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We present a lattice-QCD calculation of the light-quark connected contribution to window observables
associated with the leading-order hadronic vacuum polarization contribution to the anomalous magnetic
moment of the muon, aHVP;LOμ . We employ the MILC Collaboration’s isospin-symmetric QCD gauge-field
ensembles, which contain four flavors of dynamical highly improved staggered quarks with four lattice
spacings between a ≈ 0.06–0.15 fm and close-to-physical quark masses. We consider several effective-
field-theory-based schemes for finite volume and other lattice corrections and combine the results via
Bayesian model averaging to obtain robust estimates of the associated systematic uncertainties. After

unblinding, our final results for the intermediate and “W2” windows are all;Wμ ðconnÞ ¼ 206.6ð1.0Þ × 10−10

and all;W2
μ ðconnÞ ¼ 100.7ð3.2Þ × 10−10, respectively.

DOI: 10.1103/PhysRevD.107.114514

I. INTRODUCTION

In April 2021, the Fermilab muon g − 2 experiment,
E989, released their first result for the muon’s anomalous
magnetic moment aμ ≡ ðgμ − 2Þ=2 based on Run-1 data

collected in 2018 [1]. When combined with the previous
measurement from Brookhaven National Laboratory
experiment E821 [2], the new result for the muon’s
anomalous magnetic moment increases the disagreement
with the Standard Model (SM) theory prediction [3]1 from
3.7σ to 4.2σ. Because the anomaly arises from loop effects,
it is sensitive to the contributions of yet-undiscovered
particles that could give rise to small deviations from the
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1The SM prediction is based on a large body of theoretical
work [4–23], and reflects the consensus of the muon g − 2 theory
community.
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theoretical prediction. Increased precision is now essential
to say conclusively if this substantial difference is from
physics beyond the SM.
The error on the experimental average of the muon’s

anomalous magnetic moment is now 0.35 parts per million
(ppm), and is limited by statistics. Fermilab E989 continues
to collect data and improve the experimental apparatus, and
ultimately aims to measure aμ to a precision at or below
0.14 ppm by the end of its lifetime. Additionally, a new
complementary experiment to measure the muon’s anoma-
lous magnetic moment and electric dipole moment is
planned for later this decade at J-PARC in Japan
[24,25]. The J-PARC E34 experiment will employ a
different method to determine aμ than the “magic momen-
tum” approach of both Fermilab E989 and BNL E821 and
aims for a precision of 0.45 ppm from its initial run in
2027 [24,26].
Corresponding theoretical efforts are underway to reduce

the uncertainty on the prediction for aμ in the SM, which
currently stands at 0.37 ppm [3]. At present, over 90% of
the SM theory error comes from the leading-order hadronic
vacuum polarization (HVP) contribution to the anomaly,
aHVP;LOμ . The HVP contribution is difficult to determine
precisely because the bulk of it comes from the low-
energy, nonperturbative regime of quantum chromodynam-
ics (QCD). To date, the most precise theoretical results
for aHVP;LOμ are obtained from a data-driven, dispersive
approach [27,28] using experimental measurements of
the total cross section for eþe− → hadrons (the so-called
R ratio) as input. These data-driven determinations have
achieved around 0.5% precision on aHVP;LOμ corresponding
to 0.34 ppm uncertainty on aμ [8–13] and are the basis of
the Muon g − 2 Theory Initiative’s SM prediction for
aHVP;LOμ [3].
Lattice QCD provides an alternative, ab initio, approach

for calculating the leading-order HVP contribution that is
independent of experimentally measured cross sections.2

The most precise lattice-QCD calculation of aHVP;LOμ to date
(and the first with subpercent precision) comes from the
BMW Collaboration [29]. Although BMW’s result implies
a SM value for aμ that is within 1.5σ of experiment, it
differs from the R-ratio based prediction of Ref. [3] by 2.1σ.
Independent lattice-QCD calculations with commensurate
precision are therefore urgently needed to address this
theoretical discrepancy.
The leading-order HVP contribution to the muon’s

anomalous magnetic moment is computed in lattice
QCD as a weighted integral over Euclidean time of the
two-point correlation function of the quarks’ electro-
magnetic vector current [30,31]. By judiciously restricting

the integration range (or “window”), one can construct
subquantities of aHVP;LOμ that avoid problematic statistical
and/or systematic effects [32–34]. The same Euclidean-
time window observables can also be obtained from
R-ratio data by including a suitable weight function in
the dispersive integral for aHVP;LOμ [35]. Because Euclidean-
time windows allow for more detailed and sensitive
comparisons between independent aHVP;LOμ calculations,
they are a valuable tool both for diagnosing sources of
disagreement between lattice-QCD results and for quanti-
fying differences (if any) between data-driven and lattice
determinations.
Various Euclidean-time windows with differing positive

features and drawbacks have been proposed [32–34]. In
2018, the RBC and UKQCD Collaborations separated the
Euclidean-time integral into contributions from “short”
(t≲ 0.4 fm), “intermediate” (0.4≲ t≲ 1.0 fm), and “long”
(t≳ 1.0 fm) times [32]. The intermediate window observ-
able aWμ can be computed in lattice QCD with high
statistical precision. Hence, it has been adopted by the
muon g − 2 theory community as a benchmark quantity.
Several independent three- and four-flavor lattice-QCD
calculations of aWμ are now available [29,32,36,37], but
the results are not fully consistent. RBC/UKQCD’s initial
intermediate-window result [32] is within about 1σ
of the determination from R-ratio data [35]. More recent
lattice-QCD calculations of aWμ by the BMW [29], Mainz/
CLS [36], and ETM [37] collaborations, however, are all
more than 3σ higher than the data-driven value.3 Further
scrutiny of the intermediate window is therefore needed to
clarify the picture.
In this work, we calculate the intermediate-window

contribution to aHVP;LOμ in four-flavor lattice QCD. Using
the same methods, we also calculate the W2 window
observable introduced by Aubin et al. [33], which corre-
sponds to the Euclidean-time range t ∈ ½1.5; 1.9� fm. As
pointed out in that work, although aW2

μ is statistically
noisier than aWμ , effective-field theory (EFT) estimates of
finite-volume, lattice-discretization, and pion-mass correc-
tions are more reliable at larger times. We focus exclusively
on the connected contribution from light (up and down)
quarks in the isospin-symmetric limit, which accounts
for about 90% of aHVP;LOμ . Calculations of the heavier
quark flavors, isospin-breaking corrections and quark-
disconnected contributions are in progress [39–42].
Our calculation of the intermediate and W2 window

observables in this work builds upon our 2019 calculation
of aHVP;LOμ [43]. As before, we employ the MILC
Collaboration’s dynamical-QCD gauge-field configura-
tions [44] with four flavors of highly improved staggered

2A small number of experimentally-measured quantities are
employed in lattice-QCD calculations to fix the quark masses and
lattice spacing in the QCD Lagrangian.

3The RBC/UKQCD Collaboration’s update [38], which ap-
peared on arXiv on the same day as our paper, is in good
agreement with these recent results.
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quarks (HISQ) [45]. Our numerical simulations are again
performed at the physical pion mass and with four lattice
spacings ranging from about 0.15 to 0.06 fm. Since our
earlier work, however, we have increased statistics signifi-
cantly at our three finest lattice spacings. The new data give
better control of the lattice dependence of the Euclidean-
time window observables and enable stringent tests of the
EFT-based corrections, which inform our analysis of the
associated systematic errors. We estimate the uncertainties
on aWμ and aW2

μ from making different, reasonable analysis
choices for finite-volume corrections and treating
discretization effects, among others, via Bayesian model
averaging [46,47]. Finally, to avoid confirmation bias, the
Euclidean-time window observables were blinded until the
analysis and error budgets were finalized. (See Sec. III A
for details.)
This paper is organized as follows. First, in Sec. II A we

provide analytic expressions for aWμ and aW2
μ in terms of the

Euclidean-time vector-current correlation function. Next, in
Sec. II B we define the isospin-symmetric QCD limit
employed here and describe our numerical correlator
computations in Sec. II C. In Sec. III we present a detailed
description of our analysis procedures, starting with how
blinding was applied and removed in Sec. III A. Briefly, in
Sec. III B, we use the lattice correlators to calculate the
Euclidean-time windows corresponding to our numerical-
simulation parameters. We then correct these “raw” win-
dow values on each ensemble for the finite-lattice volume,
slight mistunings of the simulated pion mass, and
(optionally) remove taste-breaking discretization effects
in Sec. III C. Next, we extrapolate the corrected window
values to zero lattice spacing in Sec. III D. Sections III E
and III F describe our procedure for Bayesian model
averaging and the resulting systematic error budget. We
conclude in Sec. IV by presenting our final results for aWμ
and aW2

μ and comparing them with previous determinations.
Appendixes A and B provide additional details on
obtaining the Euclidean-time windows from staggered
correlators and on computing corrections to the windows
using the chiral model of pions, photons, and ρ mesons
introduced in Ref. [48], respectively. Progress reports on
related ongoing work can be found in Refs. [40–42,49,50].

II. PRELIMINARIES

A. Definitions of Euclidean-time window observables

The hadronic vacuum polarization function ΠðQ2Þ can
be obtained from Euclidean vector-current correlation
functions through the equations

ΠμνðQ2Þ ¼ ðδμνQ2 −QμQνÞΠðQ2Þ

¼
Z

d4xeiQxhJμðxÞJνð0Þi; ð2:1Þ

JμðxÞ ¼
X
f

qfψ̄fðxÞγμψfðxÞ; ð2:2Þ

where JμðxÞ is the electromagnetic current summed over
quark flavors f ¼ fu; d; s; c; b; tg, qf are the correspond-
ing electric charges in units of e, and hJμðxÞJvð0Þi includes
both quark-line connected and disconnected Wick contrac-
tions. The HVP contribution to the muon’s anomalous
magnetic moment can then be obtained from a weighted
integral of Π̂ðQ2Þ≡ ΠðQ2Þ − Πð0Þ via Eq. (B1).
It is now standard for lattice-QCD HVP calculations,

however, to employ the alternative time-momentum rep-
resentation introduced by Bernecker and Meyer [31]. This
formulation is more convenient for an inherently space-
time approach such as lattice QCD and allows the con-
struction of Euclidean-time windows. Starting with the
spatial-vector-current correlation function CðtÞ, defined as

CðtÞ ¼ 1

3

X
x;k

hJkðx; tÞJkð0Þi; k ¼ 1; 2; 3; ð2:3Þ

aHVP;LOμ is obtained via

aHVP;LOμ ¼ 4α2
Z

∞

0

dtCðtÞK̃ðtÞ; ð2:4Þ

K̃ðtÞ ¼ 2

Z
∞

0

dQ
Q

KEðQ2Þ
�
Q2t2 − 4sin2

�
Qt
2

��
; ð2:5Þ

where KEðQ2Þ is given in Eq. (B2).
The window observables are then easily obtained by

introducing the window function W, limiting the
Euclidean-time region over which CðtÞ is integrated [32]:

awinðt0;t1;ΔÞμ ¼ 4α2
Z

∞

0

dtCðtÞK̃ðtÞWðt; t0; t1;ΔÞ; ð2:6Þ

Wðt; t0; t1;ΔÞ ¼
1

2

�
tanh

�
t − t0
Δ

�
− tanh

�
t − t1
Δ

��
þ ðt → −tÞ: ð2:7Þ

The parameters t0 and t1 of W control the location of the
window’s boundaries, while Δ controls the sharpness of its
edges. In this work, we consider two such windows, the
intermediate window W,

aWμ ≡ awinð0.4;1;0.15Þμ ; ð2:8Þ

and W2,

aW2
μ ≡ awinð1.5;1.9;0.15Þμ ; ð2:9Þ
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with the parameters in fm. We plotW in Eq. (2.7) for these
window regions in the left panel of Fig. 1.
It is convenient in lattice-QCD calculations of aHVP;LOμ to

separately compute and then sum up the contributions from
each quark flavor and from connected and disconnected
Wick contractions. Here, we focus on the light-quark
connected contribution to the Euclidean-time windows,
all;Wμ ðconnÞ and all;W2

μ ðconnÞ, in the isospin-symmetric
limit. Therefore, our electromagnetic vector current
JμðxÞ includes only the terms for light quarks with ml ¼
ðmu þmdÞ=2 and our correlation function CðtÞ includes
only the connected contractions. Figure 1 (left) shows the
light-quark connected contribution to the integrand
[K̃ðtÞCðtÞ in Eq. (2.4)] using the lattice correlation function
obtained on our finest ensemble (see Sec. II C). Figure 1
(right) shows the corresponding window integrands
[CðtÞK̃ðtÞWðt; t0; t1;ΔÞ in Eq. (2.6)] for the W and W2
windows.

B. Prescription for isospin-symmetric QCD

Both the MILC HISQ gauge-field configurations and
light-quark connected correlators employed in this work
correspond to the isospin symmetric limit of QCD, i.e., a
pure-QCD world with equal-mass up- and down-quark
masses and without electromagnetism. Following the
prescription introduced (for three flavors) in Refs. [51,52]
and later extended to include the charm quark in Ref. [53],
we set the light-quark masses and lattice scale in physical
units using the pion mass and decay constant. We then set
the strange- and charm-quark masses using the kaon and
Ds-meson masses, respectively.
Prior to the tuning procedure, however, electromagnetic

effects must be removed from the experimental inputs.
Neither Mπ0 nor fπþ are affected significantly by the
quarks’ electric charges, so their pure-QCD values are
defined to be Mπ ≡Mπ0 and fπ ≡ fπþ . In the Fermilab
Lattice and MILC Collaboration’s most recent analysis of
pseudoscalar-meson masses and decay constants [54], the
numerical values for these inputs were taken from the

2016 Particle Data Group: Mπ0 ¼ 134.977 MeV and
fπþ ¼ 130.50ð1Þexpð3ÞVud

ð13ÞEM MeV [55]. The remaining
pure-QCD meson masses employed in Ref. [54] are
MK0 ¼ 497.567 MeV, MKþ ¼ 491.405 MeV, and MDs

¼
1967.02 MeV. Details on how these values were obtained
can be found in Sec. IVof that work and references therein.
For the inputs in isospin-symmetric QCD we use the
same values for Mπ0 and fπþ as above, while the kaon
mass is defined as the average of MK0 and MKþ , giv-
ing MK ¼ 494.486 MeV.

C. Lattice-QCD ensembles and correlation functions

Our calculation employs the MILC Collaboration’s four-
flavor lattice-QCD configurations with dynamical up,
down, strange, and charm quarks. The ensembles use the
HISQ action [45] for the sea quarks, a Symanzik-improved
gauge action [56–60] that includes the plaquette, the 1 × 2
rectangle, and the so-called bent-chair 6-link term for the
gluon fields as well as tadpole improvement [61] based on
the plaquette. Details of the configuration generation can be
found in Ref. [62].
In this work, we employ a subset of the available MILC

ensembles, for which the quark masses are well tuned to
their physical values. We include ensembles at four lattice
spacings a ≈ 0.15, 0.12, 0.09, and 0.06 fm. The high-
statistics ensemble at a ≈ 0.15 fm is unchanged from
Ref. [43], where additional details can be found. The
ensemble at a ≈ 0.12 fm was generated specifically for
our muon g − 2 project, and has better tuned sea-quark
masses compared with the ensemble with the same bare
coupling used previously [43]. It contains about 10,000
configurations. We also extended the ensemble with a ≈
0.09 fm [44] to include over 5,000 configurations; this is a
factor of roughly 3.5 beyond what was used in Ref. [43].
The pion mass for this ensemble is less accurately tuned
than for the other three ensembles used in our study, which
were generated more recently using quark masses obtained
from a detailed analysis of pseudoscalar mesons and their
decay constants [54]. Finally, we increased the number of

FIG. 1. Left: W (magenta) and W2 (green) window functions [corresponding to the parameters in Eqs. (2.8) and (2.9)] overlaid with
raw lattice data for the integrand of Eq. (2.4) (blue crosses) from our finest ensemble. Right: windowed integrand of Eq. (2.6) for the
corresponding window functions using the lattice data in the left panel.
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configurations in our finest ensemble with lattice spacing
a ≈ 0.06 fm [54] by about a factor of 2 compared with
Ref. [43]. We are continuing to extend this ensemble in
anticipation of future needs. Our ensemble set is visualized
in Fig. 2 and detailed in Table. I.
The tuned quark masses listed in Table I are determined

from the analysis in Ref. [54] in which pseudoscalar-meson
masses and decay constants were computed using 24 gauge
ensembles with six lattice spacings ranging from ≈0.15 to
0.03 fm. The pion decay constant is used to set the scale
and the meson masses used to determine the up, down,
strange, and charm masses are given in Sec. II B. Further
details may also be found in Ref. [53], which used fewer
configurations for a similar study.
The light-quark propagators from which the correlation

functions CðtÞ are constructed are computed using the
HISQ action and truncated solver method (TSM) [66,67].
Using random-wall sources, we compute one fine-residual
conjugate gradient solve and the number of loose-residual
solves (Nloose) shown in the last column of Table I.

Compared with Ref. [43], we have increased the number
of loose sources per configuration by factors of 4, 3, and 1.5
for the ensembles at a ≈ 0.12, 0.09, and 0.06 fm, respec-
tively. Exploiting time-reversal invariance, we further
increase statistics by averaging the correlator values at
times t and Nt − t on each configuration. For the electro-
magnetic-current operator, we use the same local taste-
vector vector current as in Ref. [43]. To match the local
vector current to continuum QCD, we use the nonpertur-
batively computed renormalization factors obtained by the
HPQCD Collaboration in Ref. [65]. Specifically, for the
a ≈ 0.15, 0.12, and 0.09 fm ensembles, we take the “H-H”
ZV4 values from Table IV, while for the a ≈ 0.06 fm
ensemble, we use the extrapolated value at this lattice
spacing given in Appendix B of that work. To test our
corrections for pion-mass mistuning (see Sec. III C 2), we
generated additional vector- and pseudoscalar-current cor-
relation functions with unphysical valence-quark masses on
our two coarsest ensembles. Table II lists the valence-quark
masses used in these partially quenched simulations.
In the course of our current analysis, we discovered

two mistakes in Ref. [43] pertaining to the a ≈ 0.06 fm
ensemble. First, a small subset (≈5%) of this ensemble’s
correlation functions were affected by a software bug in the
data-processing script. Second, the renormalization factor
employed for this ensemble was taken from the arXiv
version of Ref. [65], and differs from the published result
by ≈0.1%. The latter error was realized after we unblinded
our analysis (see Sec. III A). Hence, while keeping the
analysis procedure frozen, we now use the published value
of ZV4 at a ≈ 0.06 fm from Ref. [65] in our determinations
of the window observables. We are preparing errata to
Refs. [34,43], but do not expect the results for allμ ðconnÞ,
aHVP;LOμ , or the one-sided Euclidean-time windows to
change significantly.

III. DATA ANALYSIS

Here, we present the analysis procedure to obtain the
window observables all;Wμ ðconnÞ and all;W2

μ ðconnÞ at the

FIG. 2. Visualization of the ensemble parameters and statistics
employed in this work (labeled “Current”) and in our previous
aHVP;LOμ calculation [43] (labeled “2019”). Each disk is centered
at the corresponding ensemble’s squared lattice spacing and pion
mass (a2 and Mπ5 in Table I), while the disk areas are propor-
tional to the size of each dataset (Nconf × Nloose sources in Table I).

TABLE I. Ensemble parameters used in this work. The first column lists the approximate lattice spacings in fm. The second column
gives the spatial length L of the lattices in fm. The third column lists the volumes of the lattices in number of space-time points. The
fourth column gives the sea-quark masses in lattice-spacing units. The fifth column lists the ratios of the gradient-flow scale w0 [63] to
the lattice spacing, where we take these values from Ref. [43] except for the newer ensemble with a ≈ 0.12 fm. To convert simulation
results to physical units, we take w0 ¼ 0.1715ð9Þ fm from Ref. [64]. The sixth column gives the taste-Goldstone pion masses [44]. The
seventh column lists the renormalization factors for the local vector current, taken from Ref. [65]. The second-to-last column lists the
number of configurations analyzed. The last column gives the number of loose-residual solves per configuration used in the truncated
solver method [66,67].

≈a=fm L=fm N3
s × Nt amsea

l =amsea
s =amsea

c w0=a Mπ5=MeV ZV Nconf Nloose

0.15 4.85 323 × 48 0.002426=0.0673=0.8447 1.13215(35) 134.73(71) 0.9881(10) 9362 48
0.12 5.83 483 × 64 0.001907=0.05252=0.6382 1.41110(59) 134.86(71) 0.9922(4) 9637 64
0.09 5.62 643 × 96 0.00120=0.0363=0.432 1.95180(70) 128.34(68) 0.9940(5) 5384 48
0.06 5.46 963 × 128 0.0008=0.022=0.260 3.0170(23) 134.95(72) 0.9950(6) 2621 24
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physical, isospin-symmetric, pion mass and in the con-
tinuum and infinite-volume limits. First, as discussed in
Sec. III A, we blinded the analyses of all components of
aHVP;LOμ to avoid unintentional introduction of bias. Second,
because the correlation functions CðtÞ are obtained at
discrete Euclidean times, the integral in Eq. (2.6) must
be approximated by a discrete integration rule. As
described in Sec. III B, we use both the trapezoidal and
Simpson rules to quantify the associated discretization
effects.
The resulting lattice data for all;Wμ ðconnÞ and

all;W2
μ ðconnÞ must then be corrected for finite-volume

effects, pion-mass mistunings and (optionally) taste-break-
ing effects. Our estimates of these lattice corrections to the
intermediate and W2 window observables in Sec. III C are
based on the use of EFTs and EFT-inspired models that
capture the dominant low-energy, two-pion physics con-
tribution to aHVP;LOμ . In particular, we consider variations
obtained from four different approaches: next-to-leading-
order (NLO) and next-to-next-to-leading order (NNLO)
chiral perturbation theory (χPT) [29,33,68–71]; the chiral
model (CM) [48] employed in Ref. [43]; the Meyer-
Lellouch-Lüscher-Gounaris-Sakurai (MLLGS) approach
[72–79]; and the relativistic pion EFT approach of
Hansen and Patella (HP) [80]. In the absence of data-
driven guidance, the spread of EFT-based corrections
provides an especially important indicator of the underlying
uncertainties.
As is well known, staggered actions include additional,

unphysical degrees of freedom (so-called “tastes”), yielding
a 16-fold enlarged meson spectrum at finite lattice spacing
[44,62,81,82]. The splittings between the tastes are a lattice
artifact that vanishes in the continuum limit. At finite lattice
spacing, taste splittings of the pion masses are a significant
discretization effect in aHVP;LOμ observables (so-called taste-
breaking effects). As discussed in Sec. III C, the splittings
also affect the pion-mass and finite-volume dependencies,
resulting in an interplay between them. In the case of
pseudoscalar meson masses and weak matrix elements,
discretization effects due to the taste splittings are well
described by staggered chiral perturbation theory [83,84],
providing an additional handle on the continuum
extrapolations.
Our continuum extrapolation analysis in Sec. III D

includes a comprehensive study of taste breaking and other

discretization effects. For each of the two window observ-
ables, we perform continuum extrapolations with and
without first correcting for taste-breaking effects. In addi-
tion, we vary the fit function used for the continuum
extrapolations, and we also include continuum-limit fits
dropping the data at the coarsest lattice spacing
(a ≈ 0.15 fm). The fit function used in our continuum
extrapolation contains the strong coupling constant αs.
In this work, following Ref. [54] we use αs ¼ αVð2=aÞ
and take αVðnf ¼ 4; μ ¼ 5.0 GeVÞ ¼ 0.2530ð38Þ from
Ref. [85], where we evolve the coupling using the four-
loop beta function.
Our lattice-QCD calculations of all;Wμ ðconnÞ and

all;W2
μ ðconnÞ entail numerous analysis choices. As

described in Sec. III E, we incorporate the systematic
uncertainties due to these variations using Bayesian model
averaging (BMA) [46,47]. The remaining uncertainties in
the corrected datasets include the statistical errors from the
Monte Carlo integration and parametric errors from w0,
w0=a, and ZV , which are propagated through the analysis
as Gaussian random variables. Our final results for
all;Wμ ðconnÞ and all;W2

μ ðconnÞ and error budgets from the
respective BMA analyses are presented and discussed in
Sec. III F.

A. Blinding

To avoid confirmation bias, we blinded this analysis until
the systematic error budgets were finalized. The analysis
was then frozen and used to generate the unblinded results
and figures presented here. We employ a software blinding
procedure, in which each observable is multiplied by an
unknown random factor, chosen from a uniform distribu-
tion between [0.7, 1.3]. As the correlation function on the
a ≈ 0.15 fm ensemble is unchanged from Ref. [43], we
additionally blinded the results from this ensemble by
adding to it an offset equal to its standard deviation times an
undisclosed random number between ½−1; 1�. Each observ-
able receives its own unique blinding factor, which is kept
the same for all lattice spacings, except 0.15 fm. This
procedure allows us to unblind specific subquantities, such
as the intermediate window observables discussed here,
without unblinding other quantities for which our analyses
are ongoing.

B. Extraction of window observables

After the light-quark-connected vector-current correla-
tion functions CðtÞ are obtained on each ensemble as
described in Sec. II C, lattice values for all;Wμ ðconnÞ and
all;W2
μ ðconnÞ are computed from these correlators via

Eq. (2.6), using a chosen numerical integration scheme.
Because we employ a single-time-slice vector-current

operator in our computations, the spectral representation of
our staggered correlation functions consists of a sum of
positive contributions from states with the desired parity

TABLE II. Additional valence-quark masses used to study the
pion-mass dependence of aWμ and aW2

μ . Simulation parameters not
listed are the same as in Table I.

≈a=fm amval
q Mval

π5 =MeV

0.15 0.001524 107.28(56)
0.003328 157.16(83)

0.12 0.001190 107.05(56)
0.002625 157.65(83)
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and, additionally, contributions that oscillate in time as
ð−1Þt=a from opposite-parity states [see Eq. (A1) of
Appendix A]. These oscillations are discretization effects,
and should in principle be removed via the continuum
extrapolation in Sec. III D. To quantify any residual uncer-
tainty or bias on all;Wμ ðconnÞ and all;W2

μ ðconnÞ from oscil-
lations in our correlation functions, we also perform our full
analysis using the fit-reconstructed correlator without oscil-
lations,Cno oscðtÞ, which is defined in Eq. (A3). AppendixA
also presents a number of alternate schemes for removing the
unwanted oscillating terms from CðtÞ.
Numerical integration of the lattice correlators introdu-

ces additional discretization errors that depend upon the
method used. Here, we consider two integration schemes:
the trapezoidal rule and Simpson’s rule, which is formally
higher order in the lattice spacing. Given a Euclidean-time
correlator CðtÞ, windows of aμ are obtained with the
trapezoidal rule via

awinðt0;t1;ΔÞμ;Trap ¼ 4α2a
XNt=2−1

t¼1

CðtÞK̃ðtÞWðt; t0; t1;ΔÞ; ð3:1Þ

where the integration kernel K̃ðtÞ and window function
Wðt; t0; t1;ΔÞ are given in Eqs. (2.5) and (2.7), respectively,
and the boundary terms are omitted as K̃ðtÞWðt; t0; t1;ΔÞ ¼
0 for these cases. Similarly, Euclidean-time windows are
obtained with Simpson’s rule via

awinðt0;t1;ΔÞμ;Simp ¼ 4α2
a
3

" 
4
XNt=2−1

t∈ftoddg
þ2

XNt=2−1

t∈fteveng

!

× CðtÞK̃ðtÞWðt; t0; t1;ΔÞ
#
: ð3:2Þ

Figure 3 compares lattice data for all;Wμ ðconnÞ (left) and
all;W2
μ ðconnÞ (right) obtained by integrating CðtÞ using the

trapezoidal rule (blue squares), integrating Cno oscðtÞ
using the trapezoidal rule (orange squares), and integrating
Cno oscðtÞ using Simpson’s rule (red circles). To
enable meaningful comparisons between all;Wμ ðconnÞ [or
all;W2
μ ðconnÞ] at different lattice spacings, all data in these

plots include corrections for the finite spatial volumes and
pion-mass mistuning using the CM. (See Sec. III C for
details.)
The impact of temporal oscillations in our staggered

lattice correlators on all;Wμ ðconnÞ and all;W2
μ ðconnÞ can be

assessed by comparing the datasets obtained from integrat-
ing both CðtÞ and Cno oscðtÞ using the trapezoidal rule (blue
and orange squares in Fig. 3, respectively). For all;Wμ ðconnÞ,
the trapezoidal-rule datasets are statistically indistinguish-
able at our two finest lattice spacings (see Table VI in
Appendix A, which provides the correlated pairwise
differences). Further, the differences between them
decrease rapidly with the lattice spacing. For all;W2

μ ðconnÞ,
which corresponds to a later Euclidean time range, oscil-
lations in the correlator from heavier opposite-parity states
have largely died out (see Fig. 1). Consequently, the
trapezoidal-rule datasets are statistically consistent on all
ensembles and there is no clear lattice-spacing dependence
in their correlated differences. As, for both all;Wμ ðconnÞ and
all;W2
μ ðconnÞ, the continuum extrapolations of the trapezoi-

dal-rule datasets are in excellent agreement, we therefore
conclude that temporal oscillations are an insignificant
source of discretization error in our calculation.
Similarly, discretization errors stemming from the

numerical integration can be estimated comparing the
datasets obtained by integrating Cno oscðtÞ with either
the trapezoidal rule or Simpson rule (orange squares and
red circles in Fig. 3, respectively). As is displayed in the
figure and quantified in Table VII, on our coarse ensembles
the differences between integration schemes are statistically
significant for both all;Wμ ðconnÞ and all;W2

μ ðconnÞ. These
differences, however, decrease with lattice spacing much

FIG. 3. Comparison of results for all;Wμ ðconnÞ (left) and all;W2
μ ðconnÞ (right) from integrating the raw lattice correlator CðtÞ with the

trapezoidal rule (blue squares), fit reconstruction with oscillating-state contributions removed Cno oscðtÞwith the trapezoidal rule (orange
squares), and Cno oscðtÞ with Simpson’s rule (red circles). Data at the same lattice spacing are offset horizontally for visibility. As
described in Secs. III C 1 and III C 2, each point is corrected for finite-volume effects using the CM and pion-mass mistuning effects
using the data-driven approach. For each integration scheme, we fit the data for the three finest ensembles to a function linear in αsa2.
The dashed curves show the fits’ error bands, with colors matching the corresponding plot symbols.
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faster than a2 and are already at the per-mille level at our
finest lattice spacing. We therefore conclude that lattice
artifacts from the choice of numerical integration scheme
are negligible compared to the leading discretization terms
in the Symanzik effective Lagrangian, which are of
Oðαsa2Þ (see Sec. III D for details).
Based on these observations, we generate two datasets

for each of the two observables [all;Wμ ðconnÞ and
all;W2
μ ðconnÞ]. The first is obtained from integrating the

original correlation function data CðtÞ with the trapezoidal
rule, and the second is obtained from integrating the
reconstructed correlation function data Cno oscðtÞ with
Simpson’s rule. The inclusion of both datasets in the
subsequent analysis accounts for any residual systematic
effects due to both Oða2Þ artifacts induced by the trap-
ezoidal rule as well as the oscillating contributions that
remain after the continuum extrapolation. For each observ-
able, the two datasets are taken as inputs in the next step of
the analysis, where the corrections are applied to the
aμ data.

C. Lattice corrections

Before taking the continuum limit, we correct our lattice
all;Wμ ðconnÞ and all;W2

μ ðconnÞ data in two (or three) separate
steps: first for finite volume (FV), second for pion-mass
mistuning (Mπ), and (sometimes) third for the effects of
taste splittings (TB). The last step is optional, since
changing discretization effects will only alter the window
observables’ lattice-spacing dependence, not their con-
tinuum-limit values. Further, the pion-mass corrections
to the intermediate and W2 windows are only numerically
significant on the a ≈ 0.09 fm ensemble for which the
simulated pion mass is ∼5% below the physical value (see
Table II).
Mathematically, our correction scheme is defined via the

following equations:

aμðL∞;MπphysÞ ¼ aμðLlatt;Mπlat;ξ1
;…;Mπlat;ξ16

Þ
þ ΔFV þ ΔMπ

þ ΔTB; ð3:3Þ

where

ΔFV ¼ aμðL∞;Mπlat;ξ1
;…;Mπlat;ξ16

Þ
− aμðLlatt;Mπlat;ξ1

;…;Mπlat;ξ16
Þ; ð3:4Þ

ΔMπ
¼ aμðL∞;Mπphys;ξ1

;…;Mπphys;ξ16
Þ

− aμðL∞;Mπlat;ξ1
;…;Mπlat;ξ16

Þ; ð3:5Þ

ΔTB ¼ aμðL∞;MπphysÞ − aμðL∞;Mπphys;ξ1
;…;Mπphys;ξ16

Þ:
ð3:6Þ

“aμ” is shorthand for either all;Wμ ðconnÞ or all;W2
μ ðconnÞ.

The first term on the right-hand side of Eq. (3.3) is
the window observable on each ensemble obtained in
Sec. III B. The three corrections in Eqs. (3.4)–(3.6) are
evaluated for each ensemble and added to the lattice values
for aμ. The first correction, ΔFV in Eq. (3.4), takes

all;Wμ ðconnÞ or all;W2
μ ðconnÞ from the simulated spatial

volume, indicated by Llatt, to the infinite-volume limit,
denoted by L∞. The second correction, ΔMπ

, takes the
simulated taste-Goldstone pion mass to the physical value,
while the final correction, ΔTB, removes the effects of the
pion taste splittings, a2Δξi . In practice, the lattice and
“physical” staggered-pion masses Mπlat;ξi

and Mπphys;ξi
in

Eqs. (3.4)–(3.6) are calculated via the leading-order stag-
gered χPT relationship M2

πξi
¼ M2

πξ1
þ a2Δξi with Mπlat;ξ1

andMπphys;ξ1
fixed to the taste-Goldstone pion mass (column

six of Table I) and the experimentally measured π0 mass,
respectively.
The order in which the finite-volume, pion-mass, and

taste-breaking corrections are applied impacts the form of
the corrections. In our case, we apply the corrections in
Eq. (3.3) from left to right. Therefore, the finite-volume and
pion-mass mistuning corrections in Eqs. (3.4) and (3.5)
must preserve the taste splittings. The left-hand side of
Eq. (3.3) is the infinite-volume, physical pion-mass and
finite-lattice-spacing aμ with correct physical parameters,
which are inputs to the continuum extrapolations described
in Sec. III D.
We employ four different effective-field-theory-

based schemes for the finite-volume and taste-breaking
corrections:

(i) Chiral perturbation theory (χPT) at next-to-leading
order (NLO) and next-to-next-to-leading order
(NNLO) [29,69,71]. The staggered NNLO χPT
expressions of Refs. [29,33,71] are derived for a
taste-singlet vector current, which couples to taste-
diagonal pion pairs. We adapt the expressions of
Ref. [33] to the taste-vector vector current employed
here, which couples to taste-nondiagonal two-pion
states. We replace the pion energies in Eq. (3.3) of
Ref. [33] with averages of the energies of the two
pions in the two-pion states which contribute to the
taste-vector vector current.4 We test this approxima-
tion for the case of NLO χPT (and for the CM and
MLLGS approaches discussed below) where we
have exact formulas for the taste-vector current.
These tests reveal at most subpercent differences in

4For the term labeled NNLO,4 in the finite-volume correction
of [29,71], we substitute the average masses of the two-pion state
into the energies instead of substituting the average energies. This
avoids a numerical instability in this term for the case of unequal
energies.
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the corrections computed using the exact approach
versus the approximation.

(ii) The chiral model (CM) is an extension of χPT,
where the ρ meson is included explicitly through a
massive spin-1 vector field. This model was intro-
duced by Jegerlehner and Szafron to study ρ − γ
mixing in eþe− → ππ scattering [86]. It was first
applied to Euclidean-space lattice-QCD calculations
of the muon g − 2 HVP (with modifications to
incorporate the staggered-pion mass spectrum) by
the HPQCD Collaboration [48].5 The equations for
the CM corrections computed in this analysis
differ from Refs. [43,48] slightly in that the effects
of taste breaking are included as specified in
Eqs. (B8)–(B10).

(iii) The Meyer-Lellouch-Lüscher-Gounaris-Sakurai
(MLLGS) approach combines the pion form-factor
parametrization of Gounaris-Sakurai with the map-
ping (due to Meyer-Lellouch-Lüscher [72–79]) be-
tween the infinite-volume scattering amplitude and
finite-volume energies and amplitudes of the two-
pion states. We account for taste-breaking effects in
the same fashion as Ref. [29], by including con-
tributions from two-pion states constructed with all
16 tastes of pions. Here, we modify the expressions
of Ref. [29] to the case of the taste-vector vector
current which couples to taste-nondiagonal two-pion
states. As in [29], we fix the number of finite-volume
states to n ¼ 8.

(iv) The relativistic-pion effective-field-theory approach
by Hansen and Patella (HP) for finite-volume effects
[80]. We obtain the correction defined in Eq. (3.4)
using the same replacement as described in the χPT
description above.

We describe the above schemes as “effective-field-
theory-based” because, in some parts of our analysis, they
may be employed outside the schemes’ ranges of validity.
Except for the CM, these EFTs and phenomenological
models include only the contributions to aHVP;LOμ observ-
ables from two-pion intermediate states.6 Because contri-
butions to the Euclidean-time correlation function fall off as
expð−EtÞ (see Appendix A), those from low-lying ππ
states are most important at large Euclidean times.
Consequently, the correction schemes listed above should
best describe the volume and pion-mass dependence of

CðtÞ and, hence, awinðt0;t1;ΔÞμ , for later time ranges. Indeed,
we and other collaborations find that, for t0 ≳ 1.5 fm
(which includes the W2 window), all of the higher-order

correction schemes enumerated above (i.e., excluding NLO
χPT) yield similar predictions for the finite-volume, pion-

mass, and taste-breaking corrections to awinðt0;t1;ΔÞμ . Further,
the estimates from these schemes for the sum of finite-
volume, pion-mass, and taste-breaking corrections reason-
ably describe the observed differences between lattice data
in this region. [29,33,79,87]. Therefore, they can be reliably
used to calculate lattice corrections to all;W2

μ ðconnÞ.
In the intermediate-window region, the predicted correc-
tions from the EFT-based schemes display a wider varia-
tion. The sizes of the finite-volume and pion-mass
corrections to all;Wμ ðconnÞ, however, are numerically small
(ΔW

FV;Mπ
≲ 0.5%), and we incorporate the spread in

all;Wμ ðconnÞ results obtained with different correction
schemes in our systematic error estimate in Sec. III E.

1. Finite-volume corrections

Figure 4 shows the finite-volume corrections to
all;Wμ ðconnÞ and all;W2

μ ðconnÞ computed via Eq. (3.4) for
each ensemble listed in Table I and the four correction
schemes discussed above. For all;Wμ ðconnÞ (top panel), the
finite-volume corrections ΔW

FV are always less than 0.5%.
There is, however, a significant spread between the

FIG. 4. Finite-volume corrections to all;Wμ ðconnÞ (top) and
all;W2
μ ðconnÞ (bottom) obtained from NLO χPT (open blue

triangles), NNLO χPT (purple downward triangles), CM (green
circles), MLLGS (orange diamonds), and HP (brown squares).
The data points at each lattice spacing are offset horizontally for
visual clarity. Lattice spatial volumes are given in Table I.

5In Refs. [29,33], the staggered chiral model is denoted
“SRHO.”

6Although χPT, MLLGS, and HP do not treat the ρ meson as a
dynamical degree of freedom, they implicitly incorporate some
resonance effects through parameters that are tuned to match
experiment.
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different schemes. In particular, the finite-volume correc-
tions obtained from the CM (green circles) are close to zero
on all ensembles. This is because in the CM, the renor-
malized vacuum polarization function, Eq. (B3), comprises
two terms: the first is identical to NLO χPT, while the
second accounts for ρ-π-π interactions. For all;Wμ ðconnÞ, the
latter contribution produces a correction opposite in sign to
the former. In contrast, in χPT, the NLO (open blue
triangles) and NNLO contributions to ΔFV have the same
sign, making the total NNLO corrections (purple down-
ward triangles) larger. The spread between the finite-
volume corrections in the top panel of Fig. 4 reflects the
limitations of the correction schemes in the intermediate
window region, as discussed earlier.
By design [33], χPT (and the other EFTs) should work

better in the W2 region, for which contributions from low-
lying ππ states are more important. Hence, we expect better
consistency between the finite-volume corrections to
all;W2
μ ðconnÞ from the different approaches. Indeed, these

expectations are borne out in the bottom panel of Fig. 4,
where the corrections from the higher-order schemes have a
much-reduced (relative) spread compared to all;Wμ ðconnÞ.
Additionally, the finite-volume corrections to all;W2

μ ðconnÞ
are larger than for all;Wμ ðconnÞ (ΔW2

FV ∼ 3% at the finest
lattice spacing) due to the increased sensitivity to long-
distance contributions at later Euclidean times.
Below a ≲ 0.12 fm, the size of finite-volume corrections

to all;Wμ ðconnÞ and all;W2
μ ðconnÞ decrease with increasing

lattice spacing. This is because the pion taste splittings are
larger on coarser lattices, and finite-volume corrections in
systems with heavier masses are smaller. The finite-volume
corrections at a ≈ 0.15 fm are generally larger than at
a ≈ 0.12 fm, however, because the spatial volume of our
coarsest ensemble is substantially smaller than the others
(see Table VII).
In the absence of guidance from a direct finite-volume

study, we take the range of finite-volume corrections for the
schemes we consider here as an estimate of the associated
systematic uncertainty. Some or all of the EFT-based
models considered are of questionable reliability in the
intermediate-window region. Motivated by this, we gen-
erate a second set of corrections to all;Wμ ðconnÞ obtained
from restricting the window to higher t, namely [0.7,
1.0] fm. The spread of these restricted corrections is
∼20% smaller than the full W window case. Therefore,
in total we include ten sets of finite-volume-corrected data
for each input all;Wμ ðconnÞ dataset in our analysis: two each
for NLO χPT, NNLO χPT, CM, MLLGS, and HP. For
the W2 region, the EFTs are on more solid theoretical
footing and the higher-order schemes (NNLO χPT, CM,
MLLGS, and HP) yield consistent results. Therefore, in our
analysis we include four sets of finite-volume-corrected
data for all;W2

μ ðconnÞ, omitting NLO χPT because NNLO
χPT should be more accurate in this region. These

finite-volume-corrected data sets are inputs into the next
step, and eventually feed into the BMA analysis of Sec. III E.

2. Pion-mass adjustment

We next consider the effects of pion-mass mistuning on
all;Wμ ðconnÞ and all;W2

μ ðconnÞ and estimate the pion-mass
adjustments to these quantities, ΔMπ

in Eq. (3.5), using a
data-driven approach. As stated in Sec. II C, on our
ensembles with a ≈ 0.15 and 0.12 fm, in addition to the
unitary correlation functions listed in Table I, we have
partially quenched correlators [and hence lattice data for
all;Wμ ðconnÞ and all;W2

μ ðconnÞ] with valence-quark masses
bracketing the physical light quark (see Table II).7 Together
with our unitary data at a ≈ 0.09 and 0.06 fm, this allows us
to predict the size of pion-mass adjustments to all;Wμ ðconnÞ
and all;W2

μ ðconnÞ on all of our ensembles as follows.
First, we correct our entire dataset for finite-volume

effects as described in Sec. III C 1. We then fit the corrected
all;Wμ ðconnÞ and all;W2

μ ðconnÞ data to an interpolating
function of the form

all;winμ ða;MπÞ ¼
X1
i¼−1

ciðaÞðMπ=ΛÞ2i;

ciðaÞ ¼
Xni
j¼0

cijðaΛÞ2j; ð3:7Þ

where Λ ¼ 500 MeV (following Ref. [43]) and Mπ is the
taste-Goldstone valence- sea pion mass, which is what
enters the leading-order pion loops in χPT. The parametric
dependence onMπ in Eq. (3.7) is motivated by χPT, with an
additional 1=M2

π term accounting for the expected infrared-
divergent behavior of allμ in the Mπ → 0 limit [48,88]. For
each value of i in Eq. (3.7), we consider several values for
ni ≥ 0, requiring only that the fnig are the same for both
all;Wμ ðconnÞ and all;W2

μ ðconnÞ, and that each fit has at least
one degree of freedom (d.o.f.). [Note that if ni ¼ 0, then
j ¼ 0 and ciðaÞ is independent of aΛ.] Following Ref. [89],
we account for correlations between the independent
variables (a and Mπ), as well as between the independent
and dependent variables [all;Wμ ðconnÞ and all;W2

μ ðconnÞ],
using Bayesian priors. We monitor the χ2data=d:o:f: of each
fit variation, preferring fits with χ2data=d:o:f: closest to 1. (A
χ2data=d:o:f: ≫ 1 indicates that the fit function does not
describe the data, while a χ2data=d:o:f: ≪ 1 suggests that we
are overfitting.) After trying several combinations of fnig,
we select n−1 ¼ 1, n0 ¼ 2, and n1 ¼ 1 for our central
analysis because this functional form gives the best
interpolation of our data for both Euclidean-time windows
simultaneously.

7The a ≈ 0.15 fm correlators were also employed in Ref. [39]
to study strong-isospin-breaking effects in allμ ðconnÞ.
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Once the coefficients cij are determined for a given set of
fnig, we can use Eq. (3.7) to predict all;Wμ ðconnÞ and
all;W2
μ ðconnÞ at the target physical pion mass, Mπ;phys ¼

Mπ0 (see Sec. III B) for each ensemble. Figure 5 shows our
central fits for all;Wμ ðconnÞ (upper panel) and all;W2

μ ðconnÞ
(lower panel). At each lattice spacing, we take the
difference in all;winμ between the fit prediction at the
physical-pion mass (blue dashed curve) and the unitary
lattice data (filled squares) as our data-driven estimate of
the pion-mass adjustment ΔMπ ;DD. As seen in Fig. 5, our
data-driven analysis finds that a correction to all;Wμ ðconnÞ
and all;W2

μ ðconnÞ of about 1 sigma is needed on the a ≈
0.09 fm ensemble, for which the simulation pion mass is
about 5% below the physical value.
The all;Wμ ðconnÞ and all;W2

μ ðconnÞ data entering our
central fits are corrected for finite-volume effects using
the CM. Repeating this analysis using other finite-volume
correction schemes yields almost identical predictions for
the pion-mass adjustments. Replacing the 1=M2

π term in
Eq. (3.7) with logðM2

πÞ also leads to negligible changes in
the predicted values for ΔMπ

.
Figure 6 compares the pion-mass adjustments to

all;Wμ ðconnÞ (upper panel) and all;W2
μ ðconnÞ (lower panel)

obtained in our data-driven analysis (filled green circles
with error bars) and those estimated within three
of the EFT-based correction schemes introduced in
Sec. III C: the CM (empty green circles), NNLO χPT

(empty purple upside down triangle), MLLGS (empty
orange square triangles). On the three ensembles for which
the pion mass is well tuned (a ≈ 0.06, 0.12, and 0.15 fm),
the pion-mass adjustment ΔMπ ;DD is negligible in all
correction schemes. At a ≈ 0.09 fm, however, the picture
is less clear. For all;Wμ ðconnÞ, the spread in model estimates
is significantly larger than the error bar on the data-driven
evaluation. For all;W2

μ ðconnÞ, the models agree with each
other, but differ from the data-driven prediction by ≈1.5σ.
In light of the differences between predicted corrections

at a ≈ 0.09 fm, we adopt the following conservative
procedure to obtain our final estimates for ΔMπ

(black
filled circles with error bars in Fig. 6). For the central value,
we use the average of the data-driven and chiral-model
predictions, i.e., ΔMπ

≈ ðΔMπ ;DD þ ΔMπ ;CMÞ=2. For the
error on a ≈ 0.09 fm, we add (linearly) to the uncertainty
on the data-driven prediction σMπ ;DD an additional system-
atic uncertainty given by half the absolute difference
between the data-driven and chiral-model predictions,
i.e., σMπ ;DD þ jΔMπ ;DD − ΔMπ ;CMj=2. On a ≈ 0.06, 0.12,
and 0.15 fm we take the uncertainty to be just the
uncertainty on the data-driven prediction. As shown in
Fig. 6, our final estimates for the pion-mass adjustment at
a ≈ 0.06, 0.12, and 0.15 fm are essentially those from our
data-driven analysis. At a ≈ 0.09 fm, our final estimate for
the pion-mass adjustment covers most (all) of the model
spread for all;Wμ ðconnÞ [all;W2

μ ðconnÞ].

3. Taste-breaking corrections

The final lattice correction,ΔTB in Eq. (3.6), accounts for
the mass differences at finite lattice spacing between
staggered pions with different taste quantum numbers.
For the HISQ action, these taste splittings arise from
discretization effects of Oðα2sa2Þ and higher. It is well
known, however, that the HISQ taste splittings do not scale
linearly with α2sa2 [44,62].8 As shown in Ref. [44], the
HISQ pion-taste splittings decrease faster than naive
expectations at lattice spacings below around 0.09 fm,
while increasing more slowly at very coarse lattice spacings
above roughly 0.12 fm. The former observation is likely
due to the HISQ smearing [45] suppressing the leading
α2sa2 taste-breaking discretization contributions, making
higher-order, e.g., Oðα3sa2; a4Þ, effects more prominent,
while the latter indicates the presence of additional higher-
order terms.
Figure 7 shows the taste-breaking corrections to

all;Wμ ðconnÞ (left panel) and all;W2
μ ðconnÞ (right panel)

obtained within the χPT, CM, and MLLGS correction
schemes introduced at the beginning of Sec. III C.
Qualitatively, they display the same behavior as the taste
splittings, with ΔTB decreasing more rapidly at finer lattice

FIG. 5. Data-driven estimate of pion-mass adjustments to
all;Wμ ðconnÞ (top) and all;W2

μ ðconnÞ (bottom) on all ensembles.
Lattice data (corrected for finite-volume effects using the CM
scheme) are shown as open/filled squares with error bars, with
each color denoting a different simulation pion mass: Mπ0 (blue),
the taste-Goldstone pion mass at a ≈ 0.09 fm (magenta), and the
partially quenched pion masses bracketing Mπ0 at a ≈ 0.12 and
0.15 fm (maroon and orange). The results of fitting these data to
an interpolating function in M2

π and a2 [specifically, Eq. (3.7)
with nf−1;0;1g ¼ f1; 2; 1g] are shown for fixed Mπ as dashed
curves with error bands, and share the same color coding as the
data points.

8See also Ref. [33] for a discussion of the HISQ taste splittings
as they pertain to calculations of aHVP;LOμ .
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spacings. Quantitatively, the estimated corrections span a
wide range of values between 0≲ ΔTB ≲ 30 × 10−10. This
corresponds to corrections to all;Wμ ðconnÞ and all;W2

μ ðconnÞ
on our coarsest ensemble of up to ∼15% and ∼30%,
respectively. Differences between correction schemes and
sizes of the corrections vanish at zero lattice spacing by
construction.
For all;Wμ ðconnÞ, the NLO χPT, CM, and MLLGS results

are in broad agreement, while the NNLO χPT prediction is
about 2–4 times larger for a⪆ 0.09 fm. In contrast, for
all;W2
μ ðconnÞ the three higher-order schemes (NNLO χPT,

CM, and MLLGS) predict similar corrections, while NLO
χPT is the outlier. As with the finite-volume corrections
(see Sec. III C 1), the spread of predicted taste-breaking
corrections for all;Wμ ðconnÞ is likely due to the correction
schemes becoming less reliable at short distances.

Indeed, this expectation is borne out in Figs. 8 and 9,
which show the continuum extrapolations of all;Wμ ðconnÞ
and all;W2

μ ðconnÞ, respectively, with and without taste-
breaking corrections. For all;Wμ ðconnÞ, applying taste-
breaking corrections increases the lattice-spacing
dependence. In contrast, for all;W2

μ ðconnÞ the taste-breaking
corrections computed in the three higher-order correction
schemes all substantially reduce the lattice-spacing depend-
ence, indicating that they capture the dominant discretiza-
tion effects in this window.
Although the inclusion of taste-breaking corrections

(and choice of scheme) will alter the lattice-spacing
dependence of all;Wμ ðconnÞ and all;W2

μ ðconnÞ, it should
not change the continuum-limit values. Consequently,
varying the treatment of taste breaking in the continuum
extrapolation provides an additional measure of the
continuum-extrapolation error. For the analysis of the
intermediate window, we generate taste-breaking-corrected
datasets with NLO χPT, NNLO χPT, CM, and MLLGS
corrections for each input all;Wμ ðconnÞ dataset from the
previous sections. We follow the reasoning of Sec. III C 1
and compute the corrections in two regions, the full
intermediate window interval [0.4, 1] fm and the smaller
interval of [0.7, 1] fm, resulting in a total of eight taste-
breaking-corrected datasets for each input set. For each
input all;W2

μ ðconnÞ dataset we generate three sets of taste-
breaking-corrected data, one each for NNLO χPT, CM, and
MLLGS, dropping NLO χPT, as in Sec. III C 1. In both
cases, we also keep the datasets uncorrected for taste-
breaking effects. The corrected and uncorrected
all;Wμ ðconnÞ and all;W2

μ ðconnÞ datasets are then taken as
inputs into the continuum limit extrapolations, and feed
ultimately into the Bayesian model averaging analysis of
Sec. III E.

D. Continuum extrapolation

To perform our continuum extrapolation we consider fit
functions of the form

allμ ða; fmfgÞ ¼ allμ ð1þ FdiscðaÞ þ FmðfδmfgÞÞ; ð3:8Þ

where

FdiscðaÞ ¼ Ca2;n½ðaΛÞ2αns � þ Ca4ðaΛÞ4 þ Ca6ðaΛÞ6; ð3:9Þ

FmðfδmfgÞ ¼ Csea

X
f¼l;l;s

δmf=Λ: ð3:10Þ

The function FdiscðaÞ describes discretization effects and
FmðfδmfgÞ accounts for quark mass differences in the sea,
where δmf is the difference between the physical and the
simulation quark masses (see Secs. II B and II C). In
FdiscðaÞ we include variations where the coefficient Ca6

FIG. 6. Comparison of predictions for the pion-mass adjust-
ments with error bars show the predictions of our data-driven
analysis, which employs finite-volume corrections from the CM.
Open symbols show predictions from the CM (green circles),
NNLO χPT (empty purple upside down triangle), MLLGS
(orange diamonds) correction schemes. Black points with error
bars show our final estimates for the pion-mass adjustments on
each ensemble, which account for the spread between predictions
as described in the text.

FIG. 7. Taste-breaking corrections to all;Wμ ðconnÞ (left) and
all;W2
μ ðconnÞ (right) obtained from NLO χPT (open blue trian-

gles), NNLO χPT (purple downward triangles), CM (green
circles), and MLLGS (orange diamonds).
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is set to zero and where the power of αs in the a2 term varies
as n ¼ 1, 2. For both variations of n ¼ 1, 2, we label fit
functions with Ca6 ¼ 0 as “quadratic” and fit functions
where all terms listed in FdiscðaÞ are included as “cubic.”
Following Ref. [43] we take Λ ¼ 500 MeV and impose the
Gaussian prior constraintCsea ¼ 0.0ð3Þ. Here, theCsea term
accounts for residual light sea-quark mass mistuning
effects, remaining after performing the correction in
Sec. III C 2, and also strange sea-quark mistuning effects.

As in Ref. [43], the sea-quark masses in the ensembles
employed here are so close to their physical values that our
fits are insensitive to the FmðfδmfgÞ term and return
posteriors for Csea with central values close to zero and
uncertainties close to the initial prior width. This also
means that higher-order terms involving δmf can be safely
neglected. Additionally, to regulate the degrees of freedom
in fits with an a6 term, we constrain its coefficient with the
Gaussian prior

FIG. 8. Continuum extrapolations of all;Wμ ðconnÞ using the CM (top left), NLO χPT (top right), NNLO χPT (bottom left) and MLLGS
(bottom right) correction schemes. All data are obtained from integrating the lattice correlator CðtÞ using the trapezoidal rule, and
corrected for finite-volume effects and adjusted for pion-mass mistuning. Datasets that also include taste-breaking corrections are shown
as circles, while data without these optional corrections are shown as squares. All corrections come from the full window region. Solid
bands (dashed lines) show the fit results of continuum extrapolations with (without) data at our coarsest lattice spacing (rightmost point
in each panel). All fits employ the same fit function, Eq. (3.8) with terms through Oða4Þ.

FIG. 9. Continuum extrapolations of all;W2
μ ðconnÞ. Figure is described in the caption of Fig. 8.
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Ca6 ¼ 0ð2Þ: ð3:11Þ

This prior width conservatively accommodates instances
among the over two thousand continuum fits when the
posterior central values are close to or slightly larger than
unity. We also include fits to three ensembles, dropping
the coarsest. In this case we include an additional prior
constraint on the quadratic term Ca4 ¼ 0ð2Þ with the
same reasoning as above for Ca6. We include continuum-
extrapolation fit variations, both with and without including
the Csea term in our Bayesian averaging process.
As illustration, in Fig. 8 we show results for quadratic

continuum extrapolations of the all;Wμ ðconnÞ data with
n ¼ 1 in Eq. (3.8). The four panels show finite-volume-
corrected data computed from the CM (top left), NLO χPT
(top right), NNLO χPT (bottom left) and MLLGS (bottom
right). For each scheme, we compare continuum extra-
polations of data with and without taste-breaking correc-
tions, where we include fits to all four ensembles as well as
fits to ensembles at only the three finest lattice spacings.
For the datasets corrected with NLO χPT or the CM, we
find very good agreement between the four continuum
extrapolated results, whereas the NNLO χPT- and
MLLGS-corrected datasets show larger spreads. Taking
into account this variance, we find that the continuum
results obtained with all four correction schemes are
consistent with each other. The corresponding continuum
extrapolations for all;W2

μ ðconnÞ are shown in Fig. 9. In this
case we find good agreement between the continuum
extrapolated results, both within each scheme as well as
across the different schemes, albeit with larger uncertain-
ties. We observe, however, that the NLO χPT taste-
breaking corrections do a poor job at removing lattice
spacing dependence compared to the higher-order schemes.
In summary, for each input dataset, we perform 12

different continuum extrapolations, the results of which
become inputs to the Bayesian model averaging analysis of
Sec. III E: in Eq. (3.8), we take n ¼ 1, 2 in the linear term,
and include or do not include the Csea term.9 With these
four variations, we perform fits to the data at four lattice
spacings with and without the cubic (a6) term in Eq. (3.8),
as well as with quadratic fits to data at the finest three lattice
spacings.
Separately, as an independent analysis cross check of our

continuum extrapolations and associated error estimate, we
allow for higher-order terms in all;Wμ ðconnÞ and all;W2

μ ðconnÞ
using the empirical Bayes (or maximum marginal like-
lihood) approach described in Sec. 5.2 of Ref. [90]. For this
analysis, the discretization term FdiscðaÞ in Eq. (3.8) takes
the form

Fdisc
alt ðaÞ ¼

X3
j¼1

c1jxα
j
s þ

X5
i¼2

X3
j¼0

cijxiα
j
s þ c60x6;

x≡
�
Qeff

π=a

�
2

: ð3:12Þ

The coefficients in Eq. (3.12) are constrained with Gaussian
priors cij ¼ 0ð1Þ, while the scaleQeff is chosen tomaximize
the Gaussian Bayes factor, Eq. (28) of Ref. [90], which is
proportional to the marginal likelihood (model evidence).
The results of this comparison are discussed in Sec. III E.

E. Bayesian model averaging

In order to quantify the systematic uncertainty due to the
analysis choices described in the previous sections, we
employ BMA [46,47]. Summarizing these choices, we
include variations of
(1) Observable extraction: Two methods are used to

extract the uncorrected values of all;Wμ ðconnÞ and
all;W2
μ ðconnÞ from the correlation function data, as

described in Sec. III B:
(a) Raw correlation function data, CðtÞ, integrated

with the trapezoidal rule.
(b) Fit-reconstructed correlation function data

Cno oscðtÞ integrated with Simpson’s rule.
(2) Finite-volume correction: All correction schemes

discussed in Sec. III C 1 above: χPT, CM, MLLGS,
and HP. We include the NLO χPT variation for
all;Wμ ðconnÞ but not all;W2

μ ðconnÞ.
(3) Taste-breaking correction: We include χPT, CM, and

MLLGS as well as aμ datasets which are not
corrected for taste-breaking effects prior to con-
tinuum extrapolation.

(4) Correction region: For all;Wμ ðconnÞ, we include a
variation on the corrections where they are com-
puted from the range [0.7, 1] fm instead of over the
full W window interval.

(5) Continuum fit: We perform continuum extra-
polations using all 12 fit function variations de-
scribed in Sec. III D including fits to the three finest
ensembles.

In the context of BMA, a “model”M is defined as the set
of analysis choices that yields a given result for the desired
continuum, infinite-volume, physical observable from a
single dataset D. In our case,M is given by a set of choices
from the options listed above, while D consists of the
unmodified correlation function data.10 In order to carry out

9We find that the fit results are virtually unchanged when the
Csea term is included and, in addition, that they are insensitive to
the prior width of Csea, after increasing it by up to a factor of 10.

10Note that for BMA, the single dataset D is held fixed even in
variations where ensembles are dropped since this is treated as a
model change (see the discussion of data subset selection in
[46,47]). Also note that throughout this work, we also use the
more colloquial definition of “dataset” outside the context of
BMA to refer to any set of aμ data points before continuum
extrapolation.
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the averaging, each M is assigned a probability weight
given by

prðMjDÞ≡ prðMÞ exp
�
−
1

2
ðχ2dataða⋆Þ þ 2kþ 2NcutÞ

�
:

ð3:13Þ

This is the “Bayesian Akaike information criterion”
(BAIC) as defined in [47]. Here, χ2data is the standard
chi-squared function, not including the contribution of the
priors, and a⋆ is the posterior mode (i.e., the best-fit point
for the vector of fit parameters a when optimized against
the augmented chi-squared function [90].) Ncut is the
number of data points cut from a dataset—in this case,
the number of ensembles omitted from a given extrapola-
tion. The parameter k is the number of independent
parameters in a given fit function. The factor prðMÞ is
the prior probability of a given M; we adopt a flat prior, so
that this factor is a constant over all analysis variations and
drops out of the model-averaging results. The BMA mean
and variance are then obtained from the following for-
mulas:

haμi ¼
XNM

i¼1

haμiiprðMijDÞ; ð3:14Þ

σ2aμ ¼
XNM

i¼1

σ2aμ;iprðMijDÞ þ
XNM

i¼1

haμi2i prðMijDÞ

−
�XNM

i¼1

haμiiprðMijDÞ
�2

: ð3:15Þ

The first term on the right-hand side of Eq. (3.15) is a
weighted average over the variances of the individual
results. The second and third terms reflect the spread in
results obtained with different analysis choices (in our case,
correction schemes and fit functions). Because they encap-
sulate the systematic uncertainty due to analysis choices,
we refer to their sum as the “model variance.”
In Fig. 10, we show the results of the Bayesian model

average for all;Wμ ðconnÞ. The top-right panel illustrates the
continuum extrapolations on two datasets, the first cor-
rected with NNLO χPT and the second corrected with the
CM, in both cases computed from the full W window
interval. The dashed lines indicate the continuum extrap-
olations for each dataset. In total, we include over two
thousand separate fit results in the model average. The
resulting distribution is shown in the top left panel of
Fig. 10, where it is overlaid on the BMA result (red line and
error band) obtained using Eqs. (3.14) and (3.15). The
middle panel shows the results from the 24 best individual
fits for each correction choice, ordered by the BAIC, in
comparison to the BMA result, while the bottom panel
gives the associated Q values [91] computed from χ2aug. We

find that our best fits, as determined by the Q value, tend to
have the smallest BAIC and hence largest model proba-
bility. We also note that the continuum results for datasets
corrected for taste breaking using NNLO χPT tend to be
smaller than those from the other variations and also return
some of the largest model probabilities (points in middle
panel with lower half purple).
Figure 11 shows the analogous BMA result for

all;W2
μ ðconnÞ. Here we include 384 fit results, which is

fewer than for all;Wμ ðconnÞ. This stems from the absence of
NLO χPT corrections and from employing only a single
correction region. The general features of this figure are the
same as for Fig. 10. In the top left panel, we note that the
BMA uncertainty for all;W2

μ ðconnÞ is larger than the spread
of the histogram. This is because the bulk of the uncertainty
in this case comes from the first term in Eq. (3.15) with
relatively large statistical and scale-setting uncertainty
contributions.
In order to better understand and test the model-averag-

ing results, we also perform Bayesian model averages on
specific subsets of the variations. That is, we fix one of the
analysis choices but vary the rest as usual. The results of
these subset averages for all;Wμ ðconnÞ are shown in Fig. 12
(left). The top data point is our BMA result from Fig. 10.
The two data points below it show the BMA results for the
two observable extraction choices described in Sec. III B.
They are in excellent agreement with each other and with
the full BMA result, signifying, as expected, that residual
effects of oscillating contributions and of Oða2Þ errors of
the trapezoidal rule are negligibly small. The next five data
points are the BMA results obtained from subsets with
specific taste-breaking correction schemes. While these
results are statistically consistent with the overall average,
the differences in the central values contribute significantly
to the systematic uncertainty through the latter two terms of
Eq. (3.15) (outer uncertainty of the BMA result). In
particular, as shown in Fig. 10, the fit results obtained
from NNLO χPT corrected data tend to lie below the
average. The following three data points are BMA results
obtained from subsets of specific continuum-extrapolation
fit functions, which agree well with each other and with the
full BMA result. The last block of data points (below
the dashed line) are BMA results from subsets that use the
same schemes for finite-volume and taste-breaking correc-
tions, where the top data point (BMAw/o mix) averages all
four schemes (NLO χPT, NNLO χPT, CM, MLLGS),
followed by results from the subsets corresponding to each
single scheme, all of which are consistent with the full
BMA result with small variations in central values.
The probability weights defined in Eq. (3.13) can be

used to assess the relative weight of specific analysis
choices in the BMA. Comparison of these weights can
identify if one particular choice of observable extraction
method, correction scheme or fit-function variation is
preferred by the averaging procedure. More specifically,
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FIG. 11. Results of the BMA procedure applied to all;W2
μ ðconnÞ. Figure is described in the caption of Fig. 10.

FIG. 10. Results of the BMA procedure applied to all;Wμ ðconnÞ. Top left: histogram of all continuum extrapolations used in the BMA;
the light-red band is the BMA result. Top right: the subset of datasets and extrapolations corresponding to correcting the data with the
CM and NNLO χPT. Data (without) with taste-breaking corrections are shown as (squares) circles. Different extrapolations correspond
to variations of the fit function and ensembles included. Lower panels: the best fits according to model probability, Eq. (3.13). The
middle panel shows the fit results, while the bottom one shows the corresponding Q values [91]. In both panels, the correction schemes
employed for ΔFV and ΔTB are indicated by the symbols’ top and bottom colors, respectively.
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letting S denote a subset of the full space of models fMg.
We can define the “subset probability” of S by the relative
posterior probability of the variations contained in S:

prðSjDÞ ¼
X
Mi∈S

prðMijDÞ: ð3:16Þ

The subset probability encapsulates the relative weight of
the models in a given subset compared to the whole model
space, informed by the data. For example, we can estimate
the subset probability of using NNLO χPT for taste-
breaking and finite-volume corrections as

prðNNLOjDÞ ¼
X

Mi∈NNLO
prðMijDÞ; ð3:17Þ

where “Mi ∈ NNLO” denotes the subset of models (i.e.,
analysis choices) in which NNLO χPT is used for both
corrections. Using this definition, we show the relative
probabilities of the subsets considered above as pie charts in

Fig. 12 (right). From the top pie chart, for the twomethods of
observable extraction, we find roughly equal contributions
to the overall BMA result, indicating no preference by the
BMA procedure. The second pie chart from the top shows
the subset probabilities for specific taste-breaking correc-
tions. The probability of the subset in which the data are not
corrected prior to continuum extrapolation is smaller by
slightly more than a factor of 2 compared with the other
subsets. This is because the taste-breaking corrections are
computed in two window regions, [0.4, 1] and [0.7, 1] fm in
addition to the continuum fits to data without taste-breaking
corrections having larger χ2 values, indicating a preference
for data corrected for taste breaking. The third pie chart
shows that quadratic continuum fits to the full set of four
ensembles are preferred over cubic fits or fits to just three
ensembles. In the case of the fits to three ensembles the
smaller subset probability can be traced back to the penalty
incurred,Ncut, in Eq. (3.13) due to dropping a data point. For
subsets in which the same correction scheme is used for
finite volume and taste splittings (bottom pie chart) we find a
slight preference forNNLO χPT and slight disinclination for
NLO χPT.
Figure 13 shows the BMA subsets for all;W2

μ ðconnÞ, with
results similar to those for all;Wμ ðconnÞ. As expected, there
is greater consistency among the subset averages from
specific correction schemes compared to the all;Wμ ðconnÞ
case, with the largest variation in central value coming from
continuum extrapolations to data not corrected for taste-
breaking effects. The pie charts in the right panel of Fig. 13
reveal roughly equal subset probabilities in each case,
except for the third (from the top) pie chart, which
illustrates that here too quadratic continuum fits to all four
ensembles are preferred for the same reasons as above.
The AIC criterion used in Ref. [29] differs from

Eq. (3.13) in that the weight assigned to cutting data points

FIG. 12. Breakdown of the results from the Bayesian model
averaging applied to all;Wμ ðconnÞ. Left: from top to bottom, the
first, main result (BMA) includes all datasets, schemes, and other
variations. The next two use data integrated with either the
trapezoidal rule (Trap.) or Simpson’s rule (No osc. Simp.). The
following five results are obtained from subsets with specific
taste-breaking corrections. The next three are subsets with
specific continuum fit functions: quadratic, cubic, or quadratic
without the 0.15 fm ensemble. The last block of results (below the
dashed line) uses the same scheme for finite-volume and taste-
breaking corrections. The top (“BMAw/o mix”) includes all four
schemes; the final four are breakdowns using only a single
correction scheme in the BMA. The inner error bar on the data
points corresponds to the first term in Eq. (3.15), while the outer
is the total error. Right: pie charts showing the contributions to the
BMA corresponding to the breakdowns in the left panel.
The percentages are computed by summing over Eq. (3.13)
for the particular subsets.

FIG. 13. Breakdown of the results from the Bayesian model
averaging applied to all;W2

μ ðconnÞ. Figure is described in the
caption of Fig. 12 (with “four results” replacing “five results”
because NLO χPT is not employed here).
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is given as Ncut instead of 2Ncut. In order to test the
robustness of the model-averaging procedure, we repeat the
analysis by replacing 2Ncut with Ncut in Eq. (3.13). We find
that this yields central values and uncertainties on the final
results are essentially the same as before, with at most
minor changes to the weights in the third pie chart from the
top in Figs. 12 and 13. This result is not unexpected,
because in our case, Ncut ≤ 1, and only a small fraction of
the total variations in our averages has Ncut ≠ 0.
In order to cross check our main continuum-limit

extrapolations and the subsequent BMA analysis, we
use an empirical Bayes approach to perform independent
continuum-limit extrapolations [see Eq. (3.12)]. In the
comparison of the two approaches, we use the aμ datasets
obtained from integrating the correlation functions with
Trapezoidal rule and corrected using the CM scheme, with
and without first correcting for taste splittings. When
performing continuum extrapolations using all the terms
in Eq. (3.12), we observe that most of the posterior
coefficients are small and consistent with zero—only
the linear ∼c11a2αs and quadratic ∼c20a4 terms in
Eq. (3.12) are needed to describe the data. This observa-
tion is consistent with our main continuum-extrapolation
analysis, described by Eqs. (3.8) and (3.9). Table III shows
the comparison of the BMA analysis (restricted to the
same CM-corrected datasets) with the empirical Bayes fits
for both all;Wμ ðconnÞ and all;W2

μ ðconnÞ. We find good
agreement in central values and error bars, after consid-
ering the spread between the empirical Bayes results from
datasets with and without first correcting for taste
splittings.

F. Results and error budgets

Our results for the light-quark-connected contributions
to aWμ and aW2

μ are

all;Wμ ðconnÞ ¼ 206.6ð1.0Þ × 10−10 ð3:18Þ

and

all;W2
μ ðconnÞ ¼ 100.7ð3.2Þ × 10−10; ð3:19Þ

where the errors are those obtained from the BMA
procedure described in the previous section, and include
both statistical and systematic uncertainties.
Although Bayesian model averaging provides a robust

estimate of the total uncertainties in our results, the
construction of detailed error budgets from the BMA is
not straightforward. We start from the expression for the
BMA variance in Eq. (3.15). The first term on the right-
hand side is linear in the variances, and hence can be
trivially separated into individual contributions from
Monte Carlo statistics and each of the parametric inputs
w0, ΔMπ

, and ZV . For example, the statistical uncertainty is
given by

σ2aμðstatÞ ¼
XNM

i¼1

σ2aμ;iðstatÞprðMijDÞ; ð3:20Þ

where we average over all analysis variations using the
probability weights of Eq. (3.13). Repeating this procedure
for all the above-mentioned contributions yields the error
estimates in Table IV in the rows marked “Monte Carlo
statistics,” “Scale setting,” “Pion-mass adjustment,” and
“Current renormalization.” The second and third terms in
Eq. (3.15) solely and nonlinearly on the central value of
each variation, with the latter term including pairwise
differences between all possible model pairs in the full
BMA result. This makes it impossible to strictly disen-
tangle the contribution from only a subset of model
variations (e.g., finite-volume corrections or treatment of
discretization effects). We can obtain an approximate error
budget, however, as follows.
First, to estimate the systematic uncertainty associated

with the finite-volume correction, we perform subset model
averages separately for each finite-volume correction
scheme. These results are shown in Fig. 14. Taking the
variance in central values of these results yields the “finite-
volume correction” error in Table IV. Next, we subtract (in
quadrature) the so-estimated finite-volume error from the
total model variance. The remaining uncertainty is asso-
ciated with variations in the treatment of oscillating states
in CðtÞ, the taste-breaking corrections, and the continuum-
extrapolation fit function. Combining this uncertainty

TABLE III. Comparison of results for all;Wμ ðconnÞ and all;W2
μ ðconnÞ obtained from the BMA analysis with an

empirical Bayes approach. Both analyses use datasets corrected in the CM scheme. The third and fifth columns
show aμ results obtained in the empirical Bayes approach from fits to datasets without and with first correcting for
taste splittings, respectively. The fourth and sixth columns list the effective scales Qeff obtained by maximizing the
Bayes factor log(GBF).

Empirical Bayes

BMA: CM ΔTB ¼ 0 Qeff=GeV ΔTB ≠ 0 Qeff=GeV

all;Wμ ðconnÞ 206.28(81) 206.52(69) 1.8 205.83(67) 1.7

all;W2
μ ðconnÞ 100.9(3.3) 98.7(2.8) 2.9 102.0(2.0) 1.9
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(in quadrature) with those on the fit-function coefficient
posteriors yields the “continuum extrapolation” error in
Table IV.
Table III presents the approximate error budgets for

all;Wμ ðconnÞ and all;W2
μ ðconnÞ obtained from the above

approach. For all;Wμ ðconnÞ, the largest error is from the
continuum extrapolation, and is driven by the spread in
results using different taste-breaking correction schemes.
Here we note that the consistency between quadratic and
cubic continuum extrapolations (as illustrated in Figs. 12
and 13) as well as between our main results and those from
the empirical Bayes approach (see Table III) indicate that
systematic errors due residual higher-order discretization
effects are well encompassed by our uncertainties. Next is
the parametric uncertainty from the gradient-flow scale,
which is about 30% smaller. Errors from Monte Carlo
statistics, finite-volume corrections, and current renormal-
ization are also non-neglible, and are roughly commensu-
rate. For all;W2

μ ðconnÞ, Monte Carlo statistics are by far the
largest source of uncertainty. Following that, the contribu-
tions from scale setting, the continuum extrapolation, and
the pion-mass adjustment, which are ∼50–60% smaller.
Although finite-volume and current-renormalization errors
are negligible compared with these other uncertainties, they

will be important for calculations of aHVP;LOμ aiming for
≲0.5% precision.

IV. SUMMARY AND OUTLOOK

In Fig. 15, we compare our intermediate-window result,
Eq. (3.18), with other lattice-QCD calculations of this
quantity [29,32,33,36–38,71,92,93], which were obtained
using different lattice actions and analysis methods. Of the
results to date, ours has the smallest statistical uncertainty,
0.19%. Ours is also the first result for all;Wμ ðconnÞ obtained
from a blind analysis. While some form of EFT-inspired
correction schemes were employed in every calculation,
our analysis is the first to include all of them. Because
we incorporate uncertainties due to analysis choices via
Bayesian model averaging [46,47], our systematic error
estimate is robust without being overly conservative.
In Fig. 16, we compare our result for the W2 window

observable, Eq. (3.19), with the only other available lattice-
QCD result for this quantity [33]. Although the results
appear consistent, they are not wholly independent because
the analysis in Ref. [33] is based on some of the same
ensembles as employed in this work. Statistical and
systematic correlations due to the shared configurations
must be taken into account to make a quantitative com-
parison. Other independent lattice-QCD calculations of
all;W2
μ ðconnÞ would provide welcome consistency checks.
Before our results for all;Wμ ðconnÞ and all;W2

μ ðconnÞ can
be directly compared with data-driven determinations, the
contributions from heavier flavors must be added as well as
those from quark-line disconnected contractions and

TABLE IV. Approximate error budgets for all;Wμ ðconnÞ and
all;W2
μ ðconnÞ.

Source
δall;Wμ ðconnÞ

(%)
δall;W2

μ ðconnÞ
(%)

Monte Carlo statistics 0.19 2.44
Continuum extrapolation
(a → 0, ΔTB)

0.34 1.05

Finite-volume correction
(ΔFV)

0.16 0.23

Pion-mass adjustment (ΔMπ
) 0.06 0.96

Scale setting (w0 (fm), w0=a) 0.21 1.28
Current renormalization (ZV) 0.17 0.16

Total 0.50% 3.18%

FIG. 14. Breakdown of the BMA result into subsets that contain
only one choice of finite-volume correction for all;Wμ ðconnÞ (left)
and all;W2

μ ðconnÞ (right).

FIG. 15. Comparison of our lattice determination of
all;Wμ ðconnÞ (red circle) labeled “Fermilab/HPQCD/MILC 23”
to nf ¼ 2þ 1þ 1 (black circles) and nf ¼ 2þ 1 (black squares)
lattice-QCD calculations by RBC/UKQCD 23 [38], ETMC 22
[37], Mainz/CLS 22 [36], Aubin et al. 22 [33], χQCD 22 [92],
BMW 21 [29] and Lehner and Meyer 20 [93]. Results by Aubin
et al. 19 [71] and RBC/UKQCD 18 [32], shown in gray, are
superseded by Aubin et al. 22 and RBC/UKQCD 23, respec-
tively. The inner error bar shown for our result is from
Monte Carlo statistics.
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isospin-breaking corrections (QED and mu ≠ md). The s-,
c-, and b-quark-connected contributions to aHVP;LOμ have
already been computed on the HISQ ensembles with high
precision [94–96]; windowing these results will be straight-
forward. The remaining contributions are being computed
in ongoing projects; see Refs. [40–42,50].
Looking at the big picture, the observed consistency

between so many different, largely independent, results for
the light-quark connected contribution to the intermediate-
window observable (see Fig. 15) indicates that the sys-
tematic errors in lattice-QCD calculations of this quantity
are under reasonable control. It is therefore unlikely that the
differences between the lattice-QCD calculations reported
in Refs. [29,36–38] and the data-driven result of Ref. [35]
will be resolved by further improvements in lattice-QCD
calculations of all;Wμ ðconnÞ. Lattice-QCD calculations of
the quark-connected contributions from heavier flavors are
also unlikely causes of the difference, since their uncer-
tainties are smaller by an order of magnitude [29,95,96].
The quark-disconnected and isospin-breaking contributions
to aHVP;LOμ , however, have been computed by only a few
collaborations [29,32,38,39,87,97].11 Although these con-
tributions are too small to change aWμ substantially, addi-
tional independent lattice-QCD calculations are needed to
solidify the central value and uncertainty in order to better
quantify the significance of the difference.
In Ref. [34], we pointed out that other windowed

observables can provide more stringent comparisons
between lattice-QCD and data-driven results right now.
Because intermediate-window observables cut out low-t
contributions to aHVP;LOμ where lattice-QCD statistical
errors are smallest, “one-sided windows” without a lower
bound on the Euclidean time can capture a larger fraction of
the total aHVP;LOμ while retaining controlled uncertainties.
We are currently repeating the analysis of Ref. [34] using
the larger dataset employed in this work.
The light-quark connected contribution to the intermedi-

ate-window observable represents only around a third of

the total leading-order HVP contribution to the muon’s
anomalous magnetic moment. Thus, the work presented in
this paper is only a part of a multiyear project to compute
aHVP;LOμ with ≲0.5% precision. Several of our ongoing
efforts aim to reduce the dominant sources of uncertainty in
our published result for the total light-quark connected
contribution to aHVP;LOμ [43]; these will also improve our
determinations of the intermediate-window observables in
this work. For example, recently we introduced a “low-
mode-improved” method into our analysis that substan-
tially reduces statistical errors at large Euclidean times [98].
The uncertainty on the scale-setting quantity w0 is an
important source of uncertainty not only for all aHVP;LOμ

observables, but also for many other analyses based on the
MILC HISQ ensembles. We are therefore working to
compute precisely the Ω-baryon mass on these ensembles
[99], as well as the relative scale w0=a, and plan to use the
results to determine the scale in physical units with reduced
uncertainty.
With these ongoing efforts, we expect to obtain aHVP;LOμ

with subpercent-level precision in the near future. In order
to further reduce the precision to match that of the Fermilab
[1] and JPARC [24,25] experiments, however, it seems
likely that considerable exascale computing resources will
be needed. In particular, the inclusion of MILC’s physical-
mass HISQ ensemble with a ≈ 0.042 fm would enable
more robust continuum extrapolations of all aHVP;LOμ

observables and provide better control over this important
source of systematic error. A direct finite-volume study is
needed to better quantify the finite-volume corrections and
reduce the corresponding uncertainty. This would require
the generation and analysis of new ensembles with different
spatial volumes and all other parameters held fixed. Finally,
further control over long-distance effects and statistical
noise could be achieved by computing directly the two-
pion contributions to the vector-current correlation func-
tions [49,100,101].
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APPENDIX A: CROSS CHECKS OF WINDOW
DETERMINATIONS FROM STAGGERED

CORRELATION FUNCTIONS

In this section, we detail the methods used to obtain the
windowed aHVP;LOμ from the staggered correlation function,
CðtÞ. First, we compare three different approaches for
treating the oscillating contribution to the correlator. The
first method, which we use in our main analysis, is to fit
CðtÞ over the region of interest and reconstruct it from the
fit posteriors excluding the oscillatory contribution. The
correlation function has the spectral representation

CðtÞ ¼
X
n

½Z2
ne−Ent þ ð−1ÞtZ2

n;osce−En;osct�; ðA1Þ

where the sum is over all possible contributing states. We
use this expression to craft a model fit function that
separates the oscillating and nonoscillating contributions.
For this purpose, we truncate the sum:

CfitðtÞ ¼
XNstates

n

½Z2
ne−Ent þ ð−1ÞtZ2

n;osce−En;osct�: ðA2Þ

For simplicity, we keep the same number Nstates of regular
and oscillating states. We restrict the fit range ½tmin; tmax� to
cover the window region of interest. The use of tmin justifies
the truncation to a finiteNstates by suppressing contributions
from states with large energy. On the other hand, the use of
a fixed tmax carries a risk that the lowest-lying energies and
amplitudes may not be accurately resolved with finite
statistical precision. However, since we are simply using
the expression as a useful model for removing the
unwanted oscillations, it is not critical that our estimates
of all energy levels are asymptotically correct for
tmax → ∞. For the energies and amplitudes of the light-
quark-connected correlator, we take the Gaussian priors
associated with the local (unsmeared) data in Eqs. (A3) and
(A4) of Ref. [48]. We then have the corresponding fit
reconstruction of the correlation function without the
oscillating contribution:

Cno oscðtÞ ¼
XNstates

n

Z2
ne−Ent: ðA3Þ
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Results for all;Wμ ðconnÞ computed from the fit
reconstruction on the 0.09 fm ensemble are shown in
Fig. 17 (top). Here, for the fit range, we fix tmax ¼ 1.3 fm
(t1 þ 2Δ) and vary tmin. We also fit up to six states with
good stability obtained at four, which we take to be our
value for Nstates on all ensembles. The second panel of
Fig. 17 shows the ground-state energies obtained from
these fits; shown also is the ground-state energy obtained
from a fit to the full correlation function (blue band). We
see a significant difference in these energies, perhaps
because the full fit picks up some mixture of the hard-
to-determine two-pion states in the large-time region.
Nonetheless, we observe in Fig. 18 (as described below)
that Cfit accurately reconstructs the correlation function
data in the window region of interest. For all;Wμ ðconnÞ and
all;W2
μ ðconnÞ we take tmin and tmax to be 2Δ beyond the t0

and t1 boundaries in the corresponding window definition.
For the coarsest two ensembles, this would correspond
to a tmin=a ¼ 0, 1. To avoid possible staggered-operator

complications at small t=a, we take tmin=a ¼ 2 for those
two ensembles. As a test of the fidelity of this method, we
show results for the correlated differences of all;Wμ ðconnÞ
and all;W2

μ ðconnÞ computed from the fit reconstruction with
the oscillating states, CfitðtÞ, and the original correlation
function in Table V. One can see tiny differences on the
coarsest ensembles for all;Wμ ðconnÞ, likely due to the
restriction of not using the first two time slices; however,
these differences are well within the uncertainties of the
results for all;Wμ ðconnÞ.
The second method we examined is improved parity

averaging (IPA) as employed in Ref. [93] for computing
aHVP;LOμ , a modification of the method developed in
Ref. [102]. Here, the correlation function is replaced by
the following equation:

CIPAðtÞ ¼
e−mρt

4

�
Cðt − 1Þ
e−mρðt−1Þ þ 2

CðtÞ
e−mρðtÞ þ

Cðtþ 1Þ
e−mρðtþ1Þ

�
: ðA4Þ

FIG. 17. Fit and reconstruction results on the 0.09 fm ensemble. Top: all;Wμ ðconnÞ from the reconstruction for a range of tmin and
number of exponentials in the fit-function values with tmax ¼ 1.3 fm fixed. Middle: ground-state energies determined by the fit and fit
result for the late-time correlation function obtained from a fit with three states, tmin=a ¼ 14 and tmax=a ¼ 30 (blue band). Bottom: fit
quality, Q, coming from the augmented chi-squared fit.

TABLE V. all;Wμ ðconnÞ and all;W2
μ ðconnÞ computed from the raw data (columns two and five), the fit reconstruction with oscillating

states (columns three and six) and the correlated difference between them (columns four and seven).

≈a all;Wμ ðconnÞ all;Wμ;fit ðconnÞ Δall;Wμ ðconnÞ all;W2
μ ðconnÞ all;W2

μ;fit ðconnÞ Δall;W2
μ ðconnÞ

0.15 211.01(79) 211.15(80) −0.14ð11Þ 80.3(1.7) 80.1(1.7) 0.20(19)
0.12 207.13(60) 207.16(60) −0.025ð29Þ 84.7(1.5) 84.6(1.5) 0.09(10)
0.09 206.56(55) 206.58(55) −0.016ð10Þ 92.7(1.8) 92.7(1.8) −0.07ð22Þ
0.06 206.22(61) 206.22(61) 0.003(61) 95.6(2.8) 95.5(2.7) 0.12(73)
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The exponent used is the PDG value of the ρ-meson mass
[103], to give the best cancellation in the ρ resonance peak
which dominates in the regions of W and W2. This
approach introduces additional discretization effects; how-
ever, one expects a consistent continuum limit as the
oscillations become small at finer lattice spacing.
The final approach, originally used in Ref. [104], is

performed by interpolating the even- and odd-site corre-
lation functions separately, then averaging the two inter-
polations to obtain a new correlation function where the
oscillating contribution has been removed:

CinterpðtÞ ¼
1

2
ðCeven interpðtÞ þ Codd interpðtÞÞ: ðA5Þ

We use a cubic-spline interpolation with the Steffen
algorithm implemented in the GVAR Python package
[105] to interpolate the correlation functions.

In Fig. 18 (top left), we compare the all;Wμ ðconnÞ
integrand on the 0.09 fm ensemble obtained from the
raw correlator data (blue circles), CfitðtÞ (purple line),
Cno oscðtÞ (orange line), CIPAðtÞ (green line), and
CinterpðtÞ (red line). We find that the CfitðtÞ integrand is
in excellent agreement with the raw data in the region of
interest, suggesting that Cno oscðtÞ is an accurate represen-
tation of the correlation function without the oscillating
contribution. However, we see some differences between
the CIPAðtÞ and CinterpðtÞ integrands and the Cno oscðtÞ
integrand, especially at shorter times where a large number
of excited states contribute.
Figure 18 (top right) examines the lattice spacing

dependence of the all;Wμ ðconnÞ data obtained with all of
the different oscillation removal techniques. In the case of
all;Wμ ðconnÞ data obtained from Cno oscðtÞ we see only small
deviations compared to the all;Wμ ðconnÞ from the raw data

FIG. 18. Left: comparison of the methods used to remove the oscillating contribution to the integrand for all;Wμ ðconnÞ at 0.09 fm (top
left) and all;W2

μ ðconnÞ at 0.06 fm (bottom left). Shown are the integrands obtained with raw correlation-function data CðtÞ (blue circles),
the reconstruction from the fit including oscillating states CfitðtÞ (purple), without oscillating states Cno oscðtÞ (orange), improved parity-
averaged correlator CIPAðtÞ, [Eq. (A4)] (green), and interpolated correlator CinterpðtÞ [Wq. (A5)] (red). Right: lattice-spacing dependence

of all;Wμ ðconnÞ (top right) and all;W2
μ ðconnÞ (bottom right) data obtained from the correlation functions modified with the oscillation

removal techniques discussed. All datasets are corrected for finite-volume effects using the chiral model and pion-mass mistuning
effects using the data-driven approach, described in Secs. III C 1 and III C 2. The data points are slightly displaced horizontally for
clarity. A linear fit function (see Sec. III D) is used to fit the all;Wμ ðconnÞ and all;W2

μ ðconnÞ data at the three finest lattice spacings.
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which are more significant at coarser lattice spacing. As a
result, the continuum extrapolations (which use a simple
linear fit in a2αsð2=aÞ to the three finest ensembles, leaving
out the 0.15 fm data point) of the two datasets are in
excellent agreement. While the IPA method does yield a
consistent result in the continuum limit, it exhibits
much larger discretization effects. The interpolation
method modifies the lattice-spacing dependence so signifi-
cantly that a linear fit is not enough to describe the observed
behavior. This is likely due to the interpolation scheme
not capturing the high-energy state contributions suffi-
ciently. In Fig. 18 (bottom), we compare these methods
applied to all;W2

μ ðconnÞ; here, the different methods give
nearly identical results because the oscillations are less
pronounced and fewer excited states contribute
significantly.
In order to quantify the effects of the oscillations in

all;Wμ ðconnÞ and all;W2
μ ðconnÞ, we use the fit approach, our

preferred method of removing them, in Table VI, where we
compare results and correlated differences obtained using
the trapezoidal rule (see Sec. III B) for the raw correlation
function data vs Cno oscðtÞ. For all;Wμ ðconnÞ, we find the
differences to be small but statistically significant on the
coarsest two ensembles and statistically zero on the finer
ones. For all;W2

μ ðconnÞ, we find the differences to be zero on
all ensembles, which is expected because the oscillating
contributions are from heavier states which contribute
significantly less in the long-time region.
Finally, we examine the truncation effects associated

with the trapezoidal rule by comparing aμ observables
computed from it to results obtained with Simpson’s rule.
Simpson’s rule cannot be applied to the raw correlation
function data because of the presence of oscillatory con-
tributions. Hence, the comparisons in Table VII employ the
Cno oscðtÞ correlation functions. Here, the differences are

within errors on all;Wμ ðconnÞ and all;W2
μ ðconnÞ and decrease

much faster than a2.
In summary, truncation effects from numerical integra-

tion and discretization effects due to the oscillatory con-
tributions are clearly well controlled and small compared to
other systematic effects. To make certain that any system-
atic error due to integration and removal of oscillatory
states is included, we include variations on both numerical
integration and removal of oscillatory contributions in our
main analysis, as described in Sec. III E.

APPENDIX B: CHIRAL-MODEL EXPRESSIONS
FOR THE EUCLIDEAN-SPACE VACUUM

POLARIZATION FUNCTION

In this appendix, we provide expressions for calculating
lattice corrections to aHVP;LOμ (and windows thereof) within
the chiral model of pions, photons, and ρ mesons denoted
“CM” in Sec. III and employed in our 2019 work [43].
We begin with Blum’s formulation of the Oðα2Þ

Standard Model HVP contribution as an integral over
the Euclidean-space momentum transfer Q2 [30]:

aHVP;LOμ ¼ 4α2
Z

∞

0

dQ2KEðQ2ÞΠ̂ðQ2Þ; ðB1Þ

where Π̂ðQ2Þ ¼ ΠðQ2Þ − Πð0Þ is the renormalized vacuum
polarization function and the integration kernel KEðQ2Þ
depends on the muon’s mass:

KEðQ2Þ ¼ m2
μQ2Z3ð1 −Q2ZÞ

1þm2
μ

;

Z ¼ −
Q2 − ðQ4 þ 4m2

μQ2Þ1=2
2m2

μQ2
: ðB2Þ

TABLE VI. all;Wμ ðconnÞ and all;W2
μ ðconnÞ computed from the raw data (columns two and five), the fit reconstruction without

oscillating states (columns three and six) and the correlated difference between them (columns four and seven).

≈a all;Wμ ðconnÞ all;Wμ;no oscðconnÞ Δall;Wμ ðconnÞ all;W2
μ ðconnÞ all;W2

μ;no oscðconnÞ Δall;W2
μ ðconnÞ

0.15 211.01(79) 210.62(79) 0.39(20) 80.3(1.7) 80.2(1.7) 0.13(19)
0.12 207.13(60) 207.34(59) −0.204ð34Þ 84.7(1.5) 84.6(1.5) 0.10(11)
0.09 206.56(55) 206.56(55) 0.001(10) 92.7(1.8) 92.7(1.8) −0.07ð22Þ
0.06 206.22(61) 206.22(61) 0.003(60) 95.6(2.8) 95.5(2.7) 0.12(73)

TABLE VII. all;Wμ ðconnÞ and all;W2
μ ðconnÞ computed from the fit reconstruction without oscillating states with the trapezoidal rule

(columns two and five), Simpson’s rule (columns three and six) and the correlated difference between them (columns four and seven).

≈a all;Wμ;SimpðconnÞ all;Wμ;TrapðconnÞ Δall;Wμ ðconnÞ all;W2
μ;SimpðconnÞ all;W2

μ;TrapðconnÞ Δall;W2
μ ðconnÞ

0.15 210.62(79) 210.07(77) 0.55(26) 80.2(1.7) 79.5(1.7) 0.70(16)
0.12 207.34(59) 206.96(61) 0.373(49) 84.6(1.5) 84.9(1.5) 0.254(59)
0.09 206.56(55) 206.60(55) −0.039ð12Þ 92.7(1.8) 92.7(1.8) −0.01ð13Þ
0.06 206.22(61) 206.22(61) 0.0002(691) 95.5(2.7) 95.5(2.7) −0.0003ð4285Þ
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In the chiral model [48,86], the renormalized light-quark
hadronic vacuum polarization function is given by

Π̂ðQ2Þ¼−Σ̂ðQ2Þþ f̂2ρ
2m̂2

ρ

q2ð1þgρgρππΣ̂ðQ2ÞÞ2
Q2ð1þg2ρππΣ̂ðQ2ÞÞþm̂2

ρ

; ðB3Þ

where Σ̂ðQ2Þ≡ ReΣðQ2Þ − Σð0Þ is the renormalized pho-
ton self-energy and m̂ρ (f̂ρ) are the renormalized ρ-meson
mass (decay constant). In the chiral model, the leading
contribution to ΣðQ2Þ arises from ππ loops, and is given by
the integral

−Σ̂ðQ2; ma;mbÞ≡ 4Q2

3

Z
d3k

ð2πÞ32EaEb

k2

ðEa þ EbÞ3ðQ2 þ ðEa þ EbÞ2Þ
; ðB4Þ

where ma, mb are the masses of the two pions in the loop.
The renormalized ρ parameters can be expressed in terms of
the bare mass, ργ coupling, ρππ coupling, and Σð0Þ as

m̂2
ρ ≡m2

0ρð1 − g2ρππΣð0ÞÞ; ðB5Þ

f̂ρ
m̂ρ

≡
ffiffiffi
2

p

gρ

�
1þ gρgρππΣð0Þ −

1

2
g2ρππΣð0Þ

�
: ðB6Þ

We take the values of the bare parameters from Ref. [48]:

m0ρ ¼ 0.766 GeV gρ ¼ 5.4 gρππ ¼ 6.0: ðB7Þ

In the chiral model, lattice effects are incorporated by
modifying the pion self-energy in two ways. First, to
account for the finite volume, the continuous momentum
integrals in Eq. (B4) are replaced by sums over the discrete
lattice momenta, ı.e.,Z

d3k
ð2πÞ3 →

1

L3

X∞
kx¼−∞

X∞
ky¼−∞

X∞
kz¼−∞

ðB8Þ

where ki ¼ 2π
L ni, ni ¼ 1; 2;…. Second, taste-breaking

effects are incorporated by replacing the renormalized

photon self-energy with an average over sea-pion tastes
[43,48]:

Σ̂ðQ2; mπ; mπÞ →
1

16

X
ξa;ξb

Σ̂ ðQ2; mπðξaÞ; mπðξbÞÞ: ðB9Þ

As stated in Sec. III C, for the analysis in this work we
also include taste-breaking contributions to Σð0Þ via the
replacement

Σð0; mπ; mπÞ →
1

16

X
ξa;ξb

Σð0; mπðξaÞ; mπðξbÞÞ: ðB10Þ

Finally, the windowed HVP can be computed in the
chiral model via [29]

Π̂ðQ2Þ → Π̂winðQ2Þ ¼
Z

∞

−∞

dP
2π

1

Q2

� eWðP −QÞ − eWðPÞ

−
Q2

2

d2 eWðPÞ
dP2

�
P2Π̂ðP2Þ; ðB11Þ

where Π̂ is given by Eq. (B3) and W̃ is the Fourier
transform of the window function defined in Eq. (2.7).
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