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We perform tests of general relativity (GR) with gravitational waves (GWs) from the inspiral stage of
compact binaries using a theory-independent framework, which adds generic phase corrections to each
multipole of a GR waveform model in frequency domain. This method has been demonstrated on Laser
Interferometer Gravitational Wave Observatory-Virgo observations to provide stringent constraints on post-
Newtonian predictions of the inspiral and to assess systematic biases that may arise in such parametrized
tests. Here, we detail the anatomy of our framework for aligned-spin waveform models. We explore the
effects of higher modes in the underlying signal on tests of GR through analyses of two unequal-mass
simulated binary signals similar to GW190412 and GW190814. We show that the inclusion of higher
modes improves both the precision and the accuracy of the measurement of the deviation parameters. Our
testing framework also allows us to vary the underlying baseline GR waveform model and the frequency at
which the non-GR inspiral corrections are tapered off. We find that to optimize the GR test of high-mass
binaries, comprehensive studies would need to be done to determine the best choice of the tapering
frequency as a function of the binary’s properties. We also carry out an analysis on the binary neutron-star
event GW170817 to set bounds on the coupling constant α0 of Jordan-Fierz-Brans-Dicke gravity. We take
two plausible approaches; the first approach involves translating directly the “theory-agnostic” bound on
dipole-radiation into a bound on α0 for different neutron-star equations of state (EOS). The second “theory-
specific” approach involves reparametrizing the test such that the deviation parameter is α0 itself. The two
approaches provide slightly different bounds, namely, α0 ≲ 2 × 10−1 and α0 ≲ 4 × 10−1, respectively, at
68% credible level. These differences arise mainly since in the theory-specific approach the tidal and scalar-
charge parameters are fixed coherently for each neutron-star EOS and mass.
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I. INTRODUCTION

Over the past half decade, observations of gravitational
waves (GWs) have gone from being elusive to the routine.
Since the first detection of GWs in September 2015 [1],
the Laser Interferometer Gravitational Wave Observatory
(LIGO) [2] and Virgo [3] detectors have observed

almost a hundred GW signals [4] from mergers of
black holes (BHs), neutron stars (NSs) [5,6], and their
mixture [7]. Placed alongside independent confirmations
of these detections, as well as claims of new ones [8–13],
these results have firmly established the field of GW
astronomy.
Besides attempting answers in astrophysics [14–16] and

cosmology [17,18] in a manner complementary to electro-
magnetic astronomy, GWs are unique probes of funda-
mental physics. For more than a century, Albert Einstein’s
theory of general relativity (GR) has been our description
of gravitational interactions, having passed every exper-
imental and observational challenge, so far. However, for
the first time, the LIGO-Virgo GW observations have
allowed us to probe GR in the large-velocity highly
dynamical strong-field regime of gravity, a regime which
is inaccessible with tests in the Solar System [19], in binary
pulsars [20], and with observations around supermassive
BHs at the center of galaxies [21–23].
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Tests of GR with GW observations come in two distinct
flavors: “theory agnostic” and “theory specific.” The first
class of tests assumes that the underlying GW signal is well
described by GR, and any potential deviation is charac-
terized by “extra phenomenological” non-GR degrees of
freedom or “parameters.” These tests use observations of
GWs to constrain the non-GR parameters and check for
consistency with their nominal predictions in GR. While
theory-agnostic tests can only comment on (dis)agreement
with GR predictions, the above measurements of phenom-
enological non-GR parameters can be translated to specific
modified theories of gravity, albeit there are subtleties, as
we shall discuss below. Investigations that compare directly
the data with modified theories of gravity belong to the
theory-specific flavor of tests of GR.
Several tests of GR have been demonstrated using

the observations of GW signals by the LIGO-Virgo
Collaboration (LVC) [24–29]. Among them are the
theory-agnostic parametrized tests of the “inspiral,” which
check for the agreement of the early evolutionary (or
inspiral) phase of a compact binary coalescence composed
of BHs and/or NSs with the analytic post-Newtonian (PN)
approximation for binaries in GR [30–34]. Parametrized
GR waveforms have used the LIGO-Virgo observations to
provide state-of-the-art bounds on possible deviations from
the PN predictions [28]. At the same time, these theory-
agnostic bounds have been used to conduct theory-specific
tests and constrain particular modified theories of gravity
(see, e.g., Refs. [35–39]).
And yet, parametrized inspiral tests are not all exactly the

same; they can differ in the underlyingGRwaveformmodel,
in how the non-GR parameters are introduced into it and in
the transition beyond the inspiral part. In this work, we
develop a framework to examine how the details of the
construction of parametrized waveform models systemati-
cally affect the tests of GR in which they are employed.1 It is
also important to be able to distinguish deviations from
GR due to systematic uncertainties of the waveform model
from true violations of the theory. This infrastructure allows
us to add generic corrections to the inspiral portion of any
gravitational waveform, thereby allowing tests of GR with
a broader range of waveform models than previously
possible (e.g., with the TIGER infrastructure [33,34]). We
call this framework the flexible theory-independent (FTI)
approach and explore it using synthetic binary BH (BBH)
GW signals. In addition, the conveniently adaptable design
of the FTI framework allows us easy construction of
waveform models for theory-specific tests. As an example,
we apply the FTI framework to the first binary NS (BNS)
merger observed by the LIGO and Virgo detectors,
GW170817, and set bounds on the Jordan-Fierz-Brans-
Dicke (JFBD) scalar-tensor theory of gravity. We note that

the FTI approach has already been extensively used
by LIGO and Virgo data analysts in Refs. [26–29]
and also by some of the authors of this manuscript
in Ref. [37].
This paper is organized as follows. In Sec. II we

introduce the FTI method for multipolar waveform
models of compact-object binaries. After recalling the
tenets of Bayesian inference in Sec. III, in Sec. IV we
apply the FTI method to synthetic GW signals of BBHs.
This allows us to discuss the effect of the FTI para-
metrization on the recovery of the BBH properties
(excluding the GR-deviation parameters) and to study
the robustness of the FTI method. In Sec. V, we use the
FTI construction on real data, notably the BNS signal
GW170817, to set bounds on the JFBD theory of gravity.
Finally, in Sec. VI, we summarize our main conclusions
and also discuss possible future work. Appendix collects
the necessary PN results for the GW phase of the BBH
with aligned spins.
Henceforth, we use natural units such that the Newton

constant G ¼ 1 and the speed of light c ¼ 1.

II. THE FTI APPROACH

In GR, gravitational signals from quasicircular BBHs
depend on the intrinsic parameters λ ¼ fm1; m2; S1; S2g,
where mi, Si are the masses and spins of the compact
objects (i ¼ 1, 2), as well as a set of extrinsic parameters
ξ ¼ fι;φc; α; δ;ψ ; dL; tcg. These are the angular positions
of the line of sight measured in the source frame (ι, φc),
the sky location of the source in the detector frame
ðα; δÞ, the polarization angle ψ , the luminosity distance
of the source dL, and the time of arrival tc. Limiting
ourselves to objects with nonprecessing spins (i.e.,
spins aligned or antialigned with the orbital angular
momentum L), the only (dimensionless) spin component
on which the dynamics, and hence the waveform, depends
is χi ¼ Si · L=ðjLjm2

i Þ. The set of intrinsic parameters
consequently reduces to four λ ¼ fm1; m2; χ1; χ2g. For
convenience, we additionally introduce the following
parameters: the mass ratio q ¼ m1=m2 ≥ 1, the symmetric
mass ratio ν ¼ q=ð1þ qÞ2, the binary’s total mass
M ¼ m1 þm2, the chirp mass M ¼ ν3=5M, and the
effective spin χeff ¼ ðm1χ1 þm2χ2Þ=M. The above set
of 11 parameters is enough to describe an aligned-spin
BBH signal. For a binary involving NSs, this set increases
by the tidal parameters (Λ1;2), which encode the NS matter
equation of state.
In GR, the GW signal can be decomposed into a set of

modes by projecting the complex linear combination of its
plus and cross polarizations,

hðtÞ≡ hþðtÞ − ih×ðtÞ; ð1Þ

onto spherical harmonics −2Ylm of spin-weight −2 [41],
1Parts of this manuscript are based on the Ph.D. thesis of Noah

Sennett [40], in particular, Sec. V follows Chapter 9 of Ref. [40].
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hðt; λ; ι;φcÞ ¼
Xþ∞

l¼2

Xl
m¼−l

−2Ylmðι;φcÞhlmðt; λÞ: ð2Þ

During the inspiral, the GW signals from aligned-spin
binaries satisfy a reflection symmetry about its orbital
plane, which implies

hl−mðtÞ ¼ ð−1Þlh�lmðtÞ; ð3Þ

where � denotes the complex conjugation. As a conse-
quence, we can restrict ourselves to the m ≥ 0 modes to
describe the complete mode content of aligned-spin inspiral
waveforms. Furthermore, for such systems, h̃RlmðfÞ, the
Fourier transform of the real part of hlmðtÞ is related to the
imaginary part via

h̃RlmðfÞ ¼ −ih̃IlmðfÞ: ð4Þ

Using Eqs. (3) and (4), the GW polarizations in the
frequency domain read (see Appendix C of Ref. [42] for
full derivation),

h̃þðfÞ¼
Xþ∞

l¼2

Xl
m¼1

½ð−1ÞlfðιÞþ1�−2Ylmðι;φcÞh̃RlmðfÞ; ð5aÞ

h̃×ðfÞ ¼ −i
Xþ∞

l¼2

Xl
m¼1

½ð−1ÞlfðιÞ − 1�−2Ylmðι;φcÞh̃RlmðfÞ;

ð5bÞ

with

fðιÞ ¼ d2l−mðιÞ
d2lmðιÞ

;

where d2lmðιÞ denote theWigner functions of weight−2 [43].
Being a complex function, h̃RlmðfÞ can be written as

h̃RlmðfÞ ¼ AlmðfÞeiψlmðfÞ: ð6Þ

The construction of a parametrized (or generalized)
waveform model begins with the baseline model in GR
[Eq. (6)]. During the quasicircular adiabatic inspiral, the
frequency-domain phase ψlmðfÞ can be obtained from PN
theory [44,45] using the stationary-phase approximation
(SPA). In GR it reads,

ψ ðGRÞ
lm ðf; λÞ ¼ 3

128νv5
m
2

�X7
n¼0

ψ ðPNÞ
n ðλÞvn

þ
X6
n¼5

ψ ðPNÞ
nðlÞ ðλÞvn log v

�
; ð7Þ

where

v≡ ð2πFMÞ1=3 ¼ ð2πfM=mÞ1=3: ð8Þ

The quantity F is the orbital frequency which is related
to the (Fourier) GW frequency f for a given ðl; mÞ-mode
through the equation above. The quantities ψ ðPNÞ

n and ψ ðPNÞ
nðlÞ

are the (n=2)-PN coefficients,2 which depend on the binary
parameters. In the Appendix, we provide explicit expressions
for the PN coefficients up to 3.5PN order (including spin
effects), the highest PN order to which the GW phasing is
currently known. Note that the logarithmic terms in Eq. (7)
arise from tails effects (i.e., terms that depend on the complete
past history of the binary).
We generalize the GR waveform model by considering

corrections to the phase that take a form similar to the PN
expansion,

δψlmðf; λ; δφ̂n; δφ̂nðlÞÞ ¼
3

128νv5
m
2

�X7
n¼−2

δψnðλ; δφ̂nÞvn

þ
X6
n¼5

δψnðlÞðλ; δφ̂nðlÞÞvn log v

�
;

ð9Þ

where δψn and δψnðlÞ are deviations to the (n=2)-PN phase

coefficients ψ ðPNÞ
n and ψ ðPNÞ

nðlÞ defined above. These correc-

tion terms depend, in addition to λ, also on the correspond-
ing deviation parameter δφ̂n or δφ̂nðlÞ, respectively. We
include possible deviations at “pre-Newtonian” orders
(n < 0) as these are predicted in some alternative theories
of gravity. In particular, the emission of dipole radiation
(discussed in Sec. VA) leads to a nonvanishing deviation at
n ¼ −2. A solitary deviation at n ¼ −1 is less well
motivated and not discussed in this work. Parametrized
deviations of this form can be mapped onto the predictions
of any hypothetical theory of gravity provided that (i) the
theory admits a weak-field slow-velocity PN expansion as
in GR, and (ii) the deviations from GR are parametrically
smaller than the PN-expansion parameter v2. Note that this
excludes theories that admit nonperturbative phenomena
like dynamical scalarization, for which the naive PN
expansion in Eq. (9) breaks down [46,47], and other
methods are needed to observe such effects (see, e.g.,
Ref. [48]). Because GW detectors are more sensitive to the
evolution of the signal’s phase than its amplitude, consid-
ering also the computational cost of introducing several free
parameters, we neglect deviations in the mode ampli-
tudes Alm.

2The l in nðlÞ refers to PN coefficients alongside log v in
addition to vn dependence (see the Appendix).
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Despite the generality of Eq. (9), the moderate signal-to-
noise ratios (SNRs) of most LIGO-Virgo observations, so
far, do not allow us to place meaningful bounds on multiple
deviation parameters concurrently. Hence, we vary one
parameter at a time, keeping the rest fixed at their nominal
GR prediction, which is zero. This assumption is validated
by investigations [39,49–51] that conclude that a signal
containing deviations at several PN orders is likely to lead
to a nonzero deviation measurement, using a model with
only a single deviation parameter. On the other hand, a
recent work [52] following a principle component analysis
identified certain combinations of these deviation param-
eters with the tightest constraints; in fact, the two dominant
principle components, rather, capture the essence of the full
multiparameter test.
In this paper, we assume that each deviation parameter

represents a fractional deviation to the corresponding PN
coefficient in GR, and for this reason, we also refer to the
deviation parameters as non-GR parameters,

δψnðλ; δφ̂nÞ≡ δφ̂nψ
ðPNÞ
n ðλÞ; ð10aÞ

δψnðlÞðλ; δφ̂nðlÞÞ≡ δφ̂nðlÞψ
ðPNÞ
nðlÞ ðλÞ: ð10bÞ

We handle PN orders for which GR coefficients vanish
slightly differently (i.e., for n ¼ −2, −1, 1). For such cases,
we let φn represent an “absolute” deviation at that order
instead.
While Eq. (9) unambiguously details how to generalize

GR waveforms containing only the inspiral, additional care
must be taken for waveforms that contain later portions of
the GW signal, such as the merger ringdown. For the FTI
approach, we require that the parametrized deviations
satisfy the following properties:
(1) The early-inspiral (low-frequency) waveform has a

phase ψlmðf;λ;δφ̂n;δφ̂nðlÞÞ¼ψ ðGRÞ
lm ðf;λÞþδψlmðf;

λ;δφ̂n;δφ̂nðlÞÞ, where δψlm takes the form
of Eq. (9).

(2) The postinspiral (high-frequency) waveform has a
phase ψlmðf; λ; δφ̂n; δφ̂nðlÞÞ ¼ ψ ðGRÞ

lm ðf; λÞ that ex-
actly reproduces the underlying GR polarizations
[Eq. (5)] up to some constant shift, which represents
the total dephasing from the GR polarization accu-
mulated over the inspiral.

(3) The waveform polarizations are C2 smooth over all
frequencies.

Using Eq. (10), the δψlmðf; λ; δφ̂n; δφ̂nðlÞÞ in Eq. (9) reads,

δψlmðf; λ; δφ̂n; δφ̂nðlÞÞ≡ 3

128νv5
m
2

�X7
n¼−2

ψ ðPNÞ
n ðλÞδφ̂nvn

þ
X6
n¼5

ψ ðPNÞ
nðlÞ ðλÞδφ̂nðlÞvn log v

�
:

ð11Þ

To smoothly apply these corrections over only the inspiral,
we use a tapering function Wðf; vtape;ΔvtapeÞ given by

Wðf; vtape;ΔvtapeÞ≡
�
1þ exp

�
v − vtape

Δvtape

��
−1
; ð12Þ

which smoothly transitions between one and zero around
vtape over the range of ∼Δvtape, where v is defined in
Eq. (8). We construct the total phase correction for a given
ðl; mÞ-mode by combining this windowing function with
the second derivative with respect to the frequency of δψlm,
which we denote as ψ 00

lmðf00Þ, and reintegrating with
appropriate integration constants to ensure C2 smoothness.
In summary, we use

δψlmðf; λ; δφ̂n; δφ̂nðlÞ; vtape;ΔvtapeÞ

¼
Z

f

freflm

df0
Z

f0

fpeak
22

df00δψ 00
lmðf00; λ; δφ̂n; δφ̂nðlÞÞ

×Wðf00; vtape;ΔvtapeÞ; ð13Þ

where freflm ð≡mfref22=2Þ is the reference frequency at which
the phase of the (lm)-mode vanishes. This choice ensures
that the definition of the reference frequency does not
changewhen we add these corrections to the GR waveform.
The second integration boundary is fixed by requiring that
the first derivative of δψlmðfÞ goes to zero at the frequency
of the (2,2)-mode’s peak fpeak22 (see Eq. (A8) of Ref. [53]).
This requirement ensures that the alignment between the
GR waveform and the modified GR waveform in the time
domain remains the same.
Let us elaborate more on the tapering parameters vtape

and Δvtape that enter the final expression for the phase
corrections (13). Using Eq. (8), the parameter vtape can be
equivalently specified by the orbital frequency Ftape at
which the corrections are tapered off. Note that while the
orbital tapering frequency Ftape is the same for all modes,
the tapering frequency in Fourier domain ftapelm ¼ mFtape

depends on the mode. In the following, we fix the tapering
frequency by specifying ftape22 as a fraction of fpeak22 , say
ftape22 ¼ αfpeak22 with a constant α of order unity, and
vtape ¼ ðπftape22 MÞ1=3. Furthermore, instead of specifying
the parameter Δvtape directly, we find it more useful to fix
the number of GW cycles over which the window function
defined in Eq. (12) switches its value from 0 to 1. The
number of GW cycles N GW between the GW frequencies
f1 and f2, or respectively v1 and v2 defined by Eq. (8), can
be estimated as

N GW ¼
Z

f2

f1

fðtÞdt¼
Z

f2

f1

df
f
_f
¼ 1

32πν
ðv−51 −v−52 Þ; ð14Þ

where we make use of the leading-order PN expressions
for fðtÞ and _fðtÞ in the last equality. Now, choosing
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v1;2 ¼ vtape ∓ Δvtape=2, we solve for the small
Δvtape ≪ vtape,

Δvtape ¼ 128ν

3
πðvtapeÞ6ΓN GW; ð15Þ

with the estimate Γ≡ ΓPN ¼ 3=20 from PN theory.
However, since we are going to apply the tapering
close to the merger of the binary, where the PN approxi-
mation is not applicable, we treat Γ as a phenomenological
fudge factor and choose Γ ¼ 1=50. The crucial input from
PN theory is the functional dependence of Δvtape on ν,
vtape and N GW. The choice of the parameters ftape22 and
N GW is completely phenomenological and should be
made to optimize the null test. Previous analyses on the
LIGO-Virgo events reported in Refs. [28,29,54,55] used
ftape22 ¼ 0.35fpeak22 and N GW ¼ 1. While we also employ
these choices for the studies here, we devote Sec. IV B to
investigate how results are effected when varying, in
particular, the tapering frequency ftape22 . Changing N GW
in the range 0.8–3, instead, does not affect the results
significantly.
At low frequencies, any GR description of the modes of

the GW-phase reduces to the one of Eq. (7). Thus, we can
apply the method outlined above to inspiraling PN models
and also to inspiral-merger-ringdown GR models (if they
are available in the time domain we first performed a
Fourier transform). Our method can treat the deviation
coefficients in Eqs. (9) and (10) either as free parameters
(see Sec. IV) or identify them to the ones predicted in
specific alternative theories of gravity (see Sec. V), pro-
vided the latter have perturbative deviations from GR and
are represented by PN-like coefficients. This is the epony-
mous flexibility of the FTI approach.
In this work, we apply the FTI approach to the

multipolar aligned-spin effective-one-body (EOB) wave-
form model SEOBNRHM [53,56] for BBHs, the aligned-
spin EOB model SEOBNRT [53,57,58] for BNSs, and
for some studies, the aligned-spin inspiral-merger-
ringdown phenomenological model PhenomX for
BBHs [59].3 The SEOBNR, SEOBNRT and PhenomX
waveforms contain the ðl; mÞ ¼ ð2; 2Þ (dominant) mode,
while the SEOBNRHM waveforms include four additional
subdominant modes, ðl; mÞ ¼ ð2; 1Þ, (3,3), (4,4), and
(5,5). We denote the waveforms to which we apply the
non-GR phase correction (10) “parametrized” waveforms
and refer to them as pSEOBNRHM, pSEOBNRT, and
pPhenomX.
We end this section with an illustration of the tapering

using the pSEOBNRHM model. We choose a binary with
parameters that correspond to the median of the

GW190814 [54] event, as listed in Table I, and generate
two pSEOBNRHM waveforms corresponding to a deviation
parameter of δφ̂2 ¼ 0.5 and its GR limit δφ̂2 ¼ 0 (i.e.,
identical to SEOBNRHM). Figure 1 shows contributions of

the phase corrections δψ ðPNÞ
lm ðfÞ to the different (l; m)-

modes (left panel), as well as the amplitude of the plus
polarizations after combining all the modes [via Eq. (5a)]
for the SEOBNRHM and pSEOBNRHM waveforms (right
panel). The vertical dashed lines mark the tapering fre-
quency ftapelm associated with the different modes. The left
panel highlights how the correction to the phase for each
mode, δψlmðfÞ, approaches a constant value for f > ftapelm ,
where the correction is tapered off. Consistent with this,
the right panel shows how the amplitude of the para-
metrized waveform (pSEOBNRHM) returns to the GR limit
(SEOBNRHM) for f > ftape44 .4 We note that the parametrized
waveform returns to the GR one when the overall phase
difference, as illustrated in the left panel, becomes constant
and is hence absorbed into the coalescence phase. In other
words, the coalescence phase recovered using the para-
metrized waveforms and GR waveforms from the param-
eter-estimation studies is, in general, not expected to agree.
In Fig. 2, we show the plus polarization of the parametrized
and GR waveforms in time domain. The time-domain
waveforms are generated from their frequency-domain
counterparts via inverse Fourier transformation. The wave-
forms are aligned at the peak of their amplitudes.
The vertical lines indicate the times corresponding to the
tapering frequencies (i.e., FðttapeÞ≡ Ftape), where the
quantity 2FðtÞ is computed from the first derivative of
the (2,2)-mode’s phase. For this figure, the tapering
frequency used is ftape22 ¼ 0.35fpeak22 ¼ 2Ftape, as stated

TABLE I. Median values and symmetric 90% credible
intervals for the source-frame parameters of the GW190814 [54]
and GW190412 [55] signals observed by LIGO and
Virgo. We indicate the source-frame masses with the superscript
s to distinguish them from the detector-frame masses,
mi ¼ ð1þ zÞms

i , used in the rest of the paper. We use the median
values for our synthetic signals: GW190814-like and
GW190412-like signals.

Parameter GW190814 GW190412

ms
1=M⊙ 23.2þ1.1

−1.0 30.1þ4.6
−5.3

ms
2=M⊙ 2.59þ0.08

−0.09 8.3þ1.6
−0.9

1=q 0.112þ0.008
−0.009 0.28þ0.12

−0.07

ι (rad) 0.8þ0.3
−0.2 0.71þ0.31

−0.24
z 0.053þ0.009

−0.010 0.15þ0.03
−0.03

SNR 25.0þ0.1
−0.2 19.1þ0.1

−0.3

3In the LIGO Algorithm Library (LAL) the technical
names of these waveform models are SEOBNRv4HM_ROM,
SEOBNRv4T_surrogate, and IMRPhenomXAS, respectively.

4Note that even though the (5,5)-mode is included in the
SEOBNRHM waveform, it does not contribute much in this case.
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before. For later analyses, we also indicate in the figure
other choices of the tapering frequency. In the time-domain
plot, it is visually clearer to see that the pSEOBNRHM
waveform reduces to SEOBNRHM post-tapering (i.e., for
t ≥ ttape), while displaying a significant mismatch before
the tapering (in the inspiral regime).

III. BAYESIAN INFERENCE

We can now use the parametrized waveforms introduced
under the FTI approach in the previous section to perform
tests of GR with LIGO-Virgo observations. The first
step involves the measurement or “inference” of the
waveform parameters, given the observed GW data. For

FIG. 2. Plus polarization of the GR (SEOBNRHM) and pSEOBNRHM waveforms shown in Fig. 1. The waveforms are aligned at their
peaks, t ¼ 0. The solid vertical lines denote the times corresponding to the different tapering frequencies that we employ in Sec. IV B.
Here, we use as tapering frequency in the pSEOBNRHM waveform ftape22 ¼ 0.35fpeak22 . The SEOBNRHM and the pSEOBNRHM waveforms
match very well in the post-tapering region (i.e., for t ≥ ttape where 2FðttapeÞ ¼ 0.35fpeak22 ).

FIG. 1. Left panel: the phase corrections for the different frequency-domain modes for the parameters of a GW190814-like event [54]
(see Table I). The numerical value of the (2,1)-mode is relatively small, and hence it is not shown in the plot for the sake of clarity. We
use as tapering frequency ftape22 ¼ 0.35fpeak22 . The vertical dashed lines denote the tapering frequencies ftapelm for each mode. The phase
correction for each mode becomes constant for f > ftapelm where they are tapered off. Right panel: the amplitude of the plus polarization
of the SEOBNRHM and pSEOBNRHM waveforms. The amplitude of the pSEOBNRHM waveform returns to the GR (SEOBNRHM) one in
the postinspiral regime (f > ftape44 ).
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this, we use a Bayesian approach in this paper. Given the
hypothesis H that our data d ¼ hðθÞ þ n consists of
detector noise n and a single GW signal, which can be
accurately described by our waveforms hðθÞ depending on
parameters θ ¼ fλ; ξ; δφ̂n; δφ̂nðlÞg, the Bayes’ theorem
states that

Pðθjd;HÞ ¼ Lðdjθ;HÞpðθjHÞ
EðdjHÞ : ð16Þ

Here, Pðθjd;HÞ is the posterior probability distribution of
the parameters θ, and pðθjHÞ is the prior probability
distribution. The quantity EðdjHÞ is called the “evidence”
of the hypothesis H, which is just the normalization
constant of the posterior probability distribution
Pðθjd;HÞ. The quantity Lðdjθ;HÞ denotes the likelihood
of obtaining the data d ¼ hðθÞ þ n given that the param-
eters of the waveform are θ under the hypothesis H, the
latter entailing the waveform and noise models. It is
computed using

Lðdjθ;HÞ ∝ exp

�
−
1

2
hd − hðθÞjd − hðθÞi

�
; ð17Þ

where h:j:i is the noise-weighted inner product,

hajbi ¼ 2

Z
fhigh

flow

ã�ðfÞb̃ðfÞ þ ãðfÞb̃�ðfÞ
SnðfÞ

df: ð18Þ

Equation (17) simply encodes our hypothesis of a sta-
tionary Gaussian noise model, with the power spectral
density (PSD) of the GW detector noise denoted by SnðfÞ.
We work with the three-detector network consisting of
the two LIGO and the Virgo detectors. The quantities fhigh
and flow denote the maximum and minimum frequencies,
respectively, that enter in the likelihood estimation. The
precise values of these quantities are dictated by the
sensitivity bandwidth of the GW detectors. We will state
them explicitly wherever required.
The prior probability distributions chosen for our analy-

ses in this paper are identical to Ref. [60]. More specifi-
cally, they are uniform in the component masses, isotropic
in spin orientations and uniform in their magnitudes
between [0, 0.99], uniform in the Euclidean volume for
the luminosity distance, and isotropic in the sky location
and binary orientation. We also choose a flat prior on
our non-GR parameters, δφ̂n, δφ̂nðlÞ. For the GW170817
analysis in Sec. V, we will introduce additional parameters
and their priors below. With these prior distributions, we
proceed to stochastically sample the parameter space using

FIG. 3. Filled histograms for the posterior distributions of the deviation parameters δφ̂i, δφ̂iðlÞ appearing in Eq. (11) when a GR
simulated signal using the pSEOBNRHMwaveform is analyzed with the parametrized waveforms pSEOBNRHM (blue) and pSEOBNR
(orange) (top panel: GW190814-like parameters; bottom panel: GW190412-like parameters). The inclusion of HMs improves both the
precision and the accuracy of the measurement of the deviation parameters. Also shown by the black unfilled histograms are the results
obtained from the actual GW190814 and GW190412 events when analyzed with the pSEOBNRHM , as first presented in Ref. [28] (but
here without reweighing against the priors). The small symmetrical horizontal lines in each panel represent the 90% credible intervals.
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a Markov-Chain Monte Carlo algorithm provided in the
LALINFERENCE code [60]. The one-dimensional pos-
terior distribution of a specific parameter (demonstrated,
e.g., in Fig. 3) is then computed by simply marginalizing
Pðθjd;HÞ over the “nuisance” parameters.
We now utilize the Bayesian parameter inference out-

lined above to demonstrate the FTI approach in two
specific cases: in the context of a theory-agnostic test with
the BBH GW signals GW190412 and GW190814
(Sec. IV) and a theory-specific test with the BNS signal
GW170817 (Sec. V).

IV. APPLICATION OF THE FTI APPROACH
TO BINARY BLACK HOLES

The first of our two goals in this paper is to show the
pliability of the FTI approach in performing theory-
agnostic tests of GR, where one checks for the (dis)
agreement between estimates of non-GR parameters with
their GR predictions. In this section, we stress test the FTI
approach on GW signals and explore its robustness against
different assumptions made by different families of wave-
forms. We also investigate possible systematic biases when
the underlying waveform model contains missing physics,
for example, an absence of information due to higher
modes (HMs). Finally, we scrutinize how “flexible” the
FTI approach really is in its choice of internal settings, like
the tapering frequency. An incomplete model or an incor-
rect internal setting can potentially flag a violation of GR
and needs to be accounted for while performing theory-
agnostic tests of GR.
These investigations also illuminate the robustness of

parametrized theory-agnostic inspiral tests, in general,
which is more straightforward in an approach like the
FTI approach that strives to expose all flexibility (or
arbitrariness) of the test. Comparing this to the TIGER
infrastructure [33,34], we note that TIGER is designed and
implemented within a particular family of waveform
models, with a specific prescription for the transition to
the merger-ringdown phase being essentially inherited from
the underlying GR waveform.

A. FTI results with synthetic signals:
GW190412-like and GW190814-like

In this section, we explore the effect on theory-agnostic
tests of varying the physical content in our waveform
model, for instance, the impact of HMs. We restrict
ourselves to GW signals from BBH mergers, specifically,
the high-mass ratio GW190412 and GW190814 BBH
signals, which show non-negligible evidence for the
presence of HMs [54,55]. We note that the FTI analysis
with HMs has been already performed by the LVC on these
two events in Ref. [28] (see Appendix C therein). Let us
recapitulate those results here, summarized by the unfilled
black histograms in Fig. 3. However, note that in LVC

publications, the FTI results are typically transformed and
reweighed to match the normalization of the TIGER
inspiral parameters. This permits comparisons between
the two approaches, generally finding good agreement
for the GR constraints (see also Sec. V of Ref. [28] for
details). Throughout this work, we present the FTI results
without such reweighing.
We thus create two simulated signals, one with properties

similar to GW190412 [55] and another similar to
GW190814 [54] and choose our injection parameters to
be the median values of these events [54,55] (see Table I).5

We choose the pSEOBNRHMwaveform model and a “zero-
noise” configuration (i.e., we assume the data only contains
the signal and no noise, so as to remove noise-induced
systematics and focus on imperfections in waveform
modeling). The properties of the two signals are very
different, and we expect conclusions established through
this study to hold for a wide set of BBH signals. For the
analysis of these injections, we assume a three-detector
network of the two LIGO and Virgo detectors, with their
respective sensitivities representative of the third observing
run configurations. Accordingly, we use the PSDs provided
in Ref. [61]. We set the minimum frequency of the
likelihood computation as flow ¼ 20 Hz. The simulated
signals are analyzed with two separate waveform models,
pSEOBNRHM and pSEOBNR , to understand the effect of
the presence/absence of HMs in our waveform model on
the results. We again highlight here that we do not allow
more than one deviation parameter to vary during the
inference analysis at any given time.
Before investigating these synthetic signals, we high-

light a few intriguing points about the black curves in
Fig. 3. First, for both the events, the deviation parameter
δφ̂−2 contains the GR value (i.e., zero) at the tail of its
posterior distributions. Note that δφ̂0 shows a similar,
albeit not as pronounced, behavior as δφ̂−2. Additionally,
for GW190814, the posterior distribution of δφ̂5l shows
a small secondary peak at ∼ 0.62, which gets enhanced
upon the reweighing. These features could be due to the
particular noise realization even when using the Gaussian
approximation, or might be due to unaccounted system-
atics, either in our understanding of noise properties
around the event, or our waveform modeling, especially
in the high-mass regimes. Thus, it would be worthwhile to
have the results also from the corresponding simulated
signals, so that some of these questions can be answered.
We now discuss this.
In Fig. 3 we show the results from the simulated signals

next to the black curves (i.e., those from the actual events).
We can see that the posterior distributions of δφ̂−2 obtained
from the simulated signals with the HM waveform
pSEOBNRHM peak at zero. Also, unlike in the case of

5We set the spins to zero since their inferences were strongly
prior dependent.
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the real event GW190814, δφ̂5l from the simulated signal
has a unimodal posterior distribution. These results suggest
that the large bias seen in the case of real events are likely
induced by the noise content.6 Figure 4 shows the 90%
bounds on the posterior distributions of the deviation
parameters for both signals. The bounds from the real
events and the corresponding simulated signals are differ-
ent, however, they vary by much less than an order of
magnitude. This is interesting because there could be noise
artifacts in the real data and because the simulated signals
may not exactly represent the real events, yet we see that the
bounds are of the same order.
We also show, in the same figures, the results obtained

with the pSEOBNRwaveforms, which do not include HMs.
One can see that the posterior distributions obtained with
this waveform peak away from the injected value (zero)
relative to the HM waveform pSEOBNRHM. Among all, the
lower-order deviation parameters (δφ̂−2, δφ̂0, δφ̂1, δφ̂2,
δφ̂4) have noticeable biases. This suggests that neglecting
HMs would compromise on accuracy, which would be
consequential at high SNRs. In Fig. 5, we demonstrate this
by repeating the analysis for the GW190814-like signal but
at SNR ¼ 200. As we can see, the GR prediction now lies
outside the 90% credible intervals when the HMs are not
included in the recovery waveform.
In addition to the accuracy, the inclusion of HMs also

improves precision (i.e., the bounds) of the measurement of
the deviation parameters (Fig. 4). The improvement is
marginal, but it is expected to improve significantly at high

SNRs. Furthermore, consistent with our expectation, the
lower PN order deviation parameters (δφ̂−2, δφ̂0, δφ̂1, δφ̂2,
δφ̂3, δφ̂4, δφ̂5l) are measured relatively better with the
GW190814-like signals as this system has lower total mass
and thus more of the low-frequency inspiral falls within the
bandwidth of the detectors. To give an example, the 90%
bound for δφ̂−2 obtained from GW190814-like signals is
∼Oð10−3Þ, while from GW190412-like signals it is
∼Oð10−2Þ, and thus there is an order of magnitude

FIG. 4. The 90% credible intervals of the posterior distributions of the deviation parameters in Fig. 3 (i.e., for the simulated
GW190814-like (left panel) and GW190412-like (right panel) signals.) The HM waveforms, pSEOBNRHM , provide slightly better
bounds. The open circles are the results from the actual events GW190814 and GW190412 [28] (but here without reweighing against
the priors).

FIG. 5. The same analysis as in Fig. 3 (SNR ¼ 25) for the
deviation parameter δφ̂0 with the GW190814-like signal but at
the SNR ¼ 200. The GR value (marked with a cross sign) with
the (2,2)-mode waveform pSEOBNR lies outside the 90% credi-
ble level indicating a deviation from GR.

6The bias here is defined as the difference between the peak of
the posterior distribution and the injected (true) value.
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difference. On the other hand, for GW190412-like signals
which have higher total mass, the high PN deviation
parameters (δφ̂6 and δφ̂7) are better measured.
We end this section with a plot (Fig. 6) that shows a

typical FTI waveform. The shaded region shows the 90%
uncertainty in the FTI waveforms from the analysis of a
representative deviation parameter, in this case δφ̂0, with a
GW190412-like injected signal. We first computed the
waveforms corresponding to the posterior samples and then
determine their 90% uncertainty in each time bin. We also
plot the corresponding GR waveform which corresponds to
the maximum a posteriori (MAP) parameters in the GR
analysis of the GW190412-like signal, to explore the
uncertainties of the FTI waveforms around the “true”
GR waveform. We align the GR waveform with the FTI
MAP waveform at low frequency following the steps
outlined in Sec. III A of Ref. [41] (see, e.g., Eq. (34)
therein) in a time interval corresponding to the orbital
frequency range f20; 30g Hz.7 Figure 6 shows that the
MAP FTI and GR waveforms are quite close to each other.
This is because their GR parameters are very similar, as we
will discuss below.

B. Optimization and systematics of the FTI approach

In this section we would like to investigate how to
optimize the null tests enabled by the FTI approach and
also explore possible systematics due to the settings,
notably the choice of the tapering frequency, and the
family of waveform models adopted.

In Sec. II we have discussed a particular choice of the
tapering frequency (ftape22 ¼ 0.35fpeak22 ). Historically, this
choice was motivated by comparisons of the FTI results
with TIGER results.8 Nevertheless, given that the FTI
method allows for flexibility in the tapering frequency,
unlike TIGER, we want to understand the effects of varying
it. It is also theoretically difficult to justify exactly where
(i.e., at which orbital frequency) the inspiral ends. We thus
allow the tapering frequency to vary up until the (approxi-
mate) merger frequency, fpeak22 , and explore its impact on
our results. Varying the tapering frequency beyond the
merger frequency would not make much sense for an
inspiral test. We note that FTI analysis of BNSs would not
be affected by increasing the default tapering frequency
because, for such systems, higher tapering frequency lies
outside the sensitivity bandwidth of current GW detectors
(e.g., 0.35fpeak22 ≃ 1350 Hz for GW170817).
In Fig. 7 we show the change in the 90% credible

intervals of the deviation-parameter posterior distributions,
as the tapering frequency is varied. More specifically, the
exact change in the bounds depends on the underlying
signal itself, for example, for the high-total-mass
GW190412-like system (right panel), with less inspiral
in the detectors’ frequency bands, bounds on the lower PN
order deviation parameters (δφ̂−2, δφ̂0, δφ̂1, δφ̂2; φ̂3)
change at most by a factor of ∼ 2 − 3 (if we push the
tapering frequency up to the peak of h22). This makes sense
because those deviation parameters affect the waveform
significantly only at low frequencies, and thus increasing

FIG. 6. The detector-strain outputs FþhþðtÞ þ F×h×ðtÞ (where Fþ; F× are the antenna patterns at the LIGO Hanford detector) of the
pSEOBNRHM (solid line) and GR SEOBNRHM (dashed line) MAP waveforms when a GW190412-like signal is injected. The
pSEOBNRHM waveform includes the deviation parameter δφ̂0. The MAP SEOBNRHM waveform is aligned with the MAP pSEOBNRHM
waveform in a time interval corresponding to the orbital frequency f20; 30g Hz. The pSEOBNRHM and GRMAP waveforms are close to
each other because their MAP GR parameters are very similar. The shaded region denotes the 90% uncertainty in the strain computed
from the posterior samples of the parameters of pSEOBNRHM in each time bin.

7The exact range of the orbital frequency chosen here for the
alignment does not matter much since the parameters of the GR
and non-GR waveforms are very close.

8In the LIGO-Virgo analyses [24–28], the TIGER code [34]
used the IMRPhenomD waveform model where the transition
frequency between the inspiral and intermediate regions occur
close to ftape22 ¼ 0.35fpeak22 .
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the tapering frequency does not make much difference to
the results. The change on the bounds increases (up to ∼ 5)
for the higher PN deviation parameters and becomes the
largest for δφ̂6, for which the variation is ∼ 7. Extending
the tapering frequency up to close to merger increases the
available SNR (see Table II) and improves the measure-
ment of the higher PN deviation parameters δφ̂4, δφ̂5l, δφ̂6.
For low-total-mass GW190814-like systems, as one can

see from the left panel of Fig. 7, for almost all deviation
parameters, the tapering frequency has a somewhat larger
impact on the bounds. Bounds for the lower PN order
deviation parameters (δφ̂−2, δφ̂0, δφ̂1, δφ̂2, and δφ̂3) change
by a factor of 1–5, while the higher-order ones change by a
factor as large as ∼7 (for φ̂5l). Also in this case, extending
the tapering frequency up to merger can improve the
measurement of the high PN deviation parameters. The
above studies suggest that to optimize the FTI framework
for BBHs, it would be beneficial to obtain a tapering
frequency that depends on the available SNR and the
number of GW cycles up to the peak of the waveform.

Eventually, those quantities depend on the total mass of the
binary, mass ratio, and spins.
As stated above, the chirp mass M generally correlates

with the deviation parameters, a property discussed in more
detail in the following subsection. This means that the
measurement of the chirp mass would get affected by the
variation of the tapering frequency. This can be seen in
Fig. 8. The left panel shows the correlation of M with δφ̂0

for GW190814-like systems, while the right panel shows
the correlation with δφ̂−2 for GW190412-like systems.
From the left panel we observe that the variation in the
tapering frequency only affects the width of the chirp-mass
posterior distribution, while the right panel shows that,
additionally, there could arise some biases (even in the
deviation parameter δφ̂−2) if the tapering frequency is too
low. The reason for this could be that, for relatively high-
mass systems, the number of GW cycles in the detectors’
frequency bands is already low to start with, and thus
using too low tapering frequencies would essentially make
the inference almost insensitive to δφ̂−2. We note that for
the GW190412-like source, the bias is quite reduced when
we use the tapering frequency at the peak of the (2,2)-
mode. This is because for this high-mass binary the last
few cycles before merger can increase significantly the
SNR accumulated. Hence, if one should find evidence for
a violation of GR, then one must first check for a possible
bias of the FTI results by varying the tapering frequency.
We find that the other GR parameters, besides the chirp
mass, remain mostly unaffected. This could be because
they play a subdominant role in the orbital dynamics
during the inspiral.
Finally, so far we have employed for our analyses the

EOB-based waveform models: and SEOBNRHM and
SEOBNR. We show in Fig. 9 the results obtained from

FIG. 7. The 90% bounds on the deviation parameters from GW190814-like (left panel) and GW190412-like (right panel) signals when
the tapering frequency ftape22 is varied.

TABLE II. Fraction of the total SNR between 20 Hz and the
tapering frequency for the two simulated signals employed here.

Tapering
frequency GW190814-like (%) GW190412-like (%)

0.25fpeak22
83.8 61.3

0.35fpeak22
92.1 76.2

0.45fpeak22
95.4 83.2

0.60fpeak22
97.4 88.9

1.00fpeak22
99.3 96.1
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the two simulated signals when recovered with the aligned-
spin phenomenological waveform pPhenomX, in addition
to the SEOBNR waveform. Both models only contain the
(2,2)-mode. As we can see, there is really no significant
difference between the bounds obtained from these two
different waveform families, except for δφ̂7 with the higher-
mass GW190412-like system (perhaps due to modeling
differences at high frequencies). In addition, the details of
the individual posterior distributions (not shown here) are
very similar. We thus expect that the results established in
this work do not depend much on the underlying family of
GR waveform models used, as long as they have compa-
rable accuracy to numerical relativity.

C. Impact of the FTI approach
on the GR parameters

In Figs. 10 and 11 we show the posteriors of the GR
parameters of the two simulated signals introduced above,
when recovering them with the GR SEOBNRHM model
and the pSEOBNRHM model. For the cases involving the
parameters δφ̂−2 and δφ̂0, we observe that the measurement
uncertainty of the chirp mass increases significantly, while
other GR parameters, e.g., the total mass (M), mass ratio
(q), or effective spin (χeff ), remain unaffected. For the
GW190412-like signal, the addition of δφ̂−2 introduces a
bias in the measurement of the GR parameters. These

FIG. 8. The 2D joint posterior distribution between the deviation parameter δφ̂0 and the chirp massM for the results presented in the
left and right panels of Fig. 7, respectively. The crosses and vertical dashed lines represent the injected values. The extent of the
correlation between the chirp mass and the deviation parameters vary with the tapering frequency.

FIG. 9. The 90% bounds on the deviation parameters from the simulated GW190814-like (left panel) and GW190412-like (right
panel) signals when two waveform families, namely, pSEOBNR and pPhenomX, are used for the recovery.

AJIT KUMAR MEHTA et al. PHYS. REV. D 107, 044020 (2023)

044020-12



FIG. 10. Posterior distributions of several binaries’ parameters for the simulated GW190814-like signal (upper panel) and the
GW190412-like signal (lower panel) when the GR SEOBNRHMmodel and the pSEOBNRHMmodel with deviations parameters δφ̂−2, δφ̂0,
and δφ̂1 are used to recover the signal. The vertical dashed lines represent the true value of the injections. The strong correlation between
these deviation parameters and the chirp massM leads to the broadening of the chirp-mass posteriors and sometime causes a bias as well.

FIG. 11. Same as Fig. 10 but for the deviation parameters δφ̂6 and δφ̂7. The dotted lines represent the posteriors obtained with the
nonspinning pSEOBNRHM waveforms. The bimodalities in the GR parameters arise as a consequence of strong correlations between
masses and spins induced by the deviation parameters δφ̂6 and δφ̂7,
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biases, however, reduce if a tapering frequency higher than
the current default of 0.35fpeak22 is used for the analysis, as
demonstrated in the previous subsection. Hence, the biases
appear to be the consequence of an insufficient number of
GW cycles or SNR.
The fact that the chirp-mass measurement is heavily

correlated or degenerate with the measurement of some
non-GR parameters can be understood by looking at the
FTI formulation itself. Restricting ourselves to the (2,2)-
mode, using the definition of v from Eq. (8), the n=2-PN-
order coefficient in Eq. (11) that contributes to the total
phase correction is

ψnðf; θÞ ¼
3

128ðMπfÞ5=3 ψ
ðGRÞ
n ðθÞð1þ δφ̂nÞ; ð19Þ

where δφ̂n is the n=2-PN-order deviation parameter. For the
leading-order term n ¼ 0, this implies

ψ0ðf; θÞ ¼
3

128ðMπfÞ5=3 ð1þ δφ̂0Þ; ð20Þ

since ψ ðGRÞ
0 ¼ 1. For the -1PN and 0.5PN phase corrections

(i.e., n ¼ −2, 1), which are absolute corrections since they
are absent in GR, the expressions read

ψ−2ðf; θÞ ¼
3

128ðMπfÞ5=3 δφ̂−2; ð21Þ

and

ψ1ðf; θÞ ¼
3

128ðMπfÞ5=3 δφ̂1: ð22Þ

It becomes clear from Eqs. (20), (21), and (22) that the
deviation parameters δφ̂−2, δφ̂0, and δφ̂1 are degenerate
with the chirp mass, as Fig. 8 shows. There are also
correlations between the chirp mass (and other binary
parameters) and the deviation parameters at higher PN
orders, but they are milder. Indeed the addition of δφ̂2, δφ̂3,
δφ̂4, δφ̂5l, and δφ̂6l do not affect estimates of GR param-
eters in any noticeable fashion, as we have verified using
the results in Figs. 10 and 11.
However, for the highest PN-order deviation parameters,

δφ̂6 and δφ̂7, posterior distributions of GR parameters can
show features like bimodalities, depending on the under-
lying signal, see Fig. 11. This is because, unlike the cases of

n ¼ −2, 0, 1, for values of n ≥ 2 the PN coefficients ψ ðGRÞ
n

also depend on the intrinsic properties, in particular, the
symmetric mass ratio and the spins. In fact, the bimodalities
observed in the δφ̂6 and δφ̂7 cases disappear when we
perform the analysis with nonspinning waveforms, shown
by the dotted lines in Fig. 11. This suggests that the
deviation parameters δφ̂6 and δφ̂7 induce strong correla-
tions between the GR parameters when the binary is

spinning. We notice that the amount of bimodality also
depends on the tapering frequency, notably on the GW
cycles and SNR.

V. APPLICATION OF THE FTI APPROACH
TO A BINARY NEUTRON STAR

Here we consider the application of the FTI approach to
a specific alternative theory of GR: the JFBD scalar-tensor
theory [62–64]. Initially formulated in the mid-20th
century, JFBD gravity was the very first scalar-tensor
theory—a theory in which gravity is mediated by both a
tensor (the metric) and a scalar. Since then, significant work
has been done to extend this notion beyond JFBD theory to
broader, more generic classes of scalar-tensor theories (e.g.,
Horndeski theories [65], Beyond Horndeski theories [66],
Degenerate Higher-Order Scalar-Tensor theories [67,68]).
Yet, despite its simplicity, JFBD gravity remains relevant
today, though more as a pedagogical archetype of modified
gravity than as a truly viable alternative to GR. In this vein,
constraining the JFBD theory with a particular experiment
offers an easily understood benchmark of its sensitivity to
deviations from GR.
The action for JFBD gravity written in the Jordan frame

is given by

S ¼
Z

d4x

ffiffiffiffiffiffi
−g̃

p
16π

�
ϕR̃ −

ωBD

ϕ
g̃μν∂μϕ∂νϕ

�
þ Sm½g̃μν;ψ �;

ð23Þ

where ϕ is a massless scalar field, ωBD is a dimensionless
coupling constant,9 and Sm represents the action for matter
fields ψ minimally coupled to the metric g̃μν. (Here ψ
should not be confused with the GWmodes ψlm introduced
earlier.) Alternatively, the action can be rewritten in the
Einstein frame by performing the conformal transformation
gμν ≡ ϕg̃μν,

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

16π
ðR − 2gμν∂μφ∂νφÞ þ Sm½e−2α0φgμν;ψ �;

ð24Þ

where we have defined the dimensionless parameter
α0 ≡ ð3þ 2ωBDÞ−1=2 and introduced the scalar field
φ≡ logðϕÞ=ð2α0Þ; note that α0 is non-negative and that
we have implicitly assumed that ωBD > −3=2. (Note that φ
is unrelated to the FTI deviation parameters.) In the limit
that α0 → 0 (ωBD → ∞), the scalar field decouples from the
metric and matter, and the JFBD theory reduces to GR with
an additional massless scalar that is minimally coupled to

9JFBD is also commonly known as simply Brans-Dicke
gravity (BD); following the standard convention in the literature,
we adopt this abbreviation when denoting the coupling
constant ωBD.
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gravity only. Themost accurate constraints on this parameter
come from the Doppler tracking of the Cassini space-
craft through the Solar System [69], α0<4×10−3

(ωBD>4×104), and binary pulsar observations [20,70–72].
In particular, the most recent results obtained in Ref. [73]
with 16 years of observation of the double-pulsar J0737-
3039 yield the bounds α0 ¼ 0.004083 and ¼ 0.003148 at
95% credible level, when the stiff MPA1 and soft WFF1
equation of state (EOS) are employed, respectively.
The recent advent of GW astronomy offers a new

avenue to test gravity in the relativistic regime. The
majority of GWs observed by LIGO and Virgo thus far
were generated by the coalescence of BBHs; several tests
of GR have already been conducted using these observa-
tions [24,25,27,35]. However, Hawking famously showed
that stationary BHs in the JFBD theory must have a trivial
scalar profile and thus are indistinguishable from the
analogous solutions in GR [74]. Although there are some
possible scenarios that evade this no-hair theorem (see,
e.g., Ref. [75]), binary systems composed of BHs are,
generally, expected to behave identically in the JFBD
theory and GR, and thus GWs from such systems are
unable to constrain this scalar-tensor theory.
Unlike BHs, NSs source a nontrivial scalar field in

JFBD gravity, and thus BNS systems can be used to
constrain α0. In this section, we use the first GWobservation
of a coalescing BNS—GW170817 [5]—to constrain α0 at
the 68% (and 90%) credible levels. Though the constraint
from GW170817 is not as strong as those previously
quoted from other experiments, this result represents the
first bound directly from the highly dynamical (orbital
velocities v ∼ 10−1) and strong-field (Newtonian potential
ΦNewt ¼ M=R ∼ 10−1) regime of gravity.
This section is organized as follows. In Sec. VA, we

detail the GW signature of the JFBD theory in BNSs. Then,
in Sec. V B, we present two Bayesian analyses to constrain
α0 with GW170817: the first directly uses the theory-
agnostic analyses presented in Sec. II, while the second is
tailored specifically to test JFBD gravity.

A. Gravitational-wave signature of JFBD gravity

The predominant differences in GWs produced in JFBD
gravity as compared to GR stem from the fact that only the
latter respects the strong equivalence principle. This prin-
ciple extends the universality of free fall by test particles
implied by the Einstein equivalence principle to also
include self-gravitating bodies; unlike in GR, the motion
of a body through spacetime depends on its internal
gravitational interactions (i.e., its composition) in scalar-
tensor theories like JFBD gravity. This section details how
this violation of the strong equivalence principle impacts
the GWs produced by binary systems in JFBD gravity. This
alternative theory of gravity falls within the class of scalar-
tensor theories for which PN predictions have been

computed. Though those results are available at next-to-
next-to-leading PN order (and even higher-order PN
calculations have been made recently [76–79]), we will
assume that α0 is sufficiently small that we can neglect all
but the leading-order PN effects when describing the
signature of JFBD gravity in a gravitational waveform.
The dominant effect on the inspiral from the new scalar

introduced in JFBD gravity is the emission of dipole
radiation, which enters into the phase evolution at -1PN
order. In the notation of the FTI framework and using the
fact that the quadrupolar GR radiation dominates over the
dipolar one for small α0 [76], this contribution is given by

δφ̂−2 ¼ −
5ðα1 − α2Þ2

168
þOðα40Þ; ð25Þ

where αi is the scalar charge of body i, defined as

αi ≡ −
d logmiðφÞ

dφ
; ð26Þ

wheremiðφÞ is the gravitational mass of body imeasured in
the Einstein frame (i ¼ 1, 2). That a body’s mass depends
on the local value of the scalar field is unsurprising given
the form of Eq. (24); a shift in φ modulates the physical
metric e−2α0φgμν that effects gravity upon the matter fields
ψ and thus also modulates any body’s gravitational mass.
This dependence is an explicit manifestation of violation of
the strong equivalence principle. Note that in the limit that a
body has no self-gravity (i.e., the test-body limit), the
functional form of miðφÞ simplifies significantly to

mðtest bodyÞ
i ðφÞ ¼ e−α0φmðtest bodyÞ

i ðφ ¼ 0Þ; ð27Þ

and thus its scalar charge reduces to

αðtest bodyÞi ¼ α0: ð28Þ

As strongly self-gravitating bodies, violations of the
strong equivalence principle are particularly pronounced in
NSs. This violation manifests as a scalar charge that differs
significantly from the test-body charge α0. As the scalar
charges of a binary’s constituents—or rather their differ-
ence, the scalar dipole—control the dominant effect on the
GW signal in JFBD gravity, we devote the remainder of this
subsection to computing these quantities for various NSs.
We consider spherically symmetric static solutions

sourced by a perfect fluid as a model for an isolated
nonspinning NS. Under these assumptions, the field equa-
tions for Eq. (24) reduce to the Tolman-Oppenheimer-
Volkoff (TOV) equations, given in the Einstein frame in
Ref. [71]. These solutions are parametrized by three
degrees of freedom; for our purposes, these are most
clearly manifested as the (i) background scalar field φ0,
that is the scalar field far from the NS, (ii) the NS EOS, and
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(iii) the NS mass.10 Note that the asymptotic scalar field φ0

can be set to zero without loss of generality by rescaling the
Jordan-frame bare gravitational constant G̃ accordingly,
that is φ0 → 0 ⇒ G̃ → G̃e2α0φ0 . The remaining degrees of
freedom can be mapped to boundary conditions for the
matter and scalar field at the origin with a numerical
shooting method [81]. These conditions are parametrized
by the central pressure Pc and the scalar field φc, which
serve as the inputs for numerically integrating the TOV
equations. (Note that in this section φc is different from the
parameter used in Sec. II to define the binary’s orientation.)
The details for extracting the mass and scalar charge from
the numerical solutions of the NS interior are given
in Ref. [71].
Ultimately, we would like to combine the numerical

calculations of the NS scalar charge outlined above with
their anticipated effect on the GW signal (25) to constrain
the JFBD theory. However, evaluating the scalar charge
directly for every point visited by the stochastic sampling
algorithms used for parameter estimation would require an
unreasonable amount of computational resources. Instead,
we compute polynomial fits for the scalar charge, which,
after having been derived, can be evaluated quickly and
with little computational overhead.
We first construct solutions for various choices of

EOS, NS mass, and scalar-tensor coupling α0. We inter-
polate tabulated EOS data for the sly [82], eng [83],
and H4 [84] EOSs; sly is a soft EOS (compact stars),
whereas H4 is relatively stiff (diffuse stars). Then, we
numerically construct NSs with masses ranging between

mi∈ ½0.5M⊙;2.0M⊙� and scalar coupling α0 ∈ ½0.001; 1.0�
and compute their scalar charge.
We calculate two types of polynomial fits of the scalar

charge for each EOS. For the first, we factor out the
dominant linear dependence of αi on α0, fitting their
quotient as a fourth-order polynomial in mi. We compute
the polynomial fits with least-squares regression; the fits
are given in Table III for each EOS that we consider. These
fits match all of our data sets within 5% relative error, with
the greatest discrepancy arising for masses close to 2 M⊙.
Although these (effectively) one-dimensional polyno-

mial fits are crucial for some of our analysis, it is possible to
construct two-dimensional fits that are simpler (fewer
terms) and more accurate using more sophisticated meth-
ods. We compute these fits using the greedy-multivariate-
rational regression method developed in Ref. [85]. This
method relies on a greedy algorithm to construct a
multivariate fit: during each iteration, it adds a polynomial
term to the current fit (up to a prespecified maximum
degree) so as to best improve the agreement with the
inputted data. This process is repeated until sufficient
accuracy is achieved, and then terms are systematically
removed from the polynomial until the accuracy goal is
saturated. Using this method, we construct fits that agree
to within 1% relative error for each EOS—these are listed
in Table IV.

B. Constraining α0 with GW170817

Next, we use the tools introduced previously to place
constraints on the scalar-tensor coupling α0 in JFBD
gravity with GW170817—the first GW event from a
coalescing BNS. We present two complementary analyses
based off of the FTI infrastructure to achieve this result.
These two methods follow the same overall approach but

TABLE IV. Two-dimensional polynomial fits of the normalized NS coupling αi=α0 as functions of the Brans-
Dicke parameter α0 and NS mass mi (in units of M⊙) for various EOSs. The relative error amounts to less than 1%
over the area ðmi; α0Þ ∈ ½0.5 M⊙; 2.0 M⊙� × ½0.001; 1.0�.
EOS Fit for ½αi=α0�ðmi; α0Þ
sly [82] −0.92569þ0.22258α0mi þ 0.13329m2

i − 0.15151α0m2
i

eng [83] −0.97423þ 0.15584mi þ 0.18527α0mi−0.11739α0m2
i þ 0.024333m3

i
H4 [84] −0.93341þ0.19073α0mi þ 0.10270m2

i − 0.11284α0m2
i

TABLE III. One-dimensional polynomial fits of the normalized NS coupling αi=α0 as a function of NS mass mi
(in units of M⊙) for various EOSs. The relative error amounts to less than 5% over the area
ðmi; α0Þ ∈ ½0.5 M⊙; 2.0 M⊙� × ½0.001; 1.0�.
EOS Fit for ½αi=α0�ðmiÞ
sly [82] −0.726798 − 0.749029mi þ 1.270944m2

i − 0.728710m3
i þ 0.161002m4

i
eng [83] −0.817884 − 0.393375mi þ 0.772615m2

i − 0.435306m3
i þ 0.095059m4

i
H4 [84] −0.613880 − 1.210074mi þ 1.836631m2

i − 1.056595m3
i þ 0.228102m4

i

10We define the NS mass as the tensor mass mT introduced in
Ref. [80] because—as shown in that reference—it obeys the same
conservation laws as the ADM mass in GR.
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adopt different statistical assumptions, utilize different
waveform models, and use different numerical fits for
the NS scalar charge αi. In both approaches, we employ a
generalized waveform model that allows for an additional
contribution to the phase evolution at -1PN order, so as to
reproduce the behavior seen in Eq. (25); however, the
parametrization of this -1PN deviation from GR differs in
each approach. Ultimately, both analyses provide a bound
on α0 of the same order of magnitude.
The first approach we adopt directly uses the theory-

agnostic constraints on a -1PN deviation, and it was
originally obtained in Ref. [26]. We use in this analysis a
generalization of the tidal aligned-spin SEOBNRT [53,57,58]
waveform model in which the -1PN term is parametrized
by the deviation parameter δφ̂−2. By assuming a particular
NS EOS, we can use the polynomial fit in Table III in
conjunction with Eq. (25) to map a measured value of δφ̂−2
to an inferred value on α0; schematically, this mapping takes
the form α0ðδφ̂−2; m1; m2;EOSÞ. Note that this mapping is
infeasible using the multivariate fit in Table IV because of
the nonlinear dependence of αi on α0. Though the exact
NS EOS remains unknown, we can repeat this analysis for
the three candidate EOSs detailed earlier, and then use the
variance on the bounds of α0, recovered each time, as an
estimate of the systematic error arising from our ignorance of
the true NS EOS.
In practice, one does not measure the masses and

deviation parameter δφ̂−2 with perfect accuracy, but instead
uses Bayesian inference (Sec. III) to reconstruct the
posterior distribution Pðθjd;HÞ on these parameters given
some assumed prior distribution pðθjHÞ. So, rather than
map a single point from one parametrization to another, we
instead map the appropriate distributions to their counter-
parts in the new parametrization. These prior and posterior
distributions transform, respectively, as

pðα0; m1; m2jHÞ ¼
���� ∂ðα0; m1; m2Þ
∂ðδφ̂−2; m1; m2Þ

����
−1

× pðδφ̂−2; m1; m2jHÞ; ð29Þ
and

Pðα0; m1; m2jd;HÞ ¼
���� ∂ðα0; m1; m2Þ
∂ðδφ̂−2; m1; m2Þ

����
−1

× Pðδφ̂−2; m1; m2jd;HÞ; ð30Þ
where the first term on the right-hand side of either
equations is the inverse of the Jacobian of the aforemen-
tioned transformation.
In the analysis of Ref. [26], a flat prior was assumed on

the component masses and deviation parameter δφ̂−2. (We
note that the upper prior bound is dictated by the theory
since δφ̂−2 ≤ 0, see Eq. (25).) These choices reflect the
theory-agnostic nature of that test; without a preferred
alternative, this choice represents the simplest prior in terms

of these binary parameters. Figure 12 depicts with dashed
lines how this choice of prior distribution maps to an
assumed prior on α0 through Eq. (29); here the different
colors correspond to different assumed EOSs. Similarly,
the dashed lines in Fig. 13 show the corresponding

FIG. 12. Marginalized prior distributions on the JFBD param-
eter α0 used in the two analyses. The dashed colored curves
depict the prior distribution equivalent to the flat prior distribution
on component masses and deviation parameter δφ̂−2 assumed in
the theory-agnostic analysis. The solid black curve depicts the flat
prior on α0 assumed in the theory-specific test.

FIG. 13. Marginalized posterior distributions on the JFBD
parameter α0 recovered from GW170817. The dashed curves
show the posterior recovered directly from the theory-agnostic
analysis. The solid curves depict the posterior using the theory-
specific test of JFBD assuming a flat prior for α0. For both
analyses, different colors correspond to different assumed EOSs.
The short vertical lines on the horizontal axes represent the 90%
upper bounds on α0 for each analysis. The theory-agnostic test
provides better bounds on α0.

TESTS OF GENERAL RELATIVITY WITH GRAVITATIONAL- … PHYS. REV. D 107, 044020 (2023)

044020-17



marginalized posteriors on α0, transformed from the pos-
terior on δφ̂−2 and component masses via Eq. (30). This
analysis provides a bound of α0 ≲ 2 × 10−1 (5 × 10−1) at a
68% (90%) credible level. We find that the systematic error
arising from our ignorance of the NS EOS does not impact
our estimate at 68%, but changes the bound at 90% credible
level by ∼30%. The bound on α0 with GW170817 is about
3 orders of magnitude larger than that obtained with the
double-pulsar J0737-3039 [73], which since 2003 has been
tracked for about 60 000 orbital cycles. Future observations
with GW detectors on the ground and in space will allow
to reach similar or better accuracies [86]. Due to the
much smaller velocity (v=c ∼ 2 × 10−3), the double-pulsar
observation becomes quickly less constraining for high PN
terms entering the GW phasing (i.e., the ones discussed
in Sec. IV).
We can straightforwardly translate our bounds on the

coupling to the JFBD parameter ωBD using that α20 ¼ 1=
ð3þ 2ωBDÞ, see Table V. We find that the conservative
bound in the theory-specific approach is ωBD ≳ 1.12
(−0.70) at a 68% (90%) credible level. We also find it
useful to quote here a bound on the parametrized post-
Newtonian (PPN) parameter γPPN [72] that would corre-
spond to our bound on α0, using j1 − γPPNj ¼ 2α20=ð1þ α20Þ.
This leads us to the bound j1 − γPPNj≲ 0.32 (0.77) at a 68%
(90%) credible level. However, note that our constraint
originates from the dipole radiation and not from the 1PN
deformation of the metric that defines γPPN.
The second approach we employ to constrain α0 relies

instead on a waveform model design specifically to test the
JFBD theory. Using the FTI infrastructure, we construct a
generalized waveform model from SEOBNRT in which the
deviation parameter is precisely α0. The appropriate form of
the -1PN correction to the phase evolution is obtained by
inserting the polynomial fit for αiðα0; miÞ found in Table IV
for a particular choice of the EOS into Eq. (25).
Additionally, unlike the previous theory-agnostic analysis

in which the tidal parameters were allowed to vary freely,
for this analysis, we express these parameters as functions
of the respective NS masses and assumed EOS.11 This step
reduces the dimensionality of the waveform model by two
parameters while ensuring that all matter effects are
handled self-consistently. We assume a flat prior on α0 ∈
½0; 1� for this analysis; beyond this upper bound, our
assumption that JFBD effects of order α20 are subdominant
to the PN effects in GR is no longer valid. This prior
distribution is depicted in Fig. 12 with a solid black curve.
Using the generalized waveform described above, we
perform parameter estimation to construct the marginalized
posterior distribution on α0, shown in Fig. 13 with solid
colored curves corresponding to the assumed EOS. We
obtain the upper bound of α0 ≲ 4 × 10−1 (8 × 10−1) at a
68% (90%) credible interval where, as before, the system-
atic error due to ignorance of the true NS EOS does not
contribute at this level of precision. As explained above,
our constraint on α0 can be translated to the bounds ωBD ≳
14.37 (−0.02) or j1 − γPPNj≲ 0.06 (0.50) at a 68% (90%)
credible level.
Comparing the bounds set by the two analyses, we see

that the theory-agnostic test provides a stronger bound on
α0. At first glance, this result may appear counterintuitive,
as Fig. 12 shows that this test assumed a marginalized prior
on α0 with greater support away from zero. The predomi-
nant cause for this discrepancy stems from how the tidal
parameters are handled by each waveform model. For the
theory-agnostic test, these parameters are allowed to vary
freely, independent of the masses of the NSs. However,
in the theory-specific test, the tidal parameters are linked
directly to the component masses. This latter restriction
significantly affects the recovered posterior distribution on
the component masses, placing much greater weight near
equal-mass configurations than in the previous case. As can
be seen in Eq. (25), in very symmetric configurations, the
total deviation from the baseline GR waveform remains
small even when α0 is relatively large; as a result, the JFBD
parameter is more poorly measured when the tidal param-
eters cannot vary freely, and thus we recover a weaker
bound with this theory-specific test.

VI. CONCLUSION

In this paper we have developed a framework that allows
us to introduce deviations from GR to any frequency-
domain inspiral phasing, assuming that such corrections are
small modifications to the GR signal. For theory-agnostic
tests, our FTI framework has already been successfully

TABLE V. Our bounds on the coupling α0 translated to bounds
on the JFBD parameter ωBD and the PPN parameter γPPN. The
numbers here indicate 68% credible level, while the numbers in
brackets are the 90% credible level.

Theory-specific bounds

EOS ωBD j1 − γPPNj
sly [82] 1.69 (−0.68) 0.27 (0.76)
eng [83] 1.12 (−0.70) 0.32 (0.77)
H4 [84] 1.20 (−0.69) 0.31 (0.76)

Theory-agnostic bounds

EOS ωBD j1 − γPPNj
sly [82] 25.17 (1.00) 0.04 (0.33)
eng [83] 18.69 (0.42) 0.05 (0.41)
H4 [84] 14.37 (−0.02) 0.06 (0.50)

11We use polynomial fits to the tidal parameters as a function
of NS mass that are constructed in GR, not in JFBD gravity.
However, the differences between these two relations scale as α20
and thus can be neglected in favor of the simpler GR relation by
the same reasoning that the other subdominant PN effects (e.g., at
0PN order, 0.5PN order, etc.) can be ignored.
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applied to GWs observed by LIGO and Virgo detectors by
the LVC in Refs. [24–29], while for theory-specific tests the
FTImethod was employed in Ref. [37] to set bounds on an
effective-field theory of GR using BBH signals.
More specifically, building on the PN SPA phasing in

frequency domain, we have described how to apply the
FTI framework to multipolar aligned-spin waveforms, by
introducing deviation parameters to GR PN terms up to
3.5PN order, and also to PN terms that are absent in GR,
such as the -1PN and 0.5PN corrections. Although we
apply our framework mainly to the inspiral-merger-
ringdown SEOBNRHM waveform model, which contains
ðl; mÞ ¼ ð2; 1Þ; ð3; 3Þ; ð4; 4Þ; ð5; 5Þ modes in addition to
the dominant (2,2)-mode, the method is general and can be
used for any frequency-domain waveform (or the Fourier-
transform of a time-domain waveform). The corrections
introduced in the phasing are tapered off at a certain orbital
frequency, which is a free parameter in this framework. The
tapering process is introduced to ensure that the modified
PN phase for each mode reduces to its corresponding GR
phase during the late-inspiral-merger-ringdown stages, up
to a constant phase shift above the tapering frequency.
We have then discussed the application of the FTI

framework to BBHs, notably to two specific high-mass-
ratio events observed by LIGO and Virgo, GW190412
and GW190814. The latter were previously analyzed in
Ref. [28], where it was observed that the posterior
distributions of the -1PN deviation parameter, δφ̂−2, were
peaking away from the GR prediction, suggesting possible
modeling systematic biases. Here, by creating simulated
signals with parameters corresponding to the median
values of the two events, we have demonstrated that these
features are most likely due to (unexplored) artifacts of the
noise around the events rather than missing physics in the
waveform models. Furthermore, using the simulated
signals, we have showed that modes beyond the quadru-
pole do affect the accuracy of the deviation-parameter
measurements and the GR parameters, especially if the
signals have relatively high-mass ratios and inclinations.
In such cases, neglecting the high modes can significantly
bias the measurements at high SNRs, leading, errone-
ously, to interpret the measurement results as a violation
of GR.
We have also performed robustness tests of the FTI

results and showed that the bounds could be sensitive to
the tapering frequency, depending on the parameters of
the signal being analyzed. For very low-total-mass sys-
tems like the BNS GW170817, the tapering frequency lies
outside the frequency band where the majority of the SNR
is accumulated, thus the bounds are not expected to
change. On the other hand, for high-total-mass BBH
systems, like GW190814 and GW190412, the bounds
on the deviation parameters can change. More specifi-
cally, bounds on deviation parameters that are measured
with an accuracy of few tens of percent or less, may

change by a factor of 2–5, depending on the binary’s
parameters, when the tapering frequency spans the last
3–4 GW cycles before the (2,2)-mode’s peak. These
results suggest to go beyond the choice of the tapering
frequency adopted so far in Refs. [24–28], where it was
fixed to a specific value to compare with the compli-
mentary analysis provided by the TIGER framework [34].
In order to optimize the GR test with the FTI approach
and exploit the full SNR accumulated during the inspiral,
up to merger, comprehensive studies would need to be
undertaken to determine the best choice of the tapering
frequency as a function of the binary’s properties and the
accumulated SNR. By contrast, we have shown that the
bounds are marginally affected by the use of a different
but similarly accurate waveform model, e.g., the state-of-
the-art aligned-spin (phenomenological) pPhenomX
model, instead of pSEOBNR.
Moreover, we have investigated how the presence of the

deviation parameters in the waveform model affects the
measurement of the GR parameters. We have found that
most deviation parameters such as δφ̂2, δφ̂3, δφ̂4, δφ̂5l, and
δφ̂6l do not impact the GR parameters in any noticeable
way. On the other hand, the lower-order deviation param-
eters δφ̂−2, δφ̂0, and δφ̂1 affect the width of the chirp-mass
measurement quite significantly. This is due to the fact that
those deviation parameters are degenerate with the chirp
mass. We have found that the extent of the correlation,
however, also depends on the choice of the tapering
frequency (i.e., on the amount of SNR). The remaining
two deviation parameters, δφ̂6 and δφ̂7, can cause bimo-
dalities in the posterior distributions of the GR parameters.
The strength of these bimodalities depends on the tapering
frequency and the binary’s parameters. We find that the
bimodalities can be also caused by the fact that the 3PN and
3.5PN terms in the phasing are functions of the mass ratio
and the spins, and depending on the binary’s parameters,
those PN coefficients can go to zero. It might be possible to
avoid bimodalities in the GR posterior distributions by
splitting the deviation parameters at 3PN and 3.5PN order
in nonspinning and spinning parts and do inference on
those parts separately.
Finally, we have used the FTI method to perform a

theory-specific test with the BNS event GW170817 and
the JFBD gravity theory. We have obtained constraints
on the JFBD parameter α0 following two strategies and
employing the tidal aligned-spin SEOBNRT waveform
model. In the first approach, we directly converted the
theory-agnostic -1PN (i.e., δφ̂−2) posterior samples into
samples of α0ðδφ̂−2; m1; m2;EOSÞ using the fits in Table III
for different NS EOSs. This approach has provided us with
a bound on α0 ≲ 2 × 10−1 (5 × 10−1) at the 68% (90%)
credible interval, see also Table V for the corresponding
bounds on ωBD and γPPN. In the second approach, we have
employed a waveform model that is specifically designed
to test JFBD, that is we have chosen as deviation parameter
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directly α0. In this case, the phase corrections are given by
Eq. (25), where α1 and α2 are determined using the fits in
Table IV. Additionally, in this second approach, we have
also fixed the tidal parameters since for a given EOS they
can be determined from the component masses. This
process reduces the dimensionality of the waveform model
while ensuring that all matter effects are handled self-
consistently. Using a flat prior on α0 ∈ ½0; 1�, we have
found a bound on α0 ≲ 4 × 10−1 (8 × 10−1) at the 68%
(90%) credible interval, see also Table V for the corre-
sponding bounds on ωBD and γPPN. The main reason for the
difference in the bounds can be traced to how the tidal
parameters are handled in the two approaches. In the
theory-agnostic approach the tidal parameters were allowed
to vary freely during the inference analysis. By contrast, in
the theory-specific approach, tidal parameters and scalar
sensitivities cannot be treated as independent but must be
computed consistently (for each NS mass) by fixing the
EOS. Thus, theory-specific and theory-agnostic analyses
test slightly different statistical hypotheses, and within a
fully Bayesian framework, converting results from one to
the other requires care. To our knowledge, the impact of
statistical hypotheses on relating theory-specific and
theory-agnostic bounds has not been studied in detail in
the context of GW tests of GR and thus offers an interesting
new avenue for future work.
Lastly, the FTI framework can be applied to perform

theory-specific tests with non-GR theories other than JFBD
gravity, as done in Ref. [37]. Additionally, the framework
can be adapted to constrain other effects that leave an
impact on the inspiral phase—for example, the existence of
exotic compact objects having a spin-induced quadrupole
moment different from the one of a BH in GR [87,88].
However, more crucial for future, more sensitive observa-
tions, is the extension of the FTI framework to the spin-
precessing case. This will be possible by applying the
frequency-domain corrections to the phasing in the copre-
cessing frame, where the GWs are usually well approxi-
mated by aligned-spin waveforms [89,90].
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APPENDIX: THE 3.5 PN PHASING IN THE
STATIONARY-PHASE APPROXIMATION

Here, we write the PN coefficients entering the GW
phasing in the SPA approximation [91] through 3.5PN
order, including spin effects in GR.
Let us introduce the following quantities:

δ ¼ ðm1 −m2Þ
M

¼ 1 − 4ν; ðA1aÞ

χS ¼
ðχ1 þ χ2Þ

2
; ðA1bÞ

χA ¼ ðχ1 − χ2Þ
2

; ðA1cÞ

and the Euler’s constant γE. The PN coefficients in Eq. (7)
read [45,92,93] as follows:

ψ0 ¼ 1; ðA2aÞ

ψ1 ¼ 0; ðA2bÞ

ψ2 ¼
3715

756
þ 55ν

9
; ðA2cÞ

ψ3 ¼ −16π þ 113δχA
3

þ
�
113

3
−
76ν

3

�
χS; ðA2dÞ

ψ4¼
15293365

508032
þ27145ν

504
þ3085ν2

72
þ
�
−
405

8
þ200ν

�
χ2A

−
405δχAχS

4
þ
�
−
405

8
þ5ν

2

�
χ2S; ðA2eÞ

ψ5 ¼
38645π

756
−
65πν

9
þ
�
−
732985

2268
−
140ν

9

�
δχA

þ
�
−
732985

2268
þ 24260ν

81
þ 340ν2

9

�
χS; ðA2fÞ
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ψ5l ¼ 3ψ5 ¼
38645π

252
−
65πν

3
þ
�
−
732985

756
−
140ν

3

�
δχA þ

�
−
732985

756
þ 24260ν

27
þ 340ν2

3

�
χS; ðA2gÞ

ψ6 ¼
11583231236531

4694215680
−
6848 logð4Þ

21
−
640π2

3
þ 6848γE

21
þ
�
−
15737765635

3048192
þ 2255π2

12

�
νþ 76055ν2

1728
−
127825ν3

1296

þ 2270πδχA
3

þ
�
2270π

3
− 520πν

�
χS þ

�
75515

288
−
547945ν

504
−
8455ν2

24

�
χ2A þ

�
75515

144
−
8225ν

18

�
δχAχS

þ
�
75515

288
−
126935ν

252
þ 19235ν2

72

�
χ2S; ðA2hÞ

ψ6l ¼ −
6848

21
; ðA2iÞ

ψ7 ¼
77096675π

254016
þ 378515πν

1512
−
74045πν2

756
þ
�
−
25150083775

3048192
þ 26804935ν

6048
−
1985ν2

48

�
δχA

þ
�
−
25150083775

3048192
þ 10566655595ν

762048
−
1042165ν2

3024
þ 5345ν3

36

�
χS: ðA2jÞ
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