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We prove perturbative renormalizability of projectable Hořava gravity. The key element of the argument
is the choice of a gauge which ensures the correct anisotropic scaling of the propagators and their uniform
falloff at large frequencies and momenta. This guarantees that the counterterms required to absorb the loop
divergences are local and marginal or relevant with respect to the anisotropic scaling. Gauge invariance of
the counterterms is achieved by making use of the background-covariant formalism. We also comment on
the difficulties of this approach when addressing the renormalizability of the nonprojectable model.
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I. INTRODUCTION

The construction of a consistent theory of quantum
gravity has remained one of the major challenges in
theoretical physics for many decades. String theory pro-
vides a fruitful approach to this problem, see e.g. [1], at the
expense of introducing a very rich extra structure (and
complexity) and it makes sense to question if other
directions are possible. In particular, one may wonder
whether gravity can be quantized in the framework of
perturbative quantum field theory in four dimensions, as
other fundamental forces in nature.
At low energies gravity is very well described by the

Einstein-Hilbert action, which is perturbatively nonrenor-
malizable and therefore does not correspond to an ultra-
violet (UV) complete theory (at least in perturbation
theory). It has been known for several decades that a
renormalizable theory is obtained by augmenting the action
with quadratic curvature invariants [2]. For certain regions
in the parameter space the theory is even asymptotically
free and hence UV complete [3,4]. However, due to the
presence of four time derivatives of the metric in the

Lagrangian, the theory contains ghosts—negative-norm
states—and does not admit the usual interpretation along
the lines of unitary quantum mechanics.1

An interesting development was proposed by P. Hořava
[7,8], who pointed out that unitarity can be preserved at the
expense of sacrificing the Lorentz invariance. In this case
one can keep the action as second order in time derivatives,
supplementing it only with terms containing higher spatial
derivatives. This allows one to construct an action for
gravity which is power-counting renormalizable, i.e. it
contains only marginal and relevant operators with respect
to the scaling transformations

t ↦ b−dt; xi ↦ b−1xi; i ¼ 1;…; d; ð1Þ

where b is an arbitrary scaling parameter and d is the
number of spatial dimensions. Note that time and space
scale differently in (1). This type of transformation is called
anisotropic scaling or Lifshitz scaling. The metric has zero
scaling dimension under2 (1),

γij ↦ γij;

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
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1See [5,6] for a recent revival of this idea.
2To be precise, this applies to the spatial components of the

metric; see Sec. II for details.
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and thus the nonlinearities of gravity do not give rise to any
irrelevant interactions.
Hořava’s proposal generated a surge of papers exploring

its low-energy consistency and phenomenology; see [9,10]
for reviews. This led to the identification of a version
of the proposal—the so-called healthy nonprojectable
model [11]—which provides a consistent theory capable
of reproducing the phenomenology of general relativity
(GR) at the distance scales where the latter has been tested.
It has also been realized that the theory never reduces to GR
exactly: a certain amount of Lorentz invariance violation
persists in the gravity sector at all energy/distance scales
[12]. This can have interesting implications for cosmologi-
cal models of dark energy [13]. Conservatively, one can use
astrophysical and cosmological data to constrain the
parameters of the theory [14–16]. Last but not least, to
be phenomenologically viable, this scenario should be
supplemented by a mechanism ensuring Lorentz invariance
in the sector of visible matter where it has been tested with
utmost precision. This represents a serious challenge that
several proposals try to address [17–20].
Besides application to gravitation in four dimensions, it

was suggested that Hořava gravity in d ¼ 2 can govern the
dynamics of membranes in M-theory [7]. Other uses
include the holographic description of nonrelativistic
strongly coupled systems, analogous to those occurring
in condensed matter physics [21,22].
Despite the vast literature on Hořava gravity, its renor-

malizability has not yet been rigorously proven. Indeed,
while in pure scalar and fermionic Lifshitz theories with
non-negative scaling dimensions of the fields3 renormaliz-
ability is a rather straightforward consequence of power-
counting renormalizability [24]; this is not the case for
gauge theories. As we explain below, a general local gauge
fixing in Hořava gravity gives rise to certain “irregular”
contributions in the propagator of the metric that may spoil
the convergence of the loop integrals (see [25] for a similar
phenomenon in nonrelativistic gauge theories). As a
consequence, a loop diagram that by a scaling argument
should be finite can actually diverge and generate a
counterterm not expected from the naive power counting.
Moreover, the irregular terms in the propagators can
potentially lead to nonlocal divergences. Hence, the key
question is whether there exists a class of gauges where all
propagators are regular.
In this paper we answer this question in the affirmative

for the case of projectable Hořava gravity. Unfortunately,
this version of Hořava gravity does not reproduce GR at
low energies (at least not within weak coupling) [12].
Nevertheless, it presents an interesting example of a theory
sharing many properties of GR, such as a large gauge group
of local spacetime transformations and the presence of

gapless transverse-traceless (TT) excitations—gravitons—
in dimensions d ¼ 3 and higher. Working in the gauge with
regular propagators we demonstrate, with methods along
the lines of relativistic gauge theories, that projectable
Hořava gravity is perturbatively renormalizable in the
strict sense.
In the nonprojectable case, we find that there is no gauge

fixing which could remove all irregular contributions,
though they can be reduced to only a few terms in the
propagators for the lapse function [(00)-component of
the metric]. Physically, these terms are a manifestation
of the instantaneous interaction present in the theory
[12,26]. We conclude that the renormalizability analysis
in the nonprojectable case requires a careful treatment of
the instantaneous mode.
Previous studies of the quantum properties of Hořava

gravity span several directions. In Ref. [27] the projectable
version in d ¼ 3 is considered with an additional restriction
on the parameters imposed by the condition of detailed
balance [8]. This model is connected to three-dimensional
topologically massive gravity via the stochastic quantiza-
tion approach and it is argued that it inherits the renorma-
lizability properties of the latter. However, the treatment of
the gauge invariance of Hořava gravity in this construction
is somewhat obscure. The works [28–31] explore the
relation between Hořava gravity and causal dynamical
triangulations. In Ref. [32] a one-loop renormalization
was performed and the corresponding beta functions were
computed in a truncated version of the d ¼ 2 projectable
model. The truncation, however, explicitly breaks the
gauge invariance of the theory. Finally, in Refs. [33] the
one-loop counterterms for the gravitational effective action
induced by a scalar field with Lifshitz scaling (see also
[34–36] for earlier works on this subject) were computed.
These counterterms were shown to have the same structure
as the terms present in the bare action of Hořava gravity,
which suggests that if pure Hořava gravity is renormaliz-
able, it remains so upon inclusion of matter. We return to
this point in the conclusions (Sec. VII).
The paper is organized as follows. In Sec. II we introduce

the projectable version of Hořava gravity in (3þ 1) and
(2þ 1) dimensions. The d ¼ 2 case provides the simplest
example of gravity with anisotropic scaling, which we use
to illustrate the main ideas of our approach. In Sec. III we
discuss the irregular terms arising in the propagators for a
generic choice of gauge and the associated problems in the
renormalization analysis. In Sec. IV we present a two-
parameter family of gauges where the propagators are free
from irregular contributions. Using this class of regular
gauges we evaluate the degree of divergence of a generic
diagram in Sec. V and argue that only local counterterms
that are relevant or marginal with respect to the anisotropic
scaling are required to renormalize the theory. By embed-
ding our gauge-fixing procedure into the background-field
formalism, we ensure that the counterterms preserve gauge

3In theories containing fields with negative dimensions the
situation is more subtle [23].
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invariance, which completes the proof of renormalizability.
In Sec. VI we analyze the nonprojectable case and identify
irregular contributions that cannot be removed by a gauge
fixing. We conclude in Sec. VII. Some details of the
derivations are relegated to the appendixes.

II. PROJECTABLE HOŘAVA GRAVITY

Geometrically, Hořava gravity differs from GR by the
introduction of a preferred spacetime foliation by spacelike
surfaces. The spacetime metric is represented using the
Arnowitt-Deser-Misner (ADM) decomposition,

ds2 ¼ N2dt2 − γijðdxi þ NidtÞðdxj þ NjdtÞ;
i; j ¼ 1;…; d:

We aim to construct the theory which is invariant under the
subgroup of diffeomorphisms that preserve the foliation
structure (FDiffs). These consist of time-dependent trans-
formations of the spatial coordinates and space-indepen-
dent reparametrizations of time,

xi ↦ ~xiðx; tÞ; t ↦ ~tðtÞ;

where ~tðtÞ is a monotonic function. Under this symmetry
the lapse N, the shift Ni and the spatial metric γij transform
in the standard way,

N ↦ ~N ¼ N
dt
d~t
;

Ni ↦ ~Ni ¼
�
Nj ∂ ~xi

∂xj −
∂ ~xi
∂t

�
dt
d~t
;

γij ↦ ~γij ¼ γkl
∂xk
∂ ~xi

∂xl
∂ ~xj : ð2Þ

We also impose time-reversal invariance, under which N
and γij are even, whereas the shift Ni is odd.
We assign the following scaling dimensions to the fields

according to their transformation under the anisotropic
scaling4 (1),

½N� ¼ ½γij� ¼ 0; ½Ni� ¼ d − 1:

The action is constructed from local operators that trans-
form as scalars under FDiffs and have dimension up to 2d,

S ¼ 1

2ϰ2

Z
dtddx

ffiffiffi
γ

p
NðKijKij − λK2 − VÞ: ð3Þ

Here, ϰ2, λ are free parameters and the extrinsic curvature
of the foliation leaves is given by

Kij ¼
_γij −∇iNj −∇jNi

2N
:

The trace is defined asK ¼ γijKij. The dot stands for a time
derivative, indices are raised and lowered by the spatial
metric γij and the covariant spatial derivatives ∇i are
compatible with γij. The potential term V consists of all
allowed combinations of local invariants of scaling dimen-
sion up to 2d that are made of γij, N and their derivatives
with respect to ∇i. In this way one obtains a Lagrangian
consisting of marginal and relevant operators with respect
to the anisotropic scaling which in this sense is power-
counting renormalizable.
In the nonprojectable Hořava gravity the lapse N is

assumed to be a function of both space and time; we
postpone the discussion of this case until Sec. VI. For the
time being we focus on the projectable model where the
lapse is a function of time only, N ¼ NðtÞ. Then the time
reparametrizations allow one to set N ¼ 1 leaving the time-
dependent spatial diffeomorphisms as the remaining gauge
transformations.
In d ¼ 3, upon using the Bianchi identities and integra-

tion by parts, one finds the most general potential [37],

Vd¼3 ¼ 2Λ − ηRþ μ1R2 þ μ2RijRij þ ν1R3 þ ν2RRijRij

þ ν3Ri
jR

j
kR

k
i þ ν4∇iR∇iRþ ν5∇iRjk∇iRjk: ð4Þ

Here, Rij and R are the Ricci tensor and Ricci scalar
constructed from γij. In total, the theory contains 11
couplings: ϰ2, λ, Λ, η, μ1;2 and νa, a ¼ 1;…; 5. The terms
with coefficients νa, a ¼ 1;…; 5 in (4) together with the
extrinsic-curvature terms in (3) are marginal under the
scaling (1). They determine the UV behavior of the theory,
in particular its renormalizability properties. The rest of the
terms in (4) are relevant deformations. Among them is the
cosmological constant Λ, which has the lowest dimension.
We assume that it is tuned to zero in order to admit flat
Minkowski spacetime as a solution.
Let us study the spectrum of linear perturbations around

this background. We write

γij ¼ δij þ hij;

and decompose the perturbations into scalar, vector and TT
tensor parts,

Ni ¼ ∂iBþ ui; ð5aÞ

hij ¼
�
δij −

∂i∂j

Δ

�
ψ þ ∂i∂j

Δ
Eþ ∂ivj þ ∂jvi þ ζij ð5bÞ

with

∂iui ¼ ∂ivi ¼ ∂iζij ¼ ζii ¼ 0:

4We assign dimension −1 to the spatial coordinates xi.
Accordingly, time has dimension −d. A field Φ with dimension
r transforms under the scaling (1) as Φ ↦ brΦ.
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Here Δ is the flat-space Laplacian. The quadratic action
reads

Sd¼3
2 ¼ 1

2ϰ2

Z
dtd3x

� _ζ2ij
4
þ η

4
ζijΔζij −

μ2
4
ζijΔ2ζij

þ ν5
4
ζijΔ3ζij −

1

2
ð _vi − uiÞΔð _vi − uiÞ

þ _ψ2

2
þ 1

4
ð _E − 2ΔBÞ2 − λ

4
ð2 _ψ þ _E − 2ΔBÞ2

−
η

2
ψΔψ −

�
4μ1 þ

3μ2
2

�
ψΔ2ψ

þ
�
4ν4 þ

3ν5
2

�
ψΔ3ψ

�
: ð6Þ

In order to identify the physical degrees of freedom we
perform the variation with respect to ui and B and set them
to zero afterwards by the gauge choice. We obtain the
equations

Δ _vi ¼ 0; Δ
�

_E −
2λ

1 − λ
_ψ

�
¼ 0: ð7Þ

The first one implies that the vector sector does not contain
any propagating modes. From the second equation in (7)
we express _E and substitute it back into (6) which yields the
action for the propagating degrees of freedom,

Sd¼3
2 ¼ 1

2ϰ2

Z
dtd3x

� _ζ2ij
4
þ η

4
ζijΔζij−

μ2
4
ζijΔ2ζij

þν5
4
ζijΔ3ζijþ

1−3λ

2ð1−λÞ _ψ2−
η

2
ψΔψ

−
�
4μ1þ

3μ2
2

�
ψΔ2ψþ

�
4ν4þ

3ν5
2

�
ψΔ3ψ

�
: ð8Þ

In addition to the TT mode ζij, the theory propagates a
“scalar graviton” ψ . Both modes have positive-definite
kinetic terms provided ϰ2 > 0 and λ is either smaller than
1=3 or larger than 1. The dispersion relations of the two
modes are respectively

ω2
tt ¼ ηk2 þ μ2k4 þ ν5k6; ð9aÞ

ω2
s ¼

1−λ

1−3λ
ð−ηk2þð8μ1þ3μ2Þk4þð8ν4þ3ν5Þk6Þ: ð9bÞ

This immediately raises a problem: the term proportional to
k2 in the dispersion relation cannot be positive for both
modes simultaneously. Thus, nonzero η leads to an insta-
bility of the Minkowski background with respect to
inhomogeneous perturbations. For positive values of the
parameters μ1;2 and ν4;5 the instability is cut off at large
spatial momenta and therefore does not affect the UV

properties of the theory. Moreover, we can stabilize the
Minkowski spacetime by simply tuning η to zero. However,
in that case the dispersion relations of the TT mode and
scalar gravitons are quadratic, ω ∝ k2, down to zero
momentum, which prevents recovery of GR at low
energies.5

The situation is much simpler for d ¼ 2. In this case the
potential includes only two terms,

Vd¼2 ¼ 2Λþ μR2: ð10Þ

The linear in R term is absent because the combinationffiffiffi
γ

p
R is a total derivative in two dimensions. Also the Ricci

tensor Rij reduces to the scalar curvature, so the invariant
RijRij is proportional to R2. Setting the cosmological
constant Λ to zero, we obtain a model with three marginal
couplings: ϰ2, λ and μ.
The spectrum of this model is derived along the same

lines as for the d ¼ 3 case. Expanding around flat space-
time and performing the decomposition (5)—where now
the TT component ζij is absent—we obtain the quadratic
action,

Sd¼2
2 ¼ 1

2ϰ2

Z
dtd2x

�
−
1

2
ð _vi−uiÞΔð _vi−uiÞþ

_ψ2

4

þ1

4
ð _E−2ΔBÞ2−λ

4
ð _ψþ _E−2ΔBÞ2−μψΔ2ψ

�
: ð11Þ

We observe that the action for the vector perturbations has
exactly the same structure as in d ¼ 3, implying that there
are no propagating modes in this sector. In the scalar sector
we eliminate E using the equation obtained upon variation
with respect to B and set B ¼ 0 afterwards. This yields

Sd¼2
2 ¼ 1

2ϰ2

Z
dtd2x

�
1 − 2λ

4ð1 − λÞ _ψ2 − μψΔ2ψ

�
:

Unlike GR, which in (2þ 1) dimensions does not possess
any local degrees of freedom, Hořava gravity propagates a
dynamical scalar mode. The latter has the dispersion
relation

ω2
s ¼ 4μ

1 − λ

1 − 2λ
k4:

It is well behaved (i.e. has positive kinetic term and is
stable) if6 ϰ2 > 0, μ > 0 and λ < 1=2 or λ > 1. We make
extensive use of the d ¼ 2 model in what follows.

5One could try to keep η finite and positive and suppress the
instability associated to the scalar graviton by tuning λ close to 1.
However, in this limit the theory becomes strongly coupled and
the perturbative treatment breaks down [12,38].

6We take ϰ2 > 0 to make contact with higher dimensions
where this condition is required for positivity of the TT mode
kinetic energy.
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In order to analyze the renormalizability properties of the
theory, from now on we transform to “Euclidean” time by
the Wick rotation

t ↦ τ ¼ it; Nj ↦ Nj
E ¼ −iNj:

In the following we omit the subscript “E” on the Euclidean
shift. The corresponding action differs from (3) only by the
sign of the potential term. At the quadratic level this
amounts to flipping the signs of the terms containing
μ1;2, ν4;5 in (6) and of the μ-term in (11).

III. LOCAL GAUGE FIXING AND
IRREGULAR TERMS

In this section we focus on the theory in d ¼ 2. In order
to quantize the theory we need to fix the gauge. Finding a
suitable gauge turns out to be nontrivial, as we demonstrate
below. The technical part of the following analysis is
straightforward. Upon adding a gauge-fixing term to the
quadratic action (11) and transforming to momentum
space, we invert the kinetic matrices for the scalar and
vector perturbations. The propagators of the shift and the
spatial metric are then reconstructed from these helicity
components using Eqs. (5),

hNiðpÞNjð−pÞi ¼huiuji þ kikjhBBi; ð12aÞ

hNiðpÞhjkð−pÞi ¼ −ikjhuivki − ikkhuivji
þ ikiðδjk − k̂jk̂kÞhBψi þ ikik̂jk̂khBEi:

ð12bÞ

hhijðpÞhklð−pÞi¼kikkhvjvliþkjkkhvivliþkiklhvjvki
þkjklhvivkiþðδij− k̂ik̂jÞðδkl− k̂kk̂lÞhψψi
þðδij− k̂ik̂jÞk̂kk̂lhψEi
þ k̂ik̂jðδkl− k̂kk̂lÞhEψiþ k̂ik̂jk̂kk̂lhEEi:

ð12cÞ
Here we introduced the notations

p≡ ðω;kÞ; k̂i ≡ ki=k:

We postpone the discussion of the Faddeev-Popov ghosts
coming from the gauge fixing to Sec. IVA 1.
Let us illustrate the type of problems connected to the

gauge-fixing procedure by considering as a first trial the
gauge

Ni ¼ 0: ð13Þ

It can be implemented by adding the term

Lgf ¼
σ

2ϰ2
ðNiÞ2

to the Lagrangian and taking the limit σ → ∞.
Alternatively, one can simply set ui ¼ B ¼ 0 in (11).
The kinetic matrix for the remaining variables is now
invertible yielding the propagators

hviðpÞvjð−pÞi¼
2ϰ2

ω2k2
ðδij− k̂ik̂jÞ; ð14aÞ

hψðpÞψð−pÞi ¼ 4ϰ2ð1 − λÞ
1 − 2λ

PsðpÞ; ð14bÞ

hψðpÞEð−pÞi ¼ 4ϰ2λ

1 − 2λ
PsðpÞ; ð14cÞ

hEðpÞEð−pÞi ¼ 4ϰ2λ2

ð1 − λÞð1 − 2λÞPsðpÞ þ
4ϰ2

ð1 − λÞω2
;

ð14dÞ

where

PsðpÞ ¼
�
ω2 þ 4μ

1 − λ

1 − 2λ
k4
�
−1

ð15Þ

has the pole corresponding to the physical mode.7 Note the
presence of the transverse projector in (14a) which is
implied by the transversality of vi. Substituting these
expressions into (12c) we obtain

hhijðpÞhklð−pÞi ¼
4ϰ2ð1 − λÞ
1 − 2λ

δijδklPsðpÞ

þ ðδikδjl þ δilδjk − 2δijδklÞ
2ϰ2

ω2

þ 16ϰ2μ

�
1 − λ

1 − 2λ
ðδijkkkl þ kikjδklÞk2

− kikjkkkl

�
PsðpÞ
ω2

: ð16Þ

In deriving this expression we used the dimensional
dependent identity (A1) that can be found in Appendix A.
We observe that besides the first contribution propor-

tional to PsðpÞ, which uniformly decreases whenever ω or
k goes to infinity, the propagator (16) contains terms of the
form 1=ω2 and Oðk4ÞPs=ω2 that do not fall off with the
spatial momentum. The latter terms are dangerous as they
lead to nonlocal singularities of the propagator in position
space. For example, the Fourier transform of the second
term in (16) has the form

7Recall that we are working in the Euclidean time, so the sign
of the μ-term in (11) must be flipped to “þ.”
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hhijðτ;xÞhklð0Þi∋ − ϰ2ðδikδjl þ δilδjk − 2δijδklÞjτjδð2ÞðxÞ;

where δð2Þ is the δ-function. This is singular at x ¼ 0 for all
times τ.8 In the perturbative expansion such contributions
will give rise to overlapping singularities that are nonlocal
in time. In the more familiar momentum-space representa-
tion they correspond to divergences in the loop diagrams
which have a nonpolynomial dependence on the external
frequency. Unless these divergences cancel order by order
of perturbation theory, they jeopardize the renormalizabil-
ity by requiring the introduction of counterterms with
nonlocal time dependence.9 Clearly, even if the cancellation
of nonlocal divergences does take place, it will be increas-
ingly hard to keep track of it at higher loop orders. Thus, we
conclude that the gauge (13) is not suitable for the analysis
of renormalizability.
The gauge (13) is rather special and one might think that

the nonlocal singularities in the propagators can be avoided
once we allow for a more general gauge-fixing condition.
Let us now show that this is not the case as long as one
restricts to local gauge-fixing terms. The most general term
of this class has the form

Lgf ¼ σ

2ϰ2
FiOijFj; ð17Þ

where Fi is a linear combination of the fields Ni, hij and
their derivatives which transforms as a vector under spatial
rotations, while Oij is an invertible local operator. In order
not to spoil the scaling properties of the action, the gauge-
fixing term should not introduce any dimensionful cou-
plings with respect to the scaling (1). This implies that the
total dimension of Lgf must be 4, whereas all terms in Fi

and Oij must scale in the same way. A local operator Oij
can contain only the identity and a finite number of
derivatives, and therefore its scaling dimension is
non-negative. This implies that the dimension of Fi must

be less than or equal to 2. This excludes that Fi can contain
time derivatives of the shift, since such terms would already
have at least a scaling dimension of 3. The time derivative
of hij also cannot appear in Fi because to obtain from it an
object with a single index one must introduce an additional
spatial derivative, which again raises the dimension up to 3.
Finally, Fi cannot contain Ni and the spatial derivatives of
the metric hij simultaneously, as otherwise it would
explicitly break the time-reversal invariance.10 Thus we
arrive at two possibilities:

Fi ¼ Ni or Fi ¼ ∂jhij þ σ0∂ih; ð18Þ

where σ0 is an arbitrary coefficient and h is the trace of hij.
Both these combinations have dimension 1, so the corre-
sponding operator Oij must be of dimension 2. Hence, it
has the form

Oij ¼ −δijΔ − σ00∂i∂j:

Without delving into the study of the full propagators, let
us focus on the transverse component ui of the shift. For the
first choice of the gauge-fixing function in (18) a straight-
forward calculation yields

huiðpÞujð−pÞi ¼
ϰ2

σk2
ðδij − k̂ik̂jÞ

whereas for the second choice one obtains

huiðpÞujð−pÞi ¼
�
2ϰ2

k2
þ ϰ2ω2

σk6

�
ðδij − k̂ik̂jÞ:

In both cases the propagator contains contributions inde-
pendent of the frequency that behave as 1=k2. This, in turn,
leads to a nonlocal singularity of the hNiNji propagator in
the position space proportional to

δð1ÞðτÞ 1

4π
log jxj:

In perturbation theory this will produce spurious divergen-
ces that are nonlocal in space. Therefore, none of the local
gauges (18) is appropriate for our purposes.

IV. REGULAR GAUGES

Let us introduce some terminology: consider two fields
Φ1, Φ2 that have scaling dimensions r1, r2 under (1).
Following [25] we denote the propagator hΦ1Φ2i regular if
it is given by the sum of terms of the form,

8On the contrary, the Fourier transform of Ps is singular
only at τ ¼ x ¼ 0. This is explicitly verified using the repre-
sentation

Z
dωd2k
ð2πÞ3

e−iωτþikx

ω2 þ A2k4
¼ −

1

Δ

Z
d2k

ð2πÞ2A e−Ak
2jτjþikx

¼ −1
16π2A2jτj

Z
d2y log jx − yj exp

�
−

y2

4Ajτj
�
:

The rhs is smooth together with all its derivatives whenever τ or x
is nonzero.

9A hint towards such cancellation comes from considering
one-graviton exchange between two external sources. One can
check that the irregular contributions drop off from this
amplitude if the sources are conserved, as required by FDiff
invariance. This argument is not directly applicable at
higher orders of perturbation theory where the sources coupled
to the metric are not conserved due to the nonlinearities of the
theory.

10Note that in d ¼ 3 such a combination is further forbidden by
the mismatch between the scaling dimensions of the shift Ni and
of the spatial derivatives of hij.
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Pðω;kÞ
Dðω;kÞ ; ð19aÞ

where D is a product of monomials,

D ¼
YM
m¼1

ðAmω
2 þ Bmk2d þ � � �Þ; Am; Bm > 0; ð19bÞ

and Pðω;kÞ is a polynomial of scaling degree11 less than or
equal to r1 þ r2 þ 2ðM − 1Þd. We emphasize that all
constants Am; Bm in (19b) must be strictly positive. The
ellipsis stands for terms with lower scaling dimensions that
generically arise in theories with relevant operators in the
action. The reader will easily convince herself that a regular
propagator has only local singularities at τ ¼ x ¼ 0 in
position space. Due to the restriction on the degree of the
numerator it scales at short distances and time intervals as

hΦ1ðb−dτ; b−1xÞΦ2ð0Þi ¼ br1þr2hΦ1ðτ;xÞΦ2ð0Þi:

The results of the previous section show that in order to
obtain regular propagators in Hořava gravity we need to go
beyond local gauge-fixing terms.

A. Theory in two spatial dimensions

As a starting point and for guidance in the treatment of
nonrelativistic theories, let us first review the structure of
covariant gauges in relativistic theories. In GR and its
higher-derivative extensions the corresponding gauge-
fixing Lagrangians can be adjusted such as to cancel the
terms mixing different metric components in the quadratic
action. Such a gauge fixing renders the tensor structure of
the propagators diagonal and greatly simplifies the actual
computations. The spatial diffeomorphisms are fixed in the
covariant gauges by the conditions Fi ¼ 0. In terms of the
ADM variables they have the general form

Fi ¼ _Ni − ∂jhij − C∂ið2ϕþ hÞ; ð20Þ
where ϕ is the perturbation of the lapse andC is a numerical
constant. Such a form is not appropriate for Hořava gravity,
because _Ni and spatial derivatives of hij have different
scaling dimensions. The discrepancy is easily compensated
by introducing two more spatial derivatives acting on the
spatial metric. Thus, for d ¼ 2 Hořava gravity we consider
the gauge-fixing function of the general form,

Fi ¼ _Ni − C1Δ∂jhij − C2Δ∂ih − C3∂i∂j∂khjk: ð21Þ

The coefficients C1;2;3 are chosen shortly to simplify the
quadratic action. Note the presence of the last term in (21)
which does not have an analog in the relativistic case (20).

Importantly, with the gauge-fixing function (21) the
operator Oij in the gauge-fixing Lagrangian (17) must
have dimension −2 and thus is necessarily nonlocal. We
take

Oij ¼ −½δijΔþ ξ∂i∂j�−1 ¼ −
δij
Δ

þ ξ

ð1þ ξÞ
∂i∂j

Δ2
: ð22Þ

Though unusual, the nonlocality of the gauge-fixing
Lagrangian does not introduce any problems in the per-
turbative expansion around flat spacetime, as it appears
only in the quadratic action.12 The only important property
at this point is the invertibility of Oij.
We now choose the coefficients in the linear combination

(21) in such a way that the contributions coming from Lgf
cancel the terms mixing Ni and hij in the quadratic
Lagrangian. The combination with the required properties is

Fi ¼ _Ni þ 1

2σ
O−1

ij ∂khjk −
λ

2σ
O−1

ij ∂jh

¼ _Ni −
1

2σ
Δ∂khik þ

λð1þ ξÞ
2σ

Δ∂ih −
ξ

2σ
∂i∂j∂khjk:

ð23Þ

In this way we arrive at a two-parameter family of gauges
depending on σ and ξ. It is instructive to write down the total
quadratic Lagrangian in this σξ-gauge,

Ld¼2
2 þLgf

¼ 1

2ϰ2

� _h2ij
4
−
λ _h2

4
−

1

4σ
∂jhijΔ∂khikþ

�
μþ ξ

4σ

�
ð∂i∂jhijÞ2

−
�
2μþλð1þξÞ

2σ

�
Δh∂i∂jhijþ

�
μþλ2ð1þξÞ

4σ

�
ðΔhÞ2

−σ _Ni½δijΔþξ∂i∂j�−1 _Njþð∂iNjÞ2
2

þ
�
1

2
−λ

�
ð∂iNiÞ2

�
:

ð24Þ

Note that the nonlocality persists only in the term involving
time derivatives of the shift.
Inserting again the helicity decomposition (5) into the

above Lagrangian, inverting the operators that appear in the
resulting quadratic forms, and combining all contributions
in (12) we obtain the propagators

hNiðpÞNjð−pÞi ¼ ϰ2

σ
ðk2δij − kikjÞP1ðpÞ

þ ϰ2ð1þ ξÞ
σ

kikjP2ðpÞ; ð25aÞ

11The scaling degree of a polynomial is defined as the maximal
scaling dimension of its terms.

12It will require a careful treatment, however, when we
generalize our analysis to the background-field formalism in
Sec. V B.
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hhijðpÞhklð−pÞi¼ 4ϰ2δijδkl

�
1−λ

1−2λ
PsðpÞ−P1ðpÞ

�

þ2ϰ2ðδikδjlþδilδjkÞP1ðpÞ
þ4ϰ2ðδijk̂kk̂lþ k̂ik̂jδklÞ½P1ðpÞ−PsðpÞ�

þ4ϰ2k̂ik̂jk̂kk̂l

�
1−2λ

1−λ
PsðpÞ

−2P1ðpÞþ
P2ðpÞ
1−λ

�
; ð25bÞ

whereas hNihjki trivially vanishes. Here Ps is given by the
expression (15) and

P1ðpÞ ¼
�
ω2 þ k4

2σ

�
−1
; ð26aÞ

P2ðpÞ ¼
�
ω2 þ ð1 − λÞð1þ ξÞ

σ
k4
�
−1
: ð26bÞ

In deriving Eq. (25b) we again made use of the identity (A1).
The above propagators are regular in the sense of (19a)
provided13

σ > 0; ð1 − λÞð1þ ξÞ > 0: ð27Þ
Indeed, (25a) and the first two terms in (25b) are obviously
regular. For the terms in the second line of (25b) the situation
is subtler. One may worry that the longitudinal projectors
entering them contain factors k2 in the denominator and
apparently violate the regular form (19b). However, we
observe that the combinations in the square brackets in these
terms vanish at k ¼ 0, ω ≠ 0. Besides, they depend on the
spatial momentum through k4. This implies that when the
worrisome terms are written as ratios of polynomials, their
numerators are at least proportional to k4, which cancels all
powers of k from the denominator. This cancellation is in fact
guaranteed by the regularity of the propagator hhijhkli at
k → 0, ω-fixed; this, in turn, follows from the regular
structure of the kinetic term for hij in this limit; see (24).
The expressions for the propagators are particularly

simple for the choice of the gauge parameters,

σ ¼ 1 − 2λ

8μð1 − λÞ ; ξ ¼ −
1 − 2λ

2ð1 − λÞ ; ð28Þ

which renders P1 ¼ P2 ¼ Ps. Then one obtains

hNiðpÞNjð−pÞi¼4μϰ2
�
2ð1−λÞ
1−2λ

δijk2−kikj

�
PsðpÞ;

hhijðpÞhklð−pÞi¼2ϰ2
�

2λ

1−2λ
δijδklþδikδjlþδilδjk

�
PsðpÞ:

This gauge may be convenient for the actual loop compu-
tations in Hořava gravity.

1. Fadeev-Popov ghosts

The gauge-fixing procedure must be completed by
specifying the action for the Faddeev-Popov ghosts. This
is conveniently derived in the Becchi-Rouet-Stora-Tyutin
(BRST) formalism [39,40]. We follow the presentation of
[41]. One introduces an operator s transforming the metric
and the shift,

shij ¼ ∂icj þ ∂jci þ ∂ickhjk þ ∂jckhik þ ck∂khij; ð29aÞ

sNi ¼ _ci − Nj∂jci þ cj∂jNi; ð29bÞ
where ciðτ;xÞ are anticommuting ghost fields. The trans-
formations (29) are nothing but the variations of hij and Ni

under infinitesimal diffeomorphisms with the parameters ci.
Supplementing them by the transformation of the ghosts,

sci ¼ cj∂jci; ð30Þ
it is straightforward to verify that s is nilpotent,14

s2hij ¼ s2Ni ¼ s2ci ¼ 0: ð31Þ
The ghost action is written using the BRST transform of the
gauge-fixing function,

Sgh ¼ −
1

ϰ2

Z
dτd2xciðsFiÞ; ð32Þ

where we have introduced the antighost ci. Explicitly, upon
integration by parts we obtain

Sgh¼
1

ϰ2

Z
dτd2x

�
_ci _ciþ

1

2σ
ΔciΔci−

1−2λþ2ξð1−λÞ
2σ

∂iciΔ∂jcj− _ci∂jciNjþ _cicj∂jNi

−
1

2σ
Δ∂jcið∂ickhjkþ∂jckhikþck∂khijÞ−

ξ

2σ
∂i∂j∂kcið∂jclhlkþ∂kclhjlþcl∂lhjkÞþ

λð1þξÞ
2σ

Δ∂icið2∂kclhlkþcl∂lhÞ
�
:

ð33Þ
This action is invariant under the anisotropic scaling (1) with the assignment of zero scaling dimension to the (anti-) ghosts,

13For λ > 1 the second condition implies ξ < −1. In this case the operator (22) in the gauge-fixing term is not positive definite. We are
not aware of any problems related to this in the perturbation theory. However, it can lead to complications with the nonperturbative
definition of the theory [cf. Eq. (42)].

14In deriving these identities one uses the graded Leibniz rule, sA · B ¼ ðsAÞ · Bþ ð−1ÞjAjA · ðsBÞ, where jAj ¼ 0 (jAj ¼ 1) for a
bosonic (fermionic) field. For example, s2ci ¼ sðcj∂jciÞ ¼ ðscjÞ∂jci − cj∂jðsciÞ.
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½ci� ¼ ½ci� ¼ 0:

Note also that the antighost ci always appear in the action
either with a time derivative or with three spatial derivatives
acting on it. From the first line of (33) we obtain the
propagator

hciðpÞcjð−pÞi ¼ ϰ2δijP1ðpÞ þ ϰ2k̂ik̂j½P2ðpÞ − P1ðpÞ�:
ð34Þ

It is straightforward to check that this propagator is regular.
In the gauge (28) it diagonalizes,

hciðpÞcjð−pÞi ¼ ϰ2δijPsðpÞ:
If we postulate the BRST transformation of the

antighost as15

sci ¼ σOijFj; ð35Þ
the total action composed of the original action, the gauge-
fixing term (17) and the action for ghosts is BRST invariant,

s½Sþ Sgf þ Sgh� ¼
1

ϰ2

Z
dτd2x½σðsFiÞOijFj − ðsciÞðsFiÞ�

¼ 0;

where we used that the variation of S vanishes as the
consequence of gauge invariance, whereas s2Fi ¼ 0 due to
Eqs. (31). In other words, the transformations (29)–(30)
and (35) constitute a symmetry of the gauge-fixed action,
reflecting the original gauge invariance.
This symmetry explains the following property that at

first might appear surprising. The decomposition of the
metric and the shift (5) involves four gauge modes: two
transverse vectors ui, vi and two longitudinal scalars B and
E. Adding the gauge-fixing term to the action makes these
modes propagating, which naively could give rise to four
different pole structures in the propagators of the metric and
the shift. Instead, we see only two structures associated
with the gauge modes, i.e. P1 and P2. The reason is that the
BRST transformation connects the gauge modes to the
ghost field which contains only one transverse and one
longitudinal component. To see explicitly how this
constrains the propagators, consider the linear part of the
BRST transformations (29). They form a symmetry of the
quadratic action and hence leave the two-point Green’s
functions invariant. Let us act with s on the correlators
hhijcki and hNicki which trivially vanish. We obtain

0 ¼ shhijcki ¼ hð∂icj þ ∂jciÞcki þ σhhijOklFli

¼ hð∂icj þ ∂jciÞcki þ
1

2
hhijð∂lhkl − λ∂khÞi;

where passing to the second line we substituted the explicit
form (23) of the gauge-fixing function and used that the
correlator hhijNki vanishes. Similarly

0 ¼ shNicji ¼ h _cicji þ σOjkhNi _Nki:
These relations imply, in particular, that the poles of the
gauge modes must coincide with the poles of the ghost
propagator and thus there can be at most two gauge-
dependent poles. It is straightforward to verify that the
propagators (25), (34) satisfy the above relations.

B. Theory in three spatial dimensions

The analysis of the previous section can be easily gener-
alized to projectable Hořava gravity in spacetime of arbitrary
dimension (dþ 1).Weworkout explicitly the cased ¼ 3, the
lowest dimensionality admitting propagating TT mode. We
do not repeat the details of the derivation, highlighting only
the difference from the d ¼ 2 case. For the sake of clarity, we
keep only marginal terms in the potential (4) omitting the
relevant deformations. The latter do not affect the UV
properties of the theory that are of interest to us.
The gauge-fixing Lagrangian is still given by the expres-

sion (17). However, now the scaling dimension of Fi, which
coincides with the dimension of _Ni, is 5. Therefore, for the
gauge-fixing term to be scale invariant, the operatorOij must
have dimension16 −4. Its general form is

Oij ¼ Δ−1½δijΔþ ξ∂i∂j�−1:

Substituting this into the first line of (23) we obtain the
explicit expression for the gauge-fixing function,

Fi ¼ _Ni þ 1

2σ
Δ2∂khik −

λð1þ ξÞ
2σ

Δ2∂ihþ ξ

2σ
Δ∂i∂j∂khjk:

As in d ¼ 2, this choice of the gauge-fixing function
eliminates the crossterms mixing the shift and the metric in
the quadratic action. One combines Lgf with the quadratic
Lagrangian (8), sets to zero the coefficients in front of the
relevant deformations, η ¼ μ1 ¼ μ2 ¼ 0, and flips the sign of
ν4;5 in consequence of theWick rotation. Then, a straightfor-
ward calculation yields the nonzero propagators,

hNiðpÞNjð−pÞi ¼ ϰ2k2

σ
ðk2δij − kikjÞP1ðpÞ

þ ϰ2ð1þ ξÞk2
σ

kikjP2ðpÞ; ð36aÞ
15With this definition the second BRST variation of the

antighost is nonzero, s2c̄i ¼ σOijsFj ≠ 0. It is possible to modify
the formalism in such a way that s2 will annihilate all fields,
including the antighost, at the expense of introducing an addi-
tional auxiliary variable. We prefer to avoid this complication
which is irrelevant for our purposes.

16Recall that for d ¼ 3 the scaling dimension of the spacetime
measure is ½dτd3x� ¼ −6.
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hhijðpÞhklð−pÞi ¼ 2ϰ2ðδikδjl þ δilδjkÞPttðpÞ − 2ϰ2δijδkl

�
PttðpÞ −

1 − λ

1 − 3λ
PsðpÞ

�

− 2ϰ2ðδikk̂jk̂l þ δilk̂jk̂k þ δjkk̂ik̂l þ δjlk̂ik̂kÞ½PttðpÞ − P1ðpÞ�
þ 2ϰ2ðδijk̂kk̂l þ k̂ik̂jδklÞ½PttðpÞ − PsðpÞ�

þ 2ϰ2k̂ik̂jk̂kk̂l

�
PttðpÞ þ

1 − 3λ

1 − λ
PsðpÞ − 4P1ðpÞ þ

2P2ðpÞ
1 − λ

�
; ð36bÞ

where now the pole structures are

Ptt ¼
1

ω2 þ ν4k6
; ð37aÞ

Ps ¼
�
ω2 þ ð8ν4 þ 3ν5Þð1 − λÞ

1 − 3λ
k6
�
−1
; ð37bÞ

P1 ¼
�
ω2 þ k6

2σ

�
−1
; ð37cÞ

P2 ¼
�
ω2 þ ð1 − λÞð1þ ξÞ

σ
k6
�
−1
: ð37dÞ

The first two structures correspond to the physical TT and
scalar modes, cf. Eqs. (9), whereas the other two are gauge
dependent. Note that the latter coincide with the expressions
(26) up to the substitution k4 ↦ k6. By inspection one finds
that the propagators (36) satisfy the regularity conditions (19).
The BRST transformations have the same form as

before, Eqs. (29)–(30) and (35). This also applies to the
ghost action which is given by (32), up to replacement of
the integration measure dτd2x ↦ dτd3x. We write down
explicitly only the quadratic part,

Sgh ¼
1

ϰ2

Z
dτd3x

�
_ci _ci −

1

2σ
ciΔ3ci

þ 1 − 2λþ 2ξð1 − λÞ
2σ

∂iciΔ2∂jcj þ � � �
�
;

where dots stand for cubic terms describing interactions of
ghosts with Ni and hij. From this action one reads off the
expression for the ghost propagator which turns out to be
the same as (34), but with P1;2 given by Eqs. (37c)–(37d).
One can use the freedom in the choice of the gauge

parameters σ and ξ to simplify the expressions (36).
However, unlike the case d ¼ 2, it is generically impossible
to make all propagators proportional to each other. This is,
of course, due to the presence of two distinct physical
excitations in the theory—TT and scalar gravitons—that in
general have different dispersion relations.

V. COUNTERTERMS

In this section we argue that existence of σξ-gauges
where all propagators are regular implies renormalizability.
We carry out the derivation for the case d ¼ 2; the
generalization to higher dimensions is straightforward.

A. Degree of divergence

We work with the total action

Stot ¼ Sþ Sgf þ Sgh;

where S is given by (3) with the potential (10), the gauge-
fixing term Sgf corresponds to the Lagrangian (17) and the
ghost action Sgh has the form (32). Consider a general
diagram appearing in the perturbative expansion based on
this action. One introduces the notations

(i) Phh—number of hhijhkli propagators,
(ii) PNN—number of hNiNji propagators,
(iii) Pcc—number of the ghost propagators,
(iv) V ½h�—number of vertices involving only the hij-fields,
(v) V ½h�N—number of vertices with an arbitrary number

of h-legs and a single N-leg,
(vi) V ½h�NN—number of vertices with an arbitrary num-

ber of h-legs and two N-legs,
(vii) Vhcc—number of vertices describing interaction of

hij with the ghosts,
(viii) VNcc—number of vertices describing interaction of

Ni with the ghosts,
(ix) L—number of loops, i.e. number of independent

loop integrals,
(x) lN—number of external N-legs,
(xi) T—number of time derivatives acting on external

legs,
(xii) X—number of spatial derivatives acting on external

legs.
These quantities obey two relations:

L ¼ Phh þ PNN þ Pcc − V ½h� − V ½h�N − V ½h�NN − Vhcc

− VNcc þ 1; ð38aÞ

lN ¼ V ½h�N þ VNcc þ 2V ½h�NN − 2PNN: ð38bÞ

The first relation follows from the standard reasoning that
out of ðPhh þ PNN þ PccÞ original integrals over
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frequencies and momenta ðV ½h�þV ½h�NþV ½h�NNþVhccþ
VNcc−1Þ are removed by the δ-functions at the vertices
(one δ-function remains as an overall factor multiplying the
whole diagram). The second relation is obtained by counting
the N-legs. Indeed, each vertex of the type V ½h�N or VNcc
brings one N-leg, whereas the vertex V ½h�NN brings two;
every hNiNji-propagator absorbs two legs; the remainingN-
legs are external.
Next we introduce the superficial degree of divergence

Ddiv of the diagram. This is defined as the scaling power of
the diagram under the simultaneous rescaling of all loop
momenta and frequencies,

kðlÞ ↦ bkðlÞ; ωðlÞ ↦ b2ωðlÞ;

in the limit b → ∞. By inspection of the expressions for the
propagators and vertices one obtains

Ddiv ¼ 4L − 4Phh − 2PNN − 4Pcc þ 4V ½h� þ 3V ½h�N
þ 2V ½h�NN þ 4Vhcc þ 3VNcc − 2T − X:

Using (38) this reduces to17

Ddiv ¼ 4 − 2T − X − lN:

Let us focus on the diagramswith external h-legs only.We
see thatDdiv is negative for diagramswithmore than two time
or four space derivatives on external legs. Assuming that
Ddiv < 0 implies convergence of a diagram, one concludes
that only diagrams with at most two time and four space
derivatives on the external linesmust be renormalized. These
diagrams can be Taylor expanded18 in the external frequen-
cies and momenta, with the successive terms in the series
having lower and lower degrees of divergence. Starting from
a certain order the coefficients in the Taylor expansion
become finite, so that only a few first terms in the series
will require subtraction. The corresponding counterterms are
polynomial in external frequencies and momenta and hence
local in position space. Again, they have no more than two
time or four space derivatives acting on the metric hij. In
other words, their scaling dimension is less than or equal to
four. If we further assume that the divergent parts of the
diagrams respect the foliation-preserving diffeomorphisms,
it follows that the counterterms must have the same form as
the terms already present in the action (3), (10). This amounts
to renormalizability.
The above argument contains two important assumptions

that we now scrutinize. First, a generic diagram will contain

subdivergences and thus can diverge despite Ddiv < 0.
Fortunately, as shown in [24], the combinatorics of the
subtraction procedure in nonrelativistic theories work
essentially in the same way as in the relativistic case,
and subdivergences are subtracted by counterterms intro-
duced at the previous orders of the loop expansion.
Second, even in the absence of subdivergences, the

convergence of a diagram with Ddiv < 0 is not trivial.
Indeed, consider the integral

Z
dωð1Þd2kð1Þ

Z YL
l¼2

½dωðlÞd2kðlÞ�fðfωg; fkgÞ;

where we singled out the first loop momentum and sup-
pressed the dependence on external momenta. Assume for
simplicity that f is a scalar function (in general it can carry
tensor indices corresponding to the external legs of the
diagram). Because subdivergences are absent, the inner
integral converges and gives a function ~fðωð1Þ; kð1ÞÞ which
for kð1Þ ↦ bkð1Þ,ωð1Þ ↦ b2ωð1Þ scales as bDdiv−4. However,
the latter can have the form

~f∼ ðωð1ÞÞ−1þnðkð1ÞÞDdiv−2−2n or ðωð1ÞÞ−1−nðkð1ÞÞDdiv−2þ2n;

n> 0; ð39Þ

and the integral over frequency (momentum) will diverge,
despite the fact that the k-integral (ω-integral) is finite. These
are precisely the spurious divergences that arise if the
propagators contain irregular contributions discussed in
Sec. III. Note that this problem is absent in Lorentz invariant
theories, where the function ~f can depend only on ðωð1ÞÞ2þ
ðkð1ÞÞ2. In Appendix B we prove that spurious divergences
(39) do not appear if all propagators have the regular form
(19). In that caseDdiv < 0 indeed implies convergence of the
diagram.
Finally, we must discuss the gauge invariance of the

counterterms. In the perturbative expansion around flat
spacetime, which we have been considering so far, gauge
invariance is actually not preserved. One way to proceed
would be to exploit the BRST symmetry of the gauge-fixed
action to constrain the structure of counterterms, similar to
the analysis of [2]. This approach would require consid-
ering divergent diagrams with external ghost lines (as well
as diagrams with external N-legs) and working out their
relation to the diagrams renormalizing the vertices con-
taining only the metric. This should be done order by order
in perturbation theory, and the analysis is very cumber-
some. Instead, we adopt the method of background
effective action19 where the invariance with respect to
the (background) gauge transformations is manifest.

17The generalization of this formula for (dþ 1)-dimensional
Hořava gravity is Ddiv ¼ 2d − d · T − X − ðd − 1ÞlN .

18We assume that the UV divergences have been appropriately
regulated, e.g. by analytically continuing in the dimensionalities
of time and space [24], and that possible IR divergences have
been removed by introducing an IR cutoff. 19See [42–44] for a pedagogical introduction.
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B. Background-covariant formulation

One decomposes the total metric and shift into back-
ground γij, Ni and fluctuations hij, ni:

γij ¼ γij þ hij; Ni ¼ Ni þ ni:

We still have to fix the gauge for the fluctuations. However,
one can do it in the way that explicitly preserves the
invariance with respect to diffeomorphisms acting on the
background. This is easily achieved by covariantizing all
formulas of the previous sections. Instead of (22)–(23) we
write

Fi ¼ Dtni þ
1

2σ
ðO−1Þij∇khkj −

λ

2σ
ðO−1Þij∇jh;

where

Dtni ¼ _ni − Nk∇kni þ∇kNink

is the covariant time derivative and

Oij ¼ −½Δγij þ ξ∇i∇j�−1:

The covariant derivatives ∇i are defined using the
Christoffel connection constructed from γij; all indices
are raised and lowered with γij, γij, and h ¼ hijγij. The
gauge-fixing action is still given by the Lagrangian (17)
that must be integrated over the spacetime with the
covariant measure

R
dτd2x

ffiffiffi
γ

p
. Similarly, the ghost action

has the form

Sgh ¼ −
1

ϰ2

Z
dτd2x

ffiffiffi
γ

p
ciðsFiÞ;

where BRST transformations of the fields are defined by
promoting all derivatives in (29)–(30) and (35) to be
background-covariant. For example, for the shift we have,

sni ¼ Dtci − nj∇jci þ cj∇jni:

It is straightforward, even if somewhat tedious, to verify
that the action of the BRSToperator on hij, ni and ci is still
nilpotent.
The idea of the background-field method is to take the

path integral over the fluctuations and obtain an effective
action for the background fields. The latter will be
automatically invariant with respect to background gauge
transformations.20 In particular, this holds for its divergent
part that requires renormalization. In other words, in the
background-covariant formulation the counterterms are
guaranteed to be gauge invariant.

One should be worried at this point that the gauge-fixing
Lagrangian depends on the background fields in a nonlocal
manner which can compromise the locality of the counter-
terms. To resolve this issue, we observe that the nonlocal
operator Oij actually cancels everywhere in the gauge-
fixing action, except the kinetic term for the shift,

Sn;kin ¼
Z

dτd2x
ffiffiffi
γ

p σ

2ϰ2
DtniOijDtnj: ð40Þ

The latter is cast in the local form by introducing an
auxiliary field πi,

S0n;kin ¼
1

ϰ2

Z
dτd2x

ffiffiffi
γ

p �
1

2σ
πiðO−1Þijπj − iπiDtni

�
: ð41Þ

Taking the Gaussian path integral over πi reproduces (40).
Note that we have introduced an imaginary coefficient in
front of the second term in (41) in order to preserve the
positivity of the quadratic term.21 This is not problematic:
the imaginary part of (41) is odd when πi changes sign and
hence the effective action is real as it is obtained by
integrating over all values of πi. Besides, we notice that πi
enters in the action as a canonically conjugate momentum
for the shift perturbations ni. From this perspective, the
presence of an imaginary part in (41) is not surprising.
Indeed, such an imaginary part associated with the canoni-
cal form appears even in ordinary mechanics when the
Euclidean action is written in terms of canonical variables.
It is instructive to work out how the introduction of πi

affects the measure in the path integral. Let us take a step
backward and recall that the gauge-fixing Lagrangian (17)
arises as a result of smearing the gauge-fixing condition
Fi ¼ fi with the weighting functional

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetOij

q Z
½dfi� exp

�
−
Z

dτd2x
ffiffiffi
γ

p σ

2ϰ2
fiOijfj

�
ð42Þ

inserted in the partition function of the theory. Notice the
square root of the functional determinant of the operator
Oij in the prefactor which ensures the correct normaliza-
tion. Thus, before introducing πi the partition function has
the form

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetOij

q Z
½dnjdhkldcmdcn� exp½−ðSn;kin þ � � �Þ�;

where the ellipsis stands for the local contributions in the
action. The introduction of πi not only makes the action
local, but also absorbs the determinant from the prefactor.
This follows from the relations

20We assume dimensional regularization, which preserves
gauge invariance.

21Strictly speaking, this argument applies in the case λ < 1=2
when the operatorOij, and hence ðO−1Þij, is positive definite. For
λ > 1 the positivity cannot be ensured, which, however, does not
affect the perturbative considerations; see footnote 13.
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e−Sn;kin½ni� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetðO−1Þij

q Z
½dπj�e−S

0
n;kin½πj;ni�;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetOij

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetðO−1Þij

q
¼ 1:

Thus, we arrive to the final expression for the partition
function,

Z ¼
Z

½dπidnjdhkldcmdcn� exp½−ðS0n;kin þ � � �Þ�:

Curiously, the introduction of πi makes the integration
measure in the path integral flat, which further supports the
identification of πi as the canonically conjugate momentum
to ni.
Last but not least, we have to check that the introduction

of πi does not spoil the regular structure of the propagators.
It is sufficient to perform this analysis for the flat back-
ground, γij ¼ δij,Ni ¼ 0, as locally any background can be
brought to this form by a coordinate choice and our
question deals with the local properties of the propagators.
From the quadratic Lagrangian in the πn-sector,

Ld¼2
2;πn ¼

1

2ϰ2

�
−
1

σ
πiðΔδij þ ξ∂i∂jÞπj − 2iπk _nk þ

ð∂injÞ2
2

þ
�
1

2
− λ

�
ð∂iniÞ2

�
;

we find that the hninji propagator is not modified and is
given by (25a), whereas

hπiðpÞnjð−pÞi¼ ϰ2ωδijP1ðpÞþϰ2ωk̂ik̂j½P2ðpÞ−P1ðpÞ�;

hπiðpÞπjð−pÞi¼
ϰ2

2
ðk2δij−kikjÞP1ðpÞ

þϰ2ð1−λÞkikjP2ðpÞ:

These are compatible with the regular form (19) for the
scaling dimension22 ½πi� ¼ 1. As a consequence, the rea-
soning of Sec. VA goes through essentially unchanged
with the field πi taken into consideration.
To sum up, we have formulated a manifestly back-

ground-covariant gauge-fixing procedure. Combined with
the results of Sec. VA about the scaling dimension of
possible divergences, it implies that at one loop counter-
terms in the effective action have the same structure as the
terms in the bare Lagrangian. There are strong arguments
that this also holds at higher loops [45–48] implying that
the theory is renormalizable.

VI. NONPROJECTABLE MODEL

We now consider the nonprojectable Hořava gravity.
Again, for illustration of the general situation we take the
model in (2þ 1) dimensions [49] which is technically
much simpler than its (3þ 1)-dimensional counterpart.
Upon using integration by parts and the fact that in two
dimensions the Riemann tensor is expressed in terms of the
scalar curvature, one finds that the potential contains ten
inequivalent terms,

V¼ 2Λ−ηR−αaiaiþμR2þρ1ΔRþρ2Raiai

þρ3ðaiaiÞ2þρ4aiai∇jajþρ5ð∇jajÞ2þρ6∇iaj∇iaj;

where

ai ¼
∂iN
N

is the combination of the lapse and its derivative which is
invariant under the reparametrizations of time; see Eqs. (2).
Expanding around flat spacetime,23 one obtains the quad-
ratic action

Sd¼2;np
2 ¼ 1

2ϰ2

Z
dtd2x

�
−
1

2
ð _vi−uiÞΔð _vi−uiÞþ

_ψ2

4

þ1

4
ð _E−2ΔBÞ2− λ

4
ð _ψþ _E−2ΔBÞ2−ηϕΔψ

−αϕΔϕ−μðΔψÞ2þρ1ϕΔ2ψ − ðρ5þρ6ÞϕΔ2ϕ

�
;

where we used the helicity decomposition (5) and intro-
duced the fluctuation of the lapse ϕ≡ N − 1. This action
propagates a single scalar degree of freedom with the
dispersion relation,

ω2 ¼
�
1 − λ

1 − 2λ

�

×
η2k2 þ ð4αμþ 2ηρ1Þk4 þ ðρ21 − 4μðρ5 þ ρ6ÞÞk6

α − ðρ5 þ ρ6Þk2
:

In contrast to the projectable case, this dispersion relation is
linear at low k,

ω2 ¼
�
1 − λ

1 − 2λ

�
η2

α
k2:

At large momenta it respects the anisotropic scaling (1),

ω2 ¼ 1 − λ

1 − 2λ

�
4μ −

ρ21
ρ5 þ ρ6

�
k4:

22The fact that the scaling dimension of πi is equal to 1 follows
from the way it enters into the action multiplied by the time
derivative of the shift. This applies to Hořava gravity in any
number of spacetime dimensions.

23For the flat spacetime to be a solution, we assume that the
cosmological constant Λ is tuned to zero.
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Themode has positive energy and is stable at all momenta for
an appropriate choice of parameters. In particular, the
followingnecessary conditionsmust be satisfied:ϰ2 > 0, λ <
1=2 or λ > 1, α > 0, ðρ5 þ ρ6Þ < 0 and 4μ > ρ21=ðρ5 þ ρ6Þ.
Let us focus on the UV behavior of the model.

Accordingly, we retain only marginal terms in the action
which amounts to setting η ¼ α ¼ 0. Next, one performs the
Wick rotation and introduces the gauge-fixing term (17) with
the gauge-fixing function (23) andOij defined in (22). After
a somewhat lengthy, but straightforward calculation one
finds that the propagators of the shift and the metric have the
form (25), where P1, P2 are still given by (26), while

PsðpÞ ¼
�
ω2 þ 1 − λ

1 − 2λ

�
4μ −

ρ21
ρ5 þ ρ6

�
k4
�
−1
:

Other nonvanishing propagators are

hϕðpÞϕð−pÞi¼ ϰ2ð1−λÞρ21
ð1−2λÞðρ5þρ6Þ2

PsðpÞþ
ϰ2

ðρ5þρ6Þk4
;

ð43aÞ

hϕðpÞhijð−pÞi ¼
2ϰ2ð1 − λÞρ1

ð1 − 2λÞðρ5 þ ρ6Þ
δijPsðpÞ

−
2ϰ2ρ1kikj
ðρ5 þ ρ6Þk2

PsðpÞ: ð43bÞ

Clearly, the last terms in (43a)–(43b) violate the regularity
condition. Though these contributions have been derived
within a particular family of gauges, we believe they cannot
be removed by any gauge choice. They correspond to the
instantaneous interaction present in the theory [12,26]. We
conclude that the correlators of the lapse contain genuinely
nonlocal terms whose contributions to the loop diagrams
must be carefully analyzed to establish or disprove the
renormalizability of the theory.

VII. CONCLUSIONS

In this paper we have demonstrated renormalizability of
the projectable version of Hořava gravity. Though for
concreteness we focused on the models in d ¼ 2 and d ¼
3 spatial dimensions, our analysis is completely general and
applies to Hořava gravity in any dimensionality. Thus, for
d ≥ 3 projectable Hořava gravity presents the first example
of unitary renormalizable quantum field theory of gravi-
tation with dynamical transverse-traceless excitations
(gravitons). The key element of our argument is the choice
of gauge fixing which ensures the right scaling properties
of the propagators and their uniform falloff at large
frequencies and momenta. The latter property is essential
to guarantee locality of the singularities of the propagators
in position space. An unusual feature of our approach is that
it involves a gauge-fixing term which is nonlocal in space.

We showed how this nonlocality can be resolved by
introduction of an auxiliary field resulting in a local
gauge-fixed action.
We restricted the analysis to pure gravity theories. We

now argue that the renormalizability is preserved upon
inclusion of matter obeying the Lifshitz scaling (1) in the
UV. Indeed, the derivation of Sec. V relies only on the
scaling properties of the propagators and vertices, regular
form of the propagators, and invariance under foliation-
preserving diffeomorphisms. These properties are clearly
satisfied by Lifshitz scalars and fermions, and in general, by
any Lifshitz matter with only global internal symmetries.
For gauge theories one should use an appropriate gauge
fixing that leads to regular propagators. It turns out that this
gauge fixing is nonlocal, in complete analogy with what we
have found for gravity. For example, for a gauge field
ðA0;AiÞ in d ¼ 2with the quadratic Euclidean Lagrangian,

LA ¼ 1

2
F 0iF 0i −

μA
4
F ijΔF ij;

F 0i ¼ _Ai − ∂iA0;

F ij ¼ ∂iAj − ∂jAi; ð44Þ

the suitable gauge-fixing term is

LA;gf ¼ −
σA
2

�
_A0 þ

1

σA
Δ∂iAi

�
1

Δ

�
_A0 þ

1

σA
Δ∂jAj

�
:

It is chosen in such a way to cancel the crossterms mixing
A0 and Ai. For σA ¼ 1=μA the quadratic action diago-
nalizes completely and the propagators are particularly
simple,

hA0A0i ¼
μAk2

ω2 þ μAk4
; hAiAji ¼

δij
ω2 þ μAk4

:

These are regular and correspond to the dimensions
½A0� ¼ 1, ½Ai� ¼ 0 dictated by the anisotropic scale invari-
ance of the Lagrangian (44). Furthermore, the nonlocality
of the gauge-fixing term gets resolved by introducing a
canonically conjugate momentum for A0, as done in
Sec. V B for gravity. We conclude that the projectable
Hořava gravity can be coupled also to gauge fields with
Lifshitz scaling without spoiling renormalizability.
Given renormalizability, the next obvious question is the

renormalization group (RG) behavior of the coupling
constants. Only when the RG flow has a weakly coupled
UV fixed point can the theory be considered UV complete.
If instead it turns out that the running couplings develop a
Landau pole, the theory will still require embedding into a
broader framework. Our results imply that the running of
the couplings is logarithmic, and thus the need for such
embedding, if any, will be postponed to exponentially high
energy scales.

ANDREI O. BARVINSKY et al. PHYSICAL REVIEW D 93, 064022 (2016)

064022-14



Another issue that acquires new importance in view of
our findings is the fate of the instability at low momenta
present in (3þ 1)-dimensional projectable Hořava gravity.
It would be interesting to understand whether this insta-
bility can be cut off by nonlinear terms in the Lagrangian
and, if it can, determine the structure of the ground state.
The fact that the instability is developed by the modes with
nonzero spatial momenta suggests that the putative ground
state will break translational invariance.
For the nonprojectable Hořava gravity our gauge-fixing

procedure is not sufficient to establish renormalizability.
We have found that it still leaves certain contributions in the
propagators of the lapse that do not fall off with frequency.
These contributions cannot be removed by any gauge
choice and are related to the physical instantaneous
interaction present in the theory. In position space they
lead to singularities in the propagators that are nonlocal in
space. It will be crucial to work out the implications of this
nonlocality for the perturbative expansion in order to
establish (or disprove) renormalizability of the theory.
We leave this study for the future.
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APPENDIX A: A TENSOR IDENTITY

In dimension d ¼ 2 any tensor antisymmetric in three or
more indices is identically equal to zero. Consider the

combination k̂mδijδ
k
l , where k̂m is a unit vector. By anti-

symmetrizing it over the lower indices and contracting with
k̂m we obtain

0 ¼ k̂mk̂½mδijδ
k
l�

¼ δijδ
k
l − δilδ

k
j þ k̂kk̂jδil − k̂ik̂jδkl þ k̂ik̂lδkj − k̂kk̂lδij:

Next, we lower the indices and symmetrize in i and j. This
yields

2δijδkl − δikδjl − δilδjk − 2δijk̂kk̂l − 2k̂ik̂jδkl þ k̂ik̂kδjl

þ k̂jk̂kδil þ k̂ik̂lδjk þ k̂jk̂lδik ¼ 0: ðA1Þ

APPENDIX B: CONVERGENCE
OF LOOP INTEGRALS

In this appendix we use the conventions and notations of
Sec. VA. We prove the following statement:
Consider a diagram with L loops and Ddiv < 0. Assume

that all propagators in the diagram are regular in the sense
(19) and that if the momentum and frequency in any of the
propagators are frozen, the integral over remaining
momenta and frequencies converges (i.e. subdivergences
are absent). Then the whole diagram converges.24

Proof.—Suppressing the external momenta, the expres-
sion for the diagram takes the form

ID ¼
Z YL

l¼1

½dωðlÞd2kðlÞ�F nðfωg; fkgÞ

×
YM
m¼1

½ðAmΩðmÞÞ2 þ BmðKðmÞÞ4�−1; ðB1Þ

where F n is a polynomial of scaling degree n; ΩðmÞ,
KðmÞ are linear combinations of loop frequencies and
momenta; and the coefficients Am, Bm are strictly positive,
Am; Bm > 0. The parameters in (B1) satisfy

4Lþ n − 4M ¼ Ddiv: ðB2Þ

It is convenient to transform (B1) into the Schwinger-type
representation using

x−1 ¼
Z

∞

0

dse−sx:

This yields

24Here we are talking about convergence in the UV. Infrared
divergences present a separate issue and must be regulated by an
IR cutoff; see below.
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ID ¼
Z

∞

0

YM
m¼1

dsmGðfsgÞ; ðB3Þ

where

GðfsgÞ¼
Z YL

l¼1

½dωðlÞd2kðlÞ�F nðfωg;fkgÞ

×
YM
m¼1

expf−sm½AmðΩðmÞÞ2þBmðKðmÞÞ4�g: ðB4Þ

Let us introduce the parametrization

sm ¼ sxm;
XM
m¼1

xm ¼ 1:

Using the scaling properties of the integrand in (B4) we
obtain

GðfsgÞ ¼ ðsÞ−L−n=4GðfxgÞ:

Substituting into (B3) and introducing UV and IR
regulators s0, s1 we obtain

IregD ¼
Z

s1

s0

dsðsÞ−Ddiv=4−1~I;

where

~I ¼
Z YM

m¼1

dxmδ

�XM
m¼1

xm − 1

�
GðfxgÞ

is the integral over “angles” and we have used the relation
(B2) to write the overall power of s. If ~I converges, the UV
regulator s0 can be removed, i.e. the diagram is UV finite
(recall that Ddiv is negative25).

Thus we have to analyze the convergence of ~I. By
inspection of (B4) we see that GðfxgÞ can have singular-
ities only at the points where some xm vanishes—otherwise
the integral over frequencies and momenta in (B4) is
damped by the exponentials.26 The most dangerous singu-
larity occurs when all x s, except one, tend to zero,

x1 ≈ 1; xm → 0; m ¼ 2;…;M:

The integral over angles in the ϵ-vicinity of this point takes
the form

~Iϵ ≈
Z

ϵ

0

YM
m¼2

dxmGðfxgÞ

¼
Z

dωð1Þd2kð1Þ expf−½A1ðωð1ÞÞ2 þ B1ðkð1ÞÞ4�g

×
Z YL

l¼2

½dωðlÞd2kðlÞ�F nðfωg; fkgÞ

×
YM
m¼2

1 − expf−ϵ½AmðΩðmÞÞ2 þ BmðKðmÞÞ4�g
AmðΩðmÞÞ2 þ BmðKðmÞÞ4 ; ðB5Þ

where, without loss of generality, we have identified
the frequency and momentum flowing through the first
propagator with ωð1Þ, kð1Þ. The integral in the second line of
(B5) converges. Indeed, it is free from IR divergences,
because the integrand is regular at ωðlÞ; kðlÞ → 0, whereas a
UV divergence is absent by assumption. Furthermore, the
integrand can be bounded by rational functions, so the total
integral grows at most polynomially in ωð1Þ and kð1Þ. Then
the integral over ωð1Þ, kð1Þ converges as well.27 We conclude
that ~Iϵ, and hence ~I, converges, which completes the proof.
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and inconsistency of Hořava gravity, J. High Energy Phys.
10 (2009) 029.

[39] C. Becchi, A. Rouet, and R. Stora, Renormalization of the
Abelian Higgs-Kibble model, Commun. Math. Phys. 42,
127 (1975); Renormalization of gauge theories, Ann. Phys.
(N.Y.) 98, 287 (1976).

[40] I. V. Tyutin, Gauge Invariance in Field Theory and Stat-
istical Physics in Operator Formalism, Lebedev Institute
Report No. N39, 1975.

[41] S. Weinberg, The Quantum Theory of Fields, Vol. II,
Modern Applications (Cambridge University Press,
Cambridge, 1996).

[42] B. S. DeWitt, Dynamical Theory of Groups and Fields
(Gordon and Breach, New York, 1965).

RENORMALIZATION OF HOŘAVA GRAVITY PHYSICAL REVIEW D 93, 064022 (2016)

064022-17

http://dx.doi.org/10.1088/1742-6596/283/1/012034
http://dx.doi.org/10.1103/PhysRevLett.104.181302
http://dx.doi.org/10.1103/PhysRevLett.104.181302
http://dx.doi.org/10.1007/JHEP04(2011)018
http://dx.doi.org/10.1088/1475-7516/2011/07/026
http://dx.doi.org/10.1088/1475-7516/2011/07/026
http://dx.doi.org/10.1088/1475-7516/2013/08/039
http://dx.doi.org/10.1088/1475-7516/2013/08/039
http://dx.doi.org/10.1088/1475-7516/2012/10/057
http://dx.doi.org/10.1088/1475-7516/2012/10/057
http://dx.doi.org/10.1088/1475-7516/2015/03/016
http://dx.doi.org/10.1103/PhysRevLett.112.161101
http://dx.doi.org/10.1103/PhysRevD.89.084067
http://dx.doi.org/10.1103/PhysRevD.90.069902
http://dx.doi.org/10.1103/PhysRevD.90.069902
http://dx.doi.org/10.1103/PhysRevD.90.069901
http://dx.doi.org/10.1142/S0218271814430093
http://dx.doi.org/10.1142/S0218271814430093
http://dx.doi.org/10.1103/PhysRevLett.94.081601
http://dx.doi.org/10.1103/PhysRevLett.94.081601
http://dx.doi.org/10.1103/PhysRevD.72.015013
http://dx.doi.org/10.1007/JHEP01(2012)062
http://dx.doi.org/10.1103/PhysRevD.85.105001
http://dx.doi.org/10.1103/PhysRevD.85.105001
http://dx.doi.org/10.1007/JHEP11(2013)064
http://arXiv.org/abs/1505.04130
http://dx.doi.org/10.1007/JHEP02(2013)123
http://dx.doi.org/10.1103/PhysRevLett.110.081601
http://dx.doi.org/10.1103/PhysRevLett.110.081601
http://dx.doi.org/10.1103/PhysRevLett.110.081602
http://dx.doi.org/10.1103/PhysRevLett.110.081602
http://arXiv.org/abs/1510.07237
http://dx.doi.org/10.1103/PhysRevD.76.125011
http://dx.doi.org/10.1016/j.aop.2008.12.005
http://dx.doi.org/10.1016/j.aop.2008.12.005
http://dx.doi.org/10.1103/PhysRevD.84.124043
http://dx.doi.org/10.1103/PhysRevD.84.124043
http://dx.doi.org/10.1088/0264-9381/26/15/155021
http://dx.doi.org/10.1088/0264-9381/26/15/155021
http://dx.doi.org/10.1103/PhysRevLett.102.161301
http://dx.doi.org/10.1103/PhysRevLett.102.161301
http://dx.doi.org/10.1103/PhysRevD.85.044027
http://dx.doi.org/10.1016/j.physletb.2010.05.054
http://dx.doi.org/10.1016/j.physletb.2010.05.054
http://dx.doi.org/10.1103/PhysRevLett.107.131303
http://dx.doi.org/10.1103/PhysRevLett.107.131303
http://dx.doi.org/10.1088/0264-9381/32/21/215007
http://dx.doi.org/10.1088/0264-9381/32/21/215007
http://dx.doi.org/10.1007/JHEP03(2014)078
http://dx.doi.org/10.1007/JHEP03(2014)078
http://dx.doi.org/10.1103/PhysRevLett.113.171101
http://dx.doi.org/10.1103/PhysRevLett.113.171101
http://dx.doi.org/10.1007/JHEP10(2015)126
http://dx.doi.org/10.1007/JHEP10(2015)126
http://dx.doi.org/10.1007/JHEP09(2010)009
http://dx.doi.org/10.1007/JHEP09(2010)009
http://dx.doi.org/10.1016/j.nuclphysb.2010.08.006
http://dx.doi.org/10.1016/j.nuclphysb.2010.08.006
http://dx.doi.org/10.1007/JHEP07(2012)099
http://dx.doi.org/10.1103/PhysRevLett.102.251601
http://dx.doi.org/10.1103/PhysRevLett.102.251601
http://dx.doi.org/10.1088/1126-6708/2009/10/029
http://dx.doi.org/10.1088/1126-6708/2009/10/029
http://dx.doi.org/10.1007/BF01614158
http://dx.doi.org/10.1007/BF01614158
http://dx.doi.org/10.1016/0003-4916(76)90156-1
http://dx.doi.org/10.1016/0003-4916(76)90156-1


[43] M. J. G. Veltman, Quantum theory of gravitation, AIP Conf.
Proc. C 7507281, 265 (1975).

[44] L. F. Abbott, Introduction to the background field method,
Acta Phys. Pol. B 13, 33 (1982).

[45] A. O. Barvinsky and G. A. Vilkovisky, The effective action
in quantum field theory: Two loop approximation, in
Quantum Field Theory and Quantum Statistics, edited by
I. A. Batalin et al. (Hilger, Bristol, 1988), Vol. 1, p. 245.

[46] L. F. Abbott, The background field method beyond one
loop, Nucl. Phys. B185, 189 (1981).

[47] P. A. Grassi, Stability and renormalization of Yang-
Mills theory with background field method: A Regulari-
zation independent proof, Nucl. Phys. B462, 524
(1996).

[48] D. Anselmi, Background field method, Batalin-Vilkovisky
formalism and parametric completeness of renormalization,
Phys. Rev. D 89, 045004 (2014).

[49] T. P. Sotiriou, M. Visser, and S. Weinfurtner, Lower-
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