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Effect of spatially oscillating field on Schwinger pair production is studied numerically and analytically
when the work done by the electric field over its spatial extent is smaller than twice the electron mass.
Under large spatial scale, we explain the characteristics of the position and momentum distribution of
created pairs via the tunneling picture for the Dirac vacuum. Moreover, the exact Dirac-Heisenberg-Wigner
formalism can be simplified by some alternative methods such as local density approximation, analytical
approximation, and locally constant field approximation when the spatial scale is large in a certain of spatial
oscillating cycle number. Also, the validity of these alternative methods are illustrated and discussed. For
the studied spatially oscillating field, our results show that the maximum reduced particle number is about 5
times in comparison with the maximum one of nonoscillating inhomogeneous field.
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I. INTRODUCTION

Schwinger effect is one of the fascinating nonperturbative
phenomena in quantum electrodynamics (QED) [1–5]. This
effect has not been yet observed directly in the laboratory as
the critical field strength Ecr¼m2c3=eℏ≈1.3×1016V=cm
(corresponding laser intensity is about 4.3 × 1029 W=cm2,
where m and −e are the electron mass and charge) is not
feasible so far [6–8]. With the rapid development of laser
technology, however, the forthcoming laser intensity [9,10]
is expected to reach 1024–1026 W=cm2, which has raised
hopes of observing pair production in the future [11].
The effects of spacetime-dependent inhomogeneous

fields on pair production is an interesting issue for studies
in the strong field QED. It is known that the different spatial
or temporal shapes of the field have different effects
on the pair production [12,13], e.g., temporal Sauter
envelope [14], spatial Sauter envelope [15], temporal super-
Gaussian envelope [16], spatial Gaussian envelope [17],
etc. Additionally, the influence of different field parameters
is also important, e.g., frequency chirp effect [18–20] and
phase effect [21]. For the non-plane-wave background
field, there are many studies for either some simple spatial

inhomogeneous fields like the cosine, Sauter, and Gaussian
shapes [15–20] or some time-dependent fields with tem-
poral shapes [22–25].
As we mentioned earlier, the different temporal or spatial

shapes of the field have different effects on the pair
production. Though there are many studies on it, there
are still a series of problems. For example, in Refs. [26–30],
the effect of spatial or temporal oscillating field on pair
production is investigated, while for the spatial oscillating
field, the coupling effect of spatial scale and spatial
oscillation on pair production needs further study. Among
them there is a special case, in which the work done by the
electric field over its spatial extent (we denote itW) may be
smaller than twice the electron mass. In this special case,
however, the previous studies [31–34] are focusedmainly on
the fields with Gaussian-like shapes. To our knowledge, an
effect of the spatially oscillating inhomogeneous field on the
pair production is still lacking enough research, therefore, it
is necessary to study the effect of spatially oscillating field in
the specific W < 2mc2.
Under such circumstance, we intend to study and answer

some of the involved problems. For example, what will
happen to the distribution of pair production? Will the local
density approximation (LDA) be applied to it? Can the
LDA be explained by analytical approximation (AA)?
What is the difference between LDA, AA, and locally
constant field approximation (LCFA)? On the other hand,
the tunneling picture has played a key role in the vacuum
pair production beside the multiphoton mechanism for the
temporal oscillating field when ℏω ≤ 2mc2, where ω is the
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field frequency [31], which has been seen from the study of
some interesting fields [35]. Thus, it would be also helpful
to understand the results of present research from the
viewpoint of tunneling time and distance.
It is necessary to give a simple introduction to some

of the widely used and powerful tools that can calculate
particle distribution in spatial oscillating inhomogeneous
fields. Among many methods to investigate pair produc-
tion, as far as we know, some important ones include
the worldline instanton (WI) technique [36–51], real-time
Dirac-Heisenberg-Wigner (DHW) formalism [52–56],
computational quantum field theory [57–61], imaginary-
time method [62], quantum Vlasov equation (QVE)
[63–67], Wentzel-Kramers-Brillouin approach [68–71],
scattering matrix approach [72–84], and so on. It is noticed
that the DHW formalism allows us to investigate the pair
production for any background field [16]. On the other
hand, due to the nature of the pair production under a
spacetime-dependent field, one can find only a few ana-
lytical results for simple background modes [35,85–88].
Hence, we have to adopt numerical methods to study
various natures of pair production. In the present work,
wewill use theDHWformalism as our numerical approach.
Motivated by the factors mentioned above, in this paper,

we investigate the vacuum pair production whenW<2mc2.
First, we give a simple perspective picture which reveals
mainly the tunneling process. We further demonstrate its
correctness for the pair production via different numerical
approaches and analytical approximation. We interpret why
and how the electron-positron pair can create from the
vacuum. Moreover, we present and discuss the exact
tunneling distance and time of the created particle, which
is employed to understand the characteristics of the position
and momentum distribution of created pairs. We further
show a relationship between the position distribution and
tunneling time by employing the WI approach. Finally, we
study the validity of LDA, AA, and LCFA [89] by
comparing with the exact DHW result for large spatial scale.
The paper is organized as follows. In Sec. II, we briefly

introduce the background field and tunneling picture in the
Dirac vacuum. In Sec. III, numerical and analytical
approaches are introduced. In Sec. IV, we derive the
analytical solution of the tunneling time for large spatial
scale via the WI technique. In Sec. V, we give and discuss
our numerical and analytical results and interpret the
momentum and position distributions of created pairs.
Meanwhile, we show the relationship between the tunnel-
ing time and position distribution and explain the position
distribution. In Sec. VI, we compare the results of LDA,
AA, and LCFA with those of DHW formalism at large
spatial scale and discuss the validity of them. Finally, the
summary is given in Sec. VII.
We use the natural units (ℏ ¼ c ¼ 1) throughout this

paper and express all quantities in terms of the electron
mass m.

II. BACKGROUND FIELD AND TUNNELING
PICTURE IN THE DIRAC VACUUM

A. Background field

In order to better understand, we consider an example of
a spacetime-dependent spatially oscillating electric field. In
our study, we ignore particle momenta orthogonal to this
dominant direction [32]. We choose the scalar potential
gauge Aμðx; tÞ ¼ ðA0;AÞ ¼ ðϕðxÞfðtÞ; 0; 0; 0Þ. The elec-
tric field can be written as

Eðx; tÞ ¼ −∇A0 ¼ εEcrgðxÞfðtÞ; ð1Þ

where gðxÞ ¼ cos ðkxÞe− x2

2λ2 and fðtÞ ¼ sech2ðt=τÞ, τ is
pulse duration, ε is the peak field strength, Ecr denotes
the Schwinger critical field strength, λ is spatial scale, k is
the spatial wave number, and σλ ¼ kλ is the spatial
oscillating cycle number. Accordingly, the spatial part of
the corresponding scalar potential is

ϕðxÞ ¼ −
ffiffiffi
π

p
λffiffiffi
8

p e−
1
2
k2λ2

�
erf

�
x − ikλ2ffiffiffi

2
p

λ

�
þ erf

�
xþ ikλ2ffiffiffi

2
p

λ

��
:

ð2Þ

To have better comparable optimization schemes, we
consider the external field which has the same energy in the
spacetime with different k, λ, and τ, so that we define a
baseline ε0 ¼ 0.5 when k ¼ 0. Then the energy area
density of the external field would keep the same as

E ∼
Z Z

E2ðx; tÞdxdt ¼ constant: ð3Þ

From it we can obtain the peak field strength for different k as

εðk; λÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

1þ e−k
2λ2

s
ε0: ð4Þ

In Fig. 1, symbols A and B represent W ≥ 2mc2 and
W < 2mc2 cases, respectively. Note that the vacuum pair
production in the regime of A is well understood in many
previous works [32–34], but the pair creation in regimes of B
lacks enough study, which is the focusing parameters range in
the present research.

B. Tunneling picture in the Dirac vacuum

The electron-positron pair will create from the vacuum
after the particle jumps from any negative high energy state
at xþ ¼ xþ Δx to any positive low energy state at x− ¼
x − Δx in the Dirac semiclassical picture of the vacuum
when the workW ¼ e

R
E · dx < 2mc2 as shown in Fig. 2.

The electron position distribution depends on the center-of-
mass coordinate x [52], thus, we will consider the above
transition probability of the particle at x in order to interpret
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the position and momentum distributions of electron.
Moreover, we can obtain the transition (tunneling) distance
d ¼ xþ − x− ¼ 2Δx, see Fig. 2. Note that this quantum
jumping process includes the tunneling process under an
external spatial oscillating spacetime-dependent field. The
energy gap between the two energy bands ΔE is trans-
formed into the created pair’s energy. From energy con-
servation of this process, ΔE ¼ Ee− þ Eeþ , we can find the
general relativistic relation under the pure external field
(does not include the ponderomotive force and charge
density [32,34]) as

�
ΔE
2

�
2

¼ m2� þ p2; ð5Þ

where m� is effective mass [90], and p represents the
kinetic momenta [20]. According to our new perspective
picture, the electron-positron pair can escape successfully
from the vacuum by jumping from the negative high energy

state to the positive low energy state when W < 2mc2.
This is why the electron-positron pairs can get out of the
vacuum. In this work, we only consider the maximum
transition probability (positive and negative energy gap is
maximum) in order to interpret the maximum of the
momentum distribution. The maximum energy gap is
ΔE ¼ E−ðxÞ − EþðxÞ in Fig. 2, and these energy bands
can be written as E�ðxÞ ¼ �mc2 þ ϕðxÞ.

III. NUMERICAL AND ANALYTICAL METHODS

A. DHW formalism

For studying the electron-positron pair production
of vacuum in the background fields, we write the
Lagrangian [33]

LðΨ;Ψ̄;AÞ¼ i
2
ðΨ̄γμDμΨ− Ψ̄D†

μγμΨÞ−mΨ̄Ψ−
1

4
FμνFμν;

ð6Þ

where Dμ ¼ ð∂μ þ ieAμÞ is the covariant derivative and

correspondinglyD†
μ ¼ ð∂μ

↼
− ieAμÞ. In order to describe the

dynamics of the particles, we need the Dirac equation

ðiγμ∂μ − eγμAμðrÞ −mÞΨðrÞ ¼ 0; ð7Þ

and the adjoint Dirac equation

Ψ̄ðrÞðiγμ∂μ
↼ þ eγμAμðrÞ þmÞ ¼ 0: ð8Þ

The Dirac spinors Ψ, Ψ̄ and the vector potential AμðrÞ are
the main ingredients in the DHW formalism. Note that the
background is considered to be a classical one. Further, we
introduce the density operator as [33]

Ĉαβðr; sÞ ¼ UðA; r; sÞ½Ψ̄βðr − s=2Þ;Ψαðrþ s=2Þ�; ð9Þ

where r and s denote the center-of-mass and the relative
coordinate of two particles. The Wilson line factor is used
to make the density operator gauge invariant under the
Uð1Þ gauge [32]

UðA; r; sÞ ¼ exp

�
ies

Z
1=2

−1=2
dξAðrþ ξsÞ

�
: ð10Þ

In order to perform numerical calculations, we use the
DHW formalism as the powerful tool in our study because
it allows us to investigate vacuum pair production for the
inhomogeneous field [52]. Note that only the equal-time
Wigner function can be used to get the needed evolution of
the system for the studied problem of pair production [48];
thus, all the quantities are for the components of the equal-
time Wigner function in the following, even if they are still
denoted as an uppercase letter. Now we can apply the DHW

FIG. 2. Plot for the Dirac vacuum under high spatial oscillating
spacetime-dependent electric field, where E�ðxÞ ¼ �mc2 þ
ϕðxÞ when W < 2mc2, where ϕðxÞ is the spatial part of the
scalar potential of the background field as shown in Eq. (2). The
magenta and blue lines denote the EþðxÞ (minimum positive
energy band) and E−ðxÞ (maximum negative energy band) for the
same center-of-mass coordinate x, respectively.
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FIG. 1. Plot of the workW for k and λ. Areas A and B represent
W ≥ 2mc2 and W < 2mc2, respectively. The magenta line
denotes W ¼ 2mc2.
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formalism to the case of one spatial dimension, in which
there are only four Wigner components, S, V0, Vx, and P
for electric field Eðx; tÞ. The DHW equations of motion in
this case of 1þ 1 can be written as [32]

DtS − 2pxP ¼ 0; ð11Þ

DtV0 þ ∂xVx ¼ 0; ð12Þ

DtVx þ ∂xV0 ¼ −2P; ð13Þ

DtPþ 2pxS ¼ 2mVx; ð14Þ

where

Dt ¼ ∂t þ e
Z

1=2

−1=2
dξExðxþ iξ∂px

; tÞ∂px
: ð15Þ

Here, S is mass density, V0 is charge density, Vx is
current density, and P is somewhat associated to pseudo-
scalar condensation [33,34,54,91]. Note that the role of
transverse momentum of particles is that it determines
directly the current density on the transverse momentum
direction. Theoretically, one could take into account the
transverse momentum in the involved research, but we
ignore it in our present study due to two main reasons. The
first one is that the transverse momentum has little effect on
the problem we are studying. Since the direction of the
electric field is along the x axis and the particle appears
mainly in the direction of the electric field, the study can
thereby be simplified to the case where the transverse
momentum is assumed to be zero [19,32,54]. The second
one is that, if the transverse momentum is taken into
account, the dimension of our DHW formula will be high,
which will lead to a very large amount of computation
work [16,26].
In order to perform simulation more conveniently, we

can define four Wigner components as W0 ¼ S, W1 ¼ V0,
W2 ¼ Vx ¼ V , andW3 ¼ P. So from the initial conditions
given by the vacuum solution for single particle,

SvðpxÞ ¼ −
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2
x

p ; VvðpxÞ ¼ −
2pxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

x

p ; ð16Þ

where upper indicator “v” represents the vacuum initial
condition [33] in our work. We have the modified Wigner
components as

Wv
i ¼ Wi −Wv

i : ð17Þ

Finally, we can calculate the particle number density at
asymptotic times tf → þ∞,

nðx; px; t → þ∞Þ ¼ Sv þ pxVv
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2
x

p : ð18Þ

The momentum and position distributions are given by

nðpx; t → þ∞Þ ¼
Z

dx
2π

nðx; px; t → þ∞Þ; ð19Þ

nðx; t → þ∞Þ ¼
Z

dpxnðx; px; t → þ∞Þ: ð20Þ

The total particle number is readily achieved by

Nðt → þ∞Þ ¼
Z

dpxnðpx; t → þ∞Þ: ð21Þ

It is worth pointing out that for the convenient
comparison we should cope with the reduced quantities
n̄ðpx; t → þ∞Þ ¼ nðpx; t → þ∞Þ=λ and N̄ðt → þ∞Þ ¼
Nðt → þ∞Þ=λ under the same energy.

B. LDA

When the spatial variation scale is much larger than the
Compton wavelength λ ≫ λC, the vacuum pair production
can be described by LDA [32]. If the field is written as
Eðx; tÞ ¼ εEcrgðxÞhðtÞ, then we can set εðxÞ ¼ εEcrgðxÞ as
an effective field strength, where hðtÞ is an arbitrary time-
dependent function. We can obtain momentum and posi-
tron distributions by summing results for homogeneous
fields with different field strengths given as [32]

n̄locðpx;p⊥;t→þ∞Þ¼
Z

dx
2π

n̄locðεðxÞjpx;p⊥;t→þ∞Þ;

ð22Þ

n̄locðx; t → þ∞Þ ¼
Z

dpxdp⊥n̄locðεðxÞjpx; p⊥; t → þ∞Þ:

ð23Þ

Note that n̄locðεðxÞjpx; p⊥; t → þ∞Þ in Eqs. (22)
and (23) is a general form of the LDA in the multidimen-
sional case. However, for our electric field, the dominant
contribution on the Schwinger effect is along the direction
of the electric field. Therefore, the transverse momentum
p⊥ is ignored, which reduces the multidimensional
LDA form to the 1þ 1-dimensional LDA one [32],
i.e., n̄locðεðxÞjpx;0;t→þ∞Þ≔ n̄locðεðxÞjpx;t→∞Þ. The
n̄locðεðxÞjpx; t → ∞Þ can be found by using quantum
kinetic theory at any fixed point x for a time-dependent
electric field EðtÞ ¼ εðxÞhðtÞ [32].
We choose the time-dependent spatial homogeneous

DHW method to find one-particle distribution [92] and
calculate the LDA result. The one-particle momentum
distribution function nðp; tÞ can be obtained by solving
the following ten ordinary differential equations and the nine
auxiliary quantities V iðp; tÞ, Aiðp; tÞ, and T iðp; tÞ [24,92]:
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ṅ ¼ e
2Ω

E · V;

V̇ ¼ 2

Ω3
ððeE · pÞp − eΩ2EÞðn − 1Þ

−
ðeE · VÞp

Ω2
− 2p ×A − 2mT ;

Ȧ ¼ −2p × V;

Ṫ ¼ 2

m
½m2Vþ ðp · VÞp�; ð24Þ

where Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
is the total energy of the

particle. V iðp; tÞ, Aiðp; tÞ, and T iðp; tÞ are the three-
dimensional Wigner components, and Viðp; tÞ ¼ V iðp; tÞ−
ð1 − nðp; tÞÞVv

i ðp; tÞ, i ¼ 1; 2; 3 represents the x, y, and z
directions, respectively. We will drop the indices in V ,A, T ,
and V to improve readability. Note that V is related to three-
dimensional current density V and one-particle distribution
function n, thus, V is not current density, but the coupling
function of the V and n. For our electric field, there is
only the current density on the x direction; at that time, the
current density on the x direction in Eq. (24) is the same
as the current density in Eq. (12). Initial condition values
are selected as nðp;−∞Þ ¼ Vðp;−∞Þ ¼ Aðp;−∞Þ ¼
Tðp;−∞Þ ¼ 0 in order to perform the calculation.

We can further obtain the one-particle momentum distribu-
tion nðp; tÞ.
It is worthy to note that, in our simulation, the Runge-

Kutta method of 8(5, 3) order is used in order to avoid
unphysical results during numerical calculation, in which
we used RelTol ¼ AbsTol ¼ 10−10 (where we have speci-
fied a relative tolerance RelTol as well as an absolute error
tolerance AbsTol). In order to calculate the various dis-
tributions with high accuracy, the lattice sizes have been set
to Nx×Npx

¼8192×4096 and Nx × Npx
¼ 16384 × 4096

for low and high spatial oscillating fields. Meanwhile, we
have considered the range of wave number k and spatial
scale λ as 0 ≤ k ≤ 0.1 m and 1.6 ≤ λ ≤ 300m−1, respec-
tively. The grid sizes have been set as Nk × Nλ ¼ 20 × 50
in the work.

C. Analytical approximation for large spatial scale

The result can be obtained analytically by replacing the
field strength ε in the analytical one-particle distribution
solution with an effective field strength εðxÞ ¼ εEcrgðxÞ in
the spacetime-dependent field when the field spatial scale is
large. For example, we can get the analytical solution
explicitly for Eðx; tÞ ¼ εEcrgðxÞsech2ðt=τÞ by replacing ε
in the QVE solution for EðtÞ ¼ εsech2ðt=τÞ [33] with εðxÞ
as [refer to Eq. (99) of Ref. [87]]

nðx; px; p⊥; t → þ∞Þ ¼
2 sinh

�
πτ
2
½2eτεðxÞ þ Q̃ðxÞ −QðxÞ�

�
sinh

�
πτ
2
½2eτεðxÞ − Q̃ðxÞ þQðxÞ�

�
sinh ðπτQ̃ðxÞÞ sinh ðπτQðxÞÞ ; ð25Þ

where

Q̃ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥ þ ðpx þ 2eτεðxÞÞ2

q
; ð26Þ

QðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥ þ ðpx − 2eτεðxÞÞ2

q
: ð27Þ

In the following, we denote this treatment as the analytical
approximation for the large spatial scale approach. Here the
transverse momentum p⊥ is ignored in the AA for the
1þ 1 case.

IV. TUNNELING TIME FOR LARGE
SPATIAL SCALE

To interpret explicitly the features of the position
distribution, one needs to introduce tunneling time for
the spacetime-dependent inhomogeneous field when the
spatial variation scale is much larger than the Compton
wavelength λ ≫ λC (slowly varying envelope approxima-
tion). Note that our tunneling picture cannot directly
calculate the tunneling time, but we can obtain it by using

the WI technique in continuous position space and add to
the shortcoming of the tunneling picture. The relationship
between tunneling time in the Minkowski space and
Euclidean space has been investigated in Ref. [35]. Tt is
the tunneling time for any spacetime-dependent inhomo-
geneous fields, x� are the classical turning points, xmin

4 and
xmax
4 are the maximum and minimum of the fourth WI path
x4 in the Euclidean space, and ϕðxÞ is the potential of the
field. From Ref. [35], we can know the definition of the
tunneling time; the time taken by the particle from x− to xþ
in the barrier region is tunneling time (quantum tunneling
time). Further, we can achieve the tunneling time easily by
performing Wick rotation in order to simplify the path
integral via x4 ¼ it, see Ref. [15]. The tunneling time can
be written as [35]

Tt ¼ 2ðxmax
4 − xmin

4 Þ: ð28Þ
If we choose the single-pulse time-dependent electric
background,

EðtÞ ¼ Esech2ðt=τÞ: ð29Þ
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The WI paths can be obtained in the scalar or spinor
QED [15],

x3ðuÞ ¼
m
eE

1

γ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p arcsinh½γ cos ð2πuÞ�; ð30Þ

x4ðuÞ ¼
m
eE

1

γ
arcsin

�
γffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p sin ð2πuÞ

�
; ð31Þ

where 0 ≤ u ≤ 1. Due to a lack of analytical solution, it is
hard to obtain the analytical solution of the tunneling time
directly under the spacetime-dependent inhomogeneous
field. When the spatial variation scale is much larger than
the Compton wavelength λ ≫ λC, we can use spatial slowly
varying envelope approximation. Thus, the tunneling time
for the spacetime-dependent field can be locally described
by replacing the ε in the analytical tunneling time solution
under the time-dependent field with εðxÞ ¼ εEcrgðxÞ. The
tunneling time for our field could be obtained as

TtðxÞ ¼ 2τ arcsin

�
γðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2ðxÞ
p

�
; ð32Þ

where

γðxÞ ¼ m
eτjεðxÞj : ð33Þ

Note that the tunneling time was obtained by using the WI
technique [15], and obviously it is based on the Bohm
viewpoint [93].

V. RESULTS

Now, we begin to prove the correctness of our perspec-
tive picture by adopting numerical and analytical methods.
Here we use the DHW formalism and LDA and AA
approaches.
The reduced total particle number achieved by the DHW,

LDA, and AA approaches is shown in Fig. 3(a). Our results
show that the maximum reduced particle number is about
5 times by comparing to that of [32], meanwhile, the
maximum number corresponds to the parameter regime that
belongs to area A. Interestingly, however, the particle
number when W < 2mc2 is still larger than the normal
case (k ¼ 0) in Fig. 3(a). On the other hand, the particle
number when k ≠ 0 is always larger than that when k ¼ 0,
by the way, in whole area A, we would recover the result to
the Fig. 2 of Ref. [32]. Although the particle number is the
same number for the same k and large space scale, we can
find that the particle number for large λ decreases with the
increase of k. This may be influenced by the spatial
oscillating effect of the field on the pair production.
Furthermore, the total particle distributions and
maxima obtained from the three different approaches are
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FIG. 3. Reduced total particle number (a) and error tolerance
(b) with λ for different k. The solid line, dashed line, and symbols
denote the DHW, LDA and AA results, respectively. The black
line/circle, red line/triangle, and blue line/square correspond to
k ¼ 0.00, 0.03, and 0.10 m, respectively. N̄ in (b) represents the
LDA/AA result. (c) is the σcr with k, where the red line is a linear
fit of the form σcrðkÞ ≈ 20ðk=mÞ. Other parameters are ε0 ¼ 0.5
and τ ¼ 10m−1. Note that the field is chosen under the same field
energy.
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approximately the same for appropriate λ. From Fig. 3(b),
we find that the error tolerance jN̄ − N̄DHWj=N̄DHW is lower
3.8%, the reduced particle numbers obtained by the LAD
and AA are the same as the DHW result when λ ≥ 20m−1,
where λcr ¼ 20m−1. We can further obtain a relationship
between the critical spatial oscillating cycle number σcr and
k, as shown in Fig. 3(c). We find that this relationship is
linear and it can be fitted as σcrðkÞ ≈ 20ðk=mÞ. When k is
maximum (kmax ¼ 0.1m), σmax

cr ¼ σcrðkmaxÞ ¼ 2. For the
whole situation, when σcr ≥ 2, the DHW, LDA, and AA
results are the same.
Although the approximate same reduced total particle

number is obtained by the different three methods of DHW
formalism, LDA, and AA, it does not mean that the created
pair experiences the same physical process. To see
their differences, the momentum distribution is plotted in
Fig. 4(a). While different approaches have different
momentum distributions, they have almost the same area,
which leads to the same total particle numbers approx-
imately. Now we can interpret it by using our perspective
picture mentioned in Sec. II, for example, the momentum
corresponding to the maximum of the momentum distri-
bution. As shown in Fig. 4(b), one notes that the electron in
the negative energy state jumps from point A to point B,
and during this process, the energy gap ΔE between A and
B points would transform the energy to the created pair. At
the same time, the transition probability of the electron is
the largest because the transition probability is proportional
to the energy gap ΔE and inversely proportional to
the transition, i.e., tunneling, distance d ¼ xB − xA ¼
2Δx ¼ π=k, where xB and xA are the positions of A and
B points in Fig. 4(b). Thus, the maximal energy gap could
be found as ΔE ¼ EB − EA ≈ 12.1014 m, where EB and
EA denotes the energy for A and B points in Fig. 4(b),
respectively. Then we can obtain p ≈�5.96749 m appro-
priately for x ¼ 0 point by using Eq. (5). Surprisingly, this
value is just appropriately the momentum corresponding to
the maximum of the momentum distribution for LDA
formalism, i.e., ppeak ≈�5.97215 m in Fig. 4(a). We stress
that, although the momentum distributions of the LDA and
AA methods are exactly the same shape, the LDA and AA
methods do not include the charge density as comparable to
the DHW formalism where the charge density is present.
The reason why the DHW result differs from those of LDA
and AA is that the DHW formalism contains charge density
V0, see Eq. (12), but the LDA and AA do not contain it,
see Eq. (24).
It is emphasized that this does not mean that the

tunneling picture is not really accurate together with
LDA and AA in this case. From the reduced particle
number in Fig. 3(a), we can see that the results obtained by
the three methods of DHW, LDA, and AA are consistent
with each other. In particular, the reduced particle number
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FIG. 4. Plots of momentum distribution (a), Dirac vacuum (b),
and position distribution (c) when W < 2mc2. The magenta,
blue, and green dashed lines represent the DHW, LDA, and AA
approaches, respectively, when k ¼ 0.1 m, λ ¼ 300m−1, and
τ ¼ 10m−1.
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in Fig. 3(a) is obtained from the particle number density by
integrating over the whole phase space (the position
and momentum space), see Eq. (21). From the above
results, we can know that the tunneling picture is accurate
together with LDA and AA. In this work, there are some
difficulties in extending it to the more general consider-
ations and more universal criteria. The reason is that, at
small spatial scales, there is a strong influence of the
ponderomotive force, which will lead to more complex
physical processes in the tunneling picture. Therefore, in
this paper, we only discuss the tunneling picture at large
spatial scales.
Another interesting feature is that the particle position

distribution, shown in Fig. 4(c), could be also understood
via our perspective picture. From it one can find that strong
oscillation occurs in the position distributions. To see the
oscillatory phenomenon more clearly, we come back to
Fig. 4(b) again and have an intuitive look at the maxima and
minima transition probability at the center-of-mass coor-
dinate x via our perspective picture. The essential point of
these oscillations is the connection between the distance for
transition probability from the maxima to minima around
x ¼ Mπ=k, where M ¼ 0;�1;�2;�3;…, which corre-
sponds to jumping from peak to trough in Fig. 4(b),
and the tunneling distance d ¼ 2Δx ¼ π=k. Obviously
these two distances are the same. Similarly, around
x ¼ ð1=2þMÞπ=k, which corresponds to jumping from
trough to peak in Fig. 4(b), the jump transition has the same
tunneling distance d ¼ 2Δx ¼ π=k. This is why the oscil-
lating effect appears in the position distributions. Of course,
the results are completely the same with the results
achieved by adopting n̄ðx; tÞ ∝ jεEcrgðxÞfðtÞj2 according
to Refs. [94,95]. This illustrates again that our perspective
picture and its interpretation are reliable. Particularly note
that it can not only offer the exact location (position) of the

created particle, but also explain the characteristics of the
position distribution.
Now let us to see why the classical tunneling picture is

consistent with LDA and AA for the large spatial scales.
There are two reasons for this. The first one is that the spatial
Keldysh parameter is defined as γk¼mk=eεðk;λÞ¼
mk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þe−k

2λ2
p

=ð ffiffiffi
2

p
eε0Þ [15].When k is fixed, γk decreases

with the increase of λ. It means that the tunneling process is
more pronounced [15]. The second one is that the ponder-
omotive force is inversely proportional to the spatial
scale [33]. When the spatial scale is very large, the ponder-
omotive force can be ignored. Because the LDA andAA just
correspond to the case of large spatial scales, therefore, the
force can be almost ignored. At the same time, our tunneling
picture does not contain the ponderomotive force. This is
why the classical tunneling picture is consistent with LDA
and AA.
We can also interpret the oscillating effect in Fig. 4(c) by

using tunneling time. An example of the tunneling time is
shown in Fig. 5; we can observe that an obvious oscillating
effect of the tunneling time and its minima and maxima
corresponds to x ¼ Mπ=k and x ¼ ð1=2þMÞπ=k, respec-
tively, with an interval of d ¼ 2Δx ¼ π=k. Since the particle
number is inversely proportional the tunneling time [35], we
can find the self-consistent oscillating effect in the position
distribution in Fig. 4(c). This can be regarded as another
physical interpretation of the particle transition probability
for every center-of-mass coordinate x. It should be pointed
out that our new perspective picture provides us tunneling
distance and the corresponding the tunneling time. On the
contrary, the position of the created pair can be determined
theoretically by the tunneling time. For instance, the position
x in Fig. 5 corresponds to the position x in the position
distribution plotting of Fig. 4(c).
The advantage of the tunneling time is that it can

quickly estimate the properties of the particle position
distribution, because the tunneling time includes all
transition probabilities. In the next section, we will discuss
the validity of the LDA, AA, and LCFA via the tunnel-
ing time.

VI. COMPARISON OF THE DHW FORMALISM,
LDA, AA, AND LCFA

In this section, we discuss the validity of the LDA, AA,
and LCFA [26] by comparing with the exact DHW result
for large spatial scale. For short pulse duration τ ¼ 5m−1,
the DHW formalism, LDA, and AA are the same distri-
bution, but LCFA has different shape as shown in Fig. 6(a).
However, for large pulse duration τ ¼ 100m−1, the DHW
formalism, LDA, AA, and LCFA are the same shape as
shown in Fig. 6(b). We further find that the positions
corresponding to the minima of the tunneling time in
Figs. 6(c) and 6(d) are consistent with the positions
corresponding to the maxima of the position distribution
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FIG. 5. Tunneling time for k ¼ 0.1m, λ ¼ 300 m−1 and
τ ¼ 10 m−1.
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obtained by DHW formalism, LDA, AA, and LCFA in
Figs. 6(a) and 6(b) because the particle number is inversely
proportional to the tunneling time [35]. By the same way,
the continuous variation of the position distribution could
be also interpreted by using tunneling time, since the
monotonicity of the position distribution is opposite to
the monotonicity of the tunneling time.

VII. SUMMARY

In this work, we have studied numerically and analyti-
cally the effect of spatially oscillating field on Schwinger
pair production when the work done by the electric field
over its spatial extent is smaller than twice the electron
mass. We have also given a representative example of the
spacetime-dependent spatially oscillating electric field and
introduced the tunneling picture. Moreover, we have
investigated the validity of the LDA, AA, and LCFA.
Our results are summarized briefly as follows.
First, we found that the total reduced particle number

for the spatial oscillating inhomogeneous field is always

larger than that for the nonspatial inhomogeneous oscil-
lating field. Also, the maximum reduced particle number
is about 5 times larger in comparison with the maximum
one of the nonspatial oscillating inhomogeneous field. We
further found that, when the spatial oscillating cycle
number is larger than 2, the DHW, LDA, and AA results
are the same for the whole situation. The momentum and
position distributions have been interpreted by using a
tunneling picture. Moreover, we show the relationship
between the position distribution and tunneling time by
employing the WI approach and explain the position
distribution.
Second, we found that the LDA and AA hold when the

spatial scale of the field is much larger than the electron
Compton wavelength, while there is no restriction on the
temporal scale of the field. However, the LCFA can be used
when both spatial and temporal scales are much larger
than the electron Compton wavelength λC and time tC. This
indicates that the LCFA has limitations on both spatial and
temporal scales of the field. Therefore, LDA and AA are
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FIG. 6. Position distributions (first row) and tunneling time (second row). For each column, from left to right, τ ¼ 5 and τ ¼ 100 m−1.
Note the DHW formalism (magenta solid line), LDA (blue dash-dotted line), AA (green dashed line), and LCFA (red dotted) in (a) and
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broader than LCFA. Finally, the properties of the particle
position distribution have been estimated by the tunnel-
ing time.
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