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We present results for Drell-Yan production from the GENEVA Monte-Carlo framework. We combine the
fully differential next-to-next-to leading order (NNLO) calculation with higher-order resummation in the 0-
jettiness resolution variable. The resulting parton-level events are further combined with parton showering
and hadronization provided by PYTHIA8. The 0-jettiness resummation is carried out to NNLL0, which
consistently incorporates all singular virtual and real NNLO corrections. It thus provides a natural
perturbative connection between the NNLO calculation and the parton shower regime, including a
systematic assessment of perturbative uncertainties. In this way, inclusive observables are correct to NNLO,
up to small power corrections in the resolution cutoff. Furthermore, the perturbative accuracy of zero-jet-
like resummation variables is significantly improved beyond the parton shower approximation. We provide
comparisons with LHC measurements of Drell-Yan production at 7 TeV from ATLAS, CMS, and LHCb.
As already observed in eþe− collisions, for resummation-sensitive observables, the agreement with data is
noticeably improved by using a lower value of αsðMZÞ ¼ 0.1135.
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I. INTRODUCTION

There are several different ways to obtain theoretical
predictions for collider processes involving strongly inter-
acting particles, namely fixed-order (FO) perturbation
theory, resummed perturbation theory, and predictions
using parton shower (PS) algorithms.
In FO perturbation theory, the perturbative expansion is

carried out to a given order in the strong coupling constant
αs. The leading order (LO) corresponds to the lowest order
in αs required to obtain the desired process. The next-to-
leading order (NLO) then includes all terms of OðαsÞ
relative to the LO result, and so on.
When the process or observables in consideration

involve large ratios of physical scales, FO perturbation
theory can become unreliable or even break down, since for
each order in αs one can encounter up to two powers of
logarithms of large scale ratios. In this case, the most
precise perturbative predictions are obtained by resumming
the logarithmic terms to all orders in αs. At leading
logarithmic (LL) order one includes the most dominant
terms of order αns ln2n. The next-to-leading logarithmic
(NLL) order also includes the next-largest subleading
logarithmic terms, and so on. Like at FO, the resummed

perturbative expansion happens in a systematic fashion,
which is described in more detail later on.
PS algorithms formally work in the strongly ordered

limit, where each subsequent emission happens at a smaller
resolution scale than the previous one. They start from a
given LO prediction and effectively multiply it by splitting
probabilities for each additional emission. This allows in
principle any observable to be predicted at LL (and
including some NLL effects) using a probabilistic
Markov-Chain algorithm.
Each type of prediction has its advantages as it provides

the most accurate description in the limit where other
predictions are not applicable. FO predictions are necessary
for a precise description of additional hard (i.e. energetic
wide-angle) emissions. These are not correctly described
even at LO by either resummation or parton showers, since
both of these approaches rely on a kinematic expansion in a
small resolution variable. For observables sensitive to many
soft and collinear emissions generating large logarithms,
FO predictions are not suitable and resummation and
parton showers are necessary. Resummed perturbation
theory allows one to systematically carry out the resum-
mation beyond the LL or strongly ordered limit and is
therefore more accurate than parton showers. On the other
hand, the higher-order resummation applies at the level of
observables that are still sufficiently inclusive, i.e., that
marginalize over many emissions and are only sensitive to a
small number of physical scales. To obtain a prediction of
the final state that is fully exclusive in all emissions, parton
showers are required. In particular, parton shower
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predictions allow one to further attach a hadronization
model to generate fully exclusive hadron-level events.
These are an essential requirement for experiments to be
able to simulate their data and study detector effects, and
allow for the most direct comparison with experimen-
tal data.
Clearly, to obtain the best possible predictions, it is

desirable to combine the different theoretical descriptions
in such a way that one benefits from the advantages of each.
In particular, this allows for reliable predictions also in the
transition regions in between different parametric limits,
which are often important in practice. The (often difficult to
answer) question of which parametric regime is the most
appropriate in a given phase-space region then becomes
much less relevant for practical purposes.
Combining resummed and fixed-order perturbation

theory is a standard procedure in higher-order resummed
calculations, where it is well understood how to system-
atically match the pure resummed result to the fixed-order
result in the appropriate fixed-order limit.
The goal of combining higher-order perturbative calcu-

lations with a parton shower is to obtain fully exclusive
hadronized events that also have the perturbative accuracy of
the higher-order calculations. So far, there have been many
advances to combine FO calculations with parton showers.
The combination of LO predictions for several multiplicities
with parton showers was pioneered in Refs. [1,2]. The
combination of generic NLO calculations with parton
showers started with the methods of MC@NLO [3,4] and
POWHEG [5–7], and is being continuously developed further;
see e.g. Refs. [8–18]. By now there are several methods
available to combine multiple NLO calculations with parton
showers [19–27]. More recently, combinations of specific
Drell-Yan-like next-to-next-to-leading order (NNLO) calcu-
lations with parton showers have been presented in
Refs. [28–32]. A general method to construct NNLO
calculations matched with parton showers has been dis-
cussed in Ref. [33], in which the method of Ref. [28] follows
as a special case.
In the above methods, the primary goal is to improve the

perturbative accuracy of parton shower Monte Carlo (MC)
programs for inclusive FO observables, while the descrip-
tion of the resummation region is left to the parton shower.
Formally, this combination amounts to matching the FO
calculation to the LL resummation in the parton shower’s
resolution variable. The perturbative accuracy criteria that
should be satisfied at NNLOþ PS have been discussed in
detail in Ref. [33].

GENEVA goes beyond this by also incorporating the
higher-order resummation in a suitable resolution variable
that separates the FO and parton shower regimes. The
perturbative matching essentially happens now from FO to
resummation to parton shower. By carrying out the resum-
mation to the appropriate order consistent with the FO
accuracy, it effectively mediates between the FO

calculation and the parton shower and bridges the pertur-
bative gap between them. This provides several key
benefits:

(i) A systematic combination of NNLO calculations
with parton showers, which extends to arbitrary
processes.

(ii) An improved perturbative accuracy of (sufficiently
inclusive) resummation observables.

(iii) An improved description of the matching/transition
between resummation and fixed-order regimes.

(iv) A systematic assessment of perturbative uncertain-
ties in the resummation and matching.

An implementation of our approach for eþe− collisions
was presented in Ref. [24], where NLO calculations for
eþe− → 2 jets and eþe− → 3 jets, and the NNLL0 resum-
mation for thrust (2-jettiness) as resolution variable are
combined with the parton showering and hadronization
provided by PYTHIA8 [34,35]. For all the tested two-jet-like
resummation-sensitive observables, the predictions from
GENEVA closely match the corresponding exact NNLLð0Þ
resummed calculations, and after hadronization are in
excellent agreement with LEP data. Although not
emphasized there, the results in Ref. [24] already include
all singular NNLO corrections, and are formally accurate
to NNLO up to power corrections in the resolution
cutoff.
In this paper, we present results for Drell-Yan

production pp → γ=Z → lþl−. Our implementation
combines the general construction of Ref. [33] with
the inclusion of higher-order resummation in the jet
resolution variable similar to Ref. [24]. We combine the
fully differential NNLO calculation for Drell Yan with
the NNLL0 resummation for 0-jettiness T 0 (also know
as beam thrust [36]) with PYTHIA8. The FO accuracy of
the generated events is NNLO for pp → lþl−, NLO for
pp → lþl−j, and LO for pp → lþl−jj (which we
refer to as NNLO0, NLO1, and LO2, respectively) while
the T 0 distribution is exactly reproduced at NNLL0. We
show that by including the higher-order resummation for
T 0 as the resolution variable, the perturbative accuracy
for other zero-jet-like observables in the resummation
region is significantly improved, and our predictions
agree well with dedicated higher-order resummed
calculations.
Comparing our results to Drell-Yan measurements

from ATLAS, CMS, and LHCb, obtained during the
7 TeV run at the LHC, we obtain overall good agreement
with the data for rapidity distributions, inclusive and
exclusive jet cross sections, as well as the transverse-
momentum distribution of the hardest jet. For the trans-
verse momentum of the vector boson and the related ϕ�
distribution between the leptons, our default settings with
αsðMZÞ ¼ 0.118 predict a somewhat harder spectrum. We
observe a much better agreement with the data when
using a lower value of the strong coupling constant

ALIOLI et al. PHYSICAL REVIEW D 92, 094020 (2015)

094020-2



αsðMZÞ ¼ 0.1135, as was obtained from fits of N3LL0
resummed calculations of event shapes to LEP data
[37–40]. The same was also observed for resummation
observables in our eþe− results in Ref. [24].
This paper is organized as follows. In Sec. II we discuss

the theoretical framework of GENEVA. In Sec. II A we
provide an overview of the general construction and the
master formulas for the partonic jet cross sections that serve
as the main perturbative input, and in Sec. II B we discuss
specific choices and implementation aspects that are of
relevance in more detail. In Sec. III, we describe how the
partonic events with up to two partons are interfaced with a
parton shower in a way that avoids double counting and
such that the parton shower does not destroy the perturba-
tive accuracy of the partonic calculation. In Sec. IV,
we compare GENEVA with dedicated higher-order perturba-
tive calculations, and in Sec. V we compare GENEVA’s
results with measurements from the LHC. We conclude
in Sec. VI.

II. THEORETICAL FRAMEWORK

A. General setup

In this subsection we discuss the general construction we
use. Our discussion here follows that of Ref. [33], and we
refer to that paper for more details.
Drell-Yan production at NNLO receives contributions

from partonic processes with up to two final-state partons.
In a standard FO calculation, the phase space for these
partonic contributions is integrated over in such a way that
the cancellation of virtual and real IR divergences happens
at the level of observables.
In contrast, an event generator is meant to produce

physical events, which means that all IR divergences
should cancel on a per-event basis. This implies that an
N-parton event should correspond to an IR-finite partonic
N-jet cross section, which is fully differential in the
corresponding partonic N-jet phase space. That is, each
generated event represents a point in an N-jet phase space,
rather than an N-parton phase space, and each four
momentum in the event provides the energy and direction
of a partonic jet.
Therefore, the basis of the GENEVA MC framework is the

formulation of the perturbative inputs in terms of “MC
cross sections,” which are well-defined partonic jet cross
sections according to which the events are distributed, and
which can be systematically computed to the desired
perturbative accuracy in FO and resummed perturbation
theory [24,41,42].
The MC cross sections are defined in terms of an N-jet

resolution variable T N and formally include the contribu-
tions of an arbitrary number of unresolved emissions below
a resolution cutoff T N < T cut

N . In the present case, we
require events with zero, one, and two partons, which are
distributed according to

Φ0 events∶
dσMC

0

dΦ0

ðT cut
0 Þ;

Φ1 events∶
dσMC

1

dΦ1

ðT 0 > T cut
0 ; T cut

1 Þ;

Φ2 events∶
dσMC

≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ: ð1Þ

The exclusive zero-jet MC cross section is defined by
T 0 < T cut

0 , the exclusive one-jet MC cross section by T 0 >
T cut

0 and T 1 < T cut
1 , and the inclusive two-jet MC cross

section by T 0 > T cut
0 and T 1 > T cut

1 . In this way all of the
partonic phase space is covered. Adding the one-jet and
two-jet events, we can also define the inclusive one-jet MC
cross section as

dσMC
≥1

dΦ1

ðT 0 > T cut
0 Þ

¼ dσMC
1

dΦ1

ðT 0 > T cut
0 ; T cut

1 Þ

þ
Z

dΦ2

dΦ1

dσMC
≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ; ð2Þ

which is defined by T 0 > T cut
0 and does not depend

anymore on T cut
1 . In Eq. (2) we have made use of the

shorthand notation

dΦM

dΦN
¼ dΦMδ½ΦN − ΦNðΦMÞ�: ð3Þ

Since the partonic jets are represented by on-shell quarks
and gluons in the partonic ΦN events, the partonic jet
definition used here is quite different from an ordinary jet
algorithm. It depends on a phase-space map ΦNðΦMÞ that
projects the M-body phase space of unresolved emissions
onto the distributed ΦN points, where N ≤ M. This phase-
space map must be IR safe, such that the MC cross sections
are IR finite. For example, at fixed NNLO the exclusive
zero-jet cross section is given by

dσMC
0

dΦ0

ðT cut
0 Þ ¼ ðB0 þ V0 þW0ÞðΦ0Þ

þ
Z

dΦ1

dΦ0

ðB1 þ V1ÞðΦ1Þθ½T 0ðΦ1Þ < T cut
0 �

þ
Z

dΦ2

dΦ0

B2ðΦ2Þθ½T 0ðΦ2Þ < T cut
0 �; ð4Þ

where BN contains the N-parton tree-level contributions,
VN the N-parton one-loop contributions, and W0 the two-
loop contribution. There is considerable freedom in the
precise definitions of T N and the ΦNðΦMÞ map, and we
choose particular definitions based on their theoretical
properties and simplicity.
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Using the events in Eq. (1), the cross section for any
observable X is given by

σðXÞ ¼
Z

dΦ0

dσMC
0

dΦ0

ðT cut
0 ÞMXðΦ0Þ

þ
Z

dΦ1

dσMC
1

dΦ1

ðT 0 > T cut
0 ; T cut

1 ÞMXðΦ1Þ

þ
Z

dΦ2

dσMC
≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 ÞMXðΦ2Þ;

ð5Þ

whereMXðΦNÞ is the measurement function that computes
the observable X for the N-parton final state ΦN . This cross
section is not identical to the exact fixed-order result,
because for any unresolved emissions the observable is
calculated on the projected phase-space point ΦNðΦMÞ,
rather than the exact ΦM. This is a fundamental limitation
inherent to generating IR-finite events beyond LO and for a
more detailed discussion we refer to Ref. [33]. The
difference vanishes in the limit T cut

N → 0. Hence, we want
to choose T cut

N as small as possible to have a maximally
exclusive description. For small T cut

N , however, the MC
cross sections contain large logarithms of T N and T cut

N ,
requiring resummation to obtain physically meaningful
predictions for them. This is precisely what a parton
shower would do at LL (also including some NLL effects),
in which case T cut

N would play the role of the shower cutoff.
In GENEVAwe are improving over this by resumming these
logarithms at higher accuracy.

1. 0=1-jet separation

To discuss the construction of the MC cross sections, we
first consider the separation between zero and one jets
which is determined by the zero-jet resolution variable T 0.
We write the exclusive zero-jet and inclusive one-jet MC
cross sections as [24,33]

dσMC
0

dΦ0

ðT cut
0 Þ ¼ dσresum0

dΦ0

ðT cut
0 Þ þ dσsing match

0

dΦ0

ðT cut
0 Þ

þ dσnons0

dΦ0

ðT cut
0 Þ;

dσMC
≥1

dΦ1

ðT 0 > T cut
0 Þ ¼ dσresum≥1

dΦ1

θðT 0 > T cut
0 Þ

þ dσsing match
≥1

dΦ1

ðT 0 > T cut
0 Þ

þ dσnons≥1

dΦ1

ðT 0 > T cut
0 Þ: ð6Þ

Here, dσresum0 is the spectrum differential in Φ0 with the
dependence on T cut

0 resummed to a given logarithmic
accuracy, while the remaining two terms give the matching

corrections required to reproduce the desired FO accuracy.
Their precise form depends on the fixed-order content of the
resummed contribution. The singular matching dσsing match

0

contains all contributions that do not vanish as T cut
0 → 0,

while the nonsingular matching dσnons0 only contains con-
tributions that vanish in this limit. The analogous separation
is done for dσMC

≥1 , where dσresum≥1 resums the differential
dependence on T 0, the singular matching contains contri-
butions that diverge at least like 1=T 0 for T 0 → 0, and the
nonsingular matching contains contributions that contain at
most integrable singularities for T 0 → 0.
We carry out the resummation of the T 0 dependence to

NNLL0. Thus, the resummed contributions are given by

dσresum0

dΦ0

ðT cut
0 Þ ¼ dσNNLL

0

dΦ0

ðT cut
0 Þ;

dσresum≥1

dΦ1

¼ dσNNLL
0

dΦ0dT 0

PðΦ1Þ: ð7Þ

Here, dσNNLL
0
=dT 0dΦ0 is the resummed differential T 0

spectrum and dσNNLL
0
=dΦ0ðT cut

0 Þ its cumulative integral;
see Sec. II B 2 below. Note that the two-loop virtual
corrections, which at FO are proportional to δðT 0Þ, are
fully incorporated at NNLL0. This means they are properly
spread to nonzero values of T 0 and contribute to the
differential spectrum as dictated by the resummation. The
T 0 resummation is naturally differential in Φ0, so we can
directly use the resummed cumulant in dσresum0 . To make the
T 0 spectrum fully differential in Φ1, we have defined a
normalized splitting probability PðΦ1Þ which satisfies

Z
dΦ1

dΦ0dT 0

PðΦ1Þ ¼ 1: ð8Þ

Since T 0 can be considered as part of the radiation phase
space dΦ1=dΦ0, the integration here is effectively over two
remaining radiation variables, e.g. an energy splitting and
an azimuthal angle. Thus, the integral of the splitting
probability over all Φ1 points restricted to any fixed values
of Φ0ðΦ1Þ and T 0ðΦ1Þ is equal to 1. This will be discussed
in more detail in Sec. II B 4.
At NNLL0, the resummation fully incorporates all

singular contributions to Oðα2s Þ, implying that the singular
matching vanishes,

dσsing match
0

dΦ0

ðT cut
0 Þ ¼ 0;

dσsing match
≥1

dΦ1

ðT 0 > T cut
0 Þ ¼ 0: ð9Þ

At our desired NNLO accuracy, dσMC
0 and dσMC

≥1 must be
correct to NNLO0 and NLO1, respectively, which deter-
mines the nonsingular matching corrections to be
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dσnons0

dΦ0

ðT cut
0 Þ ¼ dσNNLO0

0

dΦ0

ðT cut
0 Þ −

�
dσresum0

dΦ0

ðT cut
0 Þ

�
NNLO0

;

dσnons≥1

dΦ1

ðT 0 > T cut
0 Þ ¼ dσNLO1

≥1

dΦ1

ðT 0 > T cut
0 Þ −

�
dσresum≥1

dΦ1

�
NLO1

θðT 0 > T cut
0 Þ: ð10Þ

The terms in square brackets are the FO expansions to α2s of the resummed cumulant and spectrum in Eq. (7). The NNLO0

result for the cumulant is given in Eq. (4). The NLO1 result for the fully differential spectrum is given by

dσNLO1

≥1

dΦ1

ðT 0 > T cut
0 Þ ¼ ðB1 þ V1ÞðΦ1Þθ½T 0ðΦ1Þ > T cut

0 �

þ
Z

dΦ2

dΦT
1

B2ðΦ2Þθ½T 0ðΦ2Þ > T cut
0 �: ð11Þ

It depends on the projection

dΦ2

dΦT
1

≡ dΦ2δ½Φ1 − ΦT
1 ðΦ2Þ�ΘT ðΦ2Þ; ð12Þ

where ΘT ðΦ2Þ defines the region of Φ2 that can be
projected onto massless Φ1 via the IR-safe phase-space
mapΦT

1 ðΦ2Þ. Only this projectable region ofΦ2 is included
in dσnons≥1 =dΦ1, while the remainder will be included in the
Φ2 events below.
The fact that the NNLL0 resummation reproduces all

singular terms of the full FO result toOðα2s Þ implies that the
resummed expanded result in dσnons≥1 =dΦ1 acts precisely as a
differential NNLO T 0-subtraction [43] (see also Ref. [44]).
The cancellation of the singular terms between the FO and
resummed expanded results is not point by point in Φ1 but
nonlocal, which means it only holds “on average” upon
integrating over dΦ1=dΦ0dT 0. As discussed in detail in
Ref. [43], the cancellation can be made more local by
considering more-differential resummations (e.g. utilizing
the results of Refs. [45–47]). For the cancellation to be
point by point in T 0, dσ

NLO1

≥1 =dΦ1 has to reproduce the

right singular T 0 dependence when projected onto
dT 0dΦ0, which means the map ΦT

1 ðΦ2Þ has to preserve
the value of T 0,

T 0ðΦT
1 ðΦ2ÞÞ ¼ T 0ðΦ2Þ: ð13Þ

In other words, if this was not the case, we would not obtain
the correct nonsingular corrections for the T 0 spectrum,
and this would destroy its NNLL0 accuracy. The underlying
reason is that we perform the FO calculation in an event
generator form as in Eq. (5), and so to compute the FO T 0

spectrum we always project some Φ2 points, namely those
below T 1 < T cut

1 , onto Φ1 and only then onto T 0. More
details on this map are given in Sec. II B 6.

2. 1=2-jet separation

Next, we consider the separation of the inclusive one-jet
cross section into an exclusive one-jet MC cross section and
an inclusive two-jet MC cross section, using the one-jet
resolution variable T 1. We write them as

dσMC
1

dΦ1

ðT 0 > T cut
0 ; T cut

1 Þ ¼ dσresum1

dΦ1

ðT 0 > T cut
0 ; T cut

1 Þ þ dσmatch
1

dΦ1

ðT 0 > T cut
0 ; T cut

1 Þ;

dσMC
≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ ¼ dσresum≥2

dΦ2

ðT 0 > T cut
0 ÞθðT 1 > T cut

1 Þ þ dσmatch
≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ: ð14Þ

Here, dσresum1 and dσresum≥2 contain the resummation of the T cut
1 and differential T 1 dependence. The dσmatch

1 and dσmatch
≥2

contain the matching corrections required to achieve the desired FO accuracy.
For the T 1 resummation we limit ourselves to LL, which is sufficient for matching to the parton shower. At this level, we

can write the resummed contributions as

dσresum1

dΦ1

ðT 0 > T cut
0 ; T cut

1 Þ ¼ dσC≥1
dΦ1

U1ðΦ1; T cut
1 ÞθðT 0 > T cut

0 Þ;

dσresum≥2

dΦ2

ðT 0 > T cut
0 Þ ¼ dσC≥1

dΦ1

U0
1ðΦ1; T 1ÞθðT 0 > T cut

0 ÞjΦ1¼ΦT
1
ðΦ2ÞPðΦ2ÞθðT 1 > T cut

1 Þ: ð15Þ
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Here, U1ðΦ1; T cut
1 Þ denotes the Sudakov factor that resums

the dependence on T cut
1 to at least LL accuracy, and

U0
1ðΦ1; T 1Þ denotes its derivative with respect to T cut

1

and resums the differential T 1 dependence. Its details
are given in Sec. II B 5.
The differential T 1 resummation in dσ≥2 is evaluated at

the projected Φ1 point ΦT
1 ðΦ2Þ. As we see below, this is

required so the T 0 resummation is evaluated at the correct
T 0 value. The normalized splitting probability PðΦ2Þ is
defined analogous to PðΦ1Þ in Eq. (8) but for Φ1 → Φ2 and
using the ΦT

1 ðΦ2Þmap, with the details given in Sec. II B 4.
The T 1 resummation acts on top of the overall dσC≥1=dΦ1

in Eq. (15), which is the inclusive one-jet cross section in the
T 1-singular limit. Its NLO1 expansion therefore has to be

�
dσC≥1
dΦ1

�
NLO1

¼ ðB1 þ V1ÞðΦ1Þ þ
Z

dΦ2

dΦC
1

C2ðΦ2Þ≡ ðB1 þ VC
1 ÞðΦ1Þ: ð16Þ

(Its full form will include the T 0 resummation and is derived below.) Here, C2ðΦ2Þ denotes a standard NLO subtraction
[48,49] that reproduces the pointwise singular behavior of B2ðΦ2Þ. We use the Frixione-Kunszt-Signer (FKS)
subtractions [49] in our implementation. Note that the subtraction term here uses its own projection
dΦ2=dΦC

1 ≡ dΦ2δ½Φ1 − ΦC
1 ðΦ2Þ�. Using Eqs. (15)–(16) and requiring that dσMC

1 and dσMC
≥2 are correct to NLO1 and

LO2, respectively, then determines the matching corrections to be

dσmatch
1

dΦ1

ðT 0 > T cut
0 ; T cut

1 Þ ¼
Z �

dΦ2

dΦT
1

B2ðΦ2Þθ½T 0ðΦ2Þ > T cut
0 �θðT 1 < T cut

1 Þ − dΦ2

dΦC
1

C2ðΦ2ÞθðT 0 > T cut
0 Þ

�

− B1ðΦ1ÞUð1Þ
1 ðΦ1; T cut

1 ÞθðT 0 > T cut
0 Þ; ð17Þ

dσmatch
≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ ¼ fB2ðΦ2Þ½1 − ΘT ðΦ2ÞθðT 1 < T cut
1 Þ�

− B1ðΦT
1 ÞUð1Þ0

1 ðΦT
1 ; T 1ÞPðΦ2ÞθðT 1 > T cut

1 Þgθ½T 0ðΦ2Þ > T cut
0 �: ð18Þ

Here, Uð1Þð0Þ
1 ðΦ1; T cut

1 Þ denotes the OðαsÞ term in the expansion of the Uð0Þ
1 ðΦ1; T cut

1 Þ Sudakov factor (or its derivative).
These terms cancel the leading double-logarithmic terms in T 1 in the FO pieces (the B2 contributions). As long as we
only include the LL T 1 resummation, there will be some subleading single-logarithmic terms present in the matching
corrections.
So far, we have discussed the construction of an additive NLO1 þ LL1 matching. The important point is now that this

should also include the T 0 resummation which is important at small T 0. The condition for this is that the integral of
NLO1 þ LL1 result with the ΦT

1 ðΦ2Þ map must reproduce the T 0-resummed result for the inclusive one-jet MC cross
section in Eq. (6). That is,

dσMC
≥1

dΦ1

ðT 0 > T cut
0 Þ ¼ dσMC

1

dΦ1

ðT 0 > T cut
0 ; T cut

1 Þ þ
Z

dΦ2

dΦT
1

dσMC
≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ

¼ dσC≥1
dΦ1

θðT 0 > T cut
0 Þ þ

Z �
dΦ2

dΦT
1

B2ðΦ2Þθ½T 0ðΦ2Þ > T cut
0 � − dΦ2

dΦC
1

C2ðΦ2ÞθðT 0 > T cut
0 Þ

�
; ð19Þ

where we have used the identity

U1ðΦ1; T cut
1 Þ þ

Z
dΦ2

dΦT
1

U0
1ðΦ1; T 1ÞPðΦ2Þ

× θðT 1 > T cut
1 Þ ¼ 1: ð20Þ

Inserting the expression for dσMC
≥1 in terms of dσresum≥1 and

dσnons≥1 in Eqs. (7) and (10), we obtain the result for
dσC≥1=dΦ1 beyond NLO1,

dσC≥1
dΦ1

¼ dσresum≥1

dΦ1

þ ðB1 þ VC
1 ÞðΦ1Þ −

�
dσresum≥1

dΦ1

�
NLO1

: ð21Þ

It contains the full differential T 0 resummation via dσresum≥1 .
The difference to the full inclusive one-jet cross section is
that the T 0-nonsingular terms are now evaluated in the T 1-
singular approximation, and this mismatch is compensated
by the T 1 matching contributions.
The above expressions completely define the fully

differential jet cross sections. In the next subsection we
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provide some additional details on the specific implemen-
tation of the various pieces in GENEVA.

B. Implementation details

1. Choice of the jet resolution variables

We choose N-jettiness [50] as our N-jet resolution
variable. It is defined as

T N ¼
X
k

minfq̂a · pk; q̂b · pk; q̂1 · pk;…; q̂N · pkg;

ð22Þ

where the sum over k runs over all final-state particles,
excluding the vector boson and all its decay products. We
use a canonical geometric measure, where q̂i ¼ ni ¼
ð1; ~niÞ are lightlike reference vectors along the jet and
beam directions.
N-jettiness is a global event shape that is explicitly

designed as an N-jet resolution variable, as it measures
the degree to which the final state is N-jet-like for a
given N and automatically clusters the final state into
N-jet and beam regions in an IR-safe way and without
any dependence on an additional jet clustering algo-
rithm. Furthermore, it is theoretically well understood
and its all-orders singular structure and resummation
are known.
For Drell-Yan, we need 0-jettiness T 0 and 1-jettiness T 1,

and we always evaluate Eq. (22) in the longitudinally
boosted frame where the vector boson has zero rapidity.
The reference vectors for the beam directions are always
along the beam directions, so ~na ¼ ẑ and ~nb ¼ −ẑ. For T 1,
we also need to define a jet direction ~nJ. For our calculation
we only need to define it for a Φ2 event, in which case we
can choose ~nJ by minimizing T 1. We define a clustering
metric

dðpÞ ¼ j~pj − jpzj;
dðp1; p2Þ ¼ j~p1j þ j~p2j − j~p1 þ ~p2j; ð23Þ

and find the smallest of dðp1Þ, dðp2Þ, and dðp1; p2Þ, where
p1 and p2 are the two parton momenta in the Φ2 event. If
dðpiÞ is smallest, we can think of pi being clustered with
one of the beams, and then ~nJ ¼ ~pj=j~pjj with j ≠ i. If
dðp1; p2Þ is the smallest, we can think of p1 and p2 being
clustered together, and then ~nJ ¼ ð~p1 þ ~p2Þ=j~p1 þ ~p2j. It
is not hard to show that this minimizes T 1 and its final
value is determined by the minimum metric as

T 1ðΦ2Þ ¼
X2
k¼1

ðEk − jpz
kjÞ

þminfdðp1Þ; dðp2Þ; dðp1; p2Þg: ð24Þ

2. The T 0 spectrum at NNLL0 from SCET

The all-orders parton-level factorization theorem for 0-
jettiness (aka beam thrust) is given by [36,51]

dσSCET

dΦ0dT 0

¼
X
ij

dσBij
dΦ0

HijðQ2; μÞ
Z

dtadtbBiðta; xa; μÞ

× Bjðtb; xb; μÞS
�
T 0 −

ta þ tb
Q

; μ

�
: ð25Þ

Here, dσBij=dΦ0 is the Born cross section for the ij →
Z=γ� → lþl− hard scattering. The hard function HijðQÞ
contains the corresponding Born and virtual squared matrix
elements, and the sum runs over all possible qq̄ pairs
ij ¼ fuū; ūu; dd̄; d̄d;…g. The Biðt; xÞ are inclusive (anti)
quark beam functions [36], with the momentum fractions
xa;b given in terms of the total rapidity Y and invariant mass
Q≡mlþl− of the vector-boson final state by

xa ¼
Q
Ecm

eY; xb ¼
Q
Ecm

e−Y: ð26Þ

The beam functions are computed perturbatively in terms
of standard parton distribution functions (PDFs) fj, sche-
matically Bi ¼

P
jI ij ⊗ fj. Finally, SðkÞ is the quark

hemisphere soft function for beam thrust.
Equation (25) is derived using soft collinear effective

theory (SCET) [52–56]. Its key feature is that each ofH, B,
S only depends on a single characteristic scale. Therefore,
there are no large logarithms in their perturbative expansion
when each is evaluated at its own characteristic scale,
which is given by

μH ¼ Q; μB ¼
ffiffiffiffiffiffiffiffiffiffi
QT 0

p
; μS ¼ T 0: ð27Þ

In Eq. (25), all ingredients have to be evaluated at a
common scale μ, which is arbitrary and whose dependence
exactly cancels between the different functions. The
renormalization group evolution in the effective theory is
then used to evolve each function from its own scale to μ.
This gives the resummed T 0 spectrum used in Eq. (7) as

dσNNLL
0

dΦ0dT 0

¼
X
ij

dσBij
dΦ0

HijðQ2; μHÞUHðμH; μÞ

× ½Biðxa; μBÞ ⊗ UBðμB; μÞ�
× ½Bjðxb; μBÞ ⊗ UBðμB; μÞ�
⊗ ½SðμSÞ ⊗ USðμS; μÞ�; ð28Þ

where we have now written the convolutions between the
different functions in schematic form.
The renormalization group evolution factors UXðμX; μÞ

resum the large logarithmic terms, and the functions
evaluated at their own scale provide the boundary
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conditions for the evolution. At NNLL0 accuracy, we need
the boundary conditions at two-loop order, and the evolu-
tion to three (two) loops in the cusp (noncusp) anomalous
dimensions. All required expressions are known in the
literature [43,57–65] and we do not reproduce them here.
In practice, the canonical scales in Eq. (27) are appro-

priate in the resummation region, where the singular
corrections dominate. In Fig. 1, we compare the singular,
nonsingular, and full results for the T 0 distribution at
NNLO0. We can see that up to T 0 ≲ 50 GeV the singular
dominate and the nonsingular are suppressed by an order of
magnitude or more. On the other hand, in the FO region for
larger values of T 0 ∼Q, the resummation must be turned
off since here the singular terms being resummed become
meaningless and there are large cancellations between the
singular and nonsingular terms, which must be preserved to
reproduce the correct FO result. This is clearly visible in
Fig. 1 for T 0 ≳ 80 GeV, where the magnitude of the
singular and nonsingular are larger than the full result
(the singular turn negative at the dip at T 0 ≃ 70 GeV). For
this reason the resummation must be turned off in this
region. This is done by taking all scales to be equal to the
common FO scale μS ¼ μB ¼ μH ¼ μFO. A smooth tran-
sition between the canonical and FO limits is achieved by
using profile scales [37,66], where μB and μS are smooth
functions of T 0, interpolating between the exact canonical
scaling in Eq. (27) and the FO scale. The uncertainties from
the resummation and the transition between resummation
and FO can be estimated by choosing different sets of
profile scales, which provide a sensible variation around the
central scale choice. In other words, for each event we
perform the calculation of its MC cross section with a
different set of profile scales, producing different weights
for the event, and the variation in these define our event-by-
event uncertainties as described next.
Profile scales and their variations are used in many SCET

calculations and have been shown to provide reliable
perturbative uncertainty estimates for resummed and

matched predictions for observables in a variety of con-
texts; see e.g. Refs. [37,67–71]. We define the central
profile scales

μH ¼ μFO;

μSðT 0Þ ¼ μFOfrunðT 0=QÞ;
μBðT 0Þ ¼ μFO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frunðT 0=QÞ

p
; ð29Þ

using the same common profile function frunðxÞ introduced
in Ref. [68], namely

frunðxÞ ¼

8>>>>>>>><
>>>>>>>>:

x0½1þ ðx=x0Þ2=4� x ≤ 2x0;

x 2x0 ≤ x ≤ x1;

xþ ð2−x2−x3Þðx−x1Þ2
2ðx2−x1Þðx3−x1Þ x1 ≤ x ≤ x2;

1 − ð2−x1−x2Þðx−x3Þ2
2ðx3−x1Þðx3−x2Þ x2 ≤ x ≤ x3;

1 x3 ≤ x.

ð30Þ

This implies strict canonical scaling below x1 and the
resummation being turned off above x3. From Fig. 1 we
choose for our central scale the parameters

μFO ¼ Q; x0 ¼ 2.5 GeV=Q;

fx1; x2; x3g ¼ f0.2; 0.5; 0.8g: ð31Þ

For the FO variations we vary μFO up and down to 2Q and
Q=2, taking the maximal absolute deviation in the results
from the central value as the FO uncertainty. For our
resummation uncertainties, we use the profile variations
designed for T -like resummation variables from Ref. [70],
which give us four independent up and down variations for
μB and μS that probe deviations from the canonical scaling
but never violate the parametric scaling μ2B ∼ μSμH and turn
off beyond x3. In addition, we include two more profiles
where we vary all xi transition points by �0.05, giving us a
total of six resummation profile variations. We then take the
maximal absolute deviation in the result from the central
value among all six profiles as the resummation uncer-
tainty. The total perturbative uncertainty is obtained by
adding the FO and resummation uncertainties in quad-
rature. Note that the profile scales depend on the underlying
Φ0 point through the value of Q, but we choose them to be
independent of Y.
The same resummation formalism can be used to obtain

an expression for the resummed cumulant of the T 0

spectrum in Eq. (7),

dσNNLL
0

dΦ0

ðT cut
0 Þ ¼

Z
T cut

0

0

dT 0

dσNNLL
0

dΦ0dT 0

: ð32Þ

Here, we first integrate the resummed expression for the T 0

distribution in Eq. (28), and then choose the scales using
the same profile scales but as a function of T cut

0 . In
FIG. 1 (color online). Comparison of the full, singular, and
nonsingular T 0 distribution at NNLO0.
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particular, in the resummation region, the canonical values
are

μH ¼ Q; μB ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
QT cut

0

q
; μS ¼ T cut

0 : ð33Þ

Since the operations of integrating the factorization theo-
rem and choosing the scales do not commute with one
another, the resulting expression for the cumulant is not
exactly equal to the integral of the T 0 spectrum, where the
scales would be chosen before performing the integration.
The resulting differences are formally always of higher
order, beyond NNLL0 in our case (see e.g. Ref. [72] for a
detailed discussion). However, they can be numerically
relevant, especially if one aims at preserving the NNLO0

total cross section as accurately as possible.
In principle, one could enforce the equality between the

cumulant and the integral of the spectrum in Eq. (32)
exactly, by simply defining the T 0 spectrum as the
derivative of the T cut

0 cumulant. However, this can give
rise to unreliable uncertainty estimates in the spectrum as
well as a poor description of the region of T 0 where the
resummation is turned off and FO predictions are valid
[37]. In GENEVA we circumvent these problems by adding
to the T 0 spectrum the quantity

κðT 0Þ
�

d
dT 0

dσNNLL
0

dΦ0

ðT 0; μhÞ −
dσNNLL

0

dΦ0dT 0

ðμhÞ
�
; ð34Þ

which is explicitly beyond NNLL0 order. The profile
scales μh are chosen to turn off the resummation some-
what earlier than the profile scales for the rest of the
resummed calculation, in order to preserve the accurate
spectrum prediction in the tail of the distribution.
Furthermore, μh and its derivative are smooth functions
of T 0, which is needed because the difference of
resummed terms in Eq. (34) is proportional to
dμh=dT 0 [72]. The function κðT 0Þ is a function that
smoothly interpolates from a constant value for T 0 ≪ Q
to zero at the point where μhðT 0Þ ¼ Q, and further
reduces the effects of the higher-order correction terms in
the tail of the distribution. By adjusting the constant
value at small T 0 within Oð1Þ factors, the overall size of
these terms can be adjusted (in practice this constant
value is approximately 2).
These higher-order terms may be used to capture the

correct FO scale uncertainties in the inclusive cross
section upon integrating over the full spectrum. We
use the same profile for each of the scale variation
described above, but scaled by the value of μFO=Q (so 1
for the central scale and resummation scale variations, 2
for the up FO scale variation, and 1=2 for the down FO
scale variation). By adjusting the constant value of
κðT 0 → 0Þ separately for each μFO=Q value, we can
correctly obtain the total integrated FO cross section for
each FO scale variation.

Technically, each of the resummation scale variations
should yield strictly the same total cross section, such that
the resummation uncertainties vanish for inclusive observ-
ables. However, in practice, the profile scale variations are
primarily meant and designed to capture the resummation
uncertainties in the peak and transition regions.
Implementing a constraint that they all reproduce exactly
the same numerical integral of the resummed spectrum as
the central profile is very challenging, especially since the
resummation uncertainties in the peak region can be
sizeable, while the inclusive cross section uncertainties
are very small. [Alternatively, we could separately fine-tune
the κðT 0Þ function for each of the different resummation
profiles.] Instead, what we do is simply drop the resum-
mation uncertainties whenever we consider fully inclusive
observables.

3. NNLO nonsingular corrections

As discussed in Sec. II A 1, the fact that we are
resumming the T 0 spectrum and cumulant to NNLL0
accuracy implies that there are no singular terms in the
matching to the NNLO calculation. Therefore, GENEVA

directly computes the fully differential inclusive zero-jet
cross section at NNLO, up to power corrections in T cut

0 .
The power-suppressed missing terms are precisely the zero-
jet nonsingular contributions in Eq. (10), which we can
write as

dσnons0

dΦ0

ðT cut
0 Þ ¼ ½αsf1ðT cut

0 ;Φ0Þ þ α2sf2ðT cut
0 ;Φ0Þ�T cut

0 ;

ΣnonsðT cut
0 Þ ¼

Z
dΦ0

dσnons0

dΦ0

ðT cut
0 Þ: ð35Þ

The functions fkðT cut
0 ;Φ0Þ can still have divergences as

T cut
0 → 0, but these divergences are at most logarithmic.

Thus, these corrections vanish in the limit T cut
0 → 0, and

for small enough T cut
0 they can be neglected, allowing

us to obtain NNLO accuracy without doing the full
NNLO calculation [which would determine the func-
tion f2ðΦ0Þ].
We show the size of the total correction terms ΣnonsðT cut

0 Þ
in Fig. 2 for the NLO and pure NNLO contribution. At our
default value of T cut

0 ¼ 1 GeV these terms are very small
but also not completely negligible. In the current imple-
mentation we include the full NLO term, i.e., the
f1ðΦ0; T cut

0 Þ piece in dσnons0 ðT cut
0 Þ by performing the

corresponding zero-jet NLO calculation on the fly. For
the NNLO term, we neglect the Φ0 dependence and only
include its total integral. Technically, this is done by
obtaining the pure NNLO contribution to ΣnonsðT cut

0 Þ
from the known dependence of the total cross section on
T cut

0 (i.e. analogous to how we obtain Fig. 2). This
correction is then included through a simple rescaling
of dσMC

0 =dΦ0ðT cut
0 Þ.
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4. The normalized splitting probabilities

In Eq. (8) we introduced a normalized splitting proba-
bility PðΦ1Þ, which is used to make the resummed T 0

spectrum fully differential in Φ1 in Eq. (7). A similar
splitting probability PðΦ2Þ is used in Eq. (15) to make the
T 1 resummed term fully differential in Φ2. As mentioned
before, the splitting probabilities are normalized,

Z
dΦNþ1

dΦNdT N
PðΦNþ1Þ ¼ 1; ð36Þ

and provide the dependence on the two extra emission
variables required besides T N to define a full splitting from
ΦN → ΦNþ1. The two extra variables are chosen as usual as
an energy ratio z and an azimuthal angle ϕ. In the collinear
and soft limit, the z variable denotes the ratio z ¼ EM=ES
for a splitting M → DS, where a mother particle M splits
into a daughter particle D and a sister particle S. For initial
state radiation (ISR) splittings, the daughter particle is the
final-state particle, while for final state radiation (FSR)
splittings it is always the gluon for q → qg splittings, the
quark for g → qq̄ ones, and the softer gluon for g → gg
splittings.
We first need to decide which two particles in ΦNþ1 are

interpreted as arising from the splitting and which are then
labeled with D and S. Here we have to choose the two
particles which set the value of T N , which are the two
particles that are closest according to the N-jettiness
clustering metric, as described in Eq. (23).
The normalized splitting probability is then given by

PðΦNþ1Þ ¼
pspðz;ϕÞP

sp

R zmaxðT NÞ
zminðT NÞ dzdϕpspðz;ϕÞ

dΦNdT Ndzdϕ
dΦNþ1

;

ð37Þ

where the splitting function pspðz;ϕÞ depends on the
chosen splitting sp which as explained above
depends on the phase-space point sp≡ spðΦNþ1Þ.
With this definition, the splitting probability is indeed
normalized:

Z
dΦNþ1

dΦNdT N
PðΦNþ1Þ

¼
X
sp

Z
dzdϕ

pspðz;ϕÞP
sp

R
zmax
zmin

dzpspðz;ϕÞ
¼ 1: ð38Þ

The splitting functions for FSR and ISR are chosen
to be

psp∈FSRðz;ϕÞ ¼ APspðz;ϕÞ;

psp∈ISRðz;ϕÞ ¼
fðxM=z; μÞ
fðxS; μÞ

APspðz;ϕÞ; ð39Þ

with APspðz;ϕÞ denoting the unregularized Altarelli-Parisi
splitting function, and fðx; μÞ the standard parton distri-
butions function evaluated at the momentum fraction x and
the factorization scale μ. The variables xM and xS denote the
momentum fractions of the mother and sister particles in
the ISR splitting M → DS.

5. T 1 resummation

The Sudakov factor U1ðT max
1 ; T 1Þ in Eq. (15) resums

the T 1 dependence to LL accuracy. We use the expres-
sion that is obtained from the T 1 factorization theorem
[50] analogous to the one given for T 0 in Eq. (25), where
all ingredients are calculated at tree level, and the running
is performed at LL only. The OðαsÞ expansion of this
Sudakov factor has the simple expression

Uð1Þ
1 ðT max

1 ;T 1Þ ¼ −
αsðT max

1 Þð2CF þCAÞ
2π

ln2
T 1

T max
1

: ð40Þ

The above minimal LL resummation is sufficient for our
current purposes, where we focus on zero-jet resummation
variables and inclusive observables and where we primarily
need it to have a proper matching to the parton shower. A
more precise description of one-jet resummation variables
will require an improved T 1 resummation, which we leave
for future work. Extending the T 1 resummation beyond LL
accuracy is of course possible. One can also consider
including the resummation through a POWHEG-like
Sudakov factor, where the ratio of the real matrix element
B2 over the born B1 would be exponentiated. We have
verified that our underlying NLO1 þ LL1 matched calcu-
lation reasonably agrees with a POWHEG implementation of
V þ 1 jet [73] in regions where the zero-jet resummation is
not relevant.

FIG. 2 (color online). The nonsingular cumulant for 0-jettiness,
as a function of T cut

0 . The black (blue) curve shows the NLO
(pure NNLO) nonsingular cumulant, coming from the f1 and f2
terms in Eq. (35).
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6. NLO1 calculation and phase-space map

The last point addressed in this section concerns the
phase-space map ΦT

1 ðΦ2Þ that is used to project a partonic
phase-space point Φ2 onto the Φ1 point in the NLO1

calculation; see Eqs. (11) and (17). It is also used in the T 1

resummation in Eq. (15). Just requiring having some IR-
safe map as usual for fixed-order calculations [like for
example the FKS map ΦC

1 ðΦ2Þ used in the C2 subtraction
term in Eq. (17)] is not enough anymore.
As discussed around Eq. (13), we have the additional

constraint that the ΦT
1 map must preserve the value of T 0 in

order for the NLO1 calculation to be consistent with the T 0

resummation. This property was also important for the 1=2-
jet separation to preserve the T 0 resummation.
Technically, the only real-emission integral that we have

to perform as part of the NLO1 calculation is the integral in
Eq. (17). We perform this integral numerically by
Monte Carlo integration over the radiation phase space
for a given Φ1 event. The B2 and C2 terms in Eq. (17) are
allowed to use different maps, since all IR-safe maps agree
in the IR-singular limit. However, we have to be able to
invert both maps, i.e., we have to reconstruct all Φ2 points
that would project to the given Φ1 point. We then para-
metrize the radiation phase space for both maps in terms of
a common set of radiation variables, which are then
Monte Carlo sampled. While the usual FKS maps are
designed to be invertible, the invertibility turns out to be a
very nontrivial requirement on the ΦT

1 ðΦ2Þ map.
Formally, we only need to preserve T 0 for the

singular terms, i.e., we can use any map which pre-
serves a variant of T 0 with the same singular structure
to the order we want to carry out the resummation,
while any nonsingular difference is captured by the
nonsingular corrections. Therefore, to enable us to invert
the map, we hold a recursive definition of T 0 fixed,
which is effectively defined by the action of the map,

T FR
0 ðΦ2Þ ¼ T 0½ΦT

1 ðΦ2Þ�: ð41Þ

The map itself is constructed as follows: We first cluster
(by simply adding/subtracting four momenta) the two
partons in Φ2 that set the T 1 value, i.e., that are closest
according to the N-jettiness metric. If the two final-state
partons are clustered (FSR clustering), then this yields a Φ1

point with an off-shell final-state momentum. If one of the
final-state partons in Φ2 is closest to a beam direction (ISR
clustering), then this yields a Φ1 point with one of the
incoming momenta off shell (and off axis). Next, we
compute T 0 on this off-shellΦ1 point. Finally, we construct
an on-shell Φ1 point that has the same T 0 value and the
same qμ of the vector boson. With qμ and T 0 given, the
resulting Φ1 point is fully determined by four-momentum
conservation and on-shell conditions. Hence, by construc-
tion, the map also preserves the momentum of the vector
boson qμðΦ2Þ ¼ qμðΦT

1 ðΦ2ÞÞ. It is easy to see that this map

is IR safe, and it is sufficiently simple that it can be
inverted.
For all ISR clusterings as well as FSR clusterings

with both partons in the same hemisphere (defined by
the vector-boson rapidity) this definition of T FR

0 is
identical to the exact value of T 0ðΦ2Þ. The only case
where it differs is for FSR clusterings where the two
final-state partons are in opposite hemispheres. In the
T 0-singular limit, this can only happen for soft emis-
sions, and hence will in principle affect the constant
terms in the two-loop soft function. (Collinear emissions
in the beam functions always correspond to ISR cluster-
ings.) However, this can only happen in a small region
of phase space where the soft emitter was already
accidentally close in rapidity to the vector boson. We
therefore expect this to be a small effect, which we have
verified numerically. We can therefore safely ignore it
for our resummation and simply take it into account as
part of the nonsingular matching corrections.
Finally, we need to comment on the ΘT ðΦ2Þ appear-

ing in Eq. (12). It is easy to see that an on-shell
massless Φ1 point must satisfy T 0 ≤ j~qT j. However,
there can be Φ2 points that can have a larger T 0 value,
and hence such Φ2 points cannot be projected onto a
massless Φ1 point. The ΘT ðΦ2Þ is defined to be 1 for
points that can be projected and 0 otherwise.
Equivalently, these points also cannot be reached by
the inverse map from splitting a Φ1 point, and so are
never part of the integral in Eq. (17). Since the map is
IR safe, the nonprojectable Φ2 region is nonsingular and
is included in Eq. (18) by the 1 − ΘT ðΦ2Þ constraint.

III. INTERFACING WITH A PARTON
SHOWER

In the previous section we have given all required
formulas for the jet cross sections dσMC

0 , dσMC
1 , and

dσMC
≥2 . As discussed in detail there, these jet cross

sections include the contributions of higher multiplicity
phase-space points, as long as the jet resolution variable
for these points in phase space is below the T cut

k value.
In Table I we summarize how the phase-space points of
different multiplicities contribute to the given jet cross
section. Only the first three columns were necessary for
the partonic calculation of the previous section. The last
column shows instead the constraints to be imposed on
events with higher multiplicities. We detail how these
affect the development of the parton shower below.
The purpose of the parton shower is to make the

calculation fully differential in the higher multiplicities,
which can be viewed as filling the exclusive zero- and
1-jet bins with radiation, as well as adding extra jets to
the inclusive two-jet multiplicity. A parton shower acts
on a partonic event by adding extra radiation in a
recursive and unitary fashion. If the evolution variable
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of the parton shower were chosen to be N-jettiness,1 a
single emission would be given by

Sð1Þ½dσN �≡ dσN

�
UNðT max

N ;ΛÞ þ U0
NðT max

N ; T NÞ

×
dΦNþ1

dΦN
PðΦNþ1ÞθðT max

N > T N > ΛÞ
�
; ð42Þ

where T max
N ∼OðT N−1Þ is the maximum value of T N

that can be reached given the value T N−1 that character-
izes the hardness of the configuration before the
emission and Λ is the shower cutoff. This means that
the parton shower either keeps the N-body event
unchanged with the no-emission probability determined
by the Sudakov factor UNðT max

N ;ΛÞ, or it adds an extra
emission according to the probability

U0
NðT max

N ; T NÞPðΦNþ1Þ; ð43Þ

which we define here in terms of the derivative of the
Sudakov form factor and the normalized splitting
probability given in Sec. II B 4.
From Eq. (42) and using the analog of Eq. (20) it is clear

that the parton shower is unitary. Defining

dσSNþ1 ≡ dσNU0
NðT max

N ; T NÞPðΦNþ1Þ

×
dΦNþ1

dΦN
θðT max

N > T N > ΛÞ; ð44Þ

the recursive shower can now be written as

S½dσN �≡ dσNUNðT max
N ;ΛÞ þ S½dσSNþ1�: ð45Þ

Note that the definition of the parton shower requires a
phase-space map. This is clear from Eq. (44), which
depends on dΦNþ1=dΦN .
The above equation assumes that the evolution variable

of the parton shower is N-jettiness. PYTHIA8, which we
interface to for showering, as well as any other parton
showers currently existing, uses a different evolution

variable, e.g. the transverse momentum or the angular
separation of the emission. However, one can imagine
taking the output of any of these showers and reclustering
the partons according to the N-jettiness metric defined in
Eq. (23). The resulting history of splittings is equal at LL
with the recursive expression given in Eq. (45). In the
remaining discussion, we work with Eqs. (42) and (45), and
it is understood that this is valid only after the aforemen-
tioned reclustering. Note that this construction implies a
recursive definition of N-jettiness, which in general is not
identical to the standard definition given in Sec. II B 1. It
does agree, however, with the T FR

0 definition discussed in
Sec. II B 6, which is used in GENEVA.
The parton shower is not allowed to affect results of the

jet cross sections at the accuracy they were calculated in the
previous section. Starting from this condition, let us first
consider the constraints we would have to impose on a
parton shower that is strongly ordered in N-jettiness, as
discussed above. Strong ordering in T N means that the T N
value at each emission is much smaller than the T max

N upper
limit determined by the T N−1 value of the previous
emission. In this case, we would need to ensure that at
each stage in the shower each partonic phase-space point
satisfies the constraints given in Table I. For example, when
showering a zero-jet event defined by Φ0, the phase-space
point Φ1 reached after the first emission must have
T 0ðΦ1Þ < T cut

0 and Φ1 must be projectable onto Φ0.
Each subsequent emission only needs to satisfy
T 0ðΦNÞ < T cut

0 . When showering a one-jet event defined
by Φ1, the Φ2 point obtained after the first emission would
need to have T 1ðΦ2Þ < T cut

1 , and Φ2 would have to be
projectable onto Φ1 with the T 0-preserving map discussed
in Sec. II B 6. This implies that the Φ2 point obtained after
one emission has to satisfy T 0ðΦ2Þ ¼ T 0ðΦ1Þ as well as
qμðΦ2Þ ¼ qμðΦ1Þ, qμ being the vector-boson four momen-
tum. Each subsequent emission then only needs to sat-
isfy T 1ðΦNÞ < T cut

1 .
For a shower ordered in a different evolution variable,

very similar restrictions hold; however the special con-
ditions regarding the phase-space maps are not required on
the first emission, but rather on the emission with the
largest value of the jet resolution scale, which can happen at
a much later stage in the shower. Failing to properly
account for this could affect the accuracy at which
observables are predicted and ultimately spoil the lead-
ing-logarithmic terms and the color-coherence effects that
are built into the shower Sudakov factors.
A solution to this problem is to ensure that the first

emission has indeed the largest value of the jet resolution
scale. This can be achieved by performing the first emission
in GENEVA, with a probability obtained from a simple
LL Sudakov factor and using a splitting that preserves the
map that was so carefully constructed. One would then only
need to ensure that subsequent emissions from the parton
shower have a lower jet resolution scale than the first,

1Here and in the following we treat T N as the jet resolution
scale of a single emission. Since T N is a global variable that
depends on all emissions, this warrants some explanation. What
we intend here proceeds from the condition that for massless
particles T NðΦNþ1Þ is always the total plus component of the
closest pair of particles, using e.g. the metric defined in Eq. (23),
relative to the direction of the sum of their momenta. Moreover,
T N → 0 when ΦNþ1 → ΦN . Near the singular limit, where the
shower is important and a good approximation of the underlying
physics, one can thus assume that the direction of the axes
entering the definition of T N is aligned to the direction of the N
hard partons. In this limit, a singular emission does not change
these directions. Therefore, the value of T N does in fact represent
the hardness of the emission and can be used as the evolution
variable.
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which can be achieved by properly setting the starting scale for the showering and applying standard veto techniques.
The general idea of this approach is to split an N-jet differential cross section into two pieces

dσMC
N→N

dΦN
ðT cut

N ;ΛNÞ ¼
dσMC

N

dΦN
ðT cut

N ÞUNðT cut
N ;ΛNÞ; ð46Þ

dσMC
N→Nþ1

dΦNþ1

ðT N > ΛN; T cut
N Þ ¼ d

dT N

�
dσMC

N→N

dΦN
ðT cut

N ; T NÞ
�
PðΦNþ1ÞθðT cut

N > T N > ΛNÞ; ð47Þ

using a Sudakov factor UN and splitting probability P to define a branching and no-branching probability as in a unitary
parton shower. The first term is now an exclusive N-jet cross section with a jet resolution at ΛN , which can be much smaller
than the T cut

N value used in GENEVA. This process can also be iterated further.
Applying this to our Φ0 and Φ1 events, and adding all emissions up to two partons, we find

dσMC
0

dΦ0

ðT cut
0 ;Λ0Þ ¼

dσMC
0

dΦ0

ðT cut
0 ÞU0ðT cut

0 ;Λ0Þ; ð48Þ

dσMC
1

dΦ1

ðT 0 > Λ0; T cut
0 ; T cut

1 ;Λ1Þ ¼
dσ1
dΦ1

ðT 0 > T cut
0 ; T cut

1 ÞU1ðT cut
1 ;Λ1Þ

þ d
dT 0

dσMC
0

dΦ0

ðT cut
0 ;T 0ÞPðΦ1ÞθðT cut

0 > T 0 > Λ0ÞU1ðT max
1 ;Λ1Þ; ð49Þ

dσMC
≥2

dΦ2

ðT 0 > Λ0; T 1 > Λ1; T cut
0 ; T cut

1 Þ ¼ dσMC
≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ

þ d
dT 1

dσMC
1

dΦ1

ðT 0 > Λ0; T cut
0 ; T cut

1 ; T 1ÞPðΦ2Þθð ~T max
1 > T 1 > Λ1Þ: ð50Þ

The ~T max
1 in the theta-function in the last line above is either

T cut
1 or T max

1 , depending on whether the derivative is on the
first or the second term of Eq. (49). Once the first emissions
have been performed as described above, the only remaining
constraint on the parton shower is what is given in the last
column of Table I, namely the constraint on the jet resolution
variable. In practice, we only apply this to the Φ1 events,
since as discussed below, the showering of the Φ0 events is
not affecting the accuracy of the T 0 distribution.
In the remainder of this section we give an argument of

why the parton shower acting on the jet events as described
above does not affect the NNLL0 þ NNLO accuracy. The
Φ0 events include all phase-space points for which
T 0 < T cut

0 , and by definition GENEVA is only predicting
the normalization, and not the distribution in T 0. Therefore,

as long as we constrain the parton shower to only shower
these events up to T cut

0 , the shower will exactly provide the
missing T 0 shape below T cut

0 which is integrated over by
GENEVA. On the other hand, due to the unitarity constraint,
the shower will not change the normalization of the events
below T cut

0 , which is thus still the NNLL0 þ NNLO0 one
predicted by GENEVA.
By performing the first emission of our Φ1 events as

described above, and taking Λ1 as small as possible (we use
a value of 0.1 GeV), the remaining one-jet cross section is
only about 0.1% of the total cross section. The theoretical
problem of how the shower affects the accuracy of this
small contribution to the total cross section, which requires
imposing all the constraints detailed above, can then be
ignored for practical purposes.

TABLE I. Table showing how the different partonic phase-space points are contributing to the different jet multiplicities. Here we have
defined θT N

ðΦMÞ≡ θ½T NðΦMÞ < T cut
N �, θ̄T N

ðΦMÞ≡ θ½T NðΦMÞ > T cut
N �, θmapðΦ0;Φ1Þ≡ ½Φ1projects ontoΦ0�, θmapðΦ1;Φ2Þ≡

½Φ2projects ontoΦ1�, θ̄mapðΦ1Þ≡ ½Φ1does not project onto anyΦ0�, θ̄mapðΦ2Þ≡ ½Φ2does not project onto anyΦ1�.
Φ0 Φ1 Φ2 ΦN

dσMC
0 =dΦ0 All θT 0

ðΦ1Þ and θmapðΦ0;Φ1Þ θT 0
ðΦ2Þ θT 0

ðΦNÞ
dσMC

1 =dΦ1 θ̄T 0
ðΦ1Þ or θ̄mapðΦ1Þ θ̄T 0

ðΦ2Þ and θT 1
ðΦ2Þ and θmapðΦ1;Φ2Þ θ̄T 0

ðΦNÞ and θT 1
ðΦNÞ

dσMC
≥2 =dΦ2 θ̄T 0

ðΦ2Þ and ½θ̄T 1
ðΦ2Þ or θ̄mapðΦ2Þ� θ̄T 0

ðΦNÞ and θ̄T 1
ðΦNÞ
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What is therefore left to show is that the shower does not
affect the T 0 distribution when showering Φ2 events. The
T 0 distribution of the original two-body phase space point
is given by

dσ
dT 0

¼
Z

dΦ2

dσ2
dΦ2

δ½T 0 − T 0ðΦ2Þ�; ð51Þ

while the expression after the first emission done by the
shower is given by

dσS

dT 0

¼
Z

dΦ2

dσ2
dΦ2

U2ðT max
2 ;Λ2Þδ½T 0 − T 0ðΦ2Þ�

þ
Z

dΦ3

dσS3
dΦ3

δ½T 0 − T 0ðΦ3Þ�: ð52Þ

Clearly, thanks to the infrared safety of T 0, in the soft and
collinear limit of Φ3 one has

T 0ðΦ3Þ ¼ T 0ðΦ2Þ: ð53Þ

If the phase-space map of the parton shower were to
preserve the value of T 0, the relation Eq. (53) would remain
exact even away from the collinear and soft limits. The first
emission done by the shower would then not change the T 0

spectrum

dσS

dT 0

¼ dσ
dT 0

: ð54Þ

If the phase-space map of the shower does not preserve
T 0, instead, a difference between these two values exists.
We can assume this difference to be proportional to
T 2ðΦ3Þ, which measures the distance from the soft and
collinear limits

T 0ðΦ2Þ − T 0ðΦ3Þ ¼ aðΦ3ÞT 2ðΦ3Þ: ð55Þ

Here aðΦ3Þ is well behaved in the singular limit of Φ3,
because all the singular behavior is incorporated in
T 2ðΦ3Þ → 0. For the sake of simplicity and to avoid
rendering the notation too heavy we drop the ðΦ3Þ
dependence of a and treat it as constant in the remainder
of this section. The reader can easily convince themselves
that the argument given below will not be affected by this
approximation.
This allows us to write

dσS

dT 0

¼
Z

dΦ2

dσ2
dΦ2

U2ðT max
1 ;Λ2Þδ½T 0ðΦ2Þ − T 0�

þ
Z

dΦ3

dσS3
dΦ3

δ½T 0ðΦ2Þ − T 0 þ aT 2ðΦ3Þ�: ð56Þ

Thanks to the normalization of the splitting probabilities,
one can easily perform the integrals over the two
radiation variables other than T 2 to obtain

dσS

dT 0

¼
Z

dΦ2

dσ2
dΦ2

U2ðT max
2 ;Λ2Þδ½T 0ðΦ2Þ − T 0�

þ
Z

dΦ2

dσ2
dΦ2

Z
T max

2

Λ2

dT 2U0
2ðT max

2 ; T 2Þ

× δ½T 0ðΦ2Þ − T 0 þ aT 2�: ð57Þ

Next, the delta function is Taylor expanded to
obtain

dσ
dT 0

−
dσS

dT 0

¼ a
Z

dΦ2

dσ2
dΦ2

δ0½T 0 − T 0ðΦ2Þ�

×
Z

T max
2

Λ2

dT 2T 2U0
2ðT max

2 ; T 2Þ

¼ a
Z

dT 0
0

dσ2
dT 0

0

hT 2iðT 0
0Þδ0½T 0 − T 0

0�

¼ −a
d

dT 0

�
dσ
dT 0

hT 2iðT 0Þ
�
; ð58Þ

where we have defined the average T 2 value

hT 2i≡
Z

T max
2

Λ2

dT 2T 2U0
2ðT max

2 ;T 2Þ: ð59Þ

In the last lines of Eq. (58), we have written hT 2iðT 0Þ to
make the dependence of the average value of 2-jettiness
on T 0 explicit. In fact, one can derive this dependence
using a simple LL Sudakov factor for the parton shower.
Let us first consider a single emission governed by

UðT max; T Þ ∼ exp

�
−C

αs
π
ln2

T
T max

�
; ð60Þ

with C being the appropriate color factor. We can now
easily show that

hT i≡
Z

T max

0

dT T U0ðT max; T Þ

∼ T max

�
1 −

eπ=ð4αsCÞπErfcð
ffiffi
π

p
2
ffiffiffiffiffiffi
αsC

p Þ
2

ffiffiffiffiffiffiffiffi
αsC

p
�

∼ 2
Cαs
π

T max þOðα2s Þ: ð61Þ

Iterating this over two emissions, we find
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hT 2i ¼
Z

T 0

0

dT 1U0
1ðT 0; T 1Þ

Z
T 1

0

dT 2T 2U0
2ðT 1; T 2Þ

∼ 2
C2αs
π

Z
T 0

0

dT 1T 1U0ðT 0; T 1Þ

∼ 4
C1C2α

2
s

π2
T 0 þOðα3s Þ; ð62Þ

where we used the scaling T max
N ∼ T N−1.

We can also numerically extract the dependence of hT 2i
on T 0 from an actual shower in the following way: Starting
from the showered expression dσS3=dΦ3 defined as in
Eq. (44), we have

Z
dΦ3

dσS3
dΦ3

δðT 0ðΦ2Þ − T 0ÞT 2

¼
Z

dΦ2

dσ2
dΦ2

δ½T 0 − T 0ðΦ2Þ�

×
Z

T max
2

Λ2

dT 2T 2U0
2ðT max

2 ; T 2Þ

¼
Z

dT 0
0

dσ2
T 0

0

δ½T 0 − T 0
0�hT 2iðT 0

0Þ

¼ dσ2
dT 0

hT 2iðT 0Þ: ð63Þ

This gives

hT 2i ¼
�
dσ2
dT 0

�
−1 Z

dΦ3

dσS3
dΦ3

δðT 0ðΦ2Þ − T 0ÞT 2: ð64Þ

Taking the Φ2 events from GENEVA, running them through
PYTHIA8, and calculating this ratio for various values of T 0,
we obtain a very good fit to a straight line with

hT 2i ≈ 0.06T 0: ð65Þ

Taking advantage of the linear scaling of hT 2i with T 0,
and dropping the explicit dependence in the notation from
here on, we can now rewrite Eq. (58) as

dσ
dT 0

−
dσS

dT 0

¼ −a
�

d
dT 0

T 0

dσ
dT 0

� hT 2i
T 0

: ð66Þ

This leads to

dσ
dT 0

− dσS
dT 0

dσ
dT 0

¼ fðT 0Þ
hT 2i
T 0

; ð67Þ

where

fðT 0Þ≡ −a
d

d ln T 0

ln

�
dσ

d ln T 0

�
: ð68Þ

Since the dominant contribution to dσ=d ln T 0 is given by

dσ
d ln T 0

∼ −αs ln T 0e−αsln
2T 0 ; ð69Þ

we find

fðT 0Þ ∼
1

ln T 0

: ð70Þ

This gives our final result for the change of the T 0 spectrum
after the first emission done by the parton shower

dσ
dT 0

− dσS
dT 0

dσ
dT 0

∼
1

ln T 0

hT 2i
T 0

∼
α2s

ln T 0

: ð71Þ

Since the parton shower is strongly ordered in T N , in the
sense discussed at the beginning of this section, all the
subsequent emissions will not alter this result to the order
we are working.
This result can be compared to the relative uncertainty in

our NNLL0 calculation of the T 0 spectrum, which can be
estimated considering the dominant term beyond the
NNLL0 order. This term scales as α3s=T 0. Comparing this
to the first dominant one that we include in the NNLL0
prediction, we find the relative uncertainty to be

Δ dσNNLL
0

dT 0

dσNNLL
0

dT 0

∼
α3s=T 0

αs ln T 0=T 0

∼
α2s

ln T 0

: ð72Þ

Upon inspection of Eqs. (71)–(72), we can see that the shift
in the spectrum due to PYTHIA’s showering is of the same
size as the missing higher-order terms in the perturbative
calculation. Therefore, the showering only affects our
prediction beyond the claimed accuracy.

IV. COMPARISON WITH DEDICATED
PERTURBATIVE CALCULATIONS

In this section, we present the results of GENEVA and the
comparisons with dedicated FO and resummed predictions.
All calculations are performed for pp collisions with 7 TeV
center-of-mass energy. We use the CT10NNLO [74] set from
LHAPDF6 [75] as our default PDFs, together with its default
value ofαsðMZÞ ¼ 0.118. For the tree-levelmatrix elements,
including color and spin-correlations, we interface to NJET

[76,77] through the BLHA interface [78,79]. The one-loop
matrix elements are instead taken from the POWHEG-BOX
[7,73] (with original routines fromMCFM [80]).We allow for
the full interference effects between Z=γ� and restrict the
invariant mass for the dilepton pair to the range 60 <
mlþl− < 120 GeV during the generation of events. The
other parameters relevant for our calculation are

MZ ¼ 91.1876 GeV; ΓZ ¼ 2.4952 GeV;

sin2θeffW ¼ 0.2226459; α−1emðMZÞ ¼ 132.338: ð73Þ

The Z couplings are given by
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gl=q ¼
e

sin θeffW cos θeffW
½Tðl=qÞ

3 − ql=qsin2θeffW �; ð74Þ

where l=q denotes the given left or right component of a
lepton or a quark and e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4παemðMZÞ
p

. For the parton
shower, we use PYTHIA8.205 [34,35], with a slightlymodified
versionofTune4C, namelywithαs ¼ 0.118 for both the ISR
and FSR shower, pref

T0
¼ 4 GeV, and the hard primordial

kT ¼ 2.5 GeV. Unless otherwise stated, the GENEVA pre-
dictions include showering and hadronization effects, but
presently do not include multiple parton interactions.
We first present the T 0 spectrum, and show that we

exactly reproduce the input resummed spectrum, and that
the parton shower does not modify this distribution as
required.
To validate the FO accuracy of GENEVA, we next consider

the rapidity distribution of the Z boson, as well as that of
the negatively charged lepton from the Z decay. These
distributions are known to NNLO accuracy. As discussed in
Sec. II, GENEVA reproduces all Oðα2s Þ contributions up to
small power-suppressed effects, and these observables
allow us to test the size of these effects. In addition, it
allows us to validate that the procedure described in Sec. II
B 2 to turn off the resummation and numerically reproduce
the total cross section from the integrated resummed
spectrum works.
Finally, to study the accuracy of our resummation, we

show the results for various observables that are sensitive to
the higher logarithms included in GENEVA. The first is the
zero-jet cross section, which only contains events with jets

below a given pT cut and is known analytically to NNLL.
The corresponding observable in Higgs production is an
important ingredient in Higgs analyses. The other two
resummation-sensitive observables we consider are the
transverse-momentum distribution of the Z boson, as well
as the ϕ� distribution [81]. For all these observables we
compare our results to the analytic resummed results at
NNLL matched to NNLO0 or NLO1.

A. The T 0 spectrum

The zero-jet resolution variable chosen in GENEVA is 0-
jettiness, such that partonic configurations with T 0 < T cut

0

are part of the exclusive zero-jet MC cross section, while
partonic configurations with T 0 > T cut

0 contribute to the
inclusive one-jet cross section. Since the dependence on the
zero-jet resolution variable at NNLL0 accuracy is used as
input in GENEVA, it must reproduce the T 0 spectrum at
NNLL0 accuracy both for the central value and for the
event-by-event scale uncertainties.
In Fig. 3 we show the T 0 spectrum in the peak,

transition, and tail regions. All the curves are cut off at
the T cut

0 ¼ 1 GeV value used in the simulation. We show
the analytic expressions with a red band, where the
uncertainties are obtained using the same profile scale
variations discussed in Sec. II B 2. The green histogram
with error bars shows the results of GENEVA before
attaching the parton shower. One can see that GENEVA is
reproducing the analytic results exactly, as it should, for
both the central value and the scale variations. Finally, the
blue histogram shows the results of GENEVA after the parton

FIG. 3 (color online). Validation of the T 0 spectrum in GENEVA. The analytic NNLL0 þ NNLO T 0 resummation is compared to the
partonic and showered results of GENEVA, but before the addition of nonperturbative effects.

FIG. 4 (color online). Comparison of the showered and hadronized T 0 spectra in GENEVA.
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shower. As required, the parton shower changes the T 0

spectrum only within the perturbative uncertainties. In fact,
over most of the T 0 range the spectrum is essentially
unchanged.
The nonperturbative effects are shown in Fig. 4,

where we compare the predictions for the T 0 spectrum
after the shower (again in blue) and after the addition of
proton remnants, intrinsic kT smearing, and hadroniza-
tion by PYTHIA8 in orange. These effects change the T 0

distribution significantly in the peak region, while they
become power corrections in the transition and tail
regions. This behavior is precisely as dictated by
factorization, from which one expects that these effects
should behave for T 0 analogous to thrust in eþe−.
Comparing to our eþe− results [24], this is precisely
what we observe. A benefit of the GENEVA approach is
that it allows us to directly combine the higher-order
analytic resummation with these nonperturbative cor-
rections provided by the hadronization model in
PYTHIA8.

B. Partonic NNLO0 observables

We now show that GENEVA reproduces fully inclusive
observables at NNLO accuracy by comparing to dedicated
NNLO calculations. In this section, we only consider the
profile scale variations that reproduce the FO scale varia-
tions, as described in Sec. II B 2.

In Figs. 5–6 we show the result for the rapidity
distribution of the vector boson and the negatively charged
lepton from its decay, respectively. The orange band shows
the NNLO result from DYNNLO [82]. We show the results of
GENEVA as a black histogram, with the error bars represent-
ing FO uncertainties as described above. In the lower part
of each plot, we show the ratio to the DYNNLO central value.
The central value of GENEVA agrees very well with the

fixed NNLO prediction. The perturbative uncertainties
from GENEVA are also in reasonable agreement with those
from DYNNLO. The few fluctuations observed in the plot are
of a statistical nature, as evidenced by the fact that they
grow larger toward larger rapidities, where the statistics is
poorer. The rapidity distribution of the vector boson has
also been validated against the independent NNLO calcu-
lation provided by VRAP [83].
In Fig. 7 we show the result of the transverse-momentum

distribution of the negatively charged lepton. For pTl <
mlþl−=2 this observable is a true NNLO distribution and
GENEVA agrees very well with the NNLO prediction. The
region above and below mlþl−=2 is very sensitive to
Sudakov shoulder logarithms [84]. It is known that the
FO calculations perform very poorly in this region and fail
to provide an accurate description of the physics. On the
other hand, GENEVA will have some of these logarithms
resummed and should therefore provide a more accurate
prediction. Finally, the region above pTl > mlþl−=2 can
only be populated if the transverse momentum of the vector
boson is nonzero, making this region only NLO accurate.

FIG. 5 (color online). Comparison of GENEVA with the NNLO
rapidity distribution of the vector boson. The orange curve shows
the results from DYNNLO, while the black histogram shows the
GENEVA result. For GENEVA, the uncertainties shown are the FO
uncertainties as described in the text.

FIG. 6 (color online). Comparison of GENEVA with the NNLO
rapidity distribution of the negatively charged lepton. The orange
curve shows the results from DYNNLO, while the black histogram
shows the GENEVA result. For GENEVA, the uncertainties shown
are the FO uncertainties as described in the text.
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Close to pTl ≳mlþl−=2 GENEVA lies above the FO
prediction and converges back to the FO result for large
values of pTl. This is likely still the effect from the
Sudakov shoulder at mlþl−=2. Since the cross section
above is much lower, any spillover from below mlþl−=2
caused by the resummation can have a large relative effect.

C. Zero-jet observables with resummation

Since we resum our zero-jet resolution variable T 0 to
NNLL0, it is interesting to study how accurately GENEVA is
able to predict other observables sensitive to the 0=1-jet
separation. Since the distribution for other zero-jet reso-
lution variables is only obtained indirectly, via the T 0

spectrum made fully differential by using splitting func-
tions and a parton shower that are only correct to LL, we
cannot formally claim the same NNLL0 accuracy for these
observables. However, since the overall distribution of
events in the 0=1-jet region of phase space is clearly
improved, we expect some of this accuracy to carry over
to other observables as well. Hence, we expect to get
predictions that are numerically much closer to NNLL
resummed results also for other zero-jet observables. The
same behavior was already observed for eþe− [24].
In Fig. 8 we show the transverse-momentum distribution

of the vector boson compared to its analytic NNLL
resummation from DYQT [85,86]. The predictions of
DYQT have been manually switched to agree with the

FO results in the tail, according to the procedure outlined
in Ref. [87]. We see that GENEVA agrees reasonably well
within the perturbative uncertainties with the NNLL
resummed result.2 The NLL result from DYQT has a
significantly different shape, and the GENEVA prediction
is certainly in much better agreement with the NNLL
predictions than the NLL ones.
A similar prediction for the transverse-momentum dis-

tribution, but fully differential on the momenta of vector
boson decay products has been presented in Ref. [88]. This
allows the direct comparison including the acceptance cuts
used by experimental analyses. Using the same lepton cuts
as in that study, we show our comparison in Fig. 9. Again,
we observe a fairly good agreement with the analytic
NNLL prediction matched to NLO1. Another variable,
quite similar to the transverse momentum of the vector
boson, is the ϕ� between the two leptons, with the precise
definition of ϕ� given in [81]. The comparison of GENEVA

FIG. 7 (color online). Comparison of GENEVA with NNLO
transverse-momentum distribution of the negatively charged
lepton. The orange curve shows the results from DYNNLO, while
the black histogram shows the GENEVAresult. For GENEVA, the
uncertainties shown are the FO uncertainties as described in
the text.

FIG. 8 (color online). Comparison of GENEVA with the qT
distribution from DYQT. The NNLLþ NLO1 (NLLþ LO1)
results from DYQT are shown in blue (green), and the GENEVA

results are shown in black. The GENEVA results are much closer to
DYQT’s NNLL results than NLL results.

2Although GENEVA’s perturbative uncertainties appear smaller
than DYQT’s at very low qT, this should not be misinterpreted as
GENEVA being more accurate here. This is mostly an artifact of
smearing out the uncertainties from a range of T 0 values, which
tends to reduce their numerical impact. In addition, we have not
included here any uncertainties associated with the interface to
the parton shower and the showering itself. Such uncertainties
should eventually also be included as an additional part of the
(resummation) uncertainties. As this will require a dedicated
study, we leave this for future work.
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to the NNLLþ NLO1 calculation of Ref. [88] is shown in
Fig. 10, and we again observe good agreement.
Finally, we show the result for the exclusive zero-jet

cross section as a function of pcut
T in Fig. 11, where the

zero-jet sample is defined as all events containing no jets
with pT > pcut

T . The jets are reconstructed with the anti-kT
algorithm [89] as implemented in FASTJET [90,91], within a
radius R ¼ 0.4. We find good agreement between GENEVA

and the dedicated NNLLþ NNLO calculation given by
JETVHETO [92] within the perturbative uncertainties. For
this plot, we use the FO scale uncertainties discussed in
Sec. II B 2, such that the uncertainties at large pcut

T are
estimated correctly and thus precisely reproduce those of
JETVHETO. At small pcut

T they are now underestimated and
here the resummation uncertainties should be added. The
better agreement with the NNLLþ NNLO prediction
compared to the lower order NLLþ NLO one, especially
in the large pcut

T region, is of course driven by the correct
inclusion of the NNLO corrections in GENEVA.

V. COMPARISON TO LHC DATA

In this section, we compare the results from GENEVAwith
measurements using data collected during the 7 TeV LHC
run I. We use GENEVAþPYTHIA8 to produce fully showered
and hadronized events in HEPMC format, and then use the
RIVET routines provided by the experimental collaborations
to produce the histograms that can be compared with the
experimental measurements. By using RIVET [93], we
ensure that event selection cuts and object definitions agree
with what was used in the experimental analyses. We use
the same run that was used for the comparison to the

FIG. 9 (color online). Comparison of GENEVAwith the analytic
qT distribution at NNLLþ NLO1 from Ref. [88]. The analytic
results are shown in blue, and the GENEVA results are shown
in black.

FIG. 10 (color online). Comparison of GENEVAwith the analytic
ϕ� distribution at NNLLþ NLO1 from Ref. [88]. The analytic
results are shown in blue, and the GENEVA results are shown
in black.

FIG. 11 (color online). Comparison of GENEVAwith the zero-jet
cross section as a function of pcut

T from JETVHETO [92] at
NNLLþ NNLO. The analytic results are shown in blue, and
the GENEVA results are shown in black. For GENEVA, the
uncertainties are the FO uncertainties only; see the text for details.
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perturbative calculations, such that all parameters are
identical to those given in Sec. IV.
In addition, we also include in our data comparisons

GENEVA results with a lower value of αsðMZÞ ¼ 0.1135,
since as we will see, the value of αsðMZÞ can have a
noticeable effect on resummation-sensitive observables. In
the following, the results with αsðMZÞ ¼ 0.118 will be
shown by the orange bands, while those with αsðMZÞ ¼
0.1135 are shown by a green band. For the latter results, we
only change the αsðMZÞ value, holding all other parameters
including the PDF set fixed.3 This value is motivated by the
fact that all αsðMZÞ determinations from LEP data that
include higher-order resummation together with some form
of analytic treatment of nonperturbative hadronization
effects find considerably lower values of αsðMZÞ than
0.118 [37–40,94–96]; see also Ref. [97] for determinations
from DIS. Consistent with these findings, in Ref. [24] it
was observed that the higher-order resummation using
αsðMZÞ ¼ 0.1135 coupled with PYTHIA8’s hadronization
model gave excellent agreement with data for eþe− → 2-jet
resummation observables, namely thrust, C-parameter,
heavy-jet mass, and jet broadening. On the other hand,
the predictions with αsðMZÞ ¼ 0.118 gave consistently
spectra that were somewhat too hard, i.e., shifted from
lower to higher values compared to data. We observe
precisely the same qualitative trend here.
The rapidity distribution of the vector boson was

measured by ATLAS [98], CMS [99], and LHCb [100].
Since we already saw that GENEVA agrees very well with the
NNLO predictions, these comparisons are mostly driven by
the PDFs we use. We show the comparison to the rapidity
spectrum from ATLAS and CMS in Figs. 12–13. The
normalized results from CMS are reproduced very well for
the entire Y range. The ATLAS results are not normalized,
and while GENEVA agrees very well at low Y values, it
slightly overshoots the data (by about two standard devia-
tions) for larger Y. A similar discrepancy was observed in
Ref. [98] for the MSTW08, HERAPDF1.5, and ABKM09
PDF sets. The comparison with LHCb is shown in Fig. 14.
The agreement at moderate values of Y is good here too.
For forward events with Y > 3.25 our predictions show a
trend to be lower than the data. This discrepancy was

FIG. 12 (color online). Comparison of GENEVAwith the rapidity
of the vector boson from the ATLAS study in [98]. The GENEVA

results with default values of αsðMZÞ and with αsðMZÞ ¼ 0.1135
are shown in orange and green, respectively, while the ATLAS
points are shown in black.

FIG. 13 (color online). Comparison of GENEVAwith the rapidity
of the vector boson from the CMS study in [99]. The GENEVA

results with default values of αsðMZÞ and with αsðMZÞ ¼ 0.1135
are shown in orange and green, respectively, while the CMS
points are shown in black.

3We hasten to add that using a different αsðMZÞ than the
default value provided by the PDF set is not problematic as it may
seem at first. In the resummation-dominated region, this only
leads to a small inconsistency inside the beam functions, where
the terms that are supposed to cancel the PDFs μF dependence
will now use a different αs value leading to a small non-
cancellation in the coefficients of some single-logarithmic terms.
It is safe to assume that this will not be numerically relevant
compared to the dominant αs dependence coming from the
double-logarithmic beam function terms, as well as the hard
and soft function, and all the resummation kernels. All of these
pieces are completely unrelated to the PDFs, and are in fact
the same as for the corresponding T 2 resummation in eþe−
collisions.
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already noted in the LHCb paper [100] when comparing
with the NNLO calculation provided by FEWZ [101]. As we
would expect, the lower αsðMZÞ value makes almost no
difference for the inclusive predictions.
A measurement of the production cross section of a Z

boson in association with jets was presented by ATLAS in
Ref. [102], for both inclusive and exclusive jet cross
sections. We compare our results with the measurements
having up to two jets in Fig. 15. We choose to limit
ourselves to up to two jets because any additional jet would
only be provided at LL accuracy by PYTHIA8. Our pre-
dictions for the zero-jet cross section agree well with data,
not only for the inclusive cross section, but also for the
exclusive one, where resummation plays a role. The
uncertainties for our predictions of the inclusive Z þ 1-
jet cross section are larger, since they are only predicted to
NLO1, though they can still benefit from the resummation
of the 0=1-jet boundary. The separation into exclusive Z þ
1 jet and inclusive Z þ 2 jet is only at LL accuracy, and the
FO accuracy of the inclusive Z þ 2-jet cross section is only
LO2, with correspondingly larger perturbative uncertain-
ties. GENEVA agrees well with the data, somewhat better for
lower αsðMZÞ.
In Ref. [102], ATLAS also presented a measurement of

the transverse-momentum distribution of the hardest jet,
and the comparison to these results is shown in Fig. 16. The
predictions from GENEVA are in good agreement with the
data. Below pjet

T ≲mZ the agreement is noticeably better for
lower αsðMZÞ. Above pjet

T ≳ 300 GeV the predictions tend

to be higher than the data, but still consistent within the
larger uncertainties. This could be due to the fact that we
use a renormalization scale of μ ¼ mlþl− , while at such
large transverse momenta a better choice might be μ ¼ pjet

T .

FIG. 14 (color online). Comparison of GENEVAwith the rapidity
of the vector boson from the LHCb study in [100]. The GENEVA

results with default values of αsðMZÞ and with αsðMZÞ ¼ 0.1135
are shown in orange and green, respectively, while the LHCb
points are shown in black.

FIG. 15 (color online). Comparison of GENEVA with data on
inclusive and exclusive jet cross sections from the ATLAS study
in [102]. The GENEVA results with default values of αsðMZÞ and
with αsðMZÞ ¼ 0.1135 are shown in orange and green, respec-
tively, while the ATLAS points are shown in black.

FIG. 16 (color online). Comparison of GENEVA with the trans-
verse momentum of the leading jet from the ATLAS study in
[102]. The GENEVA results with default values of αsðMZÞ and with
αsðMZÞ ¼ 0.1135 are shown in orange and green, respectively,
while the ATLAS points are shown in black.
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Next, we compare our predictions to the ϕ� between the
leptons, and the transverse momentum of the vector boson.
Both of these observables are zero-jet resummation vari-
ables, since at low values they are dominated by events
without any hard emissions. Both of these distributions are
quite sensitive to the choice of parameters of the parton
shower and the nonperturbative model used in PYTHIA8.
Without higher-order perturbative corrections included, the
MC tune will partially adjust the available parameters to
mimic missing higher-order perturbative effects. This
implies that when using PYTHIA8 in conjunction with
GENEVA, which includes much more higher-order pertur-
bative information, a retuning of the parameters becomes
necessary. We stress that no attempt at a systematic retuning
of PYTHIA8 has been done for this work, and we expect that
a dedicated tune of PYTHIA8 together with GENEVA will
improve the data agreement.
The ϕ� distribution has been measured by ATLAS in

Ref. [103] and LHCb in Ref. [100]. The measurement from
ATLAS is a normalized spectrum, while LHCb quotes the
unnormalized distribution. The comparisons with these two
measurements are shown in Figs. 17–18. GENEVA agrees
well with the results from LHCb, though the measurement
has relatively large uncertainties. Comparing with the much
more precise results from ATLAS, GENEVA predicts a wider
distribution, such that our predictions are below the data in
the peak region for ϕ� ≲ 0.1, and above the data for larger
values of ϕ�.
Discrepancies with this same trend and at a similar level

were observed for other MC predictions in Ref. [103]. The

agreement with data is considerably better when choosing a
lower value of αsðMZÞ ¼ 0.1135.
As a final comparison we consider the transverse

momentum (qT) distribution of the Z boson. The qT

FIG. 17 (color online). Comparison of GENEVA with the ϕ�
distribution from the ATLAS study in [103]. The GENEVA results
with default values of αsðMZÞ and with αsðMZÞ ¼ 0.1135 are
shown in orange and green, respectively, while the ATLAS points
are shown in black.

FIG. 18 (color online). Comparison of GENEVA with the ϕ�
distribution from the LHCb study in [100]. The GENEVA results
with default values of αsðMZÞ and with αsðMZÞ ¼ 0.1135 are
shown in orange and green, respectively, while the LHCb points
are shown in black.

FIG. 19 (color online). Comparison of GENEVA with the trans-
verse momentum of the vector boson from the CMS study in [99].
The GENEVA results with default values of αsðMZÞ and with
αsðMZÞ ¼ 0.1135 are shown in orange and green, respectively,
while the CMS points are shown in black.
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distribution was measured by CMS in Ref. [99] and by
ATLAS in Ref. [104], where the latter also measured the
qT spectrum in different bins of Y. The comparison of
our results with these measurements is shown in
Figs. 19–20. The situation is similar to the ϕ� distri-
bution discussed above. For αsðMZÞ ¼ 0.118, GENEVA is
below the data in the peak region qT ≲ 10 GeV, while
it is above the data in the transition and FO regions

for qT ≳ 10 GeV. This is of course not unexpected,
since the observables qT and ϕ� are highly correlated.
The same level of disagreement was already observed
in Ref. [104], where the data were compared with
the NNLLþ NLO1 results of Ref. [92]. As for the
ϕ� distribution, the agreement between GENEVA and
the data is noticeably improved for a lower
αsðMZÞ ¼ 0.1135.

FIG. 20 (color online). Comparison of GENEVA with the transverse momentum of the vector boson both inclusive (top-left) and in
different bins of vector-boson rapidity Y from the ATLAS study in [104]. The GENEVA results with default values of αsðMZÞ and with
αsðMZÞ ¼ 0.1135 are shown in orange and green, respectively, while the ATLAS points are shown in black.
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VI. CONCLUSIONS

We have presented a combination of the fully differential
NNLO calculation for Drell-Yan production pp → γ=Z →
lþl− combined with the NNLL0 resummation of 0-
jettiness and interfaced with the parton shower provided
by PYTHIA8 within the GENEVA Monte Carlo framework.
The starting point of GENEVA is the formulation of
Monte Carlo cross sections, which are IR-safe partonic
jet cross sections, defined using a jet resolution variable
T N , which is chosen to be N-jettiness in our implementa-
tion. We include zero-jet, one-jet, and two-jet cross sections
at NNLO0, NLO1, and LO2. Furthermore, the dependence
on the zero-jet resolution variable T 0 is resummed to
NNLL0 accuracy, while that of the one-jet resolution
variable T 1 is presently resummed to LL.
Interfacing these partonic results with a parton shower

such as PYTHIA8 requires a careful treatment. First, one
needs to deal with the fact that the parton shower evolution
variable is different fromN-jettiness. Second, care has to be
taken that the parton shower’s lower resummation accuracy
and different phase-space map does not destroy the higher
logarithmic accuracy of the calculated Monte Carlo cross
sections. We discussed in detail how to solve these issues
by performing the first two shower emissions by hand using
the jet resolution parameter as the ordering variable. We
then showed that any subsequent showering by PYTHIA8

does not affect the formal perturbative accuracy included in
GENEVA.
We have validated the FO perturbative accuracy by

comparing our results for inclusive zero-jet observables
to DYNNLO. We agree with this dedicated NNLO calcu-
lation within the small perturbative (and statistical) uncer-
tainties. We also studied how GENEVA’s improved
perturbative accuracy in the resummation region from
resumming 0-jettiness to NNLL0 translates to other zero-
jet resummation variables, such as the transverse momen-
tum of the vector boson qT , the ϕ� between the two leptons,
and the exclusive zero-jet cross section as a function of the
jet pcut

T . Since GENEVA partially relies on the parton shower
for these observables, they formally do not have NNLL0
accuracy. Nevertheless, we find that GENEVA reproduces
dedicated NNLL resummations for these three observables
rather well, and in particular the GENEVA predictions are
much closer to the exact NNLLþ NLO1 results than to the
NLLþ LO1 results. This is a clear indication that the gain
in resummation accuracy for T 0, when implemented into a
fully exclusive prediction also translates into more accurate
predictions for other zero-jet resolution variables.
Finally, we presented a comparison of GENEVA with

measurements by ATLAS, CMS, and LHCb using the
7 TeV LHC data. Since GENEVA agrees with the NNLO
results for the rapidity distribution of the vector boson, the
agreement between GENEVA and the LHC data is very

similar to that observed when comparing to other NNLO
calculations. Here, we note that experimental measure-
ments of the lepton pTl spectrum would be very valuable.
We find good agreement between GENEVA and the

ATLAS measurement of exclusive jet cross sections and
of the transverse-momentum distribution of the hardest jet.
For the transverse momentum of the vector boson or the ϕ�
between the leptons our predictions when using the default
value of αsðMZÞ ¼ 0.118 are lower in the peak region and
higher in the transition region behind the peak compared to
the measurements. The same trend has been observed
before by other MC predictions and also dedicated
resummed calculations for these observables. When using
a lower value αsðMZÞ ¼ 0.1135, we observe a noticeable
improvement in agreement with data for essentially all
resummation-sensitive observables. A similar effect was
observed previously for a variety of eþe− 2-jet resumma-
tion observables. We believe this deserves further attention.
We encourage the experiments to also measure T 0-like

jet-based variables (see Ref. [70]) and perform differential
measurements of resummation observables at much higher
mlþl− values. Since the resummation type and regime for
these cases are very different, they would add valuable
complementary information for theory comparisons. In
general, continued precise measurements of resummation
observables at the LHC are essential for our understanding
of higher-order QCD effects in exclusive and differential
observables, which ultimately will also provide important
inputs for the theoretical interpretation of Higgs measure-
ments and new-physics searches.
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