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We construct and analyze the domain-wall solution in D ¼ 11 supergravity connecting the N ¼ 1,
AdS4 × S7squashed vacuum to theN ¼ 8, AdS4 × S7round vacuum. This domain wall describes the holographic

renormalization group flow from an Spð2Þ × Spð1Þ symmetric UV fixed point to the SO(8) symmetric IR
fixed point. It breaks all supersymmetries which are (partially) restored at its endpoints. We show how
recent techniques from exceptional field theory allow us to compute the quadratic couplings of all Kaluza-
Klein (KK) fluctuations around the domain wall background, encoding all two-point correlators along the
holographic RG flow.
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I. INTRODUCTION

The AdS=CFT correspondence is a powerful tool to
analyze strongly coupled conformal field theories (CFTs).
In this paper, we will focus on holographic renormalization
group (RG) flows. On the gravity side these correspond
to domain-wall solutions with anti–de Sitter (AdS) vacua of
string theory at the endpoint. The existence of such a
solution between two different AdS vacua indicates that
there is a renormalization group flow between two con-
formal fixed points in the UV and IR, dual to the AdS
vacua, something which may not even be directly visible
in the quantum field theory (QFT) analysis. Moreover,
the gravitational action encapsulates the QFT correlators
along the flow, giving insight into strongly-coupled QFTs
away from conformality, for example, into confining gauge
theories [1].
Despite the promising technology, in practice, the analy-

sis of holographic RG flows is limited to the use of lower-
dimensional gauged supergravity models due to technical
difficulties in working with the 10- and 11-dimensional
supergravity actions that capture the single-trace sector of
the dual gauge theories. In particular, domain-wall solutions

corresponding to holographic RG flows are often con-
structed in such lower-dimensional gauged supergravities
[2–4], that can sometimes be uplifted via a consistent
truncation to 10- and 11-dimensional supergravity.
However, in general, a consistent truncation may not exist,
and even when it does, it can obscure important properties
of the 10- and 11-dimensional solutions. For example, the
10- and 11-dimensional AdS solutions may have more
supersymmetries than the corresponding solutions within
the gauged supergravity.
Even more restrictively, the holographic computation of

correlation functions is limited to couplings between modes
that are captured by the lower-dimensional gauged super-
gravity, ignoring the higher Kaluza-Klein modes in the
supergravity. This is already true for 2-point functions. In
fact, even the masses of higher Kaluza-Klein modes around
AdS vacua could until recently not be studied, except for
highly supersymmetric compactifications or those corre-
sponding to coset spaces, rendering the computation of
2-point functions along an RG flow completely unfeasible.
The situation recently changed dramatically, thanks to the

method of Kaluza-Klein spectroscopy [5,6] in exceptional
field theory (ExFT) [7–12]. This allows the computation of
the full Kaluza-Klein spectrum around “generalized paral-
lelizable” compactifications [13,14]. These are compactifi-
cations whose generalized tangent bundle in ExFT is trivial,
i.e., they admit a global frame for the generalized tangent
bundle. Examples of such compactifications include those
that lead to consistent truncation of maximally gauged
supergravities, but also their deformations beyond maximal
gauged supergravity [15]. As a result, the Kaluza-Klein
spectrum around a variety of AdS vacua has been computed
recently, including those with few or no symmetries, or
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indeed supersymmetries. This has led to various insights,
such as infinitely many unprotected operators in strongly-
coupled CFTs with finite conformal dimensions [16], the
compactness of conformal manifolds that appear noncom-
pact in gauged supergravity computations [17–19], as well
as instabilities triggered by higher Kaluza-Klein modes in
nonsupersymmetric AdS vacua [20] that appear stable in
gauged supergravity [21] and the proof of perturbative
stability of a number of AdS vacua in string theory [18,22].
In this paper, wewill extend these techniques, which have

so far only dealt with AdS vacua and their exactly marginal
deformations, to compute the two-point supergravity cou-
plings along anRG flow triggered by a relevant deformation.
Crucially, this will be applicable to all Kaluza-Klein modes,
not just those present within a consistent truncation.
Moreover, we will show how this can be done for RG flows
that do not even belong to a truncation to a maximal gauged
supergravity. Specifically, we focus on a holographic RG
flow from the N ¼ 1 AdS4 × S7squashed vacuum [23] to the
N ¼ 8 AdS4 × S7round vacuum of 11-dimensional super-
gravity. The squashing of the S7 preserves only Spð2Þ ×
Spð1Þ isometries of the SO (8) isometries of the round S7 and
the corresponding 3-dimensionalN ¼ 1CFTwas discussed
in [24]. Interestingly, while the round S7 compactification
admits a consistent truncation to 4-dimensional N ¼ 8

gauged supergravity [25], the N ¼ 1 AdS4 × S7squashed
vacuum does not sit within this consistent truncation.
Moreover, the N ¼ 1 Killing spinor does not belong to a
subset of theN ¼ 8 ones, but instead corresponds to higher
Kaluza-Kleinmodes on the round S7, inwhat is known as the
space-invader scenario [26].
Since the round and squashed vacua are not both part of

N ¼ 8 gauged supergravity, there has been some confusion
in the literature about the potential existence of an RG flow
between them. A first attempt stems from [27], where the
relevant RG flow equations were written down, using an
Spð2Þ × Spð1Þ-invariant consistent truncation ansatz [28].
However, [29] argued that these equations do not admit a
first-order formulation and, hence, that a flow is unlikely
to exist. Later, consistent truncations on the squashed S7

were constructed more systematically in [30], leading to a
4-dimensional N ¼ 4 gauged supergravity. This can be
further truncated to a N ¼ 1 subsector and even further to
a 2-scalar subsector, corresponding to that found in [28].
Crucially, none of these truncations are subtruncations of the
N ¼ 8 gauged supergravity. Moreover, within these trunca-
tions, while the squashed S7 vacuum isN ¼ 1, the round S7

appears as anN ¼ 0 vacuum. This indicates that there is no
supersymmetric Spð2Þ × Spð1Þ-invariant flow in 11 dimen-
sions, which can also be shown by an explicit computation.1

This paper is laid out as follows. First, in Sec. II we will
review the squashed S7 in 11-dimensional supergravity, as
well as its embedding into the two-scalar truncation of [28].
We numerically solve the RG flow equations and show
the existence of a nonsupersymmetric flow between the
squashed and round S7 vacua, clarifying earlier claims
in the literature. In Sec. III, we show how to embed the
N ¼ 4 [30], theN ¼ 1 [30], and the two-scalar truncations
of [28] into ExFT. In particular, we will construct a
generalized parallelization for these consistent truncations,
which, however, does not form an algebra under the
generalized Lie derivative, reflecting the fact that the
consistent truncations do not lead to N ¼ 8 gauged super-
gravity. Nevertheless, the generalized parallelization allows
us to use the Kaluza-Klein spectroscopy to compute the
two-couplings of the higher Kaluza-Klein modes along the
RG flow from the squashed to round S7, as we demonstrate
in Sec. IV. Finally, we conclude with a discussion of our
results and open questions in Sec. V.

II. SQUASHED SPHERE, S7 AND DOMAIN
WALL IN D= 11 SUPERGRAVITY

In this section, we review the round and the squashed S7

vacua of D ¼ 11 supergravity and construct the interpolat-
ing domain wall solution. Both S7 backgrounds are Freund-
Rubin solutions ofD ¼ 11 supergravity, preservingN ¼ 8

and N ¼ 1 supersymmetry, respectively [23]. The general
ansatz for the D ¼ 11 metric with an internal space S7

preserving Spð2Þ × Spð1Þ isometries can be put into the
form [31]

ds2 ¼ e−7uds2ð4Þ þ
1

4
e2u

�
e3v

�
dμ2 þ 1

4
sin2 μ

X
i

ω2
i

�

þ 1

4
e4v

X
i

ðνi þ cos μωiÞ2
�
; ð2:1Þ

with S7 size parameter u and squashing parameter v
that are taken as scalar functions over the 4-dimensional
space-time. The one forms ωi ¼ σi − Σi, νi ¼ σi þ Σi,
satisfy

dσi ¼ −
1

2
εijkσj ∧ σk; dΣi ¼ −

1

2
εijkΣj ∧ Σk: ð2:2Þ

The 4-form flux for these solutions is of the form

Fμν ρσ ¼ Qe−21uεμν ρσ; ð2:3Þ

with conserved charge Q. The ansatz (2.1) and (2.3) is, in
fact, a consistent truncation of D ¼ 11 supergravity as
shown in [31]. More precisely, plugging (2.1) and (2.3),

1We thank Nikolay Bobev for private communications on this
point.
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into theD ¼ 11 field equations leads to field equations that
are obtained from the D ¼ 4 Lagrangian

jgj−1=2L0
ð4Þ ¼ Rð4Þ −

63

2
∂μu∂μu − 21∂μv∂μv − Vpot;

Vpot ¼ −6e−9uþ4v − 48e−9u−3v þ 12e−9u−10v

þ 2Q2e−21u: ð2:4Þ

The parameterQmay be absorbed into a shift of u together
with a rescaling of the D ¼ 4 metric gμν. In the following,
we set Q ¼ 3.
Extremization of the potential Vpot from (2.4) yields two

critical points corresponding to AdS4 × S7 solutions of
D ¼ 11 supergravity, with the round and the squashed
sphere located at

roundS7∶ u ¼ 0; v ¼ 0; lround ¼
1

2
;

squashed S7∶ u ¼ u0 ≡ 5

42
ln 5 −

1

6
ln 3; v ¼ v0 ≡ 1

7
ln 5; lsquashed ¼

55=4

2 · 37=4
; ð2:5Þ

and the respective AdS lengths given by l ¼
ffiffiffiffiffiffiffiffiffiffi
− 6

Vpot

q
. With the standard ansatz for an interpolating the domain-wall solution

u ¼ uðrÞ; v ¼ vðrÞ; ds2ð4Þ ¼ dr2 þ e2AðrÞηijdxidxj; i; j ¼ 1; 2; 3; ð2:6Þ

variation of (2.4) yields the equations

u00 þ 3A0u0 ¼ −6e−21u −
12

7
e−9u−10v þ 48

7
e−9u−3v þ 6

7
e−9uþ4v;

v00 þ 3A0v0 ¼ −
20

7
e−9u−10v þ 24

7
e−9u−3v −

4

7
e−9uþ4v;

3ðA0Þ2 − 63

4
ðu0Þ2 − 21

2
ðv0Þ2 ¼ −9e−21u − 6e−9u−10v þ 24e−9u−3v þ 3e−9uþ4v: ð2:7Þ

The existence of a domain-wall solution to these equations,
interpolating between the two vacua (2.5), was discussed
in [27], and later questioned in [29]. Its holographic
interpretation was further elaborated on in [24]. The
domain wall represents a holographic renormalization
group flow from an N ¼ 1 superconformal UV fix point
(dual to the squashed S7) to an N ¼ 8, SO (8) symmetric
IR fix point (dual to the round S7). Unlike most explicitly
known domain-wall solutions, there is no description of
the flow equations connecting (2.5) in terms of first-
order differential equations and a superpotential. More
precisely, [29] noted that the potential (2.4) can be written
in terms of a superpotential W as

Vpot ¼
16

63
ð∂uWÞ2 þ 8

21
ð∂vWÞ2 − 12W2;

W ¼ −
3ffiffiffi
8

p e−9u=2
�
e2v þ 2e−5v − e−6u

�
: ð2:8Þ

However, only the squashed S7 represents a critical point of
this superpotential. With hindsight, this is a manifestation
of the fact that the Lagrangian (2.4) lives within an N ¼ 1
four-scalar truncation of D ¼ 11 supergravity [30], in
which the round sphere appears as an N ¼ 0 vacuum,
since all theN ¼ 8massless gravitinos around this vacuum

are truncated out.2 Accordingly, the round S7 does not
correspond to a critical point of the associated super-
potential (2.8).
The interpolating domain wall solution can be found

numerically, by solving Eqs. (2.7) and fine-tuning the
initial conditions. To this end, it is instructive to first study
the general asymptotic behavior of the scalar fields. As
usual, this is correlated with the conformal dimensions of
the associated dual operators, given by

Ou∶ ΔUV ¼ 6 ¼ ΔIR;

Ov ∶ ΔUV ¼ 5

3
; ΔIR ¼ 4; ð2:9Þ

for the scalar fields. Introducing the radial coordinate

ρ ¼ e−2r=lsquashed ; ð2:10Þ

and expanding the flow equations (2.7) near the UV
boundary ρ ¼ 0, we find the following asymptotic expan-
sions of its general regular solution

2In the notation of [30], all this is on the k < 0 branch.
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uðρÞ ¼ 1

6
ln
55=7

3
þ ρ

8
6Ω1;8 þ ρ

9
6Ω1;9 þ ρ

10
6Ω1;10 þ � � �

þ ρ18=3Ω1;18 þ…;

vðρÞ ¼ 1

7
ln 5þ ρ

4
6Ω2;4 þ ρ

5
6Ω2;5 þ ρ

8
6Ω2;8 þ ρ

9
6Ω2;9

þ ρ
10
6Ω2;10 þ…;

2AðρÞ ¼ − log ρþ A8ρ
8
6 þ A9ρ

9
6 þ A10ρ

10
6 þ…: ð2:11Þ

Equations (2.7) fix all coefficients Ωi;j in the above
expressions, except Ω2;4, Ω2;5, and Ω1;18 which source
the others. Explicitly, we find that the coefficients of the
lowest powers are given by

Ω1;8 ¼ −
6

17
Ω2

2;4; Ω1;9 ¼ −
20

27
Ω2;4Ω2;5;

Ω2;8 ¼ −
15

4
Ω2

2;4; Ω2;9 ¼ −
9

2
Ω2;4Ω2;5;

A8 ¼ −
21

4
Ω2

2;4; A9 ¼ −
280

27
Ω2;4Ω2;5: ð2:12Þ

In (2.11), we have imposed regularity at ρ ¼ 0, which sets
to zero a potential ρ−

3
2 term in the u expansion, allowed by

Eqs. (2.7). The general solution of (2.7), regular at ρ ¼ 0,
thus carries three independent constants. It furthermore
admits the scaling symmetry ρ → λρ, which can be used to
setΩ2;4 ¼ −1. For the interpolating solution, the remaining
two coefficients are then fixed by further demanding
regularity at the other end of the flow ρ → ∞.
Imposing regularity at both ends of the flow, we have

solved Eqs. (2.7) numerically, and plot the result in Figs. 1
and 2. As expected, the solution is of kink type for the
scalar fields u and v, as well as for the derivative ∂rA. In
particular, with Ω2;4 ¼ −1, we find for the coefficient Ω2;5

the approximate numerical value

FIG. 1. The domain wall (blue line) in the scalar potential of
(2.4). The green and the red dots represent the round and the
squashed sphere (2.5), respectively.

FIG. 2. Numerical solutions for the two scalar fields, as well as the derivative A0. The horizontal green-dashed line represent the
asymptotic values of the various fields. The UV boundary is located at r → ∞, the IR boundary is at r → −∞.
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Ω2;5 ≈ −1.4: ð2:13Þ

In Fig. 3, we plot the asymptotics of the scalar fields, which
confirms the UVexpansion (2.11), and in particular the fact
that the leading coefficient Ω2;4 is nonvanishing. This is the
expected power-law behavior

vðρÞ − v0 ∝ ρ
3−Δ
2 ; ð2:14Þ

consistent with the interpretation that the holographic
dual of this domain-wall solution is an operator deforma-
tion (rather than a vacuum expectation value) of the
UV CFT [3,32], by a relevant operator of conformal
dimension ΔUV ¼ 5

3
.

Similarly, one can work out the asymptotic behavior in
the IR. With the new radial variable ρ̃ ¼ e2r=lround , the

expansion of a general solution of (2.7), regular at the IR
boundary ρ̃ ¼ 0, is given by

uðρ̃Þ ¼ ω1;2ρ̃þ ω1;3ρ̃
3=2 þ ψ1;3ρ̃

3=2 log ρþ ω1;4ρ̃
2 þ…;

vðρ̃Þ ¼ ω2;1ρ̃
1=2 þ ω2;2ρ̃þ ω2;3ρ̃

3=2 þ ω2;4ρ̃
2

þ ψ2;4ρ̃
2 log ρþ…;

2Aðρ̃Þ ¼ log ρ̃þ Ã2ρ̃þ Ã3ρ̃
3=2 þ Ã4ρ̃

2 þ…; ð2:15Þ

in accordance with the IR conformal dimensions (2.9).
Here, imposing regularity at ρ̃ ¼ 0 has set to zero two of the
free coefficients of the general solution of (2.7). All other
coefficients in the expansion (2.15) are then determined in
terms of the remaining two free coefficients ω1;3, ω2;1, e.g.,

ω1;2 ¼
3

2
ω2
2;1; ψ1;3 ¼ 11ω3

2;1; ω1;4 ¼ −
15525

56
ω4
2;1;

ω2;2 ¼ −
11

2
ω2
2;1; ω2;3 ¼

5261

168
ω3
2;1; ω2;4 ¼ −

3

2
ω2;1ω1;3 −

10583

56
ω4
2;1; ψ2;4 ¼ −

33

2
ω4
2;1;

Ã2 ¼ −
21

4
ω2
2;1; Ã3 ¼

154

3
ω3
2;1; Ã4 ¼ −

27081

64
ω4
2;1: ð2:16Þ

Again, the leading terms are confirmed by the plots of
the numerical solution in Fig. 3. Regularity at the UVend of
the flow finally fixes ω1;3 as a function of ω2;1. From the
above numerical domain wall solution, we find the
approximate value

ω1;3

ðω2;1Þ3
≈ −239; ð2:17Þ

for the combination invariant under the scaling symmetry
ρ̃ → λρ̃.

III. GENERALIZED PARALLELIZATION
OF THE DOMAIN WALL IN ExFT

In this section, we will identify the AdS4 × S7squashed
background and the domain wall (2.1) within ExFT, i.e.,
within the duality-covariant formulation of D ¼ 11 super-
gravity. This allows us to construct consistent truncations
around this vacuum as well as to compute the quadratic
couplings of Kaluza-Klein fluctuations around the domain-
wall background in Sec. IV.
The relevant ExFT is based on the exceptional group

E7ð7Þ and has been constructed in [33] to which we refer for

FIG. 3. Asymptotic behavior of the numerical solution. In the UV (r → ∞), the green dashed line have respectively a slope of 4
3
for u

and 2
3
for v. This matches the asymptotic expansion (2.11). In the IR (r → −∞), the green dashed line have respectively a slope of 1 for u

and 1
2
for v. This matches the asymptotic expansion (2.15).
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details. Its structures relevant to our construction have been
reviewed in [6]. From a most pragmatic point of view, E7ð7Þ
ExFT can be viewed as a reformulation of D ¼ 11 super-
gravity (upon splitting the coordinates into 11 ¼ 4þ 7) in
terms of variables that mimic the field content of D ¼ 4
maximal supergravity. In particular, the internal compo-
nents of the D ¼ 11 metric, three-form, and six-form are
assembled into an E7ð7Þ group matrix, the generalized
vielbein, defined as

V ≡ exp ½Aklmnpqt
klmnpq
ðþ4Þ � exp ½Akmntkmn

ðþ2Þ�VGLð7Þ; ð3:1Þ

i.e., as a coset representative of E7ð7Þ=SUð8Þ in a particular
triangular gauge. Here, VGLð7Þ ∈GLð7Þ ⊂ E7ð7Þ is the inter-
nal block of the 11D vielbein (up to some power of its
determinant), while Akmn and Aklmnpq denote the internal
components of the D ¼ 11 three-form and six-form,
respectively, with k; l; m ¼ 1;…; 7. The tðþnÞ refer to
the E7ð7Þ generators of positive grading in the algebra
decomposition

e7ð7Þ → 70−4 ⊕ 35−2 ⊕ glð7Þ0 ⊕ 350þ2 ⊕ 7þ4: ð3:2Þ

All generators in (3.1) are evaluated in the fundamental
56 representation of E7ð7Þ. For a Freund-Rubin (FR)
background (i.e., a solution with Akmn ¼ 0), the para-
metrization (3.1) only involves generators within the
slð8Þ subalgebra of e7ð7Þ and the associated generalized
vielbein can be represented as an 8 × 8 matrix

VFR ∈SLð8Þ=SOð8Þ: ð3:3Þ

For example, for the round S7 with 7-form flux, the
generalized vielbein (3.1) takes the form

VS7 ¼exp½−6tlmnpqr
ðþ4Þ ζkω̊klmnpqr�

�
ω̊3=4 0

0 ω̊−1=4e̊mi

�
∈SLð8Þ;

ð3:4Þ

where ̊emi is the S7 vielbein, ω̊klmnpqr is the associated
volume form, ω̊≡ det ̊emi, ζk is a vector field with

∇̊kζ
k ¼ 1 and tðþ4Þ is evaluated in (3.4) in the 8 repre-

sentation of SL(8).

A. Generalized Leibniz parallelization
and Kaluza-Klein fluctuations

The round S7 with 7-form flux (3.4) has been extensively
studied in the ExFT framework due to its interesting
properties. In particular, it is generalized Leibniz paralle-
lizable, i.e., the generalized vielbein (3.4) is related by an
SO(8) gauge transformation

VS7 ¼ ŮSSOð8Þ; ð3:5Þ

to a twist matrix Ů, such that the associated generalized
frame field U ¼ ρ−1Ů−1 (here, ρ ¼ ω̊−1=2) evaluated in the
56 representation, satisfies the condition

LUA
UB

M ¼ XAB
CUC

M; ð3:6Þ

whereXAB
C is the constant intrinsic torsion. The generalized

diffeomorphisms of the E7ð7Þ ExFT are defined as [8,11]

LΛVM ¼ ΛN
∂NVM − 12∂KΛLðtαÞKLðtαÞMNV

N

þ 1

2
VM

∂NΛN: ð3:7Þ

Explicitly, the twist matrix Ů for the round S7 is given
by [13,14]

Ům
aðYÞ ¼

�
ω̊3=4ðYa − 6ζn∂nYaÞ

ω̊−1=4
∂mYa

�
∈SLð8Þ;

m ¼ f0; mg; a ¼ f1;…; 8g; ð3:8Þ
in terms of the fundamental sphere harmonics YaYa ¼ 1.
As a consequence of (3.6),D ¼ 11 supergravity admits a

maximally supersymmetric consistent truncation around
the round S7 to D ¼ 4,N ¼ 8, SOð8Þ gauged supergravity
[34,35]. In particular, the embedding of the 70 scalar fields
of D ¼ 4, N ¼ 8 supergravity into the 11-dimensional
theory is compactly described in terms of (3.1) as

Vðx; yÞ ¼ ŮðyÞVðxÞ; ð3:9Þ

with the twist matrix Ů from (3.8), and the E7ð7Þ=SUð8Þ
valued matrix VðxÞ carrying the 70 scalar fields of the
D ¼ 4 theory.
Moreover, the existence of a globally defined general-

ized frame allow us to recover the full Kaluza-Klein
spectrum around this background by virtue of the universal
formulas derived in [5,6,15]. Here, we just recall the result.
While (3.9) describes the embedding of the lowest Kaluza-
Klein multiplet into D ¼ 11, the embedding of the infinite
Kaluza-Klein tower of scalar fluctuations jI;ΣðxÞ is most
compactly described as

Vðx; yÞ ¼ ŮðyÞðI þ PIJ Iðx; yÞÞ

¼ ŮðyÞ
�
I þ PI

X
Σ
jI;ΣðxÞYΣðyÞ

�
: ð3:10Þ

Here, YΣðyÞ label the scalar harmonics on S7, and PI ,
I ¼ 1;…; 70 are the 70 noncompact generators of E7ð7Þ.
After subtraction of the nonphysical Goldstone modes, the
action of the mass operator on the scalar fluctuations
J Iðx; yÞ is given by
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ðMspin−0ÞIJ ¼ Mð0ÞIJ þ ðNI
J
C − NJ

ICÞ∂C þ ∂CNI
J
C þ δIJMspin−2; ð3:11Þ

with

Mð0ÞIJ ¼ XAE
FXBF

EðPIPJÞAB þ 1

7
ðXAE

FXBE
F þ XEA

FXEB
F þ XEF

AXEF
BÞðPIPJÞAB

þ 2

7
ðXAC

EXBD
E − XAE

CXBE
D − XEA

CXEB
DÞðPIÞABðPJÞCD þ 1

6
XA

IXA;J;

NI
J
C ¼ −2XA

IPJ;C
A − 2XAJPI

C
A − ½PI;PJ�ABðXCB

A þ 6XAB
CÞ;

Mspin−2 ¼ −∂A∂A: ð3:12Þ

Evaluating this formula with the intrinsic torsion XAB
C from (3.6) and an explicit basis for YΣðyÞ allows us to derive the

Kaluza-Klein spectrum for the full infinite tower of scalar fluctuations. Specifically, for the round S7 vacuum, this
reproduces the result for the scalar Kaluza-Klein towers [36–38]

X
l

ð½lþ 2; 0; 0; 0�l
2
þ1 þ ½l − 2; 0; 0; 0�l

2
þ5 þ ½l − 2; 2; 0; 0�l

2
þ3 þ ½l; 0; 2; 0�l

2
þ2 þ ½l − 2; 0; 0; 2�l

2
þ4Þ; ð3:13Þ

in terms of SO(8) representations, labeled by their Dynkin
weights, with subscripts denoting conformal dimensions.

B. The squashed S7 family in ExFT

The consistent truncation (3.9) to the lowest KK multi-
plet [l ¼ 0 in (3.13)] contains the round S7 vacuum
[corresponding to VðxÞ ¼ I] but no other solution of the
family of squashed backgrounds (2.1). Rather, these
squashings correspond to excitations of scalars from higher
KK levels. Specifically, the squashing (2.1) preserves an
Spð2Þ × Spð1Þ subgroup of isometries, which is embedded
into the SO(8) isometry group of the round S7 such that the
fundamental representations decompose as

SOð8Þ → Spð2Þ × Spð1Þ;
½1; 0; 0; 0� → ½1; 0; 1�; ½0; 0; 1; 0� → ½0; 1; 0� ⊕ ½0; 0; 2�;
½0; 0; 0; 1� → ½1; 0; 1�: ð3:14Þ

A scan of the scalar spectrum (3.13) shows that the
spectrum contains four scalar fields that are singlet under
Spð2Þ × Spð1Þ, sitting at KK levels 0, 2, and 4, respectively,
descending from the SO(8) representations

l ¼ 0∶ ½0; 0; 2; 0�2;
l ¼ 2∶ ½0; 0; 0; 0�6 ⊕ ½0; 2; 0; 0�4;
l ¼ 4∶ ½2; 0; 0; 2�6: ð3:15Þ

The squashed background (2.1) requires a nonvanishing
contribution from the ½0; 2; 0; 0� at level l ¼ 2 [26] and,
thus, lives beyond the consistent truncation (3.9).
However, the embedding of the scalar KK fluctuations

according to (3.10) allows us to explicitly construct

different alternative truncations to other subsets of fields
which in particular allow to embedd the solution (2.1). For
example, the truncation of the full KK spectrum keeping
all singlets under Spð2Þ × Spð1Þ defines a consistent
truncation by the standard symmetry argument; by simple
representation reasoning, singlet fields can never define
nonvanishing sources for nonsinglet fields, it is thus
consistent to truncate out all the nonsinglet fields. This
truncation retains one field from the KK tower of gravitino
fields, and thus corresponds to a D¼4,N ¼ 1 theory [30],
further discussed in [39]. In the scalar sector, the truncation
to Spð2Þ × Spð1Þ singlets only keeps the four scalar
fields (3.15) and can be described in closed form by
integrating the corresponding fluctuations (3.10) to

Vðx; yÞ ¼ ŮðyÞ exp
�X
singlets

ϕiðxÞsI;Σi PIYΣðyÞ
�
: ð3:16Þ

The index i here labels the four Spð2Þ × Spð1Þ singlets
found in the tensor product of the 70 noncompact gen-
erators of E7ð7Þ and the scalar harmonics, thereby defining

the constant tensor sI;Σi . The group theoretical structure
underlying this truncation can be made more transparent by
representing the seven sphere as a coset space [40]

S7 ¼ G
H
¼ Spð2Þ × Spð1Þ0

Spð1ÞL × Spð1ÞD
; ð3:17Þ

where the different Spð1Þ factors are embedded as

Spð2Þ ⊃ Spð1ÞL × Spð1ÞR;
Spð1ÞD ¼ ðSpð1Þ0 × Spð1ÞRÞdiag; ð3:18Þ
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and for clarity we have added a ‘0’ subscript to the Spð1Þ
subgroup of (3.14). The seven sphere (3.17) can be
represented by an ðSpð2Þ × Spð1ÞÞ-valued coset represen-
tative SðyÞ, such that the infinitesimal action of the Spð2Þ ×
Spð1Þ isometry group on the coordinates is realized as

δΛSðyÞ ¼ ΛSðyÞ − SðyÞhΛðyÞ; Λ∈ spð2Þ ⊕ spð1Þ0;
hΛðyÞ∈ spð1ÞL ⊕ spð1ÞD: ð3:19Þ

The consistent truncation (3.16) can then be given in more
compact form as

Vðx; yÞ ¼ ŮðyÞSðyÞWðxÞS−1ðyÞ; ð3:20Þ

with the ðSpð2Þ × Spð1ÞÞ coset representative SðyÞ and an
E7ð7Þ matrix WðxÞ defined to live in the commutant of the
denominator group H ¼ Spð1ÞL × Spð1ÞD in E7ð7Þ, i.e.,

WðxÞh ¼ hWðxÞ ∀ h∈ spð1ÞL ⊕ spð1ÞD: ð3:21Þ

Indeed, (3.19) and (3.21) imply that the factor
SðyÞWðxÞS−1ðyÞ in (3.20) is invariant under the action
of ðSpð2Þ × Spð1ÞÞ up to a compact gauge transformation
acting from the right. The representation (3.20) of the
consistent truncation immediately reveals the geometry
of its scalar target space, given by the commutant of
H ¼ Spð1ÞL × Spð1ÞD in E7ð7Þ=SUð8Þ as

Mscalar ¼
SLð2Þ
SOð2Þ ×

SLð2Þ
SOð2Þ ; ð3:22Þ

a Kähler manifold parametrized by the four scalar fields
from (3.15).3

The D ¼ 4 theory can be obtained by plugging the
ansatz (3.20) into the ExFT Lagrangian of [33]. For the
bosonic sector, parametrizing the matrix W by four
scalar fields fu; v; c; χg, this gives rise to the four-scalar
Lagrangian

jgj−1=2Lð4Þ ¼ Rð4Þ −
63

2
∂μu∂μu − 21∂μv∂μv

− 3e−6u−2v∂μc∂μc −
1

2
e−6uþ12v

∂μχ∂
μχ − Vpot;

Vpot ¼ −6e−9uþ4v − 48e−9u−3v þ 12e−9u−10v

− 72e−15u−12vc2 − 12e−15uþ2vðcþ χÞ2
− 18e−21uð1þ c2 þ 2cχÞ2: ð3:24Þ

It is straightforward to verify that the intersection of the
scalar target space (3.22) with the SLð8Þ of (3.3) capturing
the Freund-Rubin solutions corresponds to a further con-
sistent truncation to two scalar fields which precisely
reproduces the result (2.4) of [31]. The N ¼ 1 consistent
truncation to four scalars (3.24) has already been found
in [30]. What is new in the present construction is its
explicit embedding (3.20) via a twist matrix in ExFTwhich
allows us to apply the universal mass formulas such as
(3.11), (3.12) to any background within this truncation.
With the frame given by

V ¼ ŮSWS−1; ð3:25Þ

a general background will satisfy (3.6), but, in general, with
y-dependent intrinsic torsion XAB

CðyÞ.4 Thus, it is no
longer generalized Leibniz parallelizable, but is still gen-
eralized parallelizable. As a consequence the mass for-
mulas (3.11) and (3.12) still apply. This has been used
in [15] in order to derive the full Kaluza-Klein spectrum
around theN ¼ 1, AdS4 × S7squashed vacuum. In the follow-
ing, we will extend this analysis to also derive quadratic
couplings around the domain-wall background (2.1), or any
other background of the consistent truncation.

IV. COUPLINGS AROUND THE
DOMAIN-WALL BACKGROUND

As we reviewed in Sec. III A, we can efficiently describe
the linearized fluctuations around the round S7 using its
generalized Leibniz parallelization in ExFT. Similarly,
using the generalized parallelization of the family of
squashed S7s of Sec. III B, we obtain a simple expression
of the linearized fluctuations around the family of squashed
S7 that describe the flow of Sec. II. While this was used
in [15] to obtain the full Kaluza-Klein spectrum of the
squashed S7, here we will further extend the computation to
obtain the quadratic couplings of the higher Kaluza-Klein
modes around the domain-wall solution. These couplings
encode all the information about the holographic 2-point
functions along the dual RG flow.

3The same reasoning shows that the analogous construction
based on the coset representation S7 ¼ Spð2Þ=Spð1ÞL of the
seven sphere, yields an N ¼ 4 consistent truncation to the Spð2Þ
singlets with scalar target space given by the commutant of the
denominator group Spð1ÞL in E7ð7Þ=SUð8Þ:

Mscalar ¼
SLð2Þ
SOð2Þ ×

SOð6; 3Þ
SOð6Þ × SOð3Þ ; ð3:23Þ

as explicitly found in [30].

4Because of the scalar fields in WðxÞ, the intrinsic torsion will
also depend on x, but this is standard already in gauged super-
gravity. In particular, it does not interfere with the generalized
(Leibniz) parallelizability.
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In computing the quadratic couplings, we have to choose
a field basis for the Kaluza-Klein fluctuations, or choice of
“frame”. Two natural choices are to multiply the general-
ized vielbein of the 2-scalar truncation, Vðx; yÞ of (3.20),
from the right or left, leading to different kinetic terms for
the scalars u and v and the Kaluza-Klein fluctuations. The
kinetic term of ExFT is given by DμMMNDμMMN with
M ¼ VVT , which can be expressed in terms of the current
JμðVÞMN ¼ ðV−1DμVÞMN as

DμMMNDμMMN ¼ −2ðTrJμJTμ þ TrJμJμÞ: ð4:1Þ

Let us denote the Kaluza-Klein fluctuations by the
matrix δ ¼ exp½PI

P
Σ j

I;ΣðxÞYΣðyÞ�. Then, it is easy to
see that Jμ becomes

JμðVδÞ ¼ δ−1JμðVÞδþ JμðδÞ;
JμðδVÞ ¼ V−1JμðδÞV þ JμðVÞ; ð4:2Þ

depending on whether we multiply the generalized V with
the Kaluza-Klein fluctuations from the left or the right. We
clearly see that multiplying V from the left leaves the
kinetic term for the background, i.e., the kinetic term of the
scalars u and v invariant, but introduces u and v factors into
the kinetic term of the Kaluza-Klein fluctuations. On the
other hand, using Vδ, we find that the Kaluza-Klein
fluctuations enter the kinetic terms of u, v and hence
introduce corrections to the kinetic terms of (3.24). In order
to simply retain the normalization (3.24), we will choose to
define our Kaluza-Klein fluctuations as multiplying the
truncation V from the left. Note that this differs from the
conventions of the Kaluza-Klein spectrometry [5,6,15],
used in (3.10). The quadratic couplings around the
domain wall solutions are then straightforwardly obtained

by evaluating the action of the mass operator (3.11) in
this basis.
Before presenting our results for the quadratic couplings,

let us recall some facts about the spectrum on the left-
squashed S7 from [15,41–44]. The Kaluza-Klein spectrum
is organized into long N ¼ 1 supermultiplets L½J;Δ� in
various Spð2Þ × Spð1Þ representations. These multiplets
are defined by the spacetime spin J and conformal
dimension Δ of their superconformal primaries, given by
the universal formula [15]

ΔJ;s ¼ 1þ 5

3
sþ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3J þ 2s2Þ2 þ 5C3

q
: ð4:3Þ

Here C3 is a combination of the Sp(2) and Sp(1) quadratic
Casimirs, which, for a generic representation with Dynkin
labels ½p; q; r�, is given by

C3 ¼ Cðp; qÞ þ 3CðrÞ

¼ 1

2
ðp2 þ 2q2 þ 4pþ 6qþ 2pqÞ þ 3

4
rðrþ 2Þ: ð4:4Þ

The extra parameter s in (4.3) is a half integer which, for
most Kaluza-Klein towers, surprisingly behaves like an
SL(2) spin. This motivates the following notational con-
vention of [15]

L½J� ⊗ ½s� ¼ ⨁
2s

i¼0

L½J;ΔJ;i−s�;

L½J� ⊗ fs1;…; sng ¼ ⨁
n

i¼1

L½J;ΔJ;si �: ð4:5Þ

The Kaluza-Klein spectrum organises itself into towers
of the form

½k; q; k�k>1;q>1∶ L½3
2
�⊗ ½0� ⊕ L½1�⊗ ½1

2
� ⊕ L½1

2
�⊗ ½1

2
⊗ 1

2
� ⊕ L½0�⊗ ½1

2
⊗ 1�;

½k; q; kþ 2�k>0;q>1 & ½kþ 2; q; k�k>0;q>0∶ L½0�⊗ ½1
2
� ⊕ L½1�⊗ ½1

2
� ⊕ L½1

2
�⊗ ½1

2
⊗ 1

2
�;

½k; q; kþ 4�q>1 & ½kþ 4; q; k�∶ L½1
2
�⊗ ½0� ⊕ L½0�⊗ ½1

2
�; ð4:6Þ

which degenerate for some small values of representations,
such as

½0; 1; 2�∶ L½1�⊗ ½1
2
� ⊕ L½1

2
�⊗ f−1;þ1g: ð4:7Þ

For more details and to see the remaining multiplets
consult [15].
Since the consistent truncation (and thus domain wall)

preserves Spð2Þ × Spð1Þ, different Spð2Þ × Spð1Þ repre-
sentations will not mix along the flow. Therefore, we
can restrict our attention to any fixed Spð2Þ × Spð1Þ
representation to compute their quadratic couplings. As
an illustration of our method, we will evaluate the mass

operator (3.11) on the scalars fields in the ½0; 0; 0�, the
½0; 1; 2� and ½0; 2; 4� representations, which at the squashed
S7 sit in the long multiplets (4.7) and (4.6) as follows:

L½1
2
;Δ�∶ λ⟶

Q
Aμ ⊕ ϕ⟶

Q
λ;

L½0;Δ�∶ ϕ⟶
Q

λ⟶
Q

ϕ: ð4:8Þ

A. [0,0,0] sector

As a warm up, let us compute the quadratic couplings in
the sector of scalar fields singlet under Spð2Þ × Spð1Þ,
forming the bosonic sector of the N ¼ 1 truncation
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of [30,39]. This sector carries four scalar-field fluctuations
whose basis we label as φi. The computation is straightfor-
ward; we first compute the intrinsic torsion from (3.25),
whereW is evaluated on the domain-wall solution. Next we

build the associated mass operator (3.11) and evaluate its
action on the scalar fluctuations in this sector. The final
result for the quadratic fluctuations in this sector takes
the form

L½0;0;0� ¼ −
1

2
ð∂μφ1∂

μφ1 þ ∂μφ2∂
μφ2Þ −

1

2
e−6u−2v∂μφ3∂

μφ3 −
1

2
e−6uþ12v

∂μφ4∂
μφ4

− ð54e−21u þ 16e−9u−10v − 36e−9u−3v − 2e−9uþ4vÞφ2
1 − 12e−15uþ2vφ2

4

þ 2
ffiffiffi
6

p
ð9e−21u − 4e−9u−10v − e−9uþ4vÞφ1φ2 − 3ð3e−21u þ 2e−9u−10v − e−9uþ4vÞφ2

2

− 2ð3e−21u þ 6e−15u−12v þ e−15uþ2vÞφ2
3 − 4

ffiffiffi
6

p
ð3e−21u þ e2v−15uÞφ3φ4; ð4:9Þ

where u and v denote the domain wall solution constructed
in Sec. II above. One verifies that at the endpoints of the
flow, the Lagrangian (4.9) reproduces the masses of the
scalar fields for the squashed and the round S7. In fact,
since all four scalar singlets lie within theN ¼ 1 truncation
(3.22), we could have arrived at this result directly by
linearizing the potential (3.24). It is a good consistency
check of our method, that the results indeed agree. In
contrast, the scalar fluctuations at higher KK levels do not
lie within a consistent truncation and the respective
couplings can only be obtained by the mass operator
(3.11), as we shall discuss in the following. We finally
note that in order to study the complete set of fluctuation
equations in this singlet sector, one also has to take into

account the fluctuations of the metric around the AdS4
background.

B. [0,1,2] sector

Let us now extend the computation to scalar modes that
do not lie within the consistent truncation. As an example,
we choose the sector in the ½0; 1; 2� representation of
Spð2Þ × Spð1Þ. This is the representation of the vector
fields that become massless on the round S7. As a
consequence, the associated scalar Goldstone modes on
the squashed sphere become physical scalars on the round
sphere. There are, in total, eight scalar fluctuations ϕi
transforming in the ½0; 1; 2� representation. Repeating the
above computation in this sector leads to the Lagrangian,

L½0;1;2� ¼ −
1

2
e−7vð∂μϕ1∂

μϕ1 þ ∂μϕ2∂
μϕ2Þ −

1

2
e−6u−9v∂μϕ3∂

μϕ3 −
1

2
e−6u−2v∂μϕ4∂

μϕ4

−
1

2
e−6uþ5vð∂μϕ5∂

μϕ5 þ ∂μϕ6∂
μϕ6Þ −

1

2
e−12u−4v∂μϕ7∂

μϕ7 −
1

2
e−12uþ3v

∂μϕ8∂
μϕ8

− ð10e−9u−10v − 2e−9u−3vÞϕ2
1 − 4e−15u−5vϕ2

345 − 4
ffiffiffi
2

p
ðe−15u−5v þ 3e−21uÞϕ6ϕ345

− ð6e−15u−5v þ 4e−15uþ2v þ 4e−15uþ9v þ 6e−21uÞϕ2
6; ð4:10Þ

with ϕ345 ¼ ϕ3 þ ϕ4 þ ϕ5. The result shows that the
potential only depends on three out of the eight ϕis.
Therefore, the remaining five fluctuations are Goldstone
modes along the flow. It is interesting to compare this
with the squashed sphere endpoint. From equations (4.6)
and (4.8) we see that at the squashed S7 vacuum there are
only two physical scalars in the ½0; 1; 2� in the spectrum.
Indeed, plugging in the values of u and v for the squashed
S7 (2.5), we see that ϕ1 additionally drops out of the

potential at the squashed S7 endpoint, thus reproducing the
expected number of Goldstone scalars. Moreover, the
potential (4.10) reproduces the masses of the scalar fields
at the squashed and round S7 points.

C. [0,2,4] sector

As a last example, we study the six scalars ψ i in the
½0; 2; 4� representation. Their quadratic couplings are
obtained by the analogous computation and read
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L½0;2;4� ¼−
1

2
e−7v∂μψ1∂

μψ1−
1

2
e−6u−2vð∂μψ3∂

μψ3þ∂μψ4∂
μψ4Þ−

1

2
ð∂μψ5∂

μψ5þ∂μψ6∂
μψ6Þ

−
1

2
e−6uþ5v

∂μψ2∂
μψ2−6e−9uð3e−10vþe−3vÞψ2

1−8e−9u−10vð
ffiffiffi
5

p
ψ5−

ffiffiffi
3

p
ψ6Þψ1

−4e−9uðe−10vþ5e−3vþe4vÞψ2
5−4e−9uðe−10v−e−3vþ3e4vÞψ2

6

−ð6e−15u−5vþ8e−15uþ2vþ12e−21uÞψ̃2
3−ð10e−15u−5vþ8e−15uþ2v−12e−21uÞψ̃2

4þ4
ffiffiffiffiffi
15

p
e−15u−5vψ̃3ψ̃4; ð4:11Þ

where ψ̃3 ¼ ψ3 − 1
2

ffiffiffi
3

p
ψ2, ψ̃4 ¼ ψ4 − 1

2

ffiffiffi
5

p
ψ2. The poten-

tial only depends on five out of the six scalars. Therefore,
one scalar field will be a Goldstone mode along the entire
flow. Finally, as a consistency check, the potential (4.11)
again reproduces the masses at both of the endpoints.

D. Comments

We have shown how the mass operator (3.11) allows to
determine the quadratic couplings of scalar fluctuations
around the domain-wall background constructed in Sec. II.
We have restricted to spelling out three examples, but the
method of course extends to all higher KK levels. The
resulting couplings [(4.9), (4.10), and (4.11)] carry the full
information for the computation of the holographic 2-point
functions along the dual RG flow. The corresponding
computation requires a careful setup of the holographic
renormalization procedure along the lines of [3,45,46], and
will be interesting to take on in the future.

V. CONCLUSIONS

In this paper, we revisited the problem of constructing a
domain-wallsolutioninterpolatingbetweentheN ¼1AdS4 ×
S7squashed and N ¼8 AdS4 × S7round vacua of 11-dimensional
supergravity. There is no supersymmetric domain wall pre-
serving the Spð2Þ × Spð1Þ ⊂ SOð8Þ isometry of the squashed
S7, as can, for example, be seen by noting that the N ¼ 8

gravitini of the round S7 are not Spð2Þ × Spð1Þ singlets.
Instead, we construct an explicit nonsupersymmetric flow by
using a consistent truncation to 4-dimensional N ¼ 1 super-
gravity [28,30] and solving the second-order flow equations
numerically. Interestingly, within this N ¼ 1 truncation, the
N ¼ 8 round S7 appears nonsupersymmetric, since its mass-
less gravitini reside amongst the higher KK modes.
Extending recent techniques from ExFT [5,6,15], we

were able to compute the quadratic couplings of KK
fluctuations around the domain-wall solution (or any other
solution of the 2-dimensional truncation). This relied on the
fact that the family of squashed S7 still admits a triviali-
zation of the generalized tangent bundle [15], allowing us
to construct a globally well-defined generalized frame
Vðx; yÞ. However, the intrinsic torsion XMN

PðyÞ of this
generalized frame is not constant, reflecting the fact that the
squashed S7 only admits consistent truncations to N ¼ 4
or N ¼ 1 but not N ¼ 8. We presented the quadratic

couplings of some low-lying KK scalars, but the same
method can be applied to any other KK tower. This encodes
the information needed to extract all the holographic two-
point functions along the flow.
Our work opens up several natural directions for future

investigations. One would be to understand the analytic
structure underlying the quadratic couplings of Sec. IV,
similar to the group-theoretic formula that appear in the KK
spectra of vacua with sufficient isometries, e.g., [6,22]. For
this it would be useful to extend our computation of the
quadratic couplings to other KK towers. Another interest-
ing question would be to push the calculations of Sec. IV to
cubic order, giving access to 3-point functions along the
RG flow on the field theory side. These results yield the
relevant input for the holographic renormalization pro-
cedure [3,45,46], that would allow us to precisely obtain
the field-theory correlators along the flow.
Finally, our results here, together with [15], provide the

first extension of the ExFT formalism of Kaluza-Klein
spectroscopy [5,6] beyond generalized parallelizable
spaces, i.e., vacua of maximally supersymmetric consistent
truncations. While the family of squashed S7’s still admits a
generalized parallelization, there is no longer an N ¼ 8
consistent truncation that the solutions belong to. Hence
our method here provides a first window into how to
generalize the Kaluza-Klein spectroscopy to more general
truncations that break some supersymmetry.
All of these questions will allow us to address the ultimate

question; how does having a consistent truncation affect the
structure of correlation functions in the holographic dual?
We leave these exciting research endeavors for the future.
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