument as
follows. It is true that typical energy eigenstates are smooth,
whereas number eigenstates may not be smooth. However,
as we saw in (5.2) to obtain a contradiction we have to
perform a basis change to go from (5.3) where the trace is
evaluated in the energy eigenbasis to (5.5) where the trace
is evaluated in the number eigenbasis. If the operator Pr
that appears there is state dependent, then this change of
basis is impermissible because it is a different operator in
each eigenstate. We can see this immediately if we make
the state-dependence explicit by adding a small superscript

1 (£} 1 N}
— Y (EIP;|E) # D—Z(MIPF IN).

Re E R

even if these two sets of eigenstates span the same
space Rg.

In (5.3) we refined the original “lack of a left inverse
paradox” of [3] to argue that no state-independent operator
could have the commutator required of a, , with its
adjoint and with the CFT Hamiltonian. However, the
argument breaks down if we attempt to apply it to state-
dependent operators. In (5.12) we had to use the cyclicity of
the trace. But if the operator a,, ,, that appears varies as we
vary the energy eigenstate then we cannot use this.

As we explained in Sec. V D, the commutator argument
is not really a paradox but more of a “genericity argument.”
Our construction sidesteps this because our mirrors are
designed to explicitly commute with the ordinary operators
within correlation functions as (7.7) shows.

Finally, consider the strong-subadditivity paradox of [1,2].
Our construction resolves this through a version of black
hole complementarity [45,54]. The statement is that it is
impossible to define mirror operators so that they exactly
commute with all CFT operators in any finite time band.
From the CFT this is clear from general principles of local
quantum field theory. Therefore the mirror operators that
describe the interior of the black hole must appear to
commute with simple observables within correlation func-
tions but cannot do so exactly. This is a precise version of the
colloquial statement that the “interior is a scrambled version
of the exterior.” The strong-subadditivity paradox assumes
that the Hilbert space of gravity factorizes exactly into parts
that can be associated with the outside and inside of the black
hole. If complementarity is correct, then this assumption is
wrong and the strong-subadditivity paradox vanishes.

Note that this resolution to the strong-subadditivity
paradox also implies that for some questions—in particular
for bulk correlation functions involving O(N') insertions—
the notion of locality breaks down completely in the bulk.
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This is consistent with the widely held belief that locality is
not exact in quantum gravity. However, it is also consistent
with various other arguments that suggest a breakdown of
locality at this order. For example, it is not difficult to
estimate that when one considers correlators with O(N)
insertions on the boundary, the ﬁ expansion breaks down
[55]. Since bulk locality is generally considered to be
synonymous with the ﬁ expansion, this indicates that bulk
locality breaks down at this order. Alternately, from a
consideration of scattering amplitudes in bulk effective
field theory, it is not difficult to show directly that bulk
perturbation theory breaks down when the number of
insertions becomes very large [56]. It is possible to see
these nonlocal effects even about empty AdS, as we
describe in forthcoming work [57]. This nonlocality clearly
indicates a rather unusual and profound property of
quantum gravity, which deserves further attention.

We direct the reader to [8,9] for further discussion of the
resolution of these paradoxes.

E. Small superpositions of equilibrium and
near-equilibrium states

We now describe how our construction extends to small
superpositions of states. Such superpositions are important,
and obtain a direct observational significance, when we
consider entangled states of the CFT with an external
system of qubits in Sec. IX E. For now we are interested in
the following abstract question.

Question: Is exciting a superposition of states by a
mirror operator the same as superposing the excited
states.

We show that the answer to this question is affirmative.
This follows almost trivially from the definition above and
ensures that the infalling observer does not observe any
departures from linearity.

1. Superpositions of equilibrium states

Consider a superposition of equilibrium states |¥,),

M
= Z W)
k=1

where M is an O(1) number and we assume that (U, [¥ ) =
0 for k # p and also that >, |(¥;|¥;)|> = 1 so that the
state (7.14) is normalized.

We first show that for generic |¥,), the superposition
(7.14) is also in equilibrium. Let us assume that each
equilibrium state can be expanded |¥;) = " .a;,|E;), so
that the entire superposition is

¥,) = Zak.i|Ei>'
ik

(7.14)
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We now consider A, € A and assume that it obeys the
eigenstate thermalization hypothesis [43].

(Ei|A,|E;) = A(E;)5;; + e~ 12 )B(E E))R;;.

(7.15)

Here, the quantity S (E’ ;E" ) is the log of the density of states
at the mean energy, for which we just write S. The functions
A, B are “smooth” functions, and R;; 1s a matrix with
erratically varying phases in its entries but with magnitudes
of order 1.

We see now that

= Za};_iamA E

ik,n

(WA, [P

Consider the first term in the sum above. This involves a
sum over O(e%) energy eigenstates, but for k # n the terms
in this sum are erratic. Since each a; ; = O(e™?), this turns
into an erratic sum over e’ terms over size e~5. We expect it
to typically be only of size O(e™2). The same argument
applies to the second term in the sum, involving R. This
term, irrespective of whether n = k or n # k turns into an
erratic sum over ¢25 terms, each of size ¢~=. This is again
expected to typically only be of size e~2. This leads to the
conclusion that

(U,[A,|0,) = (WA, W) +O(e).

M
k=1

Therefore if the equilibrium criterion (7.2) applies to
each state |W,) it also applies to the superposition |¥,),
as long as M = O(1). Therefore the superposition is also in
equilibrium.

The interesting case is where the |\I/ ) are microstates
corresponding to the same black hole.”' We can now define
the mirrors independently for |¥,) and each of the |¥;).
We display this state-dependence explicitly with a super-
script below.

We now notice the following simple fact:

_Pon

ONMIA|,) = 34,00, 0| V,).

This follows because |W,) is also in equilibrium and at the
temperature $~'. On the other hand

Peon

o{k} A(1|\Pk> =e _Aaown |\Ilk>

@y, N

*'The case where they correspond to different geometries
simply leads to a classical probability distribution over the
various possibilities as we described around (3.5). This situation
is not of significant physical interest but, in any case, it can be
dealt with easily by extending the results obtained here.
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Therefore we find that

S

OE?U%A(I | \IJ Z r{uk}mA(l | \Ilk
=1

This equation shows that the mirror operators act consis-
tently with the superposition principle, as long as we are
looking at small superpositions of equilibrium states. As we
see later, this is important in order for the infalling observer
not to be able to detect any violations of quantum
mechanics.

2. Superpositions of near-equilibrium states

Now, we consider an O(1) superposition of near-
equilibrium states

M
T1e) = " ULTy), (7.16)
k=1

where |¥,) are orthogonal equilibrium states, as previously,
and we again assume that the sum in (7.16) is normalized
to 1. Here, as in (7.6), U, = e, where A, are Hermitian
elements of Ay

We now define the action of the tildes via

M
O, A V) =Y AU e 2O}, W), (7.17)
k=1

Note that, strictly speaking, (7.17) is an extension of our
definition of mirror operators since a superposition of near-
equilibrium states is not itself a near-equilibrium state by
the definition of such states in (7.6). ~

We also note that in this case the action of O,, ,, is not
closed within the span of A|W}). This can be seen from
(7.17) where the right-hand side is not just an ordinary
operator acting on |W1°). It is convenient to imagine that we
expand the little Hilbert space to the direct sum of the little
Hilbert spaces produced by acting on the equilibrium states
in (7.16),

H\p?e - ?H\P;\ .

This may be used as a general rule when the space obtained
by acting with A does not contain any equilibrium state
at all.

Let us check that (7.17) immediately passes a consis-
tency check. The decomposition of a state in the form
(7.16) is not unique. As we explained above, almost all
sums of O(1) equilibrium states are also equilibrium states.
Correspondingly Hyre contains many equilibrium states.
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This implies that we can just as well write (7.16) as

M
=) V¥,
g=1

W) = Z U Qi) 0,17,)

k.q,p=1

with

M M
= UiQy: %) :Zqu|‘I’
=1 =1

Here Q is any invertible M x M matrix and Q7! is its
inverse: ZqQ,:ql Q,p = 6ip- It is important to us that the
matrices V, also be invertible. This is true for generic
choices of the U, and we only consider cases of this sort.
Now, since the state |W;) will also typically be in
equilibrium, it is equally natural to demand that

O, Ay T™) = ¢34 ZV Oh,m|WL).  (7.18)

We ensure that (7.18) is consistent with (7.17). But this
follows immediately by inserting the definitions of V and
| W) above.

We can also repeat the check we performed for equi-
librium states above. Using the definition (7.17) of mirror
operators on superpositions of near-equilibrium states on
the left-hand side of the equation below, we have

<

ol ey =" O, AU v,

k=1

(7.19)

where on the right-hand side we use the standard definition
of the mirrors on nonequilibrium states given in (7.13), and
we have again indicated the state-dependence explicitly by
means of the superscript.

The result (7.19) shows that the infalling observer does
not observe any violation of linearity even for super-
positions of near-equilibrium states. This includes, as a
special case, a superposition of an equilibrium and a near-
equilibrium state, and thereby answers a question about
superposition raised in [58].

F. The interior of the eternal black hole

We conclude this section by constructing state-depen-
dent local operators in the eternal black hole. We already
showed in (6.4) that the naive state-independent construc-
tion of local operators where we identify O, ,, = Oy,
does not work correctly in the states |¥) defined in (6.12).

We proceed as follows. We start by reviewing the
conditions that we need from the mirrors in the eternal
black hole. Based on these, we guess an appropriate
solution. We then verify that it meets the conditions that
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we outlined. We hasten to add that the formulas we present
here can be derived in a completely systematic fashion
using the formalism for entangled states that we present in
Sec. IX. We present this alternate method of obtaining the
answer only because it provides some additional insight
into the nature of state-dependence.

We suggest that the reader also consult [23]—where this
result is stated concisely—before examining the detailed
calculation below. _ _

Constraints on O,, ,,: The precise conditions that O,, ,,
need to satisfy are given in Sec. VI. These modes need to be
correctly entangled with O, ,, in all states |Wr); they need
to commute with the O,, ,, within correlators, and also
have the commutator with the Hamiltonians given in (6.17).

In fact all of these conditions would be met if

<\I]T‘Aaé)mn,mAﬂ|\IJT> = <\IIT‘AaOLw,,.m(T)Aﬁ|\I}T>

1
o —|, 7.20
+o(%) (720)
where
1 Ty .
(’)mem(T) = O, (t+T, Q)e’“’”’Y;‘,,(Q)dtdd‘lﬂ.

Tib =Ty
(7.21)

Note that for small T we have Oy, ,(T) = Oy, ,e™".
However, this is no longer true when 7 > T}. Since we
allow exponentially large 7 in the states |¥r), we must
adopt the more careful definition (7.21).

We can try and achieve (7.20) through the use of
projectors as in Sec. [V B 2. In particular, we use a projector
to detect the state as an excitation of |Wp) and then
modulate O,, ,, accordingly. We caution the reader that
this program is only partly successful. But to this end, we
investigate these projectors in some detail below. We have
to construct these projectors and then in order to put them
together correctly, we also need to examine their overlaps.

Projectors on Hy : We define the projector Hy, as
follows:

Pr, Al Ur) = A, Wr).

it VA, (0A|Ur) =0= Py,

vy =0.

In these equations we restrict A, € Ay and do not allow it
to include H.
We can construct the projector explicitly. Define

Yop = <‘I’T|A/T;Aa|‘I’T>-

Note that g,z is actually independent of T because the
operators above come from the right CFT and commute
with the left Hamiltonian that is used to evolve |¥4) to
|¥r). Then the projector can be written as

PHYSICAL REVIEW D 93, 084049 (2016)

Py, = > AL Ur) (UrlA),
af

where ¢g# is the inverse of Jap- We can check that

Py, A,|Vr) = ZgaﬁAa|\IjT>gﬂy =A,|Pr).
aff

Obviously, in the orthogonal subspace, PHWT gives 0.
Overlaps of the projectors PH\I/T: Next we have to

account for the fact that the different projectors PHq;T are

not quite orthogonal for different values of 7. We can

calculate the overlap between the states |¥r) and their
descendants as follows. We have

(Wl | Ur) = ﬁze-ﬁwmaww, (7.22)
E

where all cross terms have dropped out because the
operator A, acts only within the right CFT, and we can
use the eigenstates in the left CFT to impose a delta
function in energy.

First, let us consider this quantity for 7 < 1. In this
situation we can approximate (7.22) by

1 .
(Vaalhulr) = 7 / e PESE A(E)elET,

where we have indicated the diagonal element of A, by
A(E) as in (7.15).

We can compute this integral using a saddle-point
approximation. We write the exponent as

%S

— 1 2
—BE + S(E) = —PEy + S(Ey) + 5 (E = Eo)* o7 - res

where E, satisfies

oS
|y, "

E=E,
Consider the second derivative term. We write the
temperature as a function of energy 7(E), and then this
is just

where C is the specific heat. Note that C o< V. Evaluated at
E = E,, we find

%S s

PE|py, C
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Therefore the integral above can be written

Now notice that if A(E) is a smooth function of £ it varies

slowly over the energy scales v/C that are relevant here,

since £ changes only by - over this scale. Second, since
N VC

we have assumed that T < 1, we conclude that

- iET} A(E)dE.

2

1 _cr?
<\Ijtfd|Aa|\I/T> = <<Aa> + O<N>>e g/,z e'E"T,

where the expectation value on the right is the normal
expectation value taken in |W4). Note that we can actually
get the prefactor right, and it precisely cancels the factor of
ﬁ in the integral. In particular note that (7.23) also has the
correct limit at 7 = 0. Below, we use

(7.23)

T2

f(T) = ¢ eiFT.

We caution the reader that the estimates for the overlap
between different projectors are no longer valid for
T ~ O(1). We_consider this case separately below.

Guess for O,, ,,: We can now use these projectors and
the idea explained above to write down a guess for the
O, m that will reproduce (7.20). We consider

ém m = \/ 2/ OLm m(T )PHq, ar;, (724)
n ”ﬁ

where T, is a cutoff that we explore further below. The
idea of (7.24) is that the projector Py, 0 detects the state it is

acting on as an excitation of |Wy ), and therefore the

insertion of O, , effectively turns into an insertion of
O, m(T;) as required in (7.20).

We now verify in detail that the guess (7.24) does satisfy
all the conditions that we need in the state |W;y) and in
states |Wy) for |T| < T,y For states where 7 does not
satisfy this condition we need to change the operator (7.24)
as we describe below.

Correlators of O,, ,,: We are interested in inserting the
proposed mirror defined in (7.24) in correlators. We find
that

\IJT |A Ow mA/7’ | \I’T

cut
ﬂﬂz/ Lul

tfd|e " AaoLw m( i)PH\pT‘A[)’eiHT|‘I’lfd>'

To evaluate the integral on the right-hand side we consider
the integrand
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(Wigale ™M A Py, Ape™ | Wygy)
= <\Iltfd |AaPH\|/T7T

= Z(‘I’tfd |Aagy6Ay’qlT—Ti> <‘I’T—Ti |A:;Aﬂ|\1jtfd>’
7o

AplT)

where we have first used the factors of e’#7 to convert the
projector to Py, and then we have inserted the explicit
expression for tfle projector derived above. This quantity
can be further be simplified to

<\Ptfd |AaPH\I,T_

= |f(T - Ti)|2z<‘1’tfd A e Ay | Wisa) (Wia AGA 5 Wiga)
70

= |f(T - Ti)|2<‘1’tfd |A11PH\plmAﬁ‘\Ithd>
- |f(T - Ti)|2<‘I’tfd|AaAﬂ|‘I’tfd>,

7 Aﬂ | qltfd)

where we have used the expression for mixed correlators in
(7.23), then reabsorbed the sum over y, é into another
projector, and recognized that the projector acts as the
identity on descendants of |V ).

Plugging this into the original integral we find that

\IlTlA Ow mAﬁ‘\IJT>

\/ ﬂz/deVT TP

(Wyale ™ TA Oy n(T1)A e T W gy)

— (V14,0 (A1) O 7).

Here we have used the fact that Oy, ,,(T;) varies very
slowly with respect to the function f(7 — T;), provided
w, < N since C ~ O(N'). Therefore, to leading order in 4
we can simply evaluate this integral in the saddle-point
approximation which leads to the result above. This result
is, of course, valid provided that |T| < T, and it agrees
with what was required in (7.20).

Note that this immediately leads to the right two-point
and higher point functions. For example,

<\IIT | OLwnm (T) Ow,,m ‘ \IIT> = <\Illfd | OLm,,m Om,,m | \I/tfd>

/i(),,
Gﬂ (wn ’ )’

which is precisely what is required.
Commutator with Hamiltonians: Finally we check the

behavior of the proposed O, ,, under time evolution with

the left and right Hamiltonians. Notice that

—iHT _ ,~iHT

Py e .
H‘I‘T,- H‘I‘T,-+T
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Therefore,

oHT e—iHT — / ot )
o(u,,m ﬂﬂz/ - Lw,,m 1 PH\[,I T de
Cu‘+T
. ﬁz OLym(T; = TPy, dT;,
ull

where the last equality comes from a change of variables
inside the integral. Note that

— Liw, T
OLa)nm(Ti - T) =e" oLu),zmv

for T ~O(1), and as long as T < T',. Now, when inserted
into correlation functions, the cutoffs are exponentially
irrelevant as the analysis above shows. The dominant
contribution when O,, , is inserted into a correlator always
comes from a saddle point in the interior of the integral.
Therefore we find that within correlation functions

eiHT@wnme—iHTieiwnT@w"m’
which is precisely what is required as long as we do not
evolve for a very long time.

A very similar analysis shows that conjugation by e
leaves O,, ,, invariant within correlators because of the
transformation of O, ,, in the integral above. This
completes our verification of (6.17).

iH, T

1. Analysis of state-dependence in the
eternal black hole

The reader should note that our construction is explicitly
state dependent. The operators (7.24) fail to click correctly
when they are inserted in states | W) with 7> T . It is
easy to verify this by repeating the exercise above. The
reader will find that when O, , is inserted into a
correlator, the saddle point of the integral over 7; occurs
outside the range of integration, and therefore the correlator
is exponentially suppressed.

Now, we might naively believe that this can be fixed
simply by taking T, to infinity. However, we show below
that if we do this, then instead of behaving correctly in
every state, the integral (7.24) would fail to behave
correctly in any state. To see this we need to reconsider
the overlap estimate of (7.23). The expression in (7.23) is
not the correct answer for 7 > 1 since our saddle-point
technique of evaluating the thermal correlator breaks down
if the phase factor that arises from the term involving T
varies too rapidly.

Atlarge T, we simply note that the overlap is a sum over
approximately O(e%) uncorrelated complex numbers of
O(1).
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Ze‘ﬂE ETA(E) = O(e?),
(7.25)

< lfd|A(1|‘I’T
T > 1.

In particular for T >> 1, this overlap is much larger than the
overlap predicted by (7.23). It has a fat tail.

Therefore if we take T, to be exponentially large,
Tew > O(e’), and insert (7.24) into a correlator, then the
contributions from this fat tail will overwhelm the con-
tribution of the dominant saddle. This is the reason that we
are forced to use state-dependence.

For the states |¥r) with 7> €5, we still write down
interior operators. These operators are given by

{T} /T+Tcm )
) 1) m
p° Jror,, !

where we have explicitly moved the range of integration.

This discussion helps to shed light on the nature of state-
dependence. By performing these large diffeomorphisms
we have, in a sense, “geometrized” the microstates of the
black hole. The states |¥'r) are all identical states from the
perspective of the right-infalling observer, but the left and
right modes are entangled differently in each of them. The
novel part of this situation is that these are also distinct and
well-separated solutions from the point of view of the
semiclassical theory if we keep track of how the solution is
glued to the boundary.

Now, classically the right-relational observables are well-
defined objects on each of these geometries. Often, in such
situations, it is possible to lift such classical observables to
operators as we describe in more detail in Appendix A. This
is usually done by identifying classical solutions as
coherent states in the Hilbert space, and using projectors
to map classical functions to operators. [See, for instance,
(A4).] However, if we consider the states |¥p) for expo-
nentially large ranges of T, then (7.25) tells us they are
“overcomplete.” This overcompleteness goes beyond the
usual overcompleteness of coherent states. In fact, we
believe that a computation using coherent states to re-
present the different states | W) in canonical gravity should
yield the overlap (7.23) but at large 7 this is very different
from (7.25). This forces us to use state-dependent operators
for the black hole interior, even in this one-parameter class
of states.

By considering time-shifted versions of the geon sol-
ution analyzed in [42], we believe that it should not be
difficult to find a similar one-parameter set in a single CFT
where state-dependence can be analyzed in detail.

)PH\I/T[ dTl’

VIII. REMOVING AMBIGUITIES IN THE
CONSTRUCTION

We now turn to the issue of some ambiguities in our
construction. There are two sorts of ambiguities that have
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been described in the literature. The first is related to an
observation about the eternal black hole by Marolf and Wall
[47] and a similar observation by van Raamsdonk [11]
which was framed more directly in terms of our construc-
tion. We show here how this ambiguity should be resolved.

The second ambiguity was discussed by the authors of
[4] and some of these objections were expanded in a paper
by Harlow [12]. However, Harlow’s construction attempted
to add to this ambiguity by adopting a modified definition
of the mirror operators, which had a different commutator
with the Hamiltonian from the one in our construction. We
show that this alternate definition of the mirror operators of
[12] suffers from certain inconsistencies which we point
out below.

As a consequence of this, the alternate mirror operators
described by Harlow do not themselves have direct
physical significance. However, it is true that there is an
interesting class of excited states that we consider in
Sec. VIII C; these are related to the analysis of [12] but
we consider them independently so as to separate them
from the main claims of that paper.

We should mention that an additional class of ambi-
guities, involving only ordinary operators, was described in
[3]. The authors of [3] suggested that one could act with the
Schwarzschild number operator ¢/*No| W) on an equilibrium
state to obtain another state that was approximately time-
translationally invariant. We have addressed this issue
previously. (See page 46 of [9].) If we use a finite time
band to extract the modes of the CFT generalized free
fields, and then combine them into a number operator then
such an operator does not commute exactly with the CFT
Hamiltonian. One may attempt to improve this construction
by considering an extremely slow acting source, which
inserts only a finite amount of energy into the system over
an extremely long time scale. The action of such a source
might be consistent with our equilibrium condition but this
would not be a contradiction since the infalling observer
would also not see any excitation in this case.

w

A. Mirror unitary behind the horizon

Consider an equilibrium state |¥) and perform the
construction described in Sec. VII, leading to the mirror
operators. Now, consider the state

|Wey) = e[ W) = U|W). (8.1)
Here A p is the mirror of a Hermitian operator satisfying
(A,)" =A,. The parameter a is a real number that is
useful below.

In our construction above, we have not really defined the
exponentiated version of the mirror operators. To exponen-
tiate the mirror we need to be able to evaluate

einjg) = U (4 ).
n=0 :
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Z

FIG.11. Astate |¥,,) = U|¥) corresponding to an equilibrium
state | W) excited with a mirror unitary behind the horizon U.

which involves arbitrarily high products of the mirror
operator and necessarily takes us outside the space Hy.
To be precise, beyond some cutoff K, we expect
(P|[(A,)%,A]|W) # 0. The precise value of K depends
on the precise definition of A ,. We return to this edge effect
below in the discussion of Harlow’s ambiguity.

The first putative ambiguity mentioned in the beginning
of Sec. VIII is the following: if we assume that the state | ¥)
is a black hole in an equilibrium state, then the state |¥,,)
should be an excited state. Intuitively we expect U, ) to be
a state with an excitation behind the horizon as shown in
Fig. 11. In particular, an observer crossing the horizon in
the state |V, ), within a suitable time range, should detect
this excitation. Now, the question is, suppose we are given
the state |U,,) without the additional information that it
came by acting with ¢/, on some equilibrium state |¥).
How can we directly detect that the state |¥.) is a
nonequilibrium state? The difficulty comes from the fact
that since U approximately commutes with elements of the
small algebra, we have

(WU O, 1y Ol UW)
= <‘I,|oa)|,m| . "om,,,mn |\Il> + R’

where R is the small remainder that we discussed above. We
neglect this remainder in what follows. Hence, simple
correlators of the small algebra on the state |V, ) seem to
be almost the same as those in the state |¥). This might lead
to the erroneous conclusion that | ¥, ) is an equilibrium state.
This mistake would lead to the definition of mirror operators
as if |[W,,) were equilibrium, and using these wrong mirror
operators would lead to the incorrect prediction that the
infalling observer will not detect any excitation behind the
horizon. In order to avoid this ambiguity in the mirror
operator construction, we need to find a way to detect from
the CFT that |P.,) is an excited state.

The key point is that we have also included the
Hamiltonian in our set of observables. The Hamiltonian
does not commute with the mirror operators. Hence,
correlators of operators in the small algebra, together with
insertions of the Hamiltonian, differ between typical
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equilibrium states and states which have been excited by
mirror unitary operators |¥.,) = U|¥). We can use these
differences as a diagnostic of the nonequilibrium nature of
these states. This resolves the ambiguity of the mirror
unitaries behind the horizon.

To make this more clear, let us consider the state |¥.,)
in (8.1) and let us define

A,=[HA,). (8.2)

We can detect the nonequilibrium nature of the state |, )
by considering the correlation function with H and the
corresponding A operator

(Wex|HA | W)
= (U|U'HA,U| V)
= (U|(1 - iaA,)HA(1 + iaA )| ) + O(c?)
= (U|HA,|) + ia(V|A A, |T) + O(a?)

SH

= 0(e™?) + ia(T|A,e™7 (A

pH

)'ex W) +0(?).  (8.3)
Here we have used the fact the equilibrium expectation
value of the operator HA is exponentially small, if A has
nonzero energy. On the other hand, we expect that the
expectation value in the second term of the last line above is
O(1). So, we see that for the observable in (8.3), we discern
a substantial deviation from its equilibrium value. This
allows us to classify the state | V., ) as an “excited state,” as
expected intuitively.

For a concrete example, let us take A » in (8.1) to be
A, = (ba),m + (7)2, - 2 We consider (8.2) for this case, to

find A, = a)((j)w,m Oz,m) In an equilibrium state we
have

w(U|H(O,,,, — OL ) |[¥) =0, (8.4)

up to exponentially small corrections. On the other hand,

(O ol . . .
for the state ¢/*©untOun)|T) we find to linear order in a
and up to exponentially small corrections that

o(V|U'H(O,,, — O} U|¥)
— w(\:[j| e_ia((buu1z+((9ru,rn)i)H(ow’m
= iaa)2<\p|(@w,m - @L,m)(ow,m -

(€ Hi
— O}, ) e ContOun)

Obn)|¥) + O(a?)

v)

. _po /}u
— 60Oy = Oh) (5O = 50, ) 1)
+0(a?)
= 2iaa)2€_gGﬁ(a), m) + 0(a?),
*In this section and in Sec. IX, to lighten the notation, instead

of w,, for the discretized frequencies, we drop the subscripts and
simply write .
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which is O(1). So this correlator is different on |¥,,) from
that on the equilibrium state (8.4) and by measuring this
correlator we can detect the excitation by the mirror unitary
behind the horizon.

Uniqueness of the behind-horizon unitaries: We note that
given a state |U.,) of the form (8.1) it has an essentially
unique decomposition into an equilibrium state and a
unitary behind the horizon. The reason is as follows.
First, it is clear that we cannot have such a decomposition
with two different basis states, since in that case we would
have

Uy|0)) = Us|0y) = |¥)) = UjU,|0y).
As we have shown above, if |U,) is in equilibrium a
relation of the sort above implies that |¥;) cannot be in
equilibrium, and vice versa. _

Furthermore, with U; = ¢1, and U, = ¢, it is clear
from a chain of reasoning that

Uy 0) =
= (A]

sz|‘1’> = (f]ﬁ]zﬂ‘m =|¥) = (Al —A2)|‘I’> =0

—A})|w) =0,

which is prohibited by (7.11) unless A; = A,, and so
U 1= =U ». This concludes our proof of the uniqueness of the
decomposition.

Therefore, to summarize, given a state of the form (8.1)
we can not only detect that it is out of equilibrium, but even
detect the operator with which it has been excited.

B. Comments on the Harlow unitaries

Now, let us turn to a second set of unitaries described by
Harlow [12], who attempted to define a new set of mirror
operators Xw » Which act on an equilibrium state as
follows:

Po

X(IZ,mA/i|\I]> A/3€_7( w,m)T|\II>’ (85)

(X2 H)A S| W) =0 (8.6)
Notice that the first equation, (8.5), is the same as the one in
our definition, (7.7), but the commutator with the
Hamiltonian given in (8.6) differs from ours, which is
specified by (7.8).

We now show that the definition of mirror operators
given by Harlow is inconsistent, and runs into difficulties in
several physical situations. We discuss an energy eigen-
state, and then a state drawn from the microcanonical
ensemble.” We then discuss a more serious problem—
definition (8.6) leads to operators that do not satisfy the
Heisenberg equations of motion. Therefore, these operators

BThis was already noticed in [12] and discussed in Sec. II D of
that paper.
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X Z’m cannot be used to build up gauge-invariant relational
observables.

1. Inconsistency of Xla’,'.m mirrors in energy eigenstates

First, we point out that the second line above, (8.6), does
not have any solutions at all, when defined about energy
eigenstates. We find that

)12

X2 H|E) = EX!,|E) = e TEO}, ,|E). (8.7)
But**
HX}),,|E)~e"5H(O,,,,)|E)
= ¢%H,(0,,,)|E) + e3(0,,,) H|E)
= ¢ Z0O}, |E) + e FEO}, ,|E)
= ¢ F(E + 0) O}, |E). (8.8)

To understand the inconsistency of Harlow’s definition
for eigenstates, we consider the correlator (E|O,,,,
[H X7 J|E). We can compute it in two ways. The first
is to subtract (8.7) from (8.8) and multiply the resulting
state with the bra (E|O,, ,,. This leads to the prediction

(E[O,[H. X0}, |E) = 5 (E|O,, ;00| E)

= we‘TGﬁ(a), m). (8.9)

On the other hand, using directly (8.6), we find that

(E|O,,[H.X{),,] | E)=0. (8.10)
Clearly (8.10) and (8.9) are in contradiction, and therefore
Eq. (8.6), which was used by Harlow to define the mirrors,
is actually inconsistent in an energy eigenstate. Moreover
note that at this level the contradiction arises at O(1) and
cannot be resolved by % corrections.

Now, we move away from a strict energy eigenstate and
turn to a state with an O(1) spread in energies. We show that
even in such a state, the modified definition of the mirror
operators in [12] cannot be used consistently.

2. Inconsistency of Xf,'qm in microcanonical states

We now show that the inconsistency in Harlow’s
unitaries is not restricted to energy eigenstates. It persists

*Note that these results are unaffected by a possible small
correction to the commutator between the Hamiltonian and the
ordinary operator: R¢ = [H, (’)I),m] — @O}, ,,. This may arise
because we define the modes by considering only a finite-time
interval as we discussed above. However, we expect that
IRc|E)||* < 1, and particularly that (E|O,,,, Rc|E) = O(%).
These statements just point out that the remainder is small and, in
particular, it does not have an overlap with O},,,|E) at O(1).
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in states that are drawn from a microcanonical ensemble
with an O(1) spread in energies. Consider a state of the
following kind,

mlc Zal |E

where the coefficients a; have the property that they are
peaked around a given energy, which we call E, but the
spread in energies is O(1). More precisely, we demand
<\IjmiC|H|\Ilmic> = E’
<\I/mic|PE|\I]mic> =1- O(N_l)’
where
i=E+A

Pp = Z |E:)(Ei

i=E-A

(8.11)

is the projector onto states in the range E &= A, and A < N/
is some O(1) number.

Now, the key point is as follows. In (8.6) we have
imposed the relation that the commutator of the operator

X" with the Hamiltonian annihilates the state. However, the
projector onto a range of energies, like the one that appears
in (8.11), is also a good observable. In fact, physically we
expect to be able to measure this observable rather easily
both on the boundary and in the bulk. On the boundary,
this observable is completely determined by considering
the zero mode of the stress tensor. In the bulk, it can be
determined by considering the subleading falloff in the
metric. This is in contrast to a projector onto a
Schwarzschild number eigenstate which, as we reviewed
in Appendix C of [9], requires an extremely long time to
measure and projects the final state onto a firewall.

Now, consider again the_ relatlon (8.6), but extended to
products of the operator Xa,m As we discussed above,
unless we can define such products consistently to a high
order, it is not possible to consider unitaries made out of
this operator, which are required to produce the ambiguity
that was discussed in [12].

However, for any O(1) frequency w, we have an O(1)
number 7., so that

n.w > 2A.

Now, following (8.6), we impose

X —nebo 1 .
(Xg~’")n‘|‘1’mic> = (OZ)m)”f| mIC> +N |Rré11cro>’

where we have included a small possible ﬁ correction with
the property that

<ngicm|Rg}icm> — O(] )
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However, now we note that

e P (W (Opm)" Pp(Oh )| W) < 1. (8.12)
This is because the action of n. insertions of (7);,,,, raises
the energy by the state by n.@ and so necessarily takes it
out of the band E + A. On the other hand, if the operator
me is defined to commute also with P then we would
expect

<\I,mic|[( wm)] PE( wm) |‘I’mlc>

LW PLl[(KE) e (R ) W) + ONT).

= <\Ijmic|PE(OZ)m)nc(Ow.m)nC|\Ilmic> + O(N_l)
=0(1), (8.13)

where in the final result we have noted that action of
(O,,.m)" followed by the action of its adjoint maps us back
to the same band of energies. Clearly the results of
(8.12)—(8.13) are in contradiction given the general results
about the expectation value of projectors in states that are
almost parallel, which we reviewed in Sec. VA.

3. Failure of 5(5,’,,, to satisfy the Heisenberg
equations of motion

Now we turn to an even more serious difficulty with the
mirror operators defined by (8.6): their failure to satisfy the
Heisenberg equations of motion. This failure persists even
in states with a canonical spread of energies. In such states,
the fundamental relation (8.6) does not suffer from an
obvious inconsistency, unlike in energy eigenstates or
states with a microcanonical spread. However, as we show
below these operators nevertheless do not have the correct
geometric properties to play the role of interior mirror
operators.

In particular, as we described in detail in Sec. VIC 1, if
the bulk operators are defined relationally with respect to
the boundary, in order to be gauge invariant, then they must
satisfy

et r,Q)e ™M = ¢p(t + T, 7, Q).
It is clear that if we attempt to create these operators by
means of the operators defined in (8.6), then the local
operators will not obey the Heisenberg equations of
motion. Let us check this explicitly by computing a two-
point function across the horizon.

Outside the horizon we have the usual expansion of the
field in terms of CFT modes,

l ., Q
P v=0- Z \/a)Cﬂ ®,m)
X Om,me_lwlYm (.Q.)(e’ée’“”* + e—zée—iwr*> +H.c.

PHYSICAL REVIEW D 93, 084049 (2016)

This expansion does not depend on our definition of the
mirror operators. Inside the horizon, however, using the
Harlow mirror operators we find

t, *’_Q —iu)(t+r*)Y Q
(e ﬁmz\/m om® n(€)
+ X, ety (Q)) + Heel.
Now, let us compute correlation functions with this

operator in an equilibrium state, | V). Moving to the usual
Kruskal coordinates U, V, let us consider two points, so
that one of them, (U, V,€,), is just outside the horizon
whereas the other (U,, V,,Q,) is just inside. Then we find

(Ule" TpH (U, V1, Q)" (U, Vo, Q)| W)

- Za)Cﬂ(a) m)

m,w

Vl iw T ~H _[]1 iw
w,m [ o a)mXa)m I
< [10unOh (1) + e Okl (T2 ]

2
Y, (Q)Y;,(€,) + H.c.

ioT

Notice the extra factor of ¢'”* which appears in front of the

g—l factor. In particular, this implies that if we compute the

derivative of the two-point function and take the two points
to be close then we find (using the techniques of Sec. IV),
substituting the relevant two-point functions and converting
the sum to an integral, that

lim (e 19yt (U}, Vi, Q0"

Vi=V,—0
X (Uy, V5, Q,)eT | W)

8N -y

(U = Uy T

However, this is in explicit contradiction with the universal
short distance form of the correlator that we derived in
(4.3). In fact, such a correlator would suggest the presence
of a firewall.

Therefore, we have reached the following conclusion.
Even in an equilibrium state, where we expect correlation
functions to be time invariant, if one uses Harlow’s
definition of the mirror operators, this leads to the pre-
diction that if one starts with a state with no firewall, a
firewall appears immediately.

This is a straightforward consequence of the fact that
these putative mirror operators do not obey the Heisenberg
equations of motion. The commutator with the Hamiltonian
(8.6) was derived neither from a gauge fixing procedure,
which we carried out carefully in [9], nor a careful
consideration of relational observables in the geometry,
which we performed in Sec. VIC.
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In fact, the source of this error is apparent. The
motivation of [12] to propose the vanishing commutator
of the interior operators with the Hamiltonian (8.6) was
partly based on the analogy with the thermofield doubled
state. In fact, it was argued in [12] that in some specific pure
states, one may expect bulk correlators to approximate
thermofield correlators to high orders in ﬁ However, even
in the thermofield state, as we showed in Sec. VI, when one
carefully consider commutators of the right Hamiltonian
with the mirrors that are relevant for the right-relational
observables, one finds nonzero commutators. It is only if
one uses the naive but incorrect expansion of Sec. VI D that
one obtains the incorrect expectation for the commutator
used in (8.6). _

One possible interpretation for X Zm is that they actually
correspond to the operators from the left CFT in a thermo-
field doubled state and not to the operators behind the
horizon at all. This would explain why they do not satisfy
the properties expected of the O,, ,, operators. However, as
we showed in Sec. VIIF, the subtleties and paradoxes
associated with the O,, ,, construction enter precisely when
one attempts to map operators from the left CFT into the
operators that a right-infalling observer would see behind
the horizon. So, if this alternate interpretation is correct,
then the operators X, " pertain to a formal construction that
is not directly relevant for the construction of the black hole
interior in AdS/CFT.

C. States in the ‘“‘canonical”’ ensemble

We now turn precisely to an interesting class of exci-
tations of states in the canonical ensemble. The point is that
we need to refine our notion of equilibrium, since the time
independence of correlators of single-trace operators may
not be sufficient to classify these states into equilibrium
and nonequilibrium. We do not explicitly perform this
classification here, but we show that such a classification
should exist.

These states were also discussed in [12], but we phrase
the issue independently of Harlow’s mirror operators, since
these do not have any geometric significance as we pointed
out above.

Consider a state |U,,,) that satisfies the following
condition. For any element A, of the set of observables
A, we have

0O(e™5),

where p is an invertible matrix. Note that if the state |¥_,,)
is in equilibrium then the density matrix p satisfies
[H,p] = 0. This is important for correlation functions to
be time-translationally invariant.

We pause to make two important points. Given a state
| W ) the density matrix that appears on the right of (8.14)
is not unique. In fact, the possible solutions to this equation
are the subject of entropy maximization [59]. Second, both

<\I’can|Ap|\I/can> = Tr(pAp> + (814)
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the energy eigenstate and the sharp microcanonical state
that we considered above are not relevant here. We cannot
find any invertible choice of p to satisfy (8.14) for these
states without making some matrix elements of the inverse
arbitrarily large.

Now, given any Hermitian element of the set of observ-
ables A ps WE consider the transformation

|‘I[can> p%eiA,;p_%|\chan>‘ (8'15)

We can check that correlators of elements of A in the state
|W.,,) are the same as those in |¥,,). We see that

<\I}é(m |A |\Ilc4n> - A

=Tr {p <p‘5e

= Tr(pAm) + O(e_s) = <\Ilcan|Am|\Ilcan> + O(e_s)'
(8.17)

(Wemlp e ArpiA, p7erp= Ty, )

—iAp,,;Am,,;epr,,—;ﬂ L0 (8.16)

In obtaining (8.16), we simply used (8.14), and then we use
the cyclicity of the trace and (8.14) to obtain the final result
in (8.17). The question now is as follows: is the state | ¥, )
in equilibrium or not?

Consider a concrete example. Take the state that was
discussed in [12],

(8.18)

where ¢, are arbitrary phases, the sum is over all energy
eigenstates and Z(f) is the partition function of the
boundary theory. As discussed in [12] for simple correla-
tors this state behaves like the canonical ensemble to
exponential accuracy, and for this state we can take
p= z(/;) e™PH and satisfy (8.14).

To see this, consider any operator, A,, obeying the
eigenstate thermalization hypothesis (7. 15) Adopting the
notation of (7.15), we consider

ZA —ﬂEi

Ze-ﬂ "R, eSB(E, ;e

< can |A |\Ilcan

To convert the second term to a sum over i, we sum over all
J that can be connected by the cross terms. We make the
further reasonable assumption that the unitary links states
that are separated only by a finite band, i.e. B(E;, E;) < 1
for |E; — E;| > 1. Now, we see that for each value of i, the
sum over j runs over effectively O(eS) states. However,
since these states contribute with varying phases the typical
size of this sum over j is suppressed by e compared to the
first term involving A(E;). So we can estimate that
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(Ve Vo) = 5 SAUE)eH +0(e)

IR o3
Z(ﬁ)Tr( A,) +0O(e™).

Now, we consider the group of transformations of the form
(8.15) that we can make to this state, where now
p= ﬁTr(e‘/”H),

pH

M|V,,) = e Tetres|T,,,). (8.19)
The question is, if |¥ ) is an equilibrium state, then is
M|V.,,) in equilibrium or not?

We work with this concrete example to consider this
question. Of course, the reader can easily generalize this
discussion to states that mimic a density matrix that is
distinct from the thermal one.

At first sight, this question is a little puzzling because of
two seemingly contradictory facts. On the one hand, all
correlators of elements of A in this new state (8.19) are the
same as in the canonical ensemble

(Wen|MTA, M|V, Tr(eMA,,) + O(e73).

1
Z(p)
On the other hand, it is easy to verify that

(UM e | W) = 1= O(N), (8.20)

—iA,

where here e V.., is an excited state, as discussed in
Sec. VIIT A. So if we declare the transformed state in (8.19)
as an equilibrium state, then we would have the unusual
situation of having equilibrium and excited states separated
by a distance ﬁ in the Hilbert space (8.20). This would not
be a contradiction, since the operators O are state depen-
dent, but it would be a rather striking departure from the
behavior of state-independent operators.

Therefore, the better alternative is to enlarge the set of
observables A to include an operator that can distinguish
between the states M|¥_,,) and |¥,,,). There are many
such operators because it is certainly not true that all
physical properties of these states can be captured by the
thermal density matrix. For example, if we take the
boundary to be on S9! and ask for the entanglement
entropy of a subregion on this boundary, then in both states,
this entanglement entropy starts to decrease after the
volume of the subregion increases past half the volume
of the §%!, which would not be the case for a truly thermal
mixed state.

We return to the discussion of the appropriate operators
that can detect this excitation in future work. However, for
now, we perform an important consistency check. Consider
the set of states formed by the action of the group of
exponentiated unitaries
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{llpcan>’ M<A1 )|\Ilcan>7 M(AZ) |\Iican> o 'M(An)|\llcan>}v
(8.21)

where A}, A,, ...A, are elements of A and M(A,)|V,,) =

e~ T et 7|, ) as above. We show that it is consistent, in
principle, to have sets of this form, where only one element
of the set is an equilibrium state, and all others are
nonequilibrium states. The consistency check that we need
to perform is to ensure that such a classification will not
violate the rule that most states in the Hilbert space must be
equilibrium states.

1. Consistency condition for maps from equilibrium
to nonequilibrium states

Let us state this consistency condition more precisely. It
is applicable not only to this case, but to more general
statistical mechanical questions of classifying equilibrium.
Let us say that we have two regions of the Hilbert space, D,
and Z. We have a function on the Hilbert space O (),
with the property that ®;(¥) = 0 for equilibrium states and
Op(¥) =1 for nonequilibrium states. This function pro-
vides a classification of equilibrium. Next, we have a
measure on the Hilbert space du(¥), which has the
property that by this measure most states in both D and
7 are in equilibrium.

% <1, (8.22)
%)((?IIE)(\II) < 1. (8.23)

This means that the volume of nonequilibrium states as a
fraction of the total volume is very small both in D and in Z.
Finally, consider a map M,

M:D->T,

which has the property that it maps equilibrium to non-
equilibrium states.

Let M (D) be the image of D under this map. Now, let Zp,
be the region of the Hilbert space that is within a distance ¢
of the set Z. More precisely, for € <« 1,

Vo) EZpeI|V) €D, st [(Wy M) >1-¢.
(8.24)

Then we have the following important consistency
condition on this map:

du(v
% < 1. (8.25)
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We explain this condition in a little more detail below.
Intuitively, it means that states that are close to the image of
D under M must have very small volume in Z.

From this condition it follows immediately that an
invertible map D — D cannot map equilibrium to non-
equilibrium states consistently. For example, consider the
microcanonical measure where we pick states in an energy
band. (We define this more precisely below.) We expect
most such states to be in equilibrium. Now consider time
translations, which map this region back to itself.
Therefore, the image under time translations of the original
region is the region itself. Thus time translations do not
satisfy (8.25) and therefore cannot have the property.

2. Microcanonical ensemble and unitaries

To warm up for the problem of maps from canonical
states back to themselves, we consider a similar problem
for the microcanonical ensemble. We define this ensemble,
define an appropriate measure so that (8.22)—(8.23) are
satisfied and show how unitaries of simple operators do
satisfy (8.25).

Consider the set of all states of the form

E;=E+A

|\Ijmic>: Z ai|Ei>7

E,=E-A

(8.26)

where >";]a;|? = 1 for the state to be normalized. We now
write down an invariant Haar measure on this set, du (¥ . ),
with the property that for any unitary that maps states of
the form (8.26) back to another state of the same
form, [W[, ) = U[¥y), we have du(¥,;) = du(Vpic).
Explicitly, to obtain the microcanonical ensemble, we
consider the uniform probability measure

d,u(a,-) = 5<1 — Z|ai|z)d2a1...d2al),

where D is the total number of energy eigenstates in this
range, and N, is a normalization constant that we fix below.
In the measure above, note that we have not identified states
that differ by a phase.

In terms of the objects introduced in Sec. VIII C 1, the set
D is the set of all states of the form (8.26). We have not
specified a precise equilibrium function. However, with
almost any reasonable choice of @z (), for example, we
can choose this function so that it implements our equi-
librium condition in (7.5), and with the measure (8.27), we
see that (8.22) is satisfied.

We can take the map under consideration to be the
unitary matrix, U,, = e“4». Now one might naively imagine
that there are “as many” states of the form U,,| ¥ ;) as of
the form |W ;). The reason this is still consistent with the
fact that most states are equilibrium states is that U,, | ¥ ;.)
does not belong to the original microcanonical ensemble.

(8.27)
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Even if we consider A,, = O, + O}, where w is a very low
frequency we see that the new state U,,|¥ ;) gontains
energy eigenstates of higher energies. The term % in the
expansion of the unitary operator leads to a new ensemble
with states £ + A & kw. The point is that even a small
increase in energy increases the volume of the ensemble by
a huge amount, and therefore the state U(A,,)| Vi) come
from a larger ensemble, where they are extremely atypical.

Let us see this more precisely; let us define 7 to be the set
of states that can be written in the form (8.26), but with a
width A" > A. In the example above, if we take % > 1,
then we can consistently think of the unitary as a map from
D to Z. Strictly speaking the image of the lower dimen-
sional manifold in the higher dimensional manifold is
measure 0. However, this does mean that nonequilibrium
states are infinitely unlikely. To answer physical questions
we must examine how many states in the higher dimen-
sional manifold are within an e distance of the states
obtained by exciting the lower dimensional manifold with a
unitary. The relevance of this condition is that by the
arguments of Sec. VA the expectation value of any
projector in states which have an almost unit inner product
is almost identical and therefore such states have similar
physical properties.

To verify (8.25), we consider the volume of the manifold
of all states of the form (8.26). This is just given by
integrating the measure (8.27) which results in

7TD

Vimicro = w7 »
micro F(D)

the factor of (27) coming from the integral over the phases
in each coefficient in the state.

The action of the unitary maps this into a slightly larger
ensemble. The larger ensemble has dimension D’ and total
volume

/
][D

Vexe = m .

Now we may consider the volume of the set of states that
are within a distance € of the image of the unitary map, in
the sense of (8.24). This volume can be calculated through
the following integral:

Vimage = /€2xdx/6(1 —x2—Z|ai|2)d2al...d2aD
0 i
x /6(x2—Z|bj|2)d2b1...d2b0/_l)

J
/
P

— mA d(x2)(x2>D’—D—1(1 _ xZ)D—l.

The last integral can be represented as an incomplete beta
function, but we can bound its value rather easily. First note
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that the integrand reaches a maximum at x2 = 2=2=1 S D L Ifeis
sufficiently small, then this maximum value is out of the
region of integration and the integral is bounded above by

/
”D

roro-p)° T

Vimage <

The ratio of the volume of this region to the volume of
the ensemble is given by
vimage F(D/>
< €
Vexc F(D)F(D/ - D)

2(D’—D)(1 _ 62)D—1 .

In our case, D, D', D —D’ are all very large and we
can approximate this using Stirling’s approximation to
obtain

Vlmdge

L D'(1 =)\ P D2 D'-D
Vinaee _ (1 _ 2 (21 =€) . .
Vexe D D' —-D

In the reglme where €2 < 2
small.”

Therefore even if the unitary increases the dimension of
the new ensemble by only a small fraction, it is completely
consistent with thermodynamic expectations to classify
almost all states both in the original ensemble, and in the
new ensemble, as equilibrium states.

D, , we see that this ratio is very

3. Excitations of canonical states

Now we want to show that the same principle holds for
the canonical states that we discussed above. More pre-
cisely, we consider some possible measures on a subset of
the Hilbert space, so that typical states picked using this
measure are of the form (8.18). Then the action of the
operators M takes us to another subset of the Hilbert space
where the image of the original subset occupies a vanish-
ingly small volume. By the remark below (8.18), as a
corollary, this provides some evidence for the claim that
there is no subset of the CFT Hilbert space, with a nice
measure satisfying (8.22) which has the property that it is
left invariant by the action of M.

First, let us attempt to make precise what we mean by
states of the form (8.18). In (8.18) we ensured that each
coefficient was precisely the Boltzmann factor. This is
clearly a very special class of states and we would set
ourselves too simple a problem by focusing on these states.

*The reader should note that this regime is somewhat different
from the regime considered recently in [60]. Indeed, as pointed
out there, if we define nearby states by taking e> ~ % then the
volume of the image and nearby states is almost the entire volume
of the excited manifold. This is not in contradiction with our
result above that excited states are atypical. Rather it is the

. / 1 .
statement that once we move a distance (252)? from the excited

state, we are back in the set of typical states of the Hilbert space.
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So we can generalize this slightly to consider states of the
form

E 1 PE;
\chzm = — i_TEi’ 828
e =2 e B 82

where the a; are complex numbers that are drawn from a
distribution so that their norms can each independently
fluctuate a little about 1 but

(Jail?) = 1.

We comment more on the range of the sum [E|, E,| below.
It is easy to verify, by repeating the argument above, that
even for the states (8.28) we have

(8.29)

<\chan‘Ap|\cha.n> = mTr( _ﬁHAp) + O(€_§>
By the central limit theorem, since there is an exponentially
large number of energy eigenstates in (8.28), the fact that
the coefficients a; can fluctuate in magnitudes as well as
phases is ummponant To see this consider a range of
energies of size e —%. Even this tiny range of energies has an
exponentially large number of eigenstates. In the notation
of (7.15), the expectation value A(E;) is constant over this
range, and therefore the fluctuations of |a;|* average out.
Therefore, for any smooth function, it is only the mean
magnitude of the |a;|? that matters, which is what leads to
the result above.

Now consider the action of an element of M on the state

(8.28). We write M = ¢~ 3 Ue". If the matrix elements of

U are U|E;) = ) ;U};|E;), then we reach the new state
|\I/can> = NMM|\Ilcan>
E=E,

UilE;),

where the factor
NM = <\Ilcan |MTM|\I/can>_%

is required to normalize the state. If we neglect the edge
effects for the moment (these are important below), then we
see that we again have a state of the form (8.28), although
with coefficients

= NMZU”CZI

From the argument above we can check that N, =

1+0(e?). Therefore the action of the group of
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transformations denoted by M is basically like that of a
unitary transformation on the elements a;.

We now see the following.

(1) Physically the range of energies that is relevant in
(8.28) is limited. So, we may truncate this range so
that the lower bound is E; = E — A and the upper
bound is £, = E + A. In that case, by an extension
of the arguments of the previous subsection we find
that M maps us to a slightly larger band of energies.
Under almost any reasonable measure, this larger
band has a much larger volume and therefore (8.25)
is met. The technical details of this argument are
identical to the previous subsection since, as we
noted, M acts precisely as a unitary transformation
on the coefficients a;.

We may try and avoid this conclusion in the
following artificial manner. We extend the band of
energies [E|, E,] in (8.28) so that it spans a very
large range. We now truncate the action of M so that
it acts only within this large energy range. By
construction, now M maps this set back to itself.
This may suggest that (8.25) cannot be met. This
conclusion is clearly physically incorrect since the
higher energies in (8.28) are physically unimportant
and therefore artificially extending the band should
have no effect. However, there is another important
point. If we indeed take our original domain D to be
the subspace of this large range of energies, and
attempt to define a measure that is left invariant by
the action of M, then as we show below we find that
the states (8.28) are extremely unlikely states and
themselves occupy only a small volume of the space.

The point is that there is a tension between the require-
ment (8.29) which mandates that all the a; must have equal
and approximately unit magnitude and the fact that M acts
as a unitary on this space. We now consider one particular
example to bring out this tension. In an attempt to write
down a measure that is invariant under the action of M we

|

@
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may try and write the uniform measure on the space a;.
More precisely, we consider the measure

aj ...dzaD

- Z|ai|2e_ﬂE")d2a1...d2aD. (8.30)

Hcan (ai)dz

— 27N, <Z(ﬂ)

Here, to make the measure well defined we had to truncate
the range of energies [E|, E,] so that the total number of
eigenstates that enter the range is D. If we take this range to
be large enough so that E, — E; > VN then, for the
purposes of its action on states (8.28), the action of M can
be consistently restricted to this range. Now, naively, one
might believe that this leads to a contradiction with (8.25).
However, we find that under (8.30) with a large range of
energies the states (8.28) are themselves very atypical.
Therefore the fact that the truncated version of M maps the
energy range back to itself and also leaves the measure
(8.30) invariant still does not lead to a contradiction
with (8.25).

We now explicitly bring out the tension between mea-
sures like (8.30) which are the natural guesses for measures
invariant under M and the fact that we would like the
magnitudes of the a; to be approximately constant in (8.29).
We compute the reduced probability distribution, p.4 for
the coefficient a; by integrating out a,...ap. We write the
delta function as

o2 - Z|a,~|2e-ﬁEf)
ll Z |a;|>e~PEi) 612

= lim
e—0 271'

where € is a small regulator. We also add small regulators
€'e PEi| a;|* to make the integrals over a,...a;, well defined.
Then we find

ﬂred(a1>5/ﬂcdn( Dda,...d*ap = N /Jlaz d2aDélelrEo die"@P)=) el e?Ei)=el y=e'y L Eilaf?
[N,z il (Z() | e )P
= 1 dl
ﬁz El]ee]rilo/ (€' +il)P-!
- D-1
_ Nﬂﬂ Z :|/dldxxD—Ze—x(ilJre’)eil(Z(ﬁ)—al|ze'/’El)—€Z2
I0(D = 1)e P25
[ N, P! r (4 2(p)Jay 2ePE1 )2
_ H il D-p —APTAlTe e
= Fo- 1. S E \/1 /dxx e 3e

|a1|2 —PE\\ D-2
Z(p) )

(1~

In the last step here, we have absorbed all the normalization factors into an irrelevant constant x and taken all regulators to 0

and kept the part that is nonvanishing in this limit.
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Generalizing this computation to the other coefficients,
we find that the reduced probability distribution for the
coefficient |a;|> can be written as

(a~) = K(l - —|ai|2e_ﬂEi)D_2 X KEX |:—7De_ﬁEi|ai2:|
Hred\dj) = Z(ﬂ) ~ p Z(ﬂ) .

(8.31)

Now, we see something interesting. If we take the range
of energies [E|, E,] that appeared in (8.28) to be much

larger than VN as we would need to make M act
effectively in this space then (8.31) suggests that the
different a; have very different typical magnitudes. To
ensure that the typical magnitudes of the coefficients a; are
the same in (8.31), we have to take the range of energies
E, — E; < 1. However, in this case the ensemble is clearly
not invariant under the action of M.

Physical intuition: Let us briefly summarize the physical
intuition behind the analysis above. The action of M is like
a unitary on the coefficients a;. Therefore, just like unitaries
in a microcanonical ensemble, M tends to move the
coefficients slightly from lower to higher energies. From
this point of view, in the states (8.28), as written, the high
energy states are weighted with coefficients that are
typically too small and the low energy states are weighted
with coefficients that are typically too large. If we truncate
the coefficients a; to a small range of energies, then M
simply moves us out of this range. This suggests that it may
be difficult to find a measure on the Hilbert space that
satisfies (8.22)—(8.23) for which M does not meet (8.25).

So, in principle it is consistent to expect that there may
exist further criteria, based on the magnitudes and the
phases of (8.28) which can be detected by various operators
beyond the simple operators in our algebra, which will
determine that in the set (8.21) at most one of the states is in
equilibrium whereas the others are not. We return to this
issue in future work.

D. Summary

We now summarize the results of this section.

(1) For ordinary excitations of an equilibrium state with
unitary operators, we can detect them using ordinary
correlators and modify the construction of our
mirrors accordingly.

(2) For the van Raamsdonk-type unitaries, which act
behind the horizon, we can detect them by using
correlators of the Hamiltonian.

(3) Harlow attempted to define new mirrors that could
evade detection by the Hamiltonian. However, we
have shown here that this was predicated on an error
in the computation of the Hamiltonian with the
mirror operators. Harlow’s operators do not have the
right geometric properties to play the role of mirror
operators, and do not even obey the Heisenberg
equations of motion.
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(4) Nevertheless, for some states with a canonical
spread, we can find a group of transformations as
in (8.21) so that we can map one state to another
where the correlators are almost the same. There is
no strict ambiguity involved here, because none of
these states coincide exactly with the states obtained
by acting on an equilibrium state with a mirror
operator.

(5) However, while it is true that at the moment we do
not know how to classify the states in the orbit
(8.21), we have further shown that it is consistent
with statistical mechanics expectations to classify
one of these as equilibrium and the others as non-
equilibrium. Although it appears that all these states
are equally generic, this is specious, and such a
classification would be perfectly consistent with the
notion that most states are equilibrium states.

We return to this issue of the classification in further work.
However, we note that this is a broader question in AdS/
CFT—that of precursors. At the moment, we do not know
how to write down the bulk to boundary map for all
possible states but this is an issue that extends beyond our
construction, and is independent of the recent discussions
on the information paradox. We emphasize again that our
results in this subsection show that, within the class of
states we have considered—equilibrium states, near-
equilibrium states excited by the ordinary and mirror
operators, and small superpositions of these—there is no
ambiguity in our construction.

IX. STATE-DEPENDENCE IN ENTANGLED
SYSTEMS AND ER = EPR

We now describe the construction of our operators in
general entangled systems. In Sec. VIIF, we already
examined the construction of the interior in a specific
entangled state—the eternal black hole. Here we generalize
the construction to more general entangled states. We show,
also, that the construction of Sec. VIIF follows automati-
cally from our generalized definition here.

We first present a general construction of interior
operators. This construction is a very natural generalization
of the one-sided interior constructed in Sec. VII and in fact
the defining equations for the mirror are unchanged. The
only difference is in the construction of the little Hilbert
space Hy, . This is because for entangled systems we have
two sets of possible natural excitations: one, where we act
with excitations in the original CFT, and the other where we
act with excitations in the entangled system.

We then examine the consequences of this construction.
We divide this analysis into two parts. We first consider
states where the CFT is entangled with another CFT in a
maximal manner so that the entanglement entropy scales
with V. Next we consider states where the CFT is entangled
with a small “pointer,” which could be a collection of a few
qubits so that the entanglement entropy is O(1).

084049-55



KYRIAKOS PAPADODIMAS and SUVRAT RAJU

In both cases, we obtain interesting results. When the
CFT is entangled with another CFT, our construction leads
to a precise and natural formulation of the ER = EPR
conjecture [13]. When light operators on the right are
entangled with light operators on the left, we find that
excitations on the left can affect the experience of the right-
infalling observer in precisely that manner predicted by a
geometric wormhole. On the other hand, in a generic state
where there is no such entanglement we find that an
observer on the left CFT loses his power to affect the
region behind the right horizon by means of simple
operations, although he could possibly do so by using
some very complicated operators. This is consistent with
the heuristic notion that the wormhole becomes very long
for these states.

On the other hand, when the CFT is entangled with a
small system no such geometric wormhole appears for any
state. However, for this case, there is another crucial
question, which is as follows. As we show below, the
important test of whether there are any observable violations
of quantum mechanics for the infalling observer arises when
the observer entangles the CFT with a small system, jumps
into the black hole and observes whether the state-depend-
ence leads to any deviations from linearity. We show below
that such an experiment does not lead to any observable
departure from the predictions of quantum mechanics.

We wish to emphasize throughout this section that these
predictions arise as a natural consequence of our con-
struction and not because we have tailored the definition of
the interior operators to entangled systems. As we men-
tioned above, the only change in an entangled system is that
we have additional coarse or light operators to excite the
system from the left and therefore we must enlarge the
space Hy,_ .

We should mention that our emphasis and approach is
complementary to the approach of directly studying density
matrices that was adopted in [17].

Notation and objective: In this section, we consider
entangled states,

|Wen) = Zai’\ii> ® [¥;). (9.1)

Here a; are some coefficients, |U;) are orthonormal states in
the original CFT, and | ;) are states in a second system that
may be another CFT or a collection of qubits. We refer to
this system as the left system. The sum may be over a small
number of states, or an exponentially large number.

In this section, our primary objective is to reconstruct the
experience of the infalling observer from the original CFT,
which we also call the right CFT. Our construction of the
mirrors, and also the little Hilbert space is appropriate for
right-relationally defined local observables. In many cases
where the left system is also a CFT, we can perform an
analogous construction to describe the experience of a
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left-infalling observer. But apart from indicating this briefly
below, we do not focus on this.

A. Mirror operators for entangled systems

Summary of the construction: The construction can be
summarized as follows. We call A the small algebra of the
right CFT and A, for the algebra of observables of the left
system. We also define the product of the two alge-
bras Aproquee = AL ® A.

The little Hilbert space is defined as the span of states
{Aproduct| Wen) }- In general this is bigger than just the span
of states {A|¥)}, but there are some cases (like the
thermofield double state) where the two spaces are the
same. In the general case, the Hilbert space Hy_  can be
decomposed into the direct sum of subspaces H, , each of
which is closed under the action of the right alénebra A,

Hq/en - @H{pcn.
J

For each j we can identify a unique state |Ul,) € H{I,
which is an equilibrium state with respect to the right
CFT.”® The rest of the subspace H{I,cn can be generated by

acting on this equilibrium vector with elements of the
algebra A.

Hence, within each of these subspaces we have a
representation of the algebra A which obeys all the
conditions that we encountered in the case of nonentangled
systems. More precisely, no element of the algebra .4 can
annihilate the state |¥Z,) and the entire Hilbert space H,
can be generated by acting with A on |W.,). The first
condition follows from our assumption that right-CFT
states in (9.1) are black hole states.

We can now define the mirror operators acting within
this subspace using exactly the same rules as in Sec. VII.
Finally, the mirror operators acting on the full little Hilbert
space Hy  are just the sums of the individual mirror
operators on the subspaces HY, .

We emphasize that this is the natural extension of our
construction of the mirror operators for systems without
entanglement. As we see, this simple definition is able to
reproduce the expected physics for ER = EPR and other
types of entangled states with or without wormholes.
Below we describe this construction in more detail.

1. Construction of the little Hilbert space for
entangled systems

We now discuss in detail how to construct the little
Hilbert space about an entangled state Hy . We first

*As in Sec. VIIE 2 when considering superpositions, it may
happen that there is no equilibrium state inside H{pm~ In this case
we need to enlarge H{I, to the direct sum of little Hilbert spaces
built on equilibrium states.
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discuss the set of allowed excitations. We then use this to
discuss the notion of equilibrium in entangled systems.
Finally we put these notions together to construct Hy_ .
Allowed excitations of entangled systems: There are two
differences from the single-sided construction. In an
entangled system, we have first the operators from the
original CFT, which are part of .4. Additionally, observers
should also have the ability to excite the state by acting with
operators in the left system as well. In the left system, we
can again build up a set of operators, which we denote by
A . If the left system is a holographic CFT, we should
restrict the set of allowed operators in the same way that we
restrict them for the original CFT. On the other hand if the
left system is a collection of qubits, then there is no notion
of light and heavy operators, and we can allow A; to
include all operators in the left theory. Since operators on
the left commute with operators on the right the full set of
allowed operators has the structure of a direct product

Aproduct = AL ® A.

We denote elements of the left algebra by A; , € A;, and
elements of the original algebra by A, € A as usual.

We explore this in greater detail below but we caution the
reader that unlike in the case of the single-sided CFT the
little Hilbert space Hy, is not isomorphic to Apoduct-

Equilibrium in entangled systems: We now turn to the
notion of equilibrium in entangled systems. Since we are
now allowing excitations of the state by operators in
Aproduct 1t 1s natural to modify the notion of equilibrium
as well. This is a natural generalization of the definition of
equilibrium in Sec. VII B for the original CFT. We define
the deviation from equilibrium on the right using the same
parameters as in (7.3)—(7.4),

Xp(1) = (Ven|e™'A e Ty, ),

v =13 [ 1600 =1, 0)lar,

where H is the right Hamiltonian. In addition, we consider
similar deviations from equilibrium in the left CFT.

)(Lp(t) = <\I/en|eiHLtAL,pe_iHLt|\I]en>’
-1 [Ty
vy =T / (G (1) = 1, ().

A necessary condition for the system to be in equilibrium is
then that both left and right correlators are time-transla-
tionally invariant.

Vip = (e7), V¥ p. (9.2)

As above this condition is necessary but not strictly
sufficient because of the class of excitations that we
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discussed in Sec. VIII C. We also see below that (9.2) is
often superfluous and we can perform the construction of
the mirrors provided that the state is in right equilibrium
even if it is not in left equilibrium.

Hy,, for entangled states: We now turn to the con-
struction of the little Hilbert space, which describes the
space of simple excitations about the base state. The main
difference compared to our discussion above is that in the
presence of entanglement, it is not necessary that all
operators in Aoy give rise to independent descendants
of the state |¥.,). In particular, it is possible that

(AL,p _Aq)|\llen> =0,

for some correlated choices of A , and A ;. Let us consider
two examples of this.

In the thermofield state |Wy), we have

(O~ 0 Wy) = 0. (93)
It is understood, above and in other equations below, that
when we write an operator purely from the left system, it
can be lifted to an operator on the product system through
0,,=0,, ® 1 and vice versa.

Next, consider the CFT entangled with a two qubit
system. This system has four states, which we denote by
[1)...]4). Now we may have a state that is not maximally
entangled,

1
V3
where | ;) are some orthogonal states in the original CFT.

Denoting the projector onto state |4) by P, = |4) (4], we see
clearly that

Wen) = —=([¥1) @ [1) +[¥2) @ [2) +[¥3) @ [3)),

P4|P.,) =0. (9.4)
Note that both these kinds of states, where we obtain null
relations, are very special. States where relations of the
form (9.3) hold are special because the entanglement is
between simple operators on both sides. As we see below,
generic states do not have such relations. Similarly, when
the left system is small, relations of the form (9.4) also
occur only when the entanglement is nonmaximal.
Nevertheless, our construction is able to account for these
null relations correctly.
We now define Hy_ as follows. Starting with the state
|W.,), we act with all elements of A to obtain the space
H%en = Span Of{Al |\I]en>’ ---AD|\IJen>}1 (95)
where we remind the reader that the elements of A
displayed above form a complete basis for this linear
set. As usual we assume that there are no null vectors in
the set displayed in (9.5). We define PY, to be the projector
onto this subspace. This means that
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(a) Hy,, where the action of the “left algebra” is

en

entirely contained within the space obtained by acting

with the right algebra.

(b) Hy,, in cases with less entanglement.

Now the action of “left operators” opens up
new directions.

FIG. 12.  The structure of the wormhole is directly linked to the structure of Hy_ . In the case on the left above, where Hy_ coincides
with HY _,» We obtain a geometric wormhole. The case on the right can be understood as an elongated wormhole. In the extreme case
where Hy  becomes a direct product space, the geometric wormhole disappears.

[v) € Hy_ = Phlv) = |v),
<D|Ap|\1jen> =0, Vp= Pgn|v> =0.

Next we pick a Hermitian element, A, ; of A;, and
construct
|\I/én> = (1 _Pgn)AL,l|\Ilen>' (96)
We pick A so that |Pl) is nonvanishing and in right
equilibrium. Note that it is not necessary for |¥,) to be in
left equilibrium. (The reason for the restriction that A} ; be
Hermitian is explained below.) We now construct the space
Hll,cn = span of {A | Wl ), ... Ap| W)} (9.7)
Then we define P, to be the projector on My, . Similarly,
we look for A} , € A; so that

‘\Pgn> = (1 _Pgn)(l _Pén)AL.2|\Ijen>

is nonvanishing and in right equilibrium. We then construct
H%I,en analogously to (9.5) and (9.7) and continue recur-
sively in this manner until it is no longer possible to find
any elements of A; which can produce descendants of
|W,,) that are orthogonal to all the previous subspaces.
To summarize this construction, we find elements
Apy..App, ~ (where Dy,  may be smaller than the
dimension of the left algebra) with the property that

AL,l |glen> .. 'ALVD

max

Ven)
are all in right equilibrium and have the property that
<lllen|ApAL,j|\Ijen> =0, Vp,j

On each of these we construct the space Hy;_as shown in
(9.5) and (9.7). The full space Hy,, is then defined by

en

My, = DH,
i

It is worth discussing the structure of the space Hy,_ that
results from the construction above, and the examples that
we consider below will elucidate this. In the thermofield
state, an action by a simple operator in the left CFT
corresponds to the action of a simple operator on the right
CFT. Therefore in this case Hy,, coincides with 1y, . On
the other hand, in a generic entangled state of two CFTs,
there is no relation between the action of simple operators
on the left and the right, and therefore Hy,_ is isomorphic to
A ® Aproduer- In intermediate cases where there is some
entanglement, but not maximal, we obtain an Hy,_ that is
intermediate between these two cases: its dimension is
larger than H%en but not maximal. We describe this in detail
in several cases below.

The structure of Hy_ is directly related to whether we
obtain a wormhole on this. This is shown schematically in
Fig. 12 and explained further below.

Definition of the mirror operators: The mirror operators
are now defined via precisely the same linear equations as
Sec. VII C. Note that each vector in Hy,_ can be written as a
linear combinations of vectors of the form A ,|¥l,) for
some choice of p and j. We define

o

@ﬂ?,mAP‘\Ilén> = Ape T((,)zu,mw—h:[/én)’

(O HA | VL) = 00O, ,A,|WL,). (9.8)

As usual, these equations have a solution because we have
A p|\IJén> #0, V p,j. As the reader will note this is a direct
extension of our definition of the mirrors for the original
CFT. We now show how this simple extension has
remarkable properties and allows us to derive a precise
version of the ER = EPR conjecture and also show that the
infalling observer will not observe any violations of
quantum mechanics.
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B. The wormhole in the thermofield double state

We now show how the construction above leads to a
wormhole in the thermofield double state, where we take
|W.,) = |Wyq). First, let us examine the construction of
Hy,,. In the thermofield state we have the following
relations:

/i( 0

OLw,m |‘Iltfd> Ow m|\Iltfd>

, m|\Iltfd>

5 /i(u
Lom|Yia) = €2O (9.9)
Now consider an arbitrary polynomial in the O, , ,,, which
we denote by A; ,. In the thermofield state we have the
relation

pH pH

ALy Vyq) = 72 wer |Wiga)

where, on the right of the equation above, we have an
operator acting purely in the right CFT. If A; , € A; then,

pa

barring edge effects, we have e~ TALe5 € A. Therefore, in

this case we start by constructing
H\pﬁ, AWigq),

and then we do not get any new states by acting with A; .
As a result, the full little Hilbert space is simply

H‘I’ttd - H%u‘d'

Then the construction of the mirror operators results in the
same answer as the construction in Sec. VII F but we repeat
it here from the general perspective of mirrors in entangled
systems that we have presented above. The action of the
mirror operators is specified by the linear equations (9.8).
Since in this case the structure of Hy,, is so simple, these
equations reduce to

_po
= Aae 2 OL m |\I’tfd>’

_po

(UA e 7 me|qltfd>

é)w.mAa | ‘lltfd>

[Ow,n17H]Aa|\Ijtfd> (910)

Now the first point we note is that (Z)w,m does not
commute with elements of A;, and moreover that this
nonzero commutator is very special. We can check this
explicitly by considering the commutator of [@w
m, Ozw, m,]. We have

/)’w
Om moLw m |\Iltfd> =e: O Ow m/|\Ithd>

w,m

Pl —w)

— gTOw/’m’ OZ},m |\Iftfd> ’

where in the first equality we used (9.9). And also
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O}y O Visa)

2 OmO] | Visa)
OO, Vi),

m,mlqjtfd> =e ﬂz‘”

_po

OT

Lo .m’

This leads to an O(1) effective commutator,

[me’ OLw m]|\11tfd> = Cﬂ(w’ m)(sa)w’énlm’|\lltfd>' (911)
These are very special commutators, and suggest that

within correlators involving only elements of Ay, it is

possible to replace @w,m with O, ,,. However, as we have
emphasized one cannot equate these operators. In particu-
lar, to compute the commutator of the mirrors with the left
Hamiltonian we consider

- @melqjtfd> =e 2

_po

=e 2 Ow mHp |\I/tfd>

po
=H; e 20, m|‘1’tfd>

@w,mHL |\I]tfd> w, mH| \Iltfd>

= HL@w,m |\I]tfd>'

In this chain of equalities we have first used the isometry of
the thermofield state, then used the definition (9.10) and
then manipulated this expression by using the isometry
again and the fact that H; commutes with right operators.
So we find that within simple correlators

[@w,mv HL] |\Iltfd>i0

Therefore the mirror operators have a vanishing commu-
tator with the left Hamiltonian. Note that this follows as a
consequence of our defining relations and is not something
that we have to put in by hand.

For the sake of completeness, we can also evaluate the
two-point function

o ~
< lfd|om mOLw m| tfd> =e 2“ <\I’tfd ‘ oa),mom,m |\I’lfd>

= Gy(w, m). (9.12)
We can proceed to evaluate other correlators along the lines
of (9.11)-(9.12). If we now try and reproduce these
correlators from a geometry then the geometric picture
that arises from this is that of the standard thermofield
wormhole. See Fig. 13. Now we show how, in a generic
entangled state of the two CFTs, a very different geometric
picture emerges.

C. The generic entangled state of two CFTs

We now show how our construction works in the generic
entangled state of two CFTs. Consider scrambling the
thermofield double state with a left unitary. So we now
consider
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$ Or(t)

onen } | .
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FIG. 13. The standard wormhole described in Sec. IXB:
operators on the right Ok(f) are entangled with left operator
O, (-1).

| \Ijgen> = UL,g | \Ijtfd> ,

where the unitary is not an exponentiated element of the
algebra of simple operator: U, , # eLe but rather some
generic unitary that changes the structure of entanglement
of the two sides. As a result, as shown in [4], simple
operators on the left and right are uncorrelated.

(9.13)

<‘I’tfd|Uz,yf“L,aA/;'UL,g|‘I’tfd> = 0(3_5)7 Vap (9.14)

The construction of Hy — proceeds according to the
algorithm described in the beginning of this section.
Notice that there is a qualitative difference from the thermo-
field double state, because we no longer have relations of the
form (9.9). The relation (9.14) implies that for an arbitrary
element A; ; € A;, the left descendant constructed via (9.6)
is non-null and in right equilibrium. Hence the little Hilbert
space Hq;ge“ will have the direct sum decomposition as
explained earlier. We select a set of operators Ay ;...Ap p,
which form a basis of A; and generate the equilibrium
vector in each of these subspaces. Finally we find

H\IIgcn = span Of{A/}AL,(x|\I’gen>v
p=1..D,a=1...D;}.
Now, the definition of the mirror operators above reads

o

@a),mA/}AL,a|\I/gen> = Aﬂe 2 OZ).mAL,a|\IJgen>' (915)

But since operators in A and .4; commute this becomes

o

@w,mAﬂAL,a|‘1}gen> = e_TAﬂAL,aOZJ.mqugen>'
Therefore for the generic entangled state [¥,.,), we have

[(Z)w,m,AL.aH\l/gen) =0, generic state. (9.16)

We can also compute the two-point function

—pw
2

<\Iigen|@w.m02w.m |\Iigen> = e_<\ljgen|oz(u,moz’-m |\Ijgcn>
=0(e?). (9.17)
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O M (D ,
OL(t)$ \\\\\()L(t) R(>///, $OR(1‘)

FIG. 14. The dual to the generic entangled state described in
Sec. IX C. Simple operators on the right Og(7) and left are not
correlated. This is indicated by the jagged broken line in the
middle and there is no geometric wormhole. But both sides see a
smooth horizon with the emergence of new mirror operators
behind the horizon.

Other two-point functions of simple operators vanish in the
same manner. Therefore the mirrors not only effectively
commute, they are also uncorrelated with the simple left
operators.

Note that both (9.16)—(9.17)—just like (9.11)—came
automatically from our definition of the mirror operators
for entangled systems and the different structure of Hy__ in
these cases, without having to put anything in by hand.

Now, we may try and write down a geometry that
reproduces (9.17) and (9.16). We remind the reader that
correlators between the mirror operators and ordinary
operators are unchanged showing that the right-infalling
observer still perceives a smooth horizon. However, the
vanishing commutator (9.16) shows that in the generic state
it is not possible to affect the experience of the right-
infalling observer by simple operators on the left. Hence the
geometric wormhole has disappeared. Instead, geometri-
cally we obtain the Penrose diagram of Fig. 14. This
Penrose diagram was also conjectured in [61].

1. Mirrors as scrambled left operators in the
generic state

We conclude with a further observation on the mirror
operators in the generic state |W,,). The relation (9.16) is
somewhat deceptive. Our construction automatically leads
to the conclusion that the commutator of the mirror
operators for the right-infalling observer and simple left
operators, where simple is defined through membership in
A;, vanishes when inserted in low point correlation
functions. However, another interesting consequence is
that when we have a high degree of entanglement of the
CFT with another system, then generically the mirror
operators act on the left system as well. This follows as
an inevitable consequence of their defining equations. It is
easy to prove this as follows.

Let us write the generic entangled state in a Schmidt
basis so that

|‘I’gen> = Z’Qﬁ’» ® |Ui>v (9-18)
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where the «x; are arbitrary coefficients and we have
diagonalized the entanglement so that |v;) are some
orthonormal states in the right CFT and |?;) are some
states in the left CFT. Now consider just one of the defining
equations for O, ,,

oo

O Vgen) = Age 7 O 1| Vo). (9.19)
and look for a solution to (9.19) with the @w,m acting
entirely within the Hilbert space of the right CFT. We
emphasize that (9.19) is just a special case of (9.15) with
the element of the left algebra that appears there set to the
identity. Let us denote this putative solution by X = O,, ,,..

We see that this demand that X is an operator in the right
CFT means that for each a, the single equation (9.19) leads
to a system of linear equations given by

XA, |v;) = Age > Obmlv), ¥ a.i. (9.20)
However, if the set i in (9.18) runs over a large enough
range, then in general (9.20) has no solutions. For example,
consider the situation where the states |v;) provide a basis

of the Hilbert space. Then, with A, € Ay, the states
|Wa,i> = A(I|Ui>

provide an overcomplete basis for the space if we span over

all i and all a. Therefore in (9.20) we are trying to specify

the action of the putative purely right mirror operator on an

overcomplete basis and this is not possible in general.
For example, we can find coefficients z,; so that

ZzaiAa|Ui> =0,

and in general it will not be the case that (9.20) map this
vector to 0. In particular on this vector we would find

0=X zudolv)) = Y zue FAOhnlv) # 07

Here we have used the fact that generically the right-hand
side of the relation above will not vanish with the same
coefficients z, ;.

So we have shown that in the situation with a high
entanglement entropy the O, ,, operators must act on the
left as well and the operator X that acts only in the right
CFT does not exist.

We conclude with some speculative comments on the
possible physical implications of this fact. The authors of
[13] suggested that the generic state |W,,) may never-
theless be understood through a very long wormhole. Now
note that our discussion of the generic commutator in
Sec. V D suggests that if we take a generic operator in the
left CFT, Y, then we would find that
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(Waenl[Y, O] P Wgen) = O(1). (9.21)

We emphasize that Y is not one of the simple operators that
are part of .4; which commute with the mirrors within low
point correlators. Now (9.21) suggests that with a suitably
complicated operation the left observer can affect the
experience of the right-infalling observer. This may be
taken as some evidence of the existence of a long wormhole
although it would be nice to make this more precise.

D. A superposition of the thermofield
and a generic state

As a further example, we now show how our construc-
tion works in the superposition of the thermofield and a
generic state. We consider

|\Ijs> = K(|\Iltfd> + |\Ilgen>)- (9'22)

For the generic left unitary of the sort discussed in (9.13),
we have k = % +0O(e™5).
We start with

HYy = Al,).

On the other hand, on acting with an element of .4; we find
that

(W) = (1= POAL,|Y)

pH pH
= K(l _P(s))(e_TA}LeT|‘1]tfd> +AL,1|\IJgen>)

1
= KAL,I‘\IIgen> - §K<AL,1>(|\Ilgen> + |\Ijtfd>)

K _po s op
+5 ¢ AL (W) = Veen)- (9.23)

Here (A1) = (Vgen|AL 1 |Vgen). In deriving this result, we
have used two intermediate results.

P?(AL,I - <AL,1>)|‘I’gen> =0,
P?Am|qlgen> = P?Amllptfd>

1
- E (Am |\Iigen> + Am|\Iltfd>)’

where A,, is any element of A.

In the final expression in (9.23) we have, once again, a
superposition of an equilibrium and a near-equilibrium
state from the point of view of observables in .A. This is a
special case of the superposition of near-equilibrium states
that was considered in Sec. VIL. In such states, as explained
there, we must enlarge the little Hilbert space slightly and
upon doing that we find
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Hy, =My, OHy,,

fd

The action of the mirror operators can be deduced in a
straightforward way from the definition provided in (9.8).

v PH _po

KAﬂe_TAae 2e 2 me|\:[}tfd>
+ KA/}AL,ae_Toa),m|\Ilgen>'

(bw,mAL.aAﬂ|\Ils>

Consequently correlators involving mirrors and ordinary
operators separate into

<\I,S |A(13AL a |‘ll >
= |K|2(<\Iltfd |A(13AL,(12A(1| |\Iltfd> +

a

Therefore the superposition of states (9.22) acts like a
classical mixture of a thermofield and a state with no
wormhole. This is precisely what is expected. Note that
standard Penrose diagrams cannot capture this superposition
of two geometries, although the correlators are very simply
related to the correlators in the two individual geometries.

E. The microcanonical double state and
a low-pass wormhole

We now consider a modification of the thermofield state:
a microcanonical double state. We show that in the
appropriate regime this leads to a new kind of wormhole
with interesting properties.

Consider a range of energy E £ A that contains Dg 5
states. Here A = O(1). It is also useful to consider energies
that are high enough so that the associated temperature
satisfies fA < 1. These are all hierarchies between O(1)
quantities and neither  nor A scale with \/. Now consider

Wina) = (9.24)

This state was also considered in [12] (see page 15), but we
reach a conclusion that is different from the conclusion
reached there. In particular, the state (9.24) does have a
smooth interior and, contrary to the suggestion made in
[12], our construction generates it correctly. The error made
in [12] follows from the error alluded to in Sec. VIII B: an
incorrect expectation that the mirror operators must corre-
spond to simple operators in the left CFT.

Consider a frequency w; << A. The subscript indicates
that this is a low frequency. For correlators involving such
modes, the fact that the entanglement has been truncated is
invisible. Let us denote the matrix elements of this operator
in the energy eigenbasis by cj; as in (6.11) so that we have

E;=E+A E,=E+A
> OuulEnE)= D Zc,AE,,E
E,=E-A E,=E-A

Ej

<\Ijgen |A113AL,(12A(1] | \Ilgen> ) .
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Note that, as we explained around (6.11), we can choose
these matrix elements cj;; to be real because of the
T-invariance of the modes of local operators. While the
sum over j above technically runs over all energies, since

we know that the matrix elements cj; should be peaked

around E; — E; = w;, we can write
1 E,=E+A [Ej=E+A-w,
Om,|\Ilmd> = \/2)_ § E cjilEi7Ej> .
E E=E-A | E;=E-A-a,

Now, notice that we also have

Z oLwlm‘Ei’Ei>: Z Z cij|Ej, Ei)

E—E+A E;=E+A [E;=E+A+a,
E,=E-A E=E-A | E;=E-Ato,

E;=E+A+w, E;=E+A

- >

E=E—A+w, E;=E-A

)1|E1’E

In the last step, we have interchanged i and j above to bring
it into a form where we can compare it with the action of the
right operator. However, the ranges of the sums over i, j are
different. In the case where w; < A and fw; < 1 we can
approximately neglect this to obtain

Ol W) = Ol ) + O (%) + O,

w; KA. (9.25)

On the other hand, for large @, > A we see that

(U md|(9Lm/ O, 1Va) <1, w;, > A. (9.26)
Note that the result (9.26) holds even if fw;, < 1.

We can now perform the construction above to define
the right-relational mirrors on this state. The relations
(9.26) and (9.25) then tell us that inside correlation
functions evaluated on (9.24) (except those involving
the Hamiltonian, where % corrections are important) we
can approximately perform the replacement for low
frequencies,

ow,,m - OLm,,m’ (OJSS A.

However, no such replacement is possible for high fre-
quency modes O, ,,, which cannot be related to the action
of simple left operators. These are independent operators
that can be constructed using the algorithm that we have
outlined. Using this we can compute correlators involving
both ordinary operators on the left and the right, and the
mirror operators precisely.

It would be interesting to develop a more precise picture
of the geometric dual to this state. However, some quali-
tative properties are clear. The state (9.24) is a low-pass
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wormhole—where low frequency modes on the left and
right are entangled, but the mirrors for high frequency
modes on both sides are independent operators. In this
geometry both the left- and the right-infalling observer see
smooth horizons. These observers can ‘“‘communicate”
using low frequencies but not high frequencies.

It may also be possible to think of these wormholes as
“elongated wormholes.” It is interesting to notice that the
geometries described in [62], which were also considered
in [13] have somewhat similar properties. However, these
geometries involve infalling matter and cannot be a precise
dual to |¥,4), since the state |U,4) is invariant under
eH=HT| g ) — | W, ) and this isometry is not evident in
these geometries.

F. Entangled qubits and linearity

We now consider a final case in some detail: the situation
where the CFT is entangled with a few qubits. In this
situation not only is there no geometric wormhole, but we
find that it is possible to select the interior operators to
strictly commute (as operators) with all operators in the
qubit system.

For now we make no assumption about the Hamiltonian
of the qubit system. However, the combined CFT and qubit
system can be in equilibrium only in states of the form

|‘I’qub> = Zai|Eqi> ® [¥)), (9.27)

where |E,;) are energy eigenstates in the qubit system and
|W;) are equilibrium states in the CFT, and the coefficients
a; obey 3 |a;|* = 1.

The reason that the entanglement structure has to be of
this form in an equilibrium state is because in the qubit
system, we assume that we have access to all operators.
Therefore the only equilibrium states in this system are
strict energy eigenstates which remain invariant under time
evolution. If, upon tracing out the CFT, we were to obtain
any significant off-diagonal terms in the qubit density
matrix, then it would be possible to find an appropriate
operator whose expectation value would be time dependent.
These energy eigenstates must be entangled with states that
are independently in equilibrium in the CFT. This fixes
equilibrium states to be of the form (9.27).

We now find that

H?yq“b = Z%\Eqi> ® A[¥;).

We now act with an arbitrary operator from the qubit
system A ; to obtain

AL [Vau) = ZaiAf,1|qu> ® |¥:). (9.28)
i

where AJL"L] are the matrix elements in the qubit-energy
eigenbasis of the left operator. This state is not in left
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equilibrium but because a small superposition of equilib-
rium state is still an equilibrium state we see that (9.28) still
represents a right-equilibrium state and does not lie
in H%qub.

Proceeding in this manner, we find that the little Hilbert
space has the form

Hy,, = DIE;) ® AV;).
i.j

Now, using the prescription above, we find that the action
of the mirrors is given by

Ounl|Ei) @ 4| V))) = |E) ® A 2O, T)). (9.29)
Therefore in this situation the mirror operators are entirely
operators within the right CFT and do not act in the qubit
system at all. Moreover the mitror operators above can be
understood as follows. We construct mirror operators on
each of the equilibrium states |¥;). We then take the union
of these operators and this yields the operators above.

Avoiding possible superluminality in the presence of
state-dependence: Let us briefly mention the significance
of the observation above. Our state-dependent operators are
sometimes conflated with notions of “nonlinear” quantum
mechanics that have been proposed earlier. Gisin [63] and
Polchinski [64] pointed out sharp difficulties with one such
idea that was advanced by Weinberg [65]. In particular,
Gisin noted that nonlinear evolution in quantum mechanics
could lead to superluminal communication.

We emphasize that in our proposal we do not add any
nonlinear terms to the Hamiltonian, which is simply the
CFT Hamiltonian. Nevertheless, one may still be concerned
about this issue of superluminality. We now show that this
also does not arise in our construction.

Consider the following experiment. An experimenter
entangles black hole microstates in the CFT with states of a
“small pointer” comprising a few qubits. Then the qubits
and the CFT are separated by a large distance. An observer
from the CFT now jumps into the black hole and makes a
measurement. Physically, we expect that such an observer
should not be able to send messages to another observer
who has access only to the qubits.

To make this more precise, consider a qubit system with
M + 1 states, that we denote by |1), |2),...|M + 1), where
M < N. Now, we consider M equilibrium states of the
CFT, |¥,)...|¥,,), and take them to be orthogonal without
loss of generality. Let us prepare the joint qubit-CFT
system in the state

M

o) = Yl @ [+ M+ 1) @ (510, ).

i=1

(9.30)

In order for the state to be normalized correctly, we have the
condition
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D lal+ g =1.

Now, we act with a unitary of the mirror operators on
|Wqun)- Let us call this unitary U. We see that from (9.29)
we have

U|0) = Za ) @ U|U;) + |M +1) ®if<2ﬂj|\pj>).
(9.31)

The key physical requirement to ensure that no messages
can be sent from the black hole interior to the qubit system
is that this process should leave the density matrix of the
pointer invariant. The density matrix of the pointer in (9.30)
has the following components:

(M + 1™ M + 1) = |,
(ilp™[i) = |ai|?,
(ilp™|M + 1) = ;.
(M + 1|p")i) = aip;. (9.32)

For convenience, let us denote |y) = f](zjﬁj|\llj>). Then

the components of the density matrix of the pointer in the
final state (9.31) are

(M +1]p"™|M + >:<xlz>
(ilp™]i) = o],
(il™|M + 1) = a; (x|U|W)),
(M + 1]p™i) = a; (WU y).  (9.33)

Demanding that the infalling observer cannot send
messages is equivalent to setting pfi" = p™ From
(9.32)—(9.33) we see that this implies

) = ZW;’Z
|01;) = p;
<\I’i|l~]T|)(> =p

El

In fact, since the states U|®;) also give an orthogonal set,
we see that we are forced to the conclusion that

) = BUIY;).

This implies that the operator U must act linearly on a
superposition of a small number of states.

This is precisely what is ensured by the construction
above. As we mentioned, this construction proceeds by
constructing mirrors for each of the individual equilibrium
states and then just taking the union of their actions, which
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ensures that the constraint above is satisfied. The reader
may recall the discussion of Sec. VIIE where we verified
that our operators naturally respect linearity in their action
on small superpositions.

This result is important because it shows that in the
context of entanglement with pointers, and experiments of
the kind considered above, the state-dependence of our
operators is completely transparent to the infalling
observer. Therefore, in no experiment that can be described
within effective field theory does the observer detect a
violation of linearity.

We conclude by remarking on a slightly subtle point. We
have now described two situations where there is entan-
glement but no geometric wormhole between the CFT and
the system that it is entangled with. However, from the
point of view of the microscopic operators, this is attained
rather differently when the left system is a CFT, and when it
is just a collection of qubits. In the case where the left
system is a CFT and the entanglement entropy is large, the
right mirror operators commute with simple left operators
but not with all operators on the left. On the other hand, in
the case where the CFT is entangled with a few qubits or
with a system that does not have O(¢V) states, then we can
indeed find mirrors entirely within the original CFT. As we
saw above this was important to ensure the absence of
superluminal effects in such cases.

G. Refining the notion of equilibrium for
entangled states

In some cases, the fact that our notion of equilibrium as
time independence of simple correlators is necessary but
not sufficient—as we discussed in Sec. VIII C—is also
relevant to the discussion of entangled states. Consider the
state

; pH
M(A,)|We) = 72 ()¢ 7| D,
In the thermofield state, correlation functions of this state

are time invariant on the right, but not on the left. This is
because we have

M(Aa)|q/tfd> \Iltfd>'

Therefore, in this case, this lack of equilibrium can be
detected by our left-equilibrium criterion.

On the other hand, in a generic entangled state there is no
such relation between these states and left-excited states.
Therefore, in such states the ambiguity from the single-
sided case carries over. The reason we imposed the
restriction that the left excitation in (9.6) be Hermitian
was to prevent this ambiguity in descendants. Given the
state in (9.6) we can dress it with a left unitary to obtain
another valid descendant, which also appears to be in
right equilibrium. With AY, = ete4; |, we could have
considered

(9.34)

= e iAL.a
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|\Iléf1U> = (1 _Pgn)AIl_/,,1|\I/en>

in (9.7). However, when A| , is entangled with a right

operator, we want to ensure that we do not mistake |\Ilé'nU>
for an equilibrium descendant. However, the restriction that
the left excitation be Hermitian excludes operators of the
form A7,

As we explained in Sec. VIIIC, even though all
correlators on the right are left invariant under the excita-
tion (9.34), it should still be possible to find measurables
that can detect this excitation. Although we have not yet
identified such measurables precisely, it is possible that the
physical quantity that is capable of detecting the excitation
in (8.21) in a single-sided CFT will also be able to detect the
excitation (9.34) in the two-sided case.

X. DISCUSSION

In this paper we have presented strong evidence for the
claim that the black hole interior must be described using
state-dependent bulk-boundary maps. We showed that a
state-independent construction of the interior was impos-
sible, not only for single-sided AdS black holes, but even
for the eternal black hole. It is possible that this indicates
that AdS/CFT does not describe black hole interiors at all.
However, this is in contradiction with many other calcu-
lations that suggest that the eternal black hole, at least, does
have a smooth interior that can be probed by the CFT.

State-dependent bulk to boundary maps provide a
solution to these versions of the information paradox that
preserves the predictions of effective field theory. Our state-
dependent construction of the black hole interior explicitly
identifies the duals of bulk local operators in the CFT.
These bulk probes do not see any sign of a pathology at the
horizon, and so this should be taken as additional evidence
that generic states do not correspond to firewalls.

In this paper, we demonstrated that our construction does
not lead to any violation of quantum mechanics or the Born
rule. We also successfully resolved some of the ambiguities
in our definition of an equilibrium state.

Furthermore, we showed that our construction admitted a
natural extension to entangled systems. This extension
leads to a surprising bonus: a precise version of the ER =
EPR conjecture emerges automatically from our construc-
tion without having to put anything in by hand.

We have described our construction in significant detail
and discussed how it works in equilibrium states—which
are generic at high energy. We have also considered a large
class of nonequilibrium states, including those that have
been excited outside and inside the horizon. Although it is
possible to consider other special classes of states in the
CFT, we believe that our results provide persuasive
evidence for the consistency of our construction.

There are several natural questions that arise from this
analysis. It would be interesting to examine local operators
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outside the horizon in greater detail. Although we presented
a state-independent description of such operators, in the
minisuperspace approximation in Sec. IV B 2, the question
of whether state-dependence is also required outside the
horizon is open. We comment more on this in [39].

It would also be interesting to understand whether our
construction can shed some light on the nature of the black
hole singularity. So far we have used techniques from
effective field theory to motivate the bulk to boundary map.
Any investigation of the singularity requires new ideas.

Recent studies [66] have shown that the naive ﬁ
expansion can often break down unexpectedly. We would
like to understand the implications of this breakdown for
effective field theory on the nice slices and for the
limitations of locality in quantum gravity.

Finally, as we have explained, while the use of state-
dependent operators is perfectly consistent with quantum
effective field theory, they are both unusual and interesting.
It would be very useful to develop a more comprehensive
measurement theory for these objects and understand
whether they appear in other settings.
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APPENDIX A: STATE-DEPENDENCE AND
SEMICLASSICAL QUANTIZATION

In this appendix, we explore the semiclassical origins of
state-dependence. Some of the ideas in this appendix were
anticipated in [14], although our analysis differs in some
eventual details. As we mentioned in Sec. I1I, the belief that
geometric quantities such as the metric should be repre-
sented by state-independent operators in the CFT is
predicated on intuition from geometric quantization. We
elaborate on this intuition here. But we also explain why
this intuition fails because of important ways in which the
Hilbert space of the CFT differs from what one might
expect from a semiclassical linearized analysis of gravity.

1. Review of semiclassical quantization

We briefly remind the reader of the elementary concepts
involved in quantizing the phase space of a system so as to
make the classical limit manifest. We closely follow the
excellent review by Yaffe [67].

Before we proceed to the analysis for gravity, we briefly
remind the reader of the elementary notions that are
involved in semiclassical quantization. Consider a system
with canonical variables x;, p;, with i = 1...n, obeying the
classical Poisson bracket relations {x;, p;}pp =1, and
some classical functions on the phase space f, (X, p).
We assume that all the first class constraints have been
converted to second class constraints by gauge fixing and
that all the second class constraints have been solved to
eliminate the dependent variables. So the phase space is
unconstrained.

Here we have denoted the coordinates on phase space by
two vectors X, p, with X = (x;,...x,) and p = (pi,...p,).

We also define 7 = (% (x1 +ip1), ...%(xn +ip,)). Now,

we want to show that in the quantum theory it is possible to
find (a) an appropriate set of operators j‘m and (b) a set of
semiclassical coherent states |x, p) in one to one corre-
spondence with the phase space so that, when evaluated on

these states the operators ]Avm behave like the classical
functions f,,(x, p) as we discuss more precisely below.
First, since we already have a simple and explicit
description of the phase space and symplectic form in this
setting, we quantize the system and define the canonical
operators %;, p; satisfying [%;, p;] = i6;;. This provides us

with eigenstates of the operators X; that satisfy
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x| x) = x;|x1, ...x,). We also define a; :%(56,»—1—1'13,4);&2' =

S (&i—ip).

With the vacuum |Q) defined as ¢;|Q) = 0, we consider
the coherent states

2|2 .
lz) = e‘Mera;ﬂQ).
The wave function of this state in the basis of eigenvectors
of %; can be calculated by noticing that a,|Z) = z;|Z). With
U_(x;) = (¥|Z), and using the fact that in the position
eigenbasis p; = —i 3%, this turns into the differential
equation

0 S : 3
(x,- T axi> Wz (%) = (2ai + i2pi) Uz (%),

where we have written the components of z; as z; = z,; +
iz,; to avoid confusion with the x; variable on the left. This
is solved by the normalized position space wave function
for the coherent states.

U= (X) = (%)%exp{—Z[(Xi — 20)? + i2i(X; = 247)] }

i

(A1)

These states play the role of semiclassical states, and we
can place them in a bijective correspondence with the
phase space.

These coherent states have several important properties.
They are not orthonormal; in fact, it is important that they
form an overcomplete basis of the Hilbert space. We have

-1 _ER 22 ot _ER Rz
(|z) = e 7e 2 (Qled e 2 |Q) = em 72 TE,

(afz)? = e, (A2)

Nevertheless, we can partition the identity by using
projectors onto these states.

1 - .

L= [ 3P P=RE ()
This identity can be easily proved using, for example, the
position space representation of the coherent states in (A1).

Next, we need a way of lifting functions from the phase
space to operators. Consider a function f(Z) on the phase
space. (We have suppressed the dependence on Z simply to
lighten the notation; we do not necessarily consider only

holomorphic functions.) We now consider the operator
defined by

d*'z
n

R S 2
Y ECELE = (A4)
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This representation of operators is the so-called Sudarshan-
Mehta P-representation [68]. It differs from the more
commonly used Weyl representation of operators, by
operator ordering. The Weyl representation is sometimes
favored in the literature, since this map also allows one to
represent the product of operators in the quantum theory by
a Moyal star product of functions on the phase space.
However (A4) yields more insight for our discussion, and
has the same classical limit as the Weyl representation.

Note that when this operator is inserted back into a
coherent state we have

2d
(@l = / FE)e )Z

Therefore, the expectation value of the quantum operator is
a slightly smeared version of the classical function. We
have suppressed factors of 7 here, but if we consider
classical functions that do not vary rapidly within a volume
of 7 about a point in phase space, then the expectation value
of the corresponding quantum operators faithfully repro-
duces their behavior.

Furthermore, if we consider the expectation value of the
product of two operators then by using (A3)

Glfaly u)(u|z) (Z|y)d*zd*u

f@)g(i)e —[ZP=[dP =[P+ E 45 itz
27[

x d*zd*u.

We see that this integral is peaked around z = u = y and
expanding g(i) = g(y) + (& —y) - 59(¥) + ..., and sim-
ilarly for f, we see that the leading term is obtained by
doing the Gaussian integral and we find

GIF a19) ~ £(3)g(3)-
On the other hand, we can also compute the commutator
between two functions, in which case we need to keep the
first subleading term to obtain a nonzero answer. Here, we
find
Ol aly) = ilf. g}ps (9)-

2. Geometrical quantities as classical functions
on the phase space

We now turn to the case of gravity where we first discuss
the classical phase space and then describe coherent states
in the linearized theory. In this subsection we are interested
in establishing the following

Claim: “the metric g,,(X) is a well- def ned function on
the classical phase space of gravity.”

PHYSICAL REVIEW D 93, 084049 (2016)

The phase space of gravity is often discussed in
canonical terms, where we specify the three-metric and
the extrinsic curvature on a spacelike slice. This provides
Cauchy data that we can evolve forward and backward in
time. However, a covariant description of the phase space is
given by considering the set of all classical solutions to
gravity with asymptotic AdS boundary conditions [69-71].
The map between these two pictures is straightforward.

Given a solution to the classical equations of motion, and
a metric with a d + 1 split,

dS2 = —de[2 —l—y,»j(dx,- —l—N,dt)(dxj +det), (AS)
one may simply evaluate the fields at the spacelike slice
t = 0. Then the variables,
B 1 i i
7ij(%.0), 7(%,0) = =2 (K" - yVK),
provide the standard parametrization of gravitational phase
space. Here K is the extrinsic curvature

1
KU:EN_I(a]N,‘Fa,N]—at]/”), (A6)
and for the purposes of this d + 1 split we have displayed
the time coordinate separately in (X, 7).

Conversely, given the variables y;;(x,0) and 7" (x,0),
one may use the equations of motion to evolve them
forward in time and generate the entire metric in the form
(AS5). Of course, such a solution requires a choice of gauge,
as we have already discussed.

It is also possible to write down a symplectic form on the
phase space described covariantly as the set of classical
solutions, and this was done by [70].

For us the important point is that each point on the phase
space corresponds to an entire spacetime. Now, evidently
given the entire spacetime, classically, we may ask any
question we wish, even one that involves global notions
like an event horizon. For example, we may set up
relational coordinates as in Sec. III A1 and just evaluate
the metric at a point g, (X, ). The same is true of other
propagating light fields in the theory.

Therefore, all of these observables are well-defined
classical functions on the phase space. This is an important
point. We now extend the discussion above to gravity to
show that, explicitly, within the linearized theory, we may
indeed expect such questions to be answered by state-
independent operators.

3. Coherent states in linearized gravity

We now turn to an analysis of gravity. Here we are
interested in establishing the following.

Claim: If we consider two nearby points in the gravi-
tational phase space with metrics ¢, (X) and ¢, (x) then
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one can define a covariant inner product on the
corresponding coherent states in the Hilbert space
which behaves like e=N"¢"5) where we can compute
the function v in the linearized approximation.

First we remind the reader how the discussion of A 1
generalizes to linearized gravity. We are only able to work
in the linearized setting, and although it would be interest-
ing to explore this construction further in a fully nonlinear
setting, we do not know how to do this.

We consider fluctuations of the metric, about a back-
ground metric, defined by

9w = gBu + v 8”Gthn

and the normalization is chosen so that the kinetic term of
h,, is canonically normalized. Here g,'iy may be any
background metric that is a solution of the equations of
motion and is asymptotically AdS. We do not take it to be
necessarily the AdS-Schwarzschild solution.

Now, on general grounds, we expect that solutions to the
classical equations of motion will be given by

h(¥) = _dl,gu (0. %) + He.,
i,

where i runs over the different W possible polar-
izations of the graviton, where d is the boundary dimension
and a!, are just linear coefficients at the moment. The
different eigenfunctions are denoted by w. In empty AdS or
AdS Schwarzschild, for example, this would constitute a
set of integers to pick out the spherical harmonic on the
§9-! and a “radial momentum.” We do not require the
detailed form of these eigenfunctions, or even of their
eigenvalues. We are not assuming that there is a timelike
isometry in the space, and so, in principle, @ may not
correspond intuitively to a frequency.

We also assume that we have picked a basis set of

distinct solutions g,(f,g which are not equivalent under gauge

transformations, and we normalize the functions gff)(a), ?c)
so that the canonical Poisson brackets translate into the
statement

{aiu’ Clé;,' }P,BA = _iéljéw,w"
We quantize the theory and obtain a vacuum state
al,|Q) = 0. Note that now a, is an operator on the
Hilbert space of the linearized theory. We then define

coherent states by labeling them with a set of functions
x'(w). Starting with the vacuum,

it
IZ> = Nxezi,wa‘“ Xo |Q>7

where N/ ¥ is a normalization factor. We see that
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in
<)(|Z> = |./\/'}(|2ez,-,,,,|/l’m\ )

So for the state to be normalized, we should set

— o el
N, = e Dol (A7)
Note that |y, |> can also be interpreted as the “occupation
number” in the mode w; so the exponent in the normali-
zation factor is just the total occupation number in the state.
One measure of how large the deviation of the field is
from the background metric is given by
QL) =N, (A8)
Here the vacuum is just the original background metric. So
we see that this coherent state is substantially different from
the original background metric, as a quantum state, if the
occupation number is large. In this state the metric has an
expectation value

G = X9 @) = (lgp () + /872Gy hy (3)x)
= gh,(X) + /87Gy

X 20(2,9,(49(@, X¥)+Hc). (A9)

So we see that the space |y) represents a nearby point in
phase space, where the value of the metric has changed to
G (X). Therefore (A7) shows how the corresponding inner
product in Hilbert space varies.

Now, in deriving (A7) we made explicit reference to a set
of mode functions. But we would like it to depend only on
the two metrics gg,(X) and g5, (X). To check that this is
covariant, let us consider how this changes under a
Bogoliubov transformation of the modes. We make a
canonical transformation of the a!, variables to

bla) = Z(ﬁww’aiﬂ + yw,w’a;’i)’
(l)/

i % t.i * i
b = E B a +yw’w,aw,).
w/

(A10)

In this analysis, we assume that the polarization index i
does not enter the Bogoliubov coefficients. This is just to
lighten the notation and does not represent any loss of
generality.

For the new modes to have the canonical commutators

[bé)’ bju"l] = 5(1).(1)’7
we see that we must have

Z(ﬂ(u,m”ﬂ;/’w” - }/wsw”}/;/,w”) (Al 1)

Pa

=0y
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An observer using these creation and annihilation operators
would also use a new basis of modes to represent the metric
fluctuations that we call ) (@, X). In particular, we have

(@, 3)) =
= (9@ 5))"

(A12)

> Bowd(@.3) + 75 (G 99 (@, %),

w

Zﬂ:)m’ (g(z) (a)

@

)"+ Vo0 (59 (@.5))

Such an observer would set up a different set of coherent
states

- =i phi
I)(>B0g = e)dubml |Q>B0g7

where the vacuum is now defined to satisfy b;,|Q)p,, = 0.

To get the same expectation value for the metric field, this
observer could use a coherent state excitation with param-
eters ', so that

§ )Cmg (Cl) 'x) + ()((1)) ( (Cl) x))
Using (A12), we see that we need

)N(EU = Z(ﬂww’%fv/ + Yoo ()(Z/)*)

o4

(@' 3) + (i) 9" (', 3).

Therefore we see that

Z ‘)ﬂu |2 = Z Lﬂww’ﬁ;w”xiﬂ ()(i;” ) ) + yw,w’}/;w”)(i,” ()(io’)*

iw w0 0"

+ ﬁww’ ya)w”)du)(i// + ﬂzm)’ y:,(,)” ()(;,’ ) ) (Zi/’ ) *} .
(A13)

For a general Bogoliubov transformation therefore
ZI;(MI2 Zml2 +R,

where the remainder R does not vanish.

However, in AAS/CFT we have an additional advantage:
the presence of the boundary Hamiltonian. So we can
define positive and negative energy with respect to the
boundary Hamiltonian and demand that in terms of
boundary energy eigenstates, both the sets of creation
operators have strictly positive energy and the annihilation
operators have negative energy.

(Al14)

27Here, we are not concerned with the small tails that we
discussed in the text, which may appear in these relations because
we restrict observations to a finite time on the boundary.
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PE+a£”|E> ES 0 PE+b;1)|E> B O,

Pp-ajl|E)y =0,  PgbL'|E)=0, (Al5)
where Py~ (Pg-) indicates the projector on the subspace
formed by eigenstates with energy larger (smaller) than E.
If we restrict to such operators then we see that y,,, in
(A10) must vanish. From (Al1), we then find that S,
must be wunitary. For this set of transformations, which
obeys the natural AdS/CFT constraint (A15), we see from
(A13) that R =0 in (A14).

To summarize, the conclusion is that using the AdS/CFT
Hamiltonian to define positive energy, the notion of the
distance of a coherent excitation from the background is
robust in linearized gravity.

Now, let us examine this distance a little more closely.
Let us write the initial metric in a nice coordinate system so
that all its components are of order the AdS radius squared
£?. In this case, we see that to make a substantial

DN\/;f_GN:aJ\/’, where o
is an O(1) parameter that we have introduced. At this point,
the linearized theory is still valid if we keep a < 1. If we
apply (AS8) to such a perturbation, we see that the coherent
state construction predicts the following. The semiclassical
states in the quantum theory, corresponding to two distinct
solutions g5, (X) and gf, (X), are almost orthogonal and have

an inner product

perturbation, we must take £,

(g5 () 5o (X)) = eV ), (Al16)
where v is a smooth O(1) functional on the space of metrics.
To compute this function, we write g5, (X) as an excitation
over g,'j,/ (X) using (A9) and compute the inner product given
in (A7)—(A8). The choice of mode functions that we use to
express the excited state in terms of the background is
unimportant by the argument above.

a. Difficulties with state-independent operators

Now the formula for the inner product (A16) above
might seem encouraging. It may suggest the following
naive program. In the full theory of quantum gravity, we
identify points on the phase space with coherent states |g),
write down a completeness relation analogous to (A3) and
then write a full state-independent metric operator as in
(3.28): g, (X) = > ,9(¥)|g){(g]. This is the basis for the
expectation that we can find state-independent operators to
represent the metric and other bulk fields.

However, recall that (A3) was consistent only because
the inner product (A2) died off to arbitrarily small values to
compensate for the infinite volume of phase space. It
appears that this does not happen for the case of gravity:
rather, intuition from the CFT suggests that in some cases
the inner-product between different coherent states may

084049-69



KYRIAKOS PAPADODIMAS and SUVRAT RAJU

saturate at a small but finite value even when the corre-
sponding volume in classical phase space is very large.

We have seen an example of this in the case of the
thermofield double. There the states |¥y) all represented
metrically distinct geometries. If we identify these states
with points on the phase space, then the parameter T
parametrizes an infinite direction in the classical phase
space. However, even if we take T to be large, the inner
product saturates at (Uy|Ur) = O[e™3] where S is the
entropy.

This suggests that the classical limit in AdS/CFT
emerges somewhat differently than the intuition from
canonical gravity would suggest. Specifically, the follow-
ing phenomenon occurs. We can identify states in the CFT
dual to metrics |V,)<>|g). However, when the distance
between these states becomes large, the inner product in the
CFT differs from the inner product predicted by semi-
classical gravity. We have only been able to compute this
semiclassical inner product reliably for small separations
on the phase space. If we extrapolate this to the entire phase
space then we can find cases where the semiclassical inner
product is exponentially different from the CFT inner
product.

e~ Nv(g.g")

_ -N
e O

Returning to the example of the thermofield double,
which is the source of our intuition, we note that the
formula (7.24) is precisely analogous to (A4). In both cases
we know the action of an operator on a set of states that are
almost orthogonal to one another. However, while in (A4)
we are able to extend the integral to all of phase space and
thereby obtain a state-independent operator; we cannot
extend the limits on 7 in (7.24) to oo because of the
saturation of the inner product.

Another manifestation of this obstacle is as follows. In
the thermofield double, given a sequence e states shifted
by {T;...T,s}, so that all of them are pairwise distinct, we
can still find coefficients a; so that

2

ES
\|w[fd>—2aiefHLTf|\vtfd> —0(eN).  (A17)

i=1

Note that (A17) is not due to Poincare recurrence, which
occurs after a much longer time scale ¢’. The linear
dependence indicated in (A17) means that one geometry
can be written as a linear combination of e completely
different geometries. The semiclassical theory does not see
any signs of (A17). This prevents a naive use of projectors
on coherent states to build up a state-independent operator.

Summary The picture that we get in this manner is shown
in Fig. 15. A slogan that would summarize this appendix is
that “coherent states are always overcomplete, but the states

PHYSICAL REVIEW D 93, 084049 (2016)

FIG. 15. When we quantize the theory we can put states in the
Hilbert space in correspondence with the classical phase space.
However, we may have to use different operators in different
regions of phase space to represent a single classical function.

in the CFT that correspond to coherent states of the metric
are even more overcomplete than one would expect from a
semiclassical analysis.” This is what prevents us from
lifting some well-defined classical observables to state-
independent operators. This issue is important and inter-
esting and deserves further investigation.

APPENDIX B: MIRROR MODES FROM BULK
EVOLUTION

One possible proposal to define the mirror operators may
proceed as follows. Consider black holes formed by
collapse in AdS. In each such classical solution, we can
trace the right moving modes behind the horizon to their
origin to their support on the boundary of AdS in the past.
This is what was done by Hawking in flat space [5] using a
geometric optics approximation.

Hawking’s computation suffers from a trans-Planckian
problem because the geometric optics calculation tells us
that, at late times, even low frequency right-moving modes
behind the horizon come from an extremely small time
band on the boundary. (See Fig. 16.) Therefore, in the past
these low frequency modes must have had ultra-Planckian
frequencies.

Even if we ignore this issue and proceed with the naive
calculation, we find that we can only attain a small number
of microstates by considering black holes formed from
collapse. Page and Phillips estimated the number of
possible configurations of massless radiation inside anti—
de Sitter space [72]. Their calculation can be summarized
as follows. Consider a gas of radiation in AdS,,; and, as
usual, set its radius to 1. Then, Page and Phillips considered
a self-gravitating gas of radiation assuming that it was
locally in thermal equilibrium at all points. Their con-
clusion was that one recovers the standard thermodynamic
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FIG. 16. Tracing the mirrors back to their origin on the
boundary is difficult because of the trans-Planckian problem.
However, even neglecting this issue does not help in constructing
state-independent operators because of the fat tail in the inner
product of different solutions.

relation between the entropy and the energy at high
energies for a gas in d + 1 dimensions,

Srad = KradE#7 (Bl)
where k.4 1s an O(l) constant which depends on the
number of light degrees of freedom in the theory. On the

other hand for high energies E > N, we know that
the entropy of the black hole is given by

Sbh:NKbh(N> )

which is the result for a gas with A/ degrees of freedom in d
dimensions. We remind the reader that A is the central
charge, and so A/ = N? in the SU(N) supersymmetric
Yang-Mills theory.

Comparing (B2) with (B1) for energies of order E o N,
we find that

(B2)

S K] —1
Sbh _ ﬂNﬁE‘de) < Nﬁ
Srad Krad

Therefore the entropy of the radiation is always subleading
in this range.

PHYSICAL REVIEW D 93, 084049 (2016)

We caution the reader that (B1) is a little artificial in the
regime in which we have applied it because the temperature
that follows from (B1) is

1
— 1
Trad (@Sm d) Kiag 47!
OE

If we consider the case of the duality between AdSs and
supersymmetric Yang-Mills theory, with a 't Hooft cou-
pling 4, then we do not expect the result (B1) to be valid
beyond the string scale 74, at which point we expect to find
a Hagedorn transition in the bulk. So, in reality we do not
even expect to be able to attain as many microstates as we
considered above for the radiating star.

This is a rather robust result: following the collapse of
black holes from reasonable geometric configurations
allows us to explore only a small fraction of the Hilbert
space at high energies. Now if we do decide to restrict to
such a sector of the Hilbert space, the firewall paradoxes
vanish since they can only make reference to generic states.
Correspondingly, there is no difficulty in obtaining state-
independent mirror operators that have the correct behavior
on this sector.

We now note a second important point. In some cases, it
may be possible to geometrize the microstates of the black
hole as we did in Sec. VI. There, we were able to explore a
significant fraction of the microstates of the eternal black
hole classically by considering a one-parameter family of
eternal black hole solutions. All of these were glued to the
boundary with different time shifts, and we had to allow
this time shift to be exponentially large to ensure that the
corresponding states in the CFT Hilbert space spanned a
subspace of exponentially large dimension.

However, in this situation we ran into the obstruction
explored in Sec. VIIF and also in Appendix A. This
obstacle is as follows. Any method of obtaining the mirror
modes by analyzing classical solutions can, at most, specify
these modes as functions on the classical phase space. For
example in Sec. VII'F, in each solution left shifted by the
time 7', the mirrors were the modes of O, . o. However,
in this situation we encountered the fat tail of (7.25). This
fat tail prevents us from lifting a classical function on this
large phase space to a corresponding linear operator in the
Hilbert space.

Therefore, the study of classical solutions cannot help in
obtaining state-independent mirror operators.
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