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The measurements of the Higgs mass and top Yukawa coupling indicate that we live in a very special
universe, at the edge of the absolute stability of the electroweak vacuum. If fully stable, the Standard Model
(SM) can be extended all the way up to the inflationary scale and the Higgs field, nonminimally coupled to
gravity with strength ξ, can be responsible for inflation. We show that the successful Higgs inflation
scenario can also take place if the SM vacuum is not absolutely stable. This conclusion is based on two
effects that were overlooked previously. The first one is associated with the effective renormalization of the
SM couplings at the energy scale MP=ξ, where MP is the Planck scale. The second one is a symmetry
restoration after inflation due to high temperature effects that leads to the (temporary) disappearance of the
vacuum at Planck values of the Higgs field.
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I. INTRODUCTION

One of the most interesting questions in particle physics
and cosmology is the relation between the properties of
elementary particles and the structure of the Universe.
Some links are provided by dark matter and the baryon
asymmetry of the Universe. A number of constraints on
hypothetical new particles can be also derived from big
bang nucleosynthesis.
The properties of the recently discovered Higgs boson

[1,2] suggest an additional and intriguing connection.
Among the many different values that the Higgs mass
could have taken, nature has chosen one that allows us to
extend the Standard Model (SM) all the way up to the
Planck scale while staying in the perturbative regime. The
behavior of the Higgs self-coupling λ is quite peculiar: it
decreases with energy to eventually arrive at a minimum at
Planck scale values and starts increasing thereafter, see
Fig. 1. Within the experimental and theoretical uncertain-
ties, the Higgs coupling may stay positive all way up to the
Planck scale, but it may also cross zero at some scale μ0,

which can be as low as 108 GeV, see Figs. 2 and 3. If that
happens, our Universe becomes unstable.2

The 0–3σ compatibility of the data with vacuum insta-
bility is one of the recurrent arguments for invoking new
physics beyond the Standard Model. In particular, it is
usually stated that the minimalistic Higgs inflation scenario
[13], in which the Higgs field is nonminimally coupled to
gravity with strength ξ, cannot take place if the Higgs
self-coupling becomes negative at an energy scale below
the inflationary scale.
We will show in this paper that Higgs inflation is

possible even if the SM vacuum is not absolutely stable.
Specifically, we will demonstrate that the renormalization
effects at the scale MP=ξ can bring the Higgs self-coupling
λ to positive values in the inflationary domain. If that
happens, inflation will take place with the usual chaotic
initial conditions and the fate of the Universe will be
inevitably determined by the subsequent evolution. At the
end of the exponential expansion, the Higgs field will start
to oscillate around the bottom of the potential, which,
contrary to the tree-level case, displays two minima, with
the wider and deeper one located at very large Higgs values
(see Fig. 4). The energy stored in the Higgs field right after
the end of inflation highly exceeds the height of the barrier
separating the minima. We will see that this leads to an
interesting phenomenon. The oscillations of the Higgs field
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1The largest uncertainty comes from the determination of the

top Yukawa coupling. Smaller uncertainties are associated with
the determination of Higgs boson mass and the QCD gauge
coupling αs. See Refs. [3–5] for the most refined treatments and
Ref. [6] for a review.
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2The determination of the lifetime of the Universe is a rather
subtle issue that strongly depends on the high energy completion
of the SM. As shown in Refs. [7–9], if the gravitational
corrections are such that the resulting effective potential lies
above/below the SM one, the lifetime of our vacuum will be
notably larger/smaller than the age of the Universe.
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induce nonperturbative particle production, and, eventually,
reheat the Universe. The shape of the potential changes due
to finite-temperature/medium effects. If the reheating tem-
perature is sufficiently high, the symmetry gets restored and

the extra minimum at large values of the Higgs field
(temporally) disappears. The Higgs field rolls down the
new potential and settles down in the electroweak vacuum.
With the evolution of the Universe, the temperature
decreases and the minimum at large field values reappears.
However, since the probability of tunneling to the ener-
getically more favorable state is completely negligible, the
scalar field gets trapped near the true SM minimum and
stays there until the present time.
The paper is organized as follows. In Sec. II we review

the Higgs inflation model and the self-consistent approach
to quantum corrections and higher-dimensional operators.
The general arguments of Sec. II are quantified in Sec. III,
where we discuss the contribution of the finite parts of
counterterms to the effective potential and formulate the
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FIG. 1 (color online). Renormalization group running of the
Higgs self-coupling for several values of the top quark Yukawa
coupling (top pole mass) and fixed 125.5 GeV Higgs boson
mass.
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FIG. 2 (color online). The figure, taken from Ref. [6], shows the
borderline between the regions of absolute stability and meta-
stability of the SM vacuum on the plane of the Higgs boson mass
and top quark Yukawa coupling in the MS scheme taken at
μ ¼ 173.2 GeV. The diagonal line stands for the critical value of
the top Yukawa coupling ycritt as a function of the Higgs mass and
the dashed lines account for the uncertainty associated to the error
in the strong coupling constant αs. The SM vacuum is absolutely
stable to the left of these lines and metastable to the right. The
filled ellipses correspond to experimental values of yt extracted
from the latest CMS determination [10] of the Monte Carlo top
quark mass Mt ¼ 172.38� 0.10ðstatÞ � 0.65ðsystÞ GeV, if this
is identified with the pole mass. Dashed ellipses encode the shifts
associated to the ambiguous relation between pole and
Monte Carlo masses. The ellipses are displaced to the right if
other determinations of the Monte Carlo top mass are used,
Mt ¼ 173.34� 0.27ðstatÞ � 0.71ðsystÞ GeV and Mt¼174.34�
0.37ðstatÞ�0.52ðsystÞGeV coming respectively from the com-
bined analysis of ATLAS, CMS, CDF, and D0 data (at 8.7 fb−1 of
Tevatron Run II) [11] and from the CDF and D0 combined
analysis of Run I and Run II of Tevatron [12].
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FIG. 3 (color online). Energy scale μ0 where the Higgs self-
coupling becomes negative as a function of the deviation of
the top Yukawa coupling yt from the critical value ycritt . Adapted
from Ref. [6].

FIG. 4 (color online). Sketch of the effective Higgs inflation
potential for the scenario considered in this paper. It contains an
inflationary plateau at χ ≳MP and two minima. The shallowest
and narrowest one is the standard electroweak vacuum vEW. The
deepest and widest one is generated by the interplay between
the instability of the Higgs self-coupling beyond the scale μ0 and
the renormalization effects appearing at the scale MP=ξ.
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renormalization group equations for the coupling constants
associated to them. In Sec. IV we explain how the
renormalization effects can allow for inflation to happen,
even if our vacuum is metastable. The temperature cor-
rections to the effective potential are computed in Sec. V,
where we determine the temperature Tþ at which the extra
minimum at large field values disappears. Section VI is
devoted to the study of reheating in noncritical and critical
Higgs inflation and the estimation of the reheating temper-
ature to be compared with Tþ. Finally, the conclusions are
presented in Sec. VII.

II. THE GENERAL FRAMEWORK

Higgs inflation [13] is based on the observation that the
Higgs field nonminimally coupled to gravity can give rise
to inflation.3 The relevant part of the Lagrangian is given by

L ¼
�
M2

P

2
þ ξH†H

�
Rþ gμνðDμHÞ†ðDνHÞ − UðH†HÞ;

ð2:1Þ

with R the Ricci scalar and

UðH†HÞ ¼ λ

�
H†H −

v2EW
2

�
2

ð2:2Þ

the usual Higgs potential. The non-minimal coupling ξ
is assumed to take some intermediate value in the range
1 ≪ ξ ≪ M2

P=v
2
EW with vEW the vacuum expectation value

of the Higgs field and MP ¼ 2.435 × 1018 GeV the
reduced Planck mass. The value of ξ will be specified
more precisely below. For sufficiently large values of the
Higgs field (namely h ≫ MP=

ffiffiffi
ξ

p
), the dimensionful

parameters v2EW andM2
P in the Lagrangian can be neglected

and the theory becomes approximately scale invariant. This
asymptotic symmetry will play a central role in the further
developments.
The analysis of inflation is more easily performed in

the Einstein frame [19,20]. When written in terms of a
canonically normalized field χ, the conformally trans-
formed Higgs potential becomes asymptotically flat,4

VðχÞ≃

8>>><
>>>:

λ
4
ðχ2 − v2EWÞ2; χ ≪ MP

ξ ;

λM4
P

4ξ2

"
1 − e

−

ffiffiffiffiffiffi
2=3

p
χ

MP

�
1þ ξv2EW

M2
P

�#2

; χ ≫ MP
ξ :

The field χ is related to the Higgs field in the unitary gauge
(H ¼ ð0; h= ffiffiffi

2
p ÞT) in a well-defined manner,5

dχ
dh

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ 6ξ2h2=M2

P

Ω4

r
; Ω2 ¼ 1þ ξh2

M2
P
: ð2:3Þ

Given the hierarchy between the electroweak and the
Planck scales and the restriction ξ ≪ M2

P=v
2
EW , we can

safely approximate 1þ ξv2EW=M
2
P ≈ 1 in Eq. (2.3) and

consider the simplified potential6

VðχÞ≃ λM4
P

4ξ2
ð1 − e−

ffiffiffiffiffiffi
2=3

p
χ=MPÞ2 ð2:4Þ

for χ ≫ MP
ξ . The determination of the associated infla-

tionary observables follows the usual slow-roll approach.
Taking into account the relation between the number of
e-folds N and the field value at horizon exit,

N ¼ 1

MP

Z
χ�

χend

dχffiffiffiffiffi
2ϵ

p ≃ 3

4
e

ffiffiffiffiffiffi
2=3

p
χ�=MP; ð2:5Þ

we can translate the normalization of scalar perturbations
at large scales [V=ϵ ¼ 24π2Δ2

RM
4
P ≃ ð0.0276MPÞ4] into a

constraint on the ratio of couplings determining the
amplitude of the inflationary potential (2.4), namely

λ

ξ2
≃ 4 × 10−11: ð2:6Þ

Equation (2.5) also allows us to compute the slow-roll
parameters at horizon exit,

ϵ� ≃ 3

4N2
; η� ¼ −

1

N
; ð2:7Þ

and with them the inflationary observables

ns ¼ 1þ 2η − 6ϵ≃ 1 −
2

N
; r ¼ 16ϵ� ≃ 12

N2
: ð2:8Þ

The precise number of e-folds to be inserted in the previous
expressions depends on the duration of the reheating stage.

3The modifications of Einstein’s theory of relativity by non-
minimal couplings have been widely studied in the literature
(see for instance Refs. [14–18]).

4The asymptotic shift symmetry at large field values is the
Einstein-frame manifestation of the approximate scale invariance
we started with.

5Although Eq. (2.3) can be exactly integrated [19], the
resulting expression is not very enlightening. For the purposes
of this paper, it will be enough to consider just the limiting cases
h ≪ MP=ξ and h ≫ MP=ξ in which

χ ≃
8<
:

h; h ≪ MP
ξ ;ffiffi

3
2

q
MP logΩ2ðhÞ; h ≫ MP

ξ :

6The difference between the electroweak scale vEW and the
scale MP=ξ at which the effective potential is significantly
modified allows us to identify, for all practical purposes, vEW
and χ ¼ 0.
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The efficiency of the reheating process computed in
Refs. [19,20] sets N ≃ 59.
At the classical level, the model predicts a Gaussian

spectrum of primordial fluctuations with a universal spec-
tral index for scalar perturbations (ns ≃ 0.966) and a small
tensor-to-scalar ratio (r≃ 0.0034) [13]. No relation
between particle physics and cosmological parameters
shows up. The variation of the self-coupling λ, associated
with a change of the Higgs boson mass, can be always
compensated by the change of the (a priori unknown)
nonminimal coupling ξ [see Eq. (2.6)]. For λ ∼Oð1Þ, ξ is
required to be rather large, ξ ∼Oð104Þ, but is still signifi-
cantly smaller than the value giving rise to noticeable
effects in low-energy experiments [13]. Although this large
value could be considered “unnatural,” it is commensurable
to the values obtained when considering the different
hierarchies already present in the Standard Model.
Rather large ratios such as mt=mu ≃ 105 seem to be
unnatural but they are certainly realized in nature.
Moreover, it is possible to construct embeddings of
Higgs inflation in which an apparently unnatural non-
minimal coupling ξ appears as the low-energy remnant of a
“natural” theory containing parameters of order one and
different energy scales [21].
The link between the SM parameters and cosmological

observations appears when quantum effects are taken into
account. The inclusion of quantum corrections is a non-
trivial task. When written in the Einstein frame, the
Lagrangian (2.1) is essentially nonpolynomial and there-
fore nonrenormalizable. This immediately poses a number
of questions:

A. What is the sensitivity of Higgs inflation to the
higher-dimensional operators that should be in-
cluded into the analysis? Which is the proper
ultraviolet cutoff?

B. Can we do reliable computations of radiative cor-
rections in a nonrenormalizable theory?

C. What is the running of the SM couplings to the
inflationary scale where the Higgs inflation potential
should be computed? What is the relation between
low- and high-energy parameters?

In the absence of an ultraviolet (UV) completion for the
SM nonminimally coupled gravity, the answer to these
questions can be only based on the self-consistency of the
procedure. This was indeed the attitude taken in Ref. [22],
where the effective field theory for Higgs inflation was
formulated (some further developments can be also found
in Ref. [23]). In what follows we summarize the main
assumptions and results of this approach and provide
answers to the questions A, B and C.

A. Sensitivity to higher-dimensional operators

The naive dimensional analysis stemming from the
standard effective field theory approach leads to the generic
conclusion that the inflationary predictions and even the

very existence of an inflationary dynamics are very
sensitive to the UV completion of the low-energy theory
(for a recent discussion see Ref. [24]). Quartically and
quadratically divergent loops lead to the generation of a
constant term (a cosmological constant) and a quadratic
term in the scalar field whose magnitude is determined by
the scale of new physics. The flatness of the effective
inflationary potential at the large field values needed for
inflation is generically spoiled by these powerlike correc-
tions. This is nothing else than the “inflationary” manifes-
tation of the celebrated cosmological constant and
hierarchy problems which permeate all beyond-Standard-
Model computations and that remain without any convinc-
ing solution. We will not try to provide any further input on
these complicated problems. Instead, we will follow the
standard logic of the effective field approach: we will
add to the SM Lagrangian different higher-order operators
without addressing the tuning of the cosmological constant
and the Higgs mass to their observed values. The structure
of these operators will be constrained by several self-
consistent hypothesis concerning the symmetries of the UV
completion, which we will specify in detail below.
Let us denote by Λ the suppression scale of the higher-

dimensional operators to be added to the SM.7 The value of
Λ is a priori unknown and depends on the different
thresholds (masses of new particles) that were integrated
out to get the low-energy effective field theory. In principle,
it could be as large as the Planck mass MP, where
gravitational interactions become important for sure. In
that case, the effect of higher-dimensional operators such as
h6=M2

P would be numerically small for sufficiently large ξ.8

Although quite natural, the identification of the cutoff
scale with the Planck mass may turn out to be theoretically
inconsistent since other processes can break tree-level
unitarity at lower energies [22,25–27]. A self-consistent
approach is to define the parameter Λ from the theory itself
by considering all the possible reactions between the SM
constituents.
The energy scale signaling the breaking of tree-level

unitarity in particle collisions depends on the expectation
value of the background field h. At small field values
(h ≲MP=ξ), the cutoffs associated to the different inter-
actions agree with the result of the naive computation
performed around the electroweak vacuum, ΛðhÞ≃MP=ξ.
At large field values (h ≳MP=

ffiffiffi
ξ

p
), the suppression scale

depends on the particular scattering process considered.
The suppression of graviton-graviton interactions is par-
ticularly strong and coincides with the dynamical Planck
scale Λ2ðhÞ≃ ξhh2. The lowest cutoff dictated by the

7For concreteness, the discussion in this section is based on the
Jordan frame Lagrangian (2.1).

8For typical inflationary field values h ∝ MP=
ffiffiffi
ξ

p
, the

correction to inflationary energy density is of order δV infl=
V infl ∼ 1=ðξλÞ.
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theory appears in the gauge sector and grows linearly with
the field, ΛðhÞ ∼ h.
All the relevant scales involved in the inflationary and

postinflationary evolution of the Universe (i.e. the Hubble
rate and the reheating temperature of the Universe) are
parametrically smaller than the previous cutoffs. As a
consequence of this, the weak coupling approximation
remains valid and the cosmological predictions of the
Higgs inflation are stable against the addition of higher-
dimensional operators introduced along the lines of
the standard effective field theory reasoning [22] (see also
Ref. [28]).

B. Reliability of the computation of
radiative corrections

Since the SM (itself renormalizable) is coupled to
gravity, the resulting theory is clearly nonrenormalizable.
According to the general rules of quantum field theory, a
sensible computation of radiative corrections requires the
addition of an infinite number of counterterms together
with the choice of a subtraction scheme. The structure of
the counterterms will be similar to that of the higher-
dimensional operators discussed above, but with their
precise form fixed by the requirement of removing the
divergencies in the loop diagrams stemming from the initial
Lagrangian.
Because of nonrenormalizability, the result of the com-

putations does depend on the subtraction scheme, the
choice of which would correspond to a specific UV
completion of the theory (see Sec. 3.2 of Ref. [22] for
details). Two ingredients of a potential UV completion
of the Standard Model + gravity were conjectured in
Refs. [29,30], namely (i) an exact, but spontaneously
broken, quantum scale-invariance and (ii) the absence of
particles with masses larger than the electroweak scale. In
this framework, physical scales appear as the consequence
of the spontaneous breaking of scale invariance and are
proportional to the vacuum expectation value of an extra
scalar field—the dilaton. As shown in Refs. [31,32], it is
possible to remove the divergencies in such a way that the
scale symmetry (or the conformal symmetry, if gravity is
not included) remains intact at all orders of perturbation
theory. The bare Higgs mass is then protected from large
radiative corrections and the dilatational anomaly is absent
(see Ref. [30]). The price to pay is the lack of renormaliz-
ability [33], which does not seem to be a strong requirement
given the fact that gravity itself is not renormalizable. The
embedding of Higgs inflation in this type of scale-invariant
framework and its self-consistency was presented in
Refs. [34,35].
Unfortunately, we do not know if an UV completion

of the SM+gravity with the previous properties exists
beyond perturbation theory or whether it is really realized
in nature. In what follows, we will simply assume this to be
the case.

The requirement of maintaining the classical sym-
metries9 in the quantized version of the theory (or equiv-
alently, the assumption of a scale-invariant UV completion)
fixes the functional form of the counterterms. For a generic
renormalization procedure satisfying this requirement
(based, for example, on cutoff [22] or lattice [36] regula-
rizations), the Higgs potential in the Einstein frame remains
exponentially flat at large field values (h≳MP=

ffiffiffi
ξ

p
) and

coincides with that of the Standard Model at low ones
(h ≲MP=ξ). What happens in the intermediate region
(MP=ξ < h < MP=

ffiffiffi
ξ

p
) depends on the renormalization

procedure and reflects our lack of understanding of the
UV completion.10 The relation between the low-energy
parameters of the SM (such as the Higgs boson mass or the
top Yukawa coupling) and the inflationary observables is
generically lost (see Ref. [22] and Sec. II C). However, if
the dynamical evolution of the Higgs field, starting from
initial chaotic inflationary conditions ðh≳MP=

ffiffiffi
ξ

p Þ, is able
to bring the system to the SM vacuum (h≃ 250 GeV), the
idea and predictions of Higgs inflation remain in force. In
particular, Higgs inflation with a metastable electroweak
vacuum can be possible (see Sec. IV).
A subtraction scheme that fits well with scale invariance

and the assumption of not having new heavy particles
between the electroweak and the Planck scale is dimen-
sional regularization, since it effectively ignores powerlike
divergences and thus minimizes all the uncertainties that
can be inferred by renormalization. The standard procedure
in this prescription is to compute the one-loop effective
action from the tree-level Lagrangian density (2.1), expand
it in Laurent series in ϵ ¼ ð4 −DÞ=2 (with D the fractional
dimension of space-time), and add to it the necessary
operators On with coefficients An=ϵþ Bn to remove the
divergences. The process can be extended recursively to
higher-order loops. While the coefficients An are fixed by
the structure of divergences, the coefficients Bn are arbi-
trary. This creates the first source of uncertainties [22].
A second source of uncertainties is associated with the

choice of the normalization point μ, which, in dimensional
regularization, corrects the mismatch in the mass dimension
of the coupling constants. In renormalizable field theories,
μ is arbitrary and space-time independent. Although we
could certainly maintain this prescription for our non-
renormalizable field theory, nothing prevents us from
modifying it and allow μ to be field dependent. “Field
independency” is indeed not a well-defined concept in a
scalar-tensor theory like the one at hand, and it must be
associated with a particular frame [37]. As summarized in
the following table, a field-independent renormalization

9Namely, the approximate scale invariance in the Jordan frame
at large field values and the asymptotic shift symmetry for the
canonically normalized scalar field in the Einstein frame.

10The existence of threshold effects associated with higher-
dimensional operators was also considered in Ref. [24].
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point μ in the Jordan frame leads to a field-dependent
renormalization point ~μ ¼ μ=Ω in the Einstein frame and
vice versa [38].

I [13] II [39–42]
Jordan frame μ2 ∝ M2

P þ ξh2 ~μ2 ∝ M2
P

Einstein frame μ2 ∝ M2
P ~μ2 ∝ M4

P
M2

Pþξh2

Choosing a particular prescription is equivalent to making
some assumptions about the ultraviolet completion of the
model. In this work, we will consider the prescription I,
leaving the analysis with prescription II for future inves-
tigations. The reason for this choice is based on the
following physical considerations. On the one hand, it
allows us to maintain the quantum version of the theory as
asymptotically scale invariant at large values of the Higgs
field (h ≫ MP=

ffiffiffi
ξ

p
). On the other hand, it becomes the

standard (space-time-independent) prescription of renor-
malizable field theories when written in the Einstein
frame.

It may seem that an arbitrariness of the coefficients Bn
results on the loss of predictivity of the Higgs inflation.
However, as it was shown in Ref. [22], the finite parts of the
counterterm do not change the asymptotic behavior of the
scalar potential. The predictions of Higgs inflation fall into
two categories:

1. Universal/Noncritical regime: For a large fraction of
the parameter space, the renormalization group
enhanced (RGE) potential maintains the shape and
predictions of the tree-level potential. As (2.4), the
RGE potential depends on λ and ξ only through the
combination λ=ξ2. Taking into account the COBE
normalization and the value of the Higgs self-
coupling at the inflationary scale, we can unequivo-
cally fix the value of ξ, which turns out to be of order
ξ ∼Oð103Þ. Although the nonminimal coupling is
still rather large, the difference between the scale
below at which the SM is valid without modifica-
tions (MP=ξ ∼ 3 × 1015 GeV) and the scale at
which inflation takes place (MP=

ffiffiffi
ξ

p
∼ 1017 GeV)

is relatively small.
2. Critical regime: For very specific values of the SM

parameters, the second derivative of the RGE po-
tential becomes equal to zero at some intermediate
field value between the beginning and the end of
inflation. The first derivative is extremely small in
the same point (but nonvanishing). This gives rise to
a nonmonotonic behavior of the slow-roll parameter
ϵ and opens the possibility of obtaining a sizable
tensor-to-scalar ratio r, whose precise value strongly
depends on ξ and on the Higgs and top Yukawa
couplings at the inflationary scale [23,43]. The
nonminimal coupling ξ is generically rather small

(ξ ∼ 10) and the model does not require the inclusion
of a cutoff scale significantly below the Planck scale
(see Sec. II A).

C. Relation between low- and high-energy
parameters

An analysis of Higgs inflation and its connection
with low-energy observables has been presented in
Refs. [22,23]. The self-consistent set of assumptions about
nonrenormalizable contributions to the action of the theory
is formulated as follows:

(i) We will only add the higher-dimensional operators
that are generated via radiative corrections by the
Lagrangian of the SM nonminimally coupled to
gravity. In other words, only a subclass of the
operators described in Sec. II B will be considered.

(ii) The coefficients Bn are small (Bn ≪ 1) and have the
same hierarchy as the loop corrections producing
them, i.e. the coefficients in front of the operators
coming from two-loop diagrams are much smaller
than those coming from one-loop diagrams, etc.

(iii) The renormalization scale is defined according to
prescription I. This is equivalent to the requirement
of scale invariance of the UV complete theory at
large values of the Higgs field background.

None of these assumptions are essential for the scenario
presented in this paper, but they are needed to provide a
(partially) controllable link between the low-energy and
high-energy parameters of the model. In this framework,
the relation between low-energy parameters, such as the
Higgs mass or the top quark Yukawa coupling yt, and the
high-energy parameters fixing the form of the effective
potential in the inflationary region does depend on the
unknown coefficients Bn, which should be fixed by an
eventual ultraviolet completion.
For h≲MP=ξ the contribution of the higher-order

operators On defined in Sec. II B is suppressed. The
theory is effectively renormalizable and the running of the
coupling constants is governed by the usual SM renorm-
alization group (RG) equations. In the inflationary region,
i.e. for h≳MP=

ffiffiffi
ξ

p
, the radial component of the Higgs

field is effectively frozen and the evolution of the coupling
constants is determined by the renormalization group
equations of the chiral Standard Model [44]. In both
regimes, the coefficients Bn do not play any role, because
of the specific asymptotics of the operators On as
functions of the Higgs field. However, in the transition
region around h≃MP=ξ, the coupling constants change
rapidly (very roughly, making a jump) by an amount
proportional to the coefficients Bn in front of the corre-
sponding operators On.
In the following section, we will compute the effective

potential and will determine the magnitudes and signs of
the coefficients Bn giving rise to Higgs inflation in the case
of a metastable electroweak vacuum.
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III. HIGH-ENERGY VERSUS
LOW-ENERGY PARAMETERS
OF THE STANDARD MODEL

In this section we set the formalism to obtain the
effective action in the whole region between the SM-
like regime (χ ≪ MP=ξ) and the inflationary regime
(χ > MP=

ffiffiffi
ξ

p
). The approach described in this section

closely follows the one outlined in Sec. 3 of Ref. [22].
Throughout this section we work exclusively in the
Einstein frame and neglect the higher-order corrections
in slow roll; i.e., we assume that all the important
effects are described by the corrections to the effective
potential.
Following the discussion of Sec. II B, we will compute

the effective action in dimensional regularization, where all
powerlike divergences are systematically ignored. We will
concentrate on the most important contribution: the one
associated with the Higgs and top quark interactions.11 The
relevant piece of the Einstein-frame Lagrangian density is
given by12

L ¼ ð∂χÞ2
2

−
λ

4
F4ðχÞ þ iψ̄ t∂ψ t þ

ytffiffiffi
2

p FðχÞψ̄ tψ t: ð3:1Þ

The function FðχÞ≡ hðχÞ=ΩðχÞ coincides with the Higgs
field at low energies and encodes all the nonlinearities
associated with the nonminimal coupling to gravity in the
large field regime,

FðχÞ ≈
(
χ; χ < MP

ξ
MPffiffi
ξ

p ð1 − e−
ffiffiffiffiffiffi
2=3

p
χ=MPÞ1=2; χ > MP

ξ

)
: ð3:2Þ

A. Higgs coupling

Let us start by computing the effective potential for (3.1)
at one loop. We get the following two vacuum diagrams:

ð3:3Þ

ð3:4Þ

whose evaluation, using the standard techniques, gives

ð3:5Þ

Here 2=ϵ̄ stands for the combination 2=ϵ − γ þ ln 4π and
the primes denote derivatives with respect to χ. The
divergencies in the loop diagrams (3.5) are eliminated,
as usual, by adding counterterms with the definite coef-
ficients in 1=ϵ̄ and arbitrary finite parts δλ1 and δλ2,

δLct ¼
�
−
2

ϵ̄

9λ2

64π2
þ δλ1

��
F02 þ 1

3
F00F2

�
2

F4

þ
�
2

ϵ̄

y4t
64π2

− δλ2

�
F4: ð3:6Þ

The effective potential is the sum of (3.1), (3.5), and
(3.6), with the poles in 1=ϵ̄ canceling between the
counterterms and the one-loop contributions. The struc-
ture of the counterterm involving δλ2 coincides with that
of the tree-level potential (2.4). This allows us to eliminate
the constant δλ2 by incorporating it into the definition of λ.
The constant δλ1, on the contrary, cannot be reabsorbed. It
should be promoted to a new independent coupling
constant with its own RG equation. The RG equations
are obtained by requiring the Lagrangian density Lþ δL
to be independent of μ. Since we are dealing with a
nonrenormalizable theory, the set of RG equations is not
closed. However, as shown in Appendix A, the (infinite)
system of equations can be truncated due to point (ii) in
Sec. II C.
The value of λ at the inflationary scale (χ ∼MP) depends

on the counterterm (3.6). For small field values
[FðχÞ ∼ χ ≪ MP=ξ], the conformal factor ΩðχÞ equals to
one and the theory becomes indistinguishable from the
renormalizable SM. In that case, the first term in Eq. (3.6)
turns into a simple δλ1χ

4=4 term, which allows us to
reabsorb the constant δλ1 into the definition of λ. At large
field values [FðχÞ ∼MP=

ffiffiffi
ξ

p
, χ ≳MP], the counterterm is

exponentially suppressed (∼δλM4
P

ξ4
e−4χ=

ffiffi
6

p
Mp) and the pre-

viously absorbed contribution to λ effectively disappears.
Neglecting the running of δλ1 between the scales μ ∼MP=ξ
and MP=

ffiffiffi
ξ

p
, we can imitate this effect by a change

λðμÞ → λðμÞ þ δλ

��
F02 þ 1

3
F00F

�
2

− 1

�
; ð3:7Þ

where λðμÞ is evaluated using the SM RG equations.
Since the effective potential is μ independent, we can
choose the most convenient value of μ. In order to

11All other SM particles may be added and treated analo-
gously.

12For illustrative purposes we will neglect the SUð2Þ structure
of the Higgs doublet and the colors of the top quark. These are not
important for the derivation of Eqs. (3.7) and (3.11).
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minimize the logarithms in the one-loop contributions,13 we
will take

μ2 ¼ αmtðχÞ ¼ αytFðχÞ; ð3:8Þ
with α a constant of order one. This choice of μ is consistent
with prescription I in Sec. II B.

B. Top Yukawa coupling

The effect described above applies also to the Yukawa
coupling. To see this, consider the propagation of the top
quark in the background χ

ð3:9Þ

Canceling divergencies in these diagrams requires the
counterterms of the form

δLct ∼
�
#
y3t
ϵ̄
þ δyt1

�
F02Fψ̄ψ

þ
�
#
ytλ
ϵ̄

þ δyt2

�
F00ðF4Þ00ψ̄ψ ; ð3:10Þ

where ytF0 appears from the vertices with one Higgs field,
ytF00 from vertices with two Higgs fields, ytF from the
mass of the top quark in the propagator and λðF4Þ00 from the
mass of the scalar propagator in the bubble. The term with
δyt1 has similar properties to that with δλ1. In the limit of
small χ it goes as χψ̄ψ , and it can be reabsorbed into the
definition of the Yukawa coupling yt (as in the SM). For
large χ, the counterterm vanishes and the contribution δyt
into yt disappears. As before, we neglect the running of δyt1
between MP=ξ and MP=

ffiffiffi
ξ

p
and parametrize this effect by

an effective change

ytðμÞ → ytðμÞ þ δyt½F02 − 1�; ð3:11Þ
with μ given by Eq. (3.8).

IV. HIGGS INFLATION WITH METASTABLE
VACUUM

If the “jumps” δλ and δyt are much smaller than the
respective coupling constants at the transition scale
MP=ξ [δλ ≪ λðMP=ξÞ, δyt ≪ ytðMP=ξÞ], Higgs inflation
requires the absolute stability of the vacuum and provides a
clear connection between the properties of the Universe at
large scales and the value of the SM Higgs and top quark
masses. However, since the smallness of λ at the inflationary
scale appears as the result of a nontrivial cancellation

between the fermionic and bosonic contributions, it is
reasonable to think that δλ can be commensurable to λ. In
that case, the jumps of the coupling constants open the
possibility of having Higgs inflation even in the case of a
metastable vacuum by converting a negative scalar self-
coupling below MP=ξ into a positive coupling above that
scale. Some illustrative values of the parameters needed to
restore noncritical Higgs inflation beyond an instability scale
μ0 are presented in Table I.
The effect of the coefficients δλ and δyt on the running of

the coupling λ and yt is summarized in Fig. 5. Qualitatively,
the coefficient δλ controls the height of the potential in the
inflationary region, while the coefficient δyt controls the
tilt. As schematically represented in Fig. 4, the (zero-
temperature) effective potential has an inflationary plateau
and two minima. The asymptotic shape at large field values
coincides with the one that would have been obtained in the
absence of jumps and with suitable values of the Higgs
mass and top Yukawa couplings.14 The first minimum (the
shallowest and narrowest one) corresponds to the standard
electroweak vacuum.15 The second minimum (the deepest
and widest one) is generated by the interplay between the
instability of the Higgs self-coupling below MP=ξ and the
jumps at that scale. As in any chaotic inflation scenario,
the Higgs field will start its evolution from trans-Planckian
values, will inflate the Universe and will decay into the SM
particles after the exponential expansion [45]. At first sight,
it may seem that, at the end of this set of processes, the
Universe will end at the deeper and wider vacuum at
χ ∼MP=ξ. However, this is not necessarily the case. The
destiny of the Universe strongly depends on the relation
between the energy stored in the Higgs field after inflation
and the depth of the minimum at large field values. If the
first of these is much larger than the second, the reheating
of the Universe after inflation may result into a sizable

TABLE I. Illustrative values of the top pole mass mt and the
associated instability scale μ0 for fixed values of the Higgs mass
mh and the nonminimal coupling to gravity ξ. The values of δλ are
chosen to restore the asymptotic behavior of the potential at the
inflationary scale. All choices of parameters give roughly the
same inflationary predictions.

mh ¼ 125.5 GeV ξ ¼ 1500 δyt ≃ 0.025

mt μ0 (GeV) δλ
172.0 ∼2 × 1012 −0.008
173.1 ∼2 × 1010 −0.015
174.0 ∼2 × 109 −0.022
175.0 ∼3 × 108 −0.029

13If the logarithms were large, one should add higher loop
contributions.

14This property ensures that the inflationary predictions of the
critical and noncritical scenarios (see Sec. II B) are maintained
even in the presence of jumps.

15Remember that at low field values (χ ≪ MP=ξ) the effective
potential coincides with that of the usual Standard Model
minimally coupled to gravity [see Eq. (2.3)].
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modification of the effective potential, leading to the
disappearance of the “dangerous” vacuum at large field
values and the subsequent evolution of the system towards
the “safe” electroweak vacuum. On the other hand, if the
two energy scales are comparable, the Universe will end in
the “dangerous” vacuum and will inevitably collapse [46].
The depth and width of the extra minimum is effectively

controlled by the nonminimal coupling ξ, which determines
the value χ ∼MP=ξ at which the transition from negative to
positive λ takes place (see Fig. 6).16 At the same time, ξ is the
main parameter distinguishing the noncritical and critical
scenarios.17 The dual role of ξ allows us to conclude that the
depth of the minimum is generically much smaller than the

scale of inflation in the noncritical case and comparable to it
in the critical one. Critical Higgs inflation is then expected to
require the absolute stability of the vacuum.
The following sections are devoted to quantifying the

general arguments presented above. In Sec. V, we will
discuss the finite-temperature effective potential and deter-
mine the minimal temperature Tþ needed to restore the
stability of the potential in the noncritical and critical cases.
By comparing this temperature with the upper bounds on
the reheating temperature TRH obtained in Sec. VI, we will
demonstrate that TRH > Tþ in the noncritical case and that
TRH < Tþ in the critical one.

V. HIGH-TEMPERATURE EFFECTIVE
POTENTIAL

The set of coefficients presented in Table I makes the
Higgs self-coupling positive at large values of the Higgs field
and allows for inflation. However, the zero-temperature
effective potential has an extra minimum at large values
of the scalar fields. In this section, we consider the change in
the shape of the effective potential in the presence of a
thermal plasma, like that originated by the decay of the
inflaton into the SM particles. In particular, we will
determine the minimum temperature needed to stabilize
the effective potential and the temperature needed to drive
the Higgs field towards the true electroweak minimum.
The one-loop finite temperature corrections can be

written in the form [47]

ΔVT ¼ −
1

6π2
X
B;F

Z
∞

0

k4dk
ϵkðmB;FÞ

nB;F½ϵkðmB;FÞ�: ð5:1Þ

Here nB and nF are the Bose and Fermi distributions
nB;F½x� ¼ 1=ðex=T∓1Þ, ϵkðmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, mB;F are the

masses of SM particles in the background Higgs field, and
the summation is over all the SM degrees of freedom. The
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FIG. 5 (color online). Effect of the coefficients δλ and δyt on the
running of λ and yt as a function of the field-dependent
renormalization scale μðχÞ in Planck units (κ ¼ M−1

P ). The effect
of the jumps is localized at an energy scale μðχ ∼MP=ξÞ and does
not significantly modify the asymptotic behavior of the couplings
in the low- and high-energy regions. This property ensures that
the inflationary predictions of the critical and noncritical scenar-
ios (see Sec. II B) are maintained even in the presence of jumps.
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FIG. 6 (color online). Comparison between the running of
the Higgs self-coupling λ in the critical (ξ ¼ 15, δyt ¼ 0,
δλ ¼ −0.0133) and noncritical (ξ ¼ 1500, δyt ¼ 0.025,
δλ ¼ −0.015) cases as a function of the field-dependent renorm-
alization scale μðχÞ in Planck units (κ ¼ M−1

P ).

16Strictly speaking, the values of the parameters for the
noncritical case presented in Fig. 6 do not give rise to realistic
values of the inflationary observables and are included just for
illustration purposes. The proper analysis of the parameter space
in critical Higgs inflation is extremely subtle and we postpone it
to a future work.

17Note that these two regimes can be distinguished cosmo-
logically: in the noncritical case the tensor-to-scalar ratio is small,
while in the critical case it can be rather large.
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most important contributions come from the top quark and
the gauge bosons, with masses

m2
ZðTÞ ¼

g21ðμgÞ þ g22ðμgÞ
4

F2ðχÞ; ð5:2Þ

m2
WðTÞ ¼

g22ðμgÞ
4

F2ðχÞ; ð5:3Þ

mtðTÞ ¼
ytðμtÞffiffiffi

2
p FðχÞ: ð5:4Þ

The coupling constants in the previous expressions should
be taken at the relevant scale, which can be always chosen
proportional to the temperature.18 The thermally corrected
effective potential for the noncritical/critical case is shown
in the upper/lower part of Fig. 7. In the noncritical case, the
restoration temperature and the temperature at which the
minimum at high field values of the Higgs field disappears
are given respectively by

TNC
− ≃ 6 × 1013 GeV; TNCþ ≃ 7 × 1013 GeV: ð5:5Þ

The associated temperatures in the critical case turn out to
be significantly larger,19

TC
− ≃ 9 × 1015 GeV; TCþ ≃ 1016 GeV: ð5:6Þ

If the Universe is heated up to the temperatures TRH above
Tþ, the system will relax to the SM vacuum. In the
subsequent evolution of the Universe the temperature
decreases and the second minimum reappears at large field
values, first as a local minimum, then as the global one.
However, there is always a barrier separating these two
minima (not really visible on the plot due to the overall χ4

behavior at low field values). This barrier prevents the
direct decay of the Fermi vacuum. The decay of the SM
vacuum can still happen via tunneling, but the probability
of this process turns out to be rather small. The probability
of the decay of the EW vacuum due to thermal fluctuations
in the absence of gravity was studied in Refs. [49–52], with
the result that this effect does not lead to the vacuum decay
for the present-day values of the Higgs and top quark
masses. Since the thermal potential is always above the SM

one (see Fig. 8), the probability of decay in our case is even
smaller than in the absence of gravity and can be safely
neglected.
The aim of the next sections is to estimate the reheating

temperature TRH in the critical and noncritical cases. It
should be noted that the effect of the symmetry restoration
discussed above does not require thermal equilibrium [53].
What is important is that the medium effects change the
effective potential in such a way that the positive contri-
butions to the scalar mass are generated. The effective
temperature T� that can be used for an estimate of the
medium effects can be defined through the typical integrals
that appear in the computation of the effective potential,

T2�
24

≃
Z

d3k
2jkjð2πÞ3 n

noneq
B;F ; ð5:7Þ

where nnoneqB;F are the distributions of the particles created at
preheating. The preheating temperate TRH determined in
the next sections is generically smaller than T� and it
should be then understood as a conservative estimate of
the temperature to be compared with the restoration
temperature Tþ.
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FIG. 7 (color online). Top: High-temperature effective
potential for noncritical Higgs inflation (mh ¼ 125.5 GeV,
mt ¼ 173.1 GeV, ξ ¼ 1500, δyt ¼ 0.025, δλ ¼ −0.0153).
Bottom: High-temperature effective potential for critical Higgs
inflation (mh ¼ 125.5 GeV, mt ¼ 173.1 GeV, ξ ¼ 15, δyt ¼ 0,
δλ ¼ −0.01325).

18The coupling constants appearing in boson loops were
evaluated at the scale μg ¼ 7T. On the other hand, those
appearing in fermion loops were evaluated at the scale
μt ¼ 1.8T. As shown in Ref. [48], this choice minimizes radiative
corrections. The previous two choices should be replaced by
more complicated expressions involving χ and T in the limit of
low temperatures (smaller that the background field scale). This
change is however irrelevant from a numerical point of view,
since in that case the thermal potential (5.1) is exponentially
suppressed.

19Remember that the second minimum of the potential is much
wider and deeper in the critical case.
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VI. PREHEATING

Determining the proper reheating temperature is a rather
complicated task. It generically requires the use of numeri-
cal simulations able to deal with the highly nonlinear and
nonperturbative particle production after inflation together
with a detailed analysis of the thermalization stage (see
Refs. [54,55] for a review). In this section, we will simply
try to provide a rough estimate of this temperature based on
the following considerations:

1. At the end of inflation the Higgs field oscillates
around the minimum of the potential. During each
semioscillation j, the SM fields coupled to it oscillate
many times and particle creation takes place. The
depletion of the Higgs condensate is dominated by
the production of W and Z bosons20,21 and their
subsequent decay into relativistic SM fermions.
The interplay between nonperturbative particle

creation and decays will be accounted for using the
combined preheating formalism [19,20], which
allows us to estimate the energy density of the
different species as a function of the number of
semioscillations (see Appendix D for details and
notation). The beginning of the radiation-domination
era will be determined by the time at which the energy
in the relativistic fermions equals the energy density
in the homogeneous background field.

2. At the time of production, the distribution of
fermions is far from thermal. To achieve equilib-
rium, they must interact to redistribute their energy

(kinetic equilibrium) and to adjust their number
density (chemical equilibrium). As shown in
Ref. [56] (see also Refs. [57–59]), the particular
way in which this happens depends on the relative
occupancy of the produced plasma with respect to a
thermal distribution. To determine if we are dealing
with an under- or overoccupied system, we will
define an instantaneous “radiation temperature”22;

TrðjÞ≡
�
30ρFðjÞ
g�π2

�
1=4

; ð6:1Þ

and we will compare the number density and
average energy per particle in our plasma to those
of a thermal gas containing the same number degrees
of freedom,23 namely

nthðjÞ ¼
3ζð3Þ
4π2

g�TrðjÞ3; ð6:2Þ

hEthðjÞi ¼
7π4

180ζð3ÞTrðjÞ: ð6:3Þ

A. Noncritical Higgs inflation

As shown in Fig. 9, the RGE potential for noncritical
Higgs inflation can be well approximated by a quadratic
potential, except for the very small field values
χ ∼Oð10−4ÞMP in which the self-coupling of the Higgs
field becomes negative. For a large number of semioscil-
lations, the evolution of the Higgs field is completely
unaffected by the features of the potential at small field
values. This allows us to apply the combined preheating
formalism presented in Appendix C.
The energy densities for the created gauge bosons and

fermions24 [see Eqs. (B16), (B17), (B18) and (B25)] as
a function of the number of semioscillations j are
presented in Fig. 10. The production of W and Z
particles in the first semioscillation is significantly larger
than in the tree-level case.25 The continuous production
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FIG. 8 (color online). Comparison between the effective po-
tential for the SM and the SM nonminimally coupled to gravity
(ξ ¼ 1500, δyt ¼ 0, δλ ¼ −0.017). The normalization scale
U0 ¼ ð10−3MPÞ4 coincides with that in Fig. 9 and κ ¼ M−1

P .
Since the potential for the nonminimally coupled case lays on top
of the SM, the lifetime of the Universe in Higgs inflation is even
larger than in the SM alone.

20The direct production of fermions is suppressed by Pauli
blocking effects.

21The creation of Higgses, although tachyonic in nature, is
much less efficient (see Appendix C for details).

22This temperature is obtained by equating the total energy
density of the fermions at a given time, ρFðjÞ, to the energy
density of a thermal plasma in thermal equilibrium.

23The factor g� stands for the number of degrees of freedom
resulting from the decay of W and Z bosons. Since the
top quark is not produced in these decays, we will take
g� ¼ ð4 × 3þ 2 × 3þ 4 × 3 × 5Þ ¼ 68.25.

24We take λ ¼ 3.4 × 10−3, ξ ¼ 1500, g1 ¼ 0.44, g2 ¼ 0.53.
25Indeed, for the first semioscillation and typical values of the

couplings in the two cases, we have ΔnrF
ΔntF

≃
ffiffiffi
λr
λt

q
ðξtξrÞ

2 ≃ 20.5; E
r
F

Et
F
≃ffiffiffi

ξt
ξr

q
≃ 3.2 and ΔρrF

ΔρtF
≃

ffiffiffi
λr
λt

q
ðξtξrÞ

5=2 ≃ 65 for the first semioscillation.

Combining these results with the relation between the back-
ground energy densities in the two cases, ρ

r
χ

ρtχ
≃ λr

λt
ðξtξrÞ

2 ≃ 3.95, we

get ΔρrF
ρrχ

≃ 15
ΔρtF
ρtχ
.
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and subsequent decay rapidly sustains the energy
density of the fermions against the expansion of the
Universe. Radiation domination takes place after jr ¼
250 semioscillations and precedes the onset of

parametric resonance. The backreaction of the gauge
bosons and fermions on the effective oscillation
frequency can be completely neglected at that time
(see Appendix D).
As shown in Fig. 11, soon after the beginning

of preheating, the sustained evolution of the total
number of fermions due to particle creation together
with the redshift of energies EFðBÞ due to the expansion
of the Universe drives the system into an overoccupied
state made of low energetic particles with respect
to those in a thermal distribution [see Eqs. (6.2)
and (6.3)].
In the case of an overoccupied plasma, thermal-

ization proceeds by energy cascading from the
overoccupied modes with low momentum to the
higher-momentum modes with lower occupancy.
Number-changing processes 2↔ 1 are expected to
be parametrically as efficient as elastic scatterings or
annihilations [56]. An estimate26 of the thermalization
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FIG. 10 (color online). Evolution of the different energy
densities (in M4 units) for the noncritical case (λ ¼ 3.4 × 10−3,
ξ ¼ 1500, g1 ¼ 0.44, g2 ¼ 0.53) as a function of the number of
semioscillations j.
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FIG. 9 (color online). Top: Comparison between the exact
renormalization group enhanced potential in the noncritical case
and the quadratic approximation (B1). The normalization scale
U0 is taken to be U0 ¼ ð10−3MPÞ4 and κ ¼ M−1

P . Bottom:
Evolution of the background field χ in the noncritical case as
a function of the number of semioscillations j. Field values are
measured in Planck units (κ ¼ M−1
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FIG. 11 (color online). Comparison between the number and
average energy of fermions and those associated to a thermal
distribution with temperature TrðjÞ and total number of degrees
of freedom g� ¼ 68.25.

26A proper analysis would require the use of Boltzmann
equations.
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time can be obtained by comparing the annihilation
rate of fermions via electroweak interactions,27

Γ ∼ σnF ∼
α2W
s
nF; ð6:4Þ

with the expansion rate. As shown in Fig. 12, the rate
(6.4) exceeds the Hubble rate just a few tens of
oscillations after the end of inflation. The fermions
present at radiation domination (j ¼ jr) will thermalize
in tth ∼ ðσnFÞ−1jjr ∼ 0.05H−1jjr ∼ 15 semioscillations.
This allows us to interpret the radiation temperature
Tr at that time as the reheating temperature TRH
setting the onset of the hot big bang. Taking into
account the number of degrees of freedom after
thermalization (g� ¼ 106.75), we obtain

TNC
RH ≃ 1.8 × 1014 GeV: ð6:5Þ

This value exceeds the critical temperature TNCþ needed
for driving the Higgs field towards the true electro-
weak vacuum [see Eq. (5.5)]. Noncritical Higgs infla-
tion can take place even if the SM vacuum is
metastable.

B. Critical Higgs inflation

In critical Higgs inflation, the value of the nonminimal
coupling ξ is relatively small (ξ ∼ 10) and the jumps in the
coupling constants appear closer to the Planck scale (see

Fig. 6). As shown in Fig. 13, the energy stored in the Higgs
field after inflation is comparable to the height of the
barrier separating the two vacua. Converting the energy
density of the inflaton field at the end of inflation
(V1=4 ≃ 6 × 1016 GeV) into an instantaneous radiation
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FIG. 12 (color online). Ratio between the fermion annihilation
rate and the expansion rate as a function of the number of
semioscillations j.
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FIG. 13 (color online). Top: Comparison between the exact
renormalization group enhanced potential and the quadratic
approximation (B1) in the critical case. The normalization scale
U1 is taken to beU1 ¼ 10−9M4

P and κ ¼ M−1
P . Bottom: Evolution

of the background field χ in the critical case as a function of the
number of semioscillations j.
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FIG. 14 (color online). Scale factor as a function of the number
of semioscillations j.

27Here αW ≡ g22=ð4πÞ is the electroweak coupling constant,
s≃ ð2EFðjÞÞ2 stands for the square of the center-of-mass energy
and nF is the total number density of fermions. We omit factors
correcting for the charge of the fermion and the number of colors.
The cross section for the annihilation through a gluon can be
obtained (up to color factors), by simply replacing αW by αs. The
contribution of electroweak and QCD processes is expected to be
quite similar due to the approximate unification of αW and αs at
the preheating scale.

LIVING BEYOND THE EDGE: HIGGS INFLATION AND … PHYSICAL REVIEW D 92, 083512 (2015)

083512-13



temperature, we obtain an upper bound TC
max on the

reheating temperature28

TC
RH < TC

max ¼ 7.85g−1=4� × 1016 GeV: ð6:6Þ

Since TC
RH < TC

max < Tþ, the shape of the potential
remains unchanged in the presence of thermal corrections
and the system inevitably relaxes towards the minimum of
the potential at Planck values. When the energy on the field
becomes equal to the amplitude of the barrier (j≃ 30), the
expansion of the Universe stops. From there on, the scale
factor begins to shrink and the amplitude of the field
increases with time (see Fig. 13). Eventually, the kinetic
energy of the Higgs field starts dominating the total energy
density ðp ≈ ρÞ and the Universe generated by critical
Higgs inflation with metastable electroweak vacuum col-
lapses [46], see Fig. 14.

VII. CONCLUSIONS

Although the present experimental data are perfectly
consistent with the absolute stability of Standard Model
within the experimental and theoretical uncertainties, one
should not exclude the possibility that other experiments
will be able to establish the metastability of the electroweak
vacuum in the future. Should the Higgs inflation idea be
abandoned in this case? This paper gives a negative answer
to this question.
We reconsidered the validity of Higgs inflation for values

of the Higgs and top quark masses giving rise to the
instability of the SM vacuum at energy scales below the
scale of inflation. The nonminimal coupling to gravity
makes the SM nonrenormalizable and requires the addition
of an infinite number of counterterms. There are several
ways to do this. Let us consider for concreteness the
Einstein frame. The most general approach would be to
include all sorts of higher-dimensional operators sup-
pressed by the Planck scale. However this will automati-
cally destroy the whole class of large field inflationary
models to which Higgs inflation belongs.29 To avoid these
well-known problems, we adopted a minimalistic approach
in which the structure of the counterterms is restricted by
several self-consistent hypotheses concerning the sym-
metries of the UV completion, which is assumed to be
scale invariant. The added counterterms differ from those
already present in the original theory but do not modify the
asymptotic properties of the model. In particular, the
evolution equations for the coupling constants can be
approximated by the usual SM renormalization group

equations at low energies and by those of the chiral
Standard Model at high energies. The ambiguities asso-
ciated with the nonrenormalizability of the theory appear
only in the narrow interface between these two asymptotic
regions and are connected to the finite parts of the
counterterms. These finite parts give rise to jumps in the
evolution of the coupling constants, the amplitude of which
cannot be determined within the theory itself. We will like
to emphasize that the idea presented on this paper does not
depend on the particular order at which the set of RG
equations is truncated. Within the minimalistic approach to
Higgs inflation, all threshold effects (independently of their
order) happen at the same energy scale. The validity of the
scenario depends only on the collective effect of all these
thresholds, and in particular on their ability to convert a
negative Higgs self-coupling below the transition scale into
a positive one at the inflationary scale.
The general ideas presented in this paper extend beyond

the Higgs inflation scenario and could be applied to other
models of inflation not directly driven by the Higgs field.
Surviving the instability of the EW vacuum requires the
following ingredients: (i) whatever the new physics beyond
the Standard Model, it should be able to stabilize the Higgs
potential below the scale of inflation; (ii) the resulting
potential should lay on top of the Standard Model one; and
(iii) whatever the mechanism giving rise to inflation, the
reheating process should be efficient enough to backreact
into the Higgs potential and restore the symmetry. As a
proof of existence, we determined a set of parameters
giving rise to noncritical Higgs inflation in the case of a
metastable SM vacuum and studied the subsequent evolu-
tion of the Universe. Taking into account the nonperturba-
tive production of SM particles after the end of inflation, we
estimated the reheating temperature and compared it with
the temperature needed to stabilize the effective potential.
We showed that, while critical Higgs inflation does
necessarily require the absolute stability of the SM vacuum,
the successful noncritical Higgs inflation can be possible
even if our vacuum is metastable.
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APPENDIX A: TRUNCATION OF THE RG
EQUATION CHAIN

This appendix closely follows the general arguments
of Ref. [22], particularizing them to the present setup.
The counterterms (3.6) and (3.10) have a functional

dependence on the background field χ that differ from
that in the tree-level Lagrangian. The consistency of the
computation requires the inclusion of these terms in the
original Lagrangian and the reevaluation of the radiative

28A more realistic bound taking into account the particle
production at the bottom of the potential is presented, for
completion, in Appendix E.

29Note however that this is not so in Higgs inflation if these
operators are added in the Jordan frame.
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corrections. The one-loop diagrams associated to the new
pieces are given by30

ðA1Þ

ðA2Þ

These contributions should be compared with the two-loop
contributions generated by the original Lagrangian,31

ðA3Þ

ðA4Þ

ðA5Þ

ðA6Þ

A simple inspection of Eqs. (A1)–(A6) reveals that in order
to have a good perturbative expansion the finite parts δλ and
δyt must be of the same order of magnitude (in power
counting) than the loop corrections producing them (see
Sec. II C),

δλ ∼Oðλ2; y4Þ; δy ∼Oðy3; yλÞ: ðA7Þ
This condition, together with the standard power-counting
assumption λ ∼Oðy2Þ, ensures that the one-loop

contributions generated by the counterterms (A1) and
(A2) are of the same order than the two-loop contributions
(A3)–(A6) generated by the tree-level Lagrangian.
The previous recipe can be easily generalized to higher

orders. For instance, since the contributions of the
diagrams (A1)–(A6) are of order λ3; λ2y2; λy4; y6, these
would be the orders that should be assumed for the finite
parts of the new counterterms to be added in order to
cancel the associated divergencies. If the finite parts of
the counterterms introduced in each iteration are hierar-
chical, the loop expansion can be consistently truncated
at a given loop order.

APPENDIX B: COMBINED PREHEATING
FORMALISM

In this appendix, we summarize the combined
preheating formalism [19,20]. Let assume the shape
of the inflationary potential during the whole reheating
can be well approximated by a quadratic potential32

UðχÞ≃ 1

2
M2χ2; M ¼

ffiffiffi
λ

3

r
MP

ξ
: ðB1Þ

In this potential, the Universe expands as in a matter-
dominated background (a ∝ t2=3) with zero pressure and
energy density ρχðtÞ ¼ 1

2
M2χðtÞ2. The evolution of the

Higgs field is given by

χðtÞ ¼ χe sinðMtÞ
Mt

¼ χe sinðπjÞ
πj

≡ χðjÞ sinðπjÞ; ðB2Þ

with j ¼ Mt=π the number of semioscillations or zero
crossings and χe ¼

ffiffiffiffiffiffiffiffi
8=3

p
MP an initial amplitude dictated

by the covariant conservation law _ρχ ¼ −3Hρχ.
The evolution equation for the gauge boson fluctuations

in this background is

B̈k þ 3H _Bk þ
�
k2

a2
þ ~m2

BðtÞ
�
Bk ¼ 0; ðB3Þ

with B ¼ W;Z and

~m2
BðtÞ≡mB

2

Ω2
¼ g2M2

Pð1 − e−
ffiffiffiffiffiffi
2=3

p
jχðtÞj=MPÞ

4ξ
; ðB4Þ

the conformally rescaled version of Jordan frame masses
mB ¼ gh=2. The friction term 3H _Bk can be eliminated by
performing a conformal redefinition of the gauge fields
(Bk → a−3=2Bk) to obtain33

30We retain just the first term in Eq. (3.10) because of its
nontrivial contribution at small χ. The second term contributes
only for intermediate intermediate field values.

31The particular combination in Eq. (A5) is chosen for
illustrative purposes. Provided there are two masses present in
the propagators, other combinations involving ðyFÞ2 and λðF4Þ00
can also appear.

32As for instance happens in the noncritical case, see
Sec. VI A.

33The redefinition introduces terms proportional toH2 and ä=a
that can be safely neglected at scales below the horizon.
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B00
k þ

�
K2 þ ~m2

BðtÞ
M2

�
Bk ¼ 0; ðB5Þ

with K ≡ k
aM a rescaled momentum and the primes denot-

ing derivatives with respect to a rescaled time τ ¼ Mt.
Here we have adopted a compact notation in which
g ¼ g2; g2= cos θW for the B ¼ W;Z bosons respectively,
θW ¼ tan−1ðg1=g2Þ is the weak mixing angle and g1 and g2
are the gauge couplings associated to the Standard Model
Uð1ÞY and SUð2ÞL gauge groups.
Particle production takes placewithin a very restricted field

interval ðjχj ≪ χaÞ around the minimum of the potential, in
which the adiabaticity condition j _~mBj ≪ ~m2

B is violated [60].
In this region, the effective square masses (B4) become linear
in the field [ ~m2

B ∝ jχðτÞj ∝ j sin τj=j ≈ jτj=j] and the evolu-
tion equation (B5) can be rewritten as

−B00
k −

qB
j
jτjBk ¼ K2Bk; qB ≡ g2ξ

πλ
: ðB6Þ

The previous equation can be formally interpreted as
the Schrödinger equation of a particle crossing a
(periodic) inverted triangular potential. To solve it, we note
that the nonadiabaticity region χa ¼ ½λπj=ð4g2ξÞ�13χðjÞ≃
ð10−6jÞ1=3χðjÞ is much smaller than the background field
value χðjÞ for at least a hundred thousand oscillations. This
justifies the use of a WKB approximation for computing the
number of particles after the jth scattering, nkðjþÞ, in terms
of the number of particles just before that scattering, nkðj−Þ.
After some computations, we get [61]

nkðjþÞ ¼ CðxjÞ þ ð1þ 2CðxjÞÞnkðj−Þ
þ 2 cos θj−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðxjÞ½CðxjÞ þ 1�

q
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2kðj−Þ þ nkðj−Þ

q
; ðB7Þ

with

CðxjÞ≡ π2½Aið−x2jÞAi0ð−x2jÞ þ Bið−x2jÞBi0ð−x2jÞ�2;
an infrared window function depending on Airy functions of
first and second type,

xj ≡ K

ðqB=jÞ1=3
¼ j1=3k

Mq1=3B aj
; ðB8Þ

and fθjg some accumulated phases at each scattering. A
simple estimation of these phases reveals that they are essen-
tially incoherent [Δθj∼gðξ=λÞ1=2j−1=2∼Oð102Þj−1=2≫π]
for the first few thousands of oscillations (see Ref. [19,20]
for details). This allows us to reduce (B7) to a phase-average
relation [62]�

1

2
þ nkðjþÞ

�
≃ AðxjÞ

�
1

2
þ nkðj−Þ

�
; ðB9Þ

with enhancing Bose factor AðxjÞ≡ 1þ 2CðxjÞ.

Once produced, the gauge bosons tend to transfer energy
into the Standard Model fermions (F) through decays
(B → FF̄) and annihilations (BB → FF̄). The decay modes
are expected to be the dominant processes at early times,
where the number densities are still low (ΓB ≫ σnB). Let us
assume that this relation holds for the typical number of
semioscillations we are interested in.34 In that case, the
occupation numbers for the gauge bosons just before the
jth scattering can be written as

nkðj−Þ ¼ nkððj − 1ÞþÞe−hΓBij−1T2: ðB10Þ

The average hΓBij stands for the mean decay width
of the W and Z bosons between two consecutive zero-
crossings,35 [63]

hΓW→allij ¼
3g22h ~mWi

16π
≡ 2γW

T
FðjÞ; ðB11Þ

hΓZ→allij ¼
2LipshΓW→allij

3cos3θW
≡ 2γZ

T
FðjÞ; ðB12Þ

with Lips≡ 7
4
− 11

3
sin2 θW þ 49

9
sin4 θW a Lorentz-invariant

phase-space factor,

γW ≡ 3g32
32

�
3ξ

λ

�
1=2

; γZ ≡ 2Lips
3cos3θW

γW; ðB13Þ

and36

FðjÞ≡
Z

π

0

dxj
π

ð1− e−
ffiffiffiffiffiffi
2=3

p
jχðxjÞj=MPÞ1=2≃ 1

0.57þ 1.94
ffiffi
j

p :

Combining Eqs. (B9) and (B10), we obtain [62]

�
1

2
þ nkððjþ 1ÞþÞ

�
¼ AðxjÞ

�
1

2
þ nkðjþÞe−γFðjÞ

�
:

ðB14Þ

The recursive iteration of this master equation allows us to
obtain the total number of gauge bosons at each crossing,

nBðjþÞ ¼
Z

k2nkðjþÞdk
2π2a3j

¼ qBM3

2π2j

Z
x2jnkðxþj Þdxj;

ðB15Þ

34As we will show a posteriori in Appendix C, this is indeed a
very good approximation.

35Note that the number of W bosons surviving every semi-
oscillation of the Higgs field is larger than the number of Z
bosons (ΓW < ΓZ). The W bosons are expected to become
resonant before the Z bosons do.

36The last equality in this equation is just a good fit for all j,
including the first semioscillations.
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and with it their total energy density37

ρBðjÞ ¼ ρWðjÞ þ ρZðjÞ; ðB16Þ

ρWðjÞ ¼ 2 × 3nWðjþÞhmWij; ðB17Þ

ρZðjÞ ¼ 1 × 3nZðjþÞhmZij: ðB18Þ
On the other hand, the number of fermions produced by the
decay of the gauge bosons between two consecutive
scatterings and their corresponding energy density are given
by

ΔnFðjÞ≡ ΔnðWÞ
F ðjÞ þ ΔnðWÞ

F ðjÞ; ðB19Þ

ΔρFðjÞ ¼ ΔnðWÞ
F ðjÞEðWÞ

F ðjÞ þ ΔnðZÞF ðjÞEðZÞ
F ðjÞ; ðB20Þ

with38

ΔnðWÞ
F ðjÞ ¼ 2 × 3ð2nWðjþÞð1 − e−γWFðjÞÞÞ; ðB21Þ

ΔnðZÞF ðjÞ ¼ 2 × 3ðnZðjþÞð1 − e−γZFðjÞÞÞ; ðB22Þ

and

EFðBÞðjÞ ≈
1

2
h ~mBij ¼

ffiffiffiffiffiffiffiffiffiffiffi
3πqB

p
4

FðjÞM; ðB23Þ

the mean energy of the relativistic decay products F of the
nonrelativistic gauge boson B. Summing over the number of
semioscillations and taking into account the dilution due to
the expansion of the Universe, the total number of fermions
and their total energy density after j semioscillations become

nFðjÞ ¼
Xj

i¼1

�
i
j

�
2

ΔnFðiÞ; ðB24Þ

ρFðjÞ ¼
Xj

i¼1

�
i
j

�
8=3

ΔρFðiÞ: ðB25Þ

APPENDIX C: CONSISTENCY CHECKS

The combined preheating formalism presented in the
previous section assumes the following:

(i) The frequency M used to describe the background
evolution in (B5) is not significantly modified by
particle production.

(ii) The condition ΓB ≫ σnB holds during the whole
preheating process.

To verify the consistency of the approach, we perform two
consistency checks:

(i) We use the number densities obtained through the
combined preheating formalism to estimate the
backreaction on M. The effective frequency is given
by ω2 ≈M2½1þ ΔMB

BR þ ΔMF
BR�, with

ΔMB
BR ≡ g

ffiffiffi
λ

p
nBðjÞ

63=4

�
πj
ξ

�
3=2

; ðC1Þ

ΔMF
BR ≡ yf

ffiffiffi
λ

p
nBðjÞffiffiffi

2
p

63=4

�
πj
ξ

�
3=2

ðC2Þ

the contribution of the created gauge bosons and
fermions [19].
As shown in Fig. 15,ΔMB

BR andΔMF
BR turn out to

be completely negligible at all times before the onset
of radiation domination, which justifies the use
of Eq. (B7).

(ii) We verify a posteriori the assumption ΓB ≫ σnB.
The result showed in Fig. 16 justifies the use
of Eq. (B10).
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FIG. 15 (color online). Contribution of the created gauge
bosons and fermions to the background frequency M as a
function of the number of semioscillations j.
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FIG. 16 (color online). Comparison between the decay chan-
nels B → FF̄ and the scattering channel WW → FF̄.

37The factor 2 accounts for the Wþ and W− while the factor 3
reflects the fact that each gauge boson can have one of three
polarizations.

38The factor 2 accounts for the fact that each gauge boson
decays into two fermions.
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APPENDIX D: NONPERTURBATIVE HIGGS
PRODUCTION IN THE NONCRITICAL CASE

In this appendix we derive an upper bound for the
nonperturbative production of Higgs particles in noncritical
Higgs inflation. In Fourier space, the Einstein-frame
equation of motion for these perturbations reads

δχ00kðtÞ þ
�
K2 þ V;χχ

M2

�
δχkðtÞ ¼ 0; ðD1Þ

with K ≡ k
aM a rescaled momentum and the primes denot-

ing derivatives with respect to a rescaled time τ ¼ Mt.
A simple inspection of the potential in Fig. 9 suggests

that the leading contribution to Higgs production should be
associated with the region jχj ≤ χT in which the curvature
of the potential (V;χχ) becomes negative [64]. Let us assume
for simplicity that this curvature is constant. Denoting it by
−M2

T , we can rewrite Eq. (D1) as

δχ00kðtÞ −Ω2
TδχkðtÞ ¼ 0; Ω2

T ≡ q2T − K2; ðD2Þ

with q2T ≡M2
T=M

2 ≈ 0.067 the numerical value of M2
T in

units of the curvature of the potential at large field values.
The amplification of modes with K < qT is given by

Δδχjk ∼ exp ðΩTMΔtjÞ; ðD3Þ

with Δtj denoting the time expended by the background
Higgs field in the tachyonic region jχj ≤ χT for a given
semioscillation j. Estimating this time via Eq. (B2),

MΔt ≈
2πχT
χe

1

j
; ðD4Þ

we can rewrite Eq. (D3) as

Δδχjk ∼ eAðjÞj; AðjÞ≡ 2πχTΩTðjÞ
χe

: ðD5Þ

The total amplification after a given number of semi-
oscillations will be the result of the interference of the
individual amplifications (D5). Since we are just seeking an
upper bound on Higgs production, we will assume that the
interference is fully constructive and that all the modes
within the bandK < qT grow at the maximum possible rate
(i.e. at the rate of the zero mode, k ¼ 0),

A ≈
2πχTqT

χe
: ðD6Þ

With these two assumptions, the occupation number of a
given mode k after j semioscillations becomes

njk ∼
Y
j

ðΔδχjkÞ2 ≃ exp

�
2A

X
j

j

�
≃ eAj

2

; ðD7Þ

where in the last step we have assumed a large
number of semioscillations and approximated

P
jj ¼

1=2jðjþ 1Þ≃ j2=2.
The total number of Higgs particles at their associated

energy density after j semioscillations is obtained by
integrating over all the amplified modes K < qT (i.e. over
k < aMT). Taking into account that a ¼ j2=3, we obtain

nδχðjÞ ¼
1

2π2a3

Z
aMT

0

dkk2nk ≃ q3TM
3

6π2
eAj

2

; ðD8Þ

ρδχðjÞ ¼
1

2π2a3

Z
aMT

0

dkk2jΩkjnk ≃ q4TM
4

6π2
eAj

2

: ðD9Þ

Evaluating (D9) at the time in which the energy density of
fermions starts dominating the expansion of the Universe
(j� ¼ 250), we get

ρδχðj�Þ≃ 10−4ρFðj�Þ: ðD10Þ
The contribution of Higgs particle production in noncritical
Higgs inflation is completely negligible even with the
extreme approximations performed in this appendix
(namely constructive interference and maximum growing
for all the modes).

APPENDIX E: NONPERTURBATIVE PARTICLE
PRODUCTION IN THE CRITICAL CASE

A proper treatment of particle creation in critical Higgs
inflation would require the joint analysis of combined
preheating and the tachyonic Higgs particle production at
the bottom of the potential. Here we will simply try to
derive some estimates on the separated processes. We start
by applying the combined preheating formalism to the first
few semioscillations (j < 10) in which the quadratic
approximation (B1) still holds. The resulting evolution
of the different energy densities39 is shown in Fig. 17. As in
the noncritical case, the creation of particles is not efficient
enough to dominate the expansion of Universe in such a
short period of time. Although the features of the potential
could change the pattern of particle creation at later times,
the energy density into fermions will never exceed40 the
energy of the Higgs field at j≃ 10.
The production of Higgs particles by tachyonic

instability can be estimated along the lines presented
in Appendix D. In order to obtain a conservative bound
for the maximum reheating temperature, we will assume
that the interference between the different scattering is
maximally constructive and that all the tachyonic modes

39To avoid misunderstandings, we emphasize that the unit M
is computed with the values of ξ and λ associated to the critical
case.

40The quantity ρχ traces the maximum (total) energy of the
system (it takes into account the expansion of the Universe but
not the decay due to particle creation).
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grow at the maximum rate (i.e. that the zero mode
k ¼ 0). As shown in Fig. 18, the energy density into
Higgs particles equals the energy into the background
field in just j≃ 13 semioscillations. The tachyonic
production becomes the leading mechanism for particle
creation in the noncritical case.41 Transforming this

energy into the instantaneous radiation temperature of
a plasma containing g� ¼ 68.25 degrees of freedom, we
obtain an upper bound for the reheating temperature in
the critical case, namely

TC
RH < 5 × 1015 GeV: ðE1Þ

Since this temperature is smaller than the restoration
temperature Tþ, the shape of the potential remains
unchanged, and the system eventually finishes in the
wrong minimum at large field values.
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